1
|
Wijeratne T, Crewther SG. A Systems Neuroscience Approach to Diagnosis and Rehabilitation of Post COVID Neurological Syndrome Based on the Systems Neuroscience Test Battery (SNTB) Study Protocol. NeuroRehabilitation 2025; 56:37-47. [PMID: 40183164 DOI: 10.1177/10538135241296773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The proposed study reports the design and development of a rapid screening tool, the Systems Neuroscience Test Battery (SNTB), for diagnosing and evaluating the neurological manifestations of Post-COVID-19 Neurological Syndrome (PCNS) within the broader context of Post-Acute Sequelae to COVID-19 (PASC). The SNTB is designed to incorporate a behaviorally relevant Telehealth component that enhances consumer confidence in symptom discrimination, management of PCNS, and guides rehabilitation programs while allowing for continuous evaluation of intervention effectiveness.The study employs a longitudinal design, with telehealth and routine blood assessments conducted at three-month intervals, including at least two follow-ups post-recruitment. These assessments will involve Consumer-Reported Symptoms, Clinical History, Neuropsychological Data, and Timed Psychophysics, aimed at rapid screening of PCNS-related symptoms including 'brain fog" and its affect on visually driven attention, cognition and visually driven motor behaviors. These assessments are intended to validate the characteristics of 'brain fog' and identify predictive behavioral biomarkers for the development of PCNS.The target population includes adults aged 18-65 who have experienced persistent neurological symptoms for at least three months following a confirmed COVID-19 infection. Exclusion criteria include individuals unable to undergo radiological examinations, such as pregnant women or those with contraindications to MRI, ensuring the robustness of the sample and reducing potential selection bias.The SNTB tool will facilitate the online identification of predictive biomarkers for PCNS and aid in the discovery of effective molecular biomarker combinations for medical intervention and rehabilitation. Complementary to the Telehealth Assessment, hospital facilities will be utilized for radiological and blood-based molecular assessments, ensuring concurrent profiling of structural and functional changes during 'brain fog' and recovery from PCNS symptoms.
Collapse
Affiliation(s)
- Tissa Wijeratne
- Department of Neurology, Sunshine Hospital, St Albans, Australia
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
- Department of Neurology, Migraine Foundation Australia, Keilor East, Australia
- Department of Psychology, Institute for Health and Sport, Victoria University, Melbourne, Australia
- School of Health and Biomedical Sciences, Psychology Department, RMIT University, Melbourne, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Immunology program, Melbourne, Australia
- Department of Neurology, Australian Institute of Migraine, Pascoe Vale South, Australia
| | - Sheila G Crewther
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
- Department of Neurology, Migraine Foundation Australia, Keilor East, Australia
| |
Collapse
|
2
|
Li Q, Shi X, Tang Y, Fu Y, Fu X. Shared genes and relevant potential molecular linkages between COVID-19 and chronic thromboembolic pulmonary hypertension (CTEPH). J Thromb Thrombolysis 2025; 58:319-330. [PMID: 39891865 DOI: 10.1007/s11239-025-03072-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 02/03/2025]
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) and COVID-19 share molecular pathways yet remain poorly understood in their interrelation. Using RNA-seq datasets (GSE130391 and GSE169687), we identified 645, 206, and 1,543 differentially expressed genes (DEGs) for long-COVID (16 and 24 weeks post-infection) and CTEPH, respectively. Weighted Gene Co-Expression Network Analysis (WGCNA) pinpointed 234 intersecting key module genes. Three hub genes-DNAJA1, NDUFA5, and SLC2A14-were identified with robust discriminatory capabilities (AUC ≥ 0.7). Enrichment analyses revealed shared pathways linked to immune modulation, oxidative stress, and metabolic dysfunction. Immune analysis highlighted activated CD8 T cells as critical regulators. Regulatory networks implicated TFs and miRNAs, including STAT1 and hsa-mir-23a-3p. Drug prediction identified potential therapeutic compounds with strong molecular docking interactions. These findings unravel critical molecular linkages, emphasizing shared pathogeneses and guiding experimental validations for improved diagnostic and therapeutic strategies in COVID-19 and CTEPH.
Collapse
Affiliation(s)
- Qianqian Li
- Geriatrics Department, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou , 570203, China
| | - Xia Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yang Tang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yi Fu
- The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, 650500, China.
| | - Xing Fu
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
3
|
Hirschberger S, Effinger D, Yoncheva P, Schmid A, Weis MN, Holdt LM, Teupser D, Kreth S. The impact of a ketogenic diet on weight loss, metabolism, body composition and quality of life. iScience 2024; 27:111291. [PMID: 39628567 PMCID: PMC11612819 DOI: 10.1016/j.isci.2024.111291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/30/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024] Open
Abstract
A ketogenic diet (KD) is increasingly debated as a countermeasure against nutrition-related modern diseases. While being immunologically beneficial, KD is still suspected of having severe metabolic side effects and negatively impacting general well-being, which prevents its widespread clinical use. We conducted a prospective pre-post interventional study investigating the effects of an eucaloric KD on metabolism, weight loss, body composition, diet adherence, and quality of life. The study had two stages: first, feasibility was tested in healthy, normal-weight participants over three weeks. After positive results, the KD period was expanded to three months, enrolling adults with overweight. Significant weight loss was observed in both groups, reducing body fat without affecting muscle or bone mass and without adverse metabolic changes. Quality of life improved, and fatigue symptoms in subjects with overweight decreased. These findings may help to overcome reservations about KD, encouraging its use as a medical tool for treating nutrition-related disorders.
Collapse
Affiliation(s)
- Simon Hirschberger
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilian-University (LMU) Munich, 81377 Munich, Germany
- Department of Anaesthesiology, Research Unit Immune Function and Immune Metabolism, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - David Effinger
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilian-University (LMU) Munich, 81377 Munich, Germany
- Department of Anaesthesiology, Research Unit Immune Function and Immune Metabolism, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Polina Yoncheva
- Department of Anaesthesiology, Research Unit Immune Function and Immune Metabolism, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Annika Schmid
- Department of Anaesthesiology, Research Unit Immune Function and Immune Metabolism, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Mara-Noel Weis
- Department of Anaesthesiology, Research Unit Immune Function and Immune Metabolism, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Lesca-Miriam Holdt
- Institute of Laboratory Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Daniel Teupser
- Institute of Laboratory Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Simone Kreth
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilian-University (LMU) Munich, 81377 Munich, Germany
- Department of Anaesthesiology, Research Unit Immune Function and Immune Metabolism, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
4
|
Miao Y, Xie L, Chen S, Zhang X, Liu W, Xie P. Ketogenic diet in treating sepsis-related acquired weakness: is it friend or foe? Front Nutr 2024; 11:1484856. [PMID: 39668897 PMCID: PMC11636000 DOI: 10.3389/fnut.2024.1484856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/05/2024] [Indexed: 12/14/2024] Open
Abstract
Background Sepsis is the body's extreme response to an infection leading to organ dysfunction. Sepsis-related acquired weakness (SAW), a critical illness closely related to metabolic disorders, is characterized by generalized sepsis-induced skeletal muscle weakness, mainly manifesting as symmetrical atrophy of respiratory and limb muscles. Muscle accounts for 40% of the body's total mass and is one of the major sites of glucose and energy absorption. Diet affects skeletal muscle metabolism, which further impacts physiology and signaling pathways. The ketogenic diet (KD) is a high-fat, low-carbohydrate diet that has shown benefits in patients with a variety of neuromuscular disorders. Patients with SAW are in a hypermetabolic state and can consume approximately 1% of total body muscle mass in a day. Due to the decreased total body energy expenditure secondary to starvation, skeletal muscles enter a low metabolic state, with reduced gluconeogenesis and protein consumption and elevated levels of ketone bodies. The latest research suggests that KD may be a new strategy for SAW prevention and treatment, but its mechanism is still unclear. Objective Our article aims to explore the effect and mechanism of KD on SAW. And we hope that our review will inspire further research on the KD and foster the exploration of novel strategies for combating SAW. Methods Search medical databases and related academic websites, using keywords such as "Sepsis-related acquired weakness," "ketogenic diet," and "skeletal muscle," and select representative literature. Using the method of induction and summary, analyze the effect and mechanism of KD on SAW. Results Compared with early nutrition, KD has a more protective effect on SAW, but its mechanism is complex. Firstly, KD can alter energy metabolism substrates to affect SAW's energy metabolism; Secondly, KD can directly act as a signaling molecule to improve mitochondrial function in skeletal muscle and stimulate skeletal muscle regeneration signaling molecules; Thirdly, KD can affect the gut microbiota to exert anti-inflammatory effects, enhance immunity, and thus protect SAW. Conclusion KD has a protective effect on SAW, which includes improving energy metabolism, stimulating muscle regeneration signals, optimizing gut microbiota composition, and reducing inflammation and oxidative stress.
Collapse
Affiliation(s)
- Yanmei Miao
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Leiyu Xie
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Shaolin Chen
- Department of Nursing of Affiliated Hospital, Zunyi Medical University, Zunyi, China
| | - Xiaoming Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Wenjie Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Peng Xie
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
- Department of Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
5
|
Oswald BM, DeCamp LM, Longo J, Dahabieh MS, Bunda N, Ma S, Watson MJ, Sheldon RD, Vincent MP, Johnson BK, Ellis AE, Soper-Hopper MT, Isaguirre CN, Shen H, Williams KS, Crawford PA, Kaech S, Jang HJ, Krawczyk CM, Jones RG. Dietary Restriction Enhances CD8 + T Cell Ketolysis to Limit Exhaustion and Boost Anti-Tumor Immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.621733. [PMID: 39605550 PMCID: PMC11601469 DOI: 10.1101/2024.11.14.621733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Reducing calorie intake without malnutrition limits tumor progression but the underlying mechanisms are poorly understood. Here we show that dietary restriction (DR) suppresses tumor growth by enhancing CD8+ T cell-mediated anti-tumor immunity. DR reshapes CD8+ T cell differentiation within the tumor microenvironment (TME), promoting the development of effector T cell subsets while limiting the accumulation of exhausted T (Tex) cells, and synergizes with anti-PD1 immunotherapy to restrict tumor growth. Mechanistically, DR enhances CD8+ T cell metabolic fitness through increased ketone body oxidation (ketolysis), which boosts mitochondrial membrane potential and fuels tricarboxylic acid (TCA) cycle-dependent pathways essential for T cell function. T cells deficient for ketolysis exhibit reduced mitochondrial function, increased exhaustion, and fail to control tumor growth under DR conditions. Our findings reveal a critical role for the immune system in mediating the anti-tumor effects of DR, highlighting nutritional modulation of CD8+ T cell fate in the TME as a critical determinant of anti-tumor immunity.
Collapse
Affiliation(s)
- Brandon M. Oswald
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Lisa M. DeCamp
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Joseph Longo
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Michael S. Dahabieh
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Nicholas Bunda
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | | | - McLane J Watson
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Ryan D. Sheldon
- Mass Spectrometry Core Facility, Van Andel Institute, Grand Rapids, MI, USA
| | - Michael P. Vincent
- Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
- Mass Spectrometry Core Facility, Van Andel Institute, Grand Rapids, MI, USA
| | | | - Abigail E Ellis
- Mass Spectrometry Core Facility, Van Andel Institute, Grand Rapids, MI, USA
| | | | | | - Hui Shen
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Kelsey S. Williams
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Peter A. Crawford
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - H. Josh Jang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Connie M. Krawczyk
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Russell G. Jones
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
- Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
6
|
Rahmel T, Effinger D, Bracht T, Griep L, Koos B, Sitek B, Hübner M, Hirschberger S, Basten J, Timmesfeld N, Adamzik M, Kreth S. An open-label, randomized controlled trial to assess a ketogenic diet in critically ill patients with sepsis. Sci Transl Med 2024; 16:eadn9285. [PMID: 38985853 DOI: 10.1126/scitranslmed.adn9285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/03/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024]
Abstract
Patients with sepsis experience metabolic and immunologic dysfunction that may be amplified by standard carbohydrate-based nutrition. A ketogenic diet (KD) may offer an immunologically advantageous alternative, although clinical evidence is limited. We conducted a single-center, open-label, randomized controlled trial to assess whether a KD could induce stable ketosis in critically ill patients with sepsis. Secondary outcomes included assessment of feasibility and safety of KD, as well as explorative analysis of clinical and immunological characteristics. Forty critically ill adults were randomized to either a ketogenic or standard high-carbohydrate diet. Stable ketosis was achieved in all KD patients, with significant increases in β-hydroxybutyrate levels compared with controls [mean difference 1.4 milimoles per liter; 95% confidence interval (CI): 1.0 to 1.8; P < 0.001). No major adverse events or harmful metabolic side effects (acidosis, dysglycemia, or dyslipidemia) were observed. After day 4, none of the patients in the KD group required insulin treatment, whereas in the control group, insulin dependency ranged between 35% and 60% (P = 0.009). There were no differences in 30-day survival, but ventilation-free [incidence rate ratio (IRR) 1.7; 95% CI: 1.5 to 2.1; P < 0.001], vasopressor-free (IRR 1.7; 95% CI: 1.5 to 2.0; P < 0.001), dialysis-free (IRR 1.5; 95% CI: 1.3 to 1.8; P < 0.001), and intensive care unit-free days (IRR 1.7; 95% CI: 1.4 to 2.1; P < 0.001) were higher in the ketogenic group. Next-generation sequencing of CD4+/CD8+ T cells and protein analyses showed reduced immune dysregulation, with decreased gene expression of T-cell activation and signaling markers and lower pro-inflammatory cytokine secretion. This trial demonstrated the safe induction of a stable ketogenic state in sepsis, warranting larger trials to investigate potential benefits in sepsis-related organ dysfunction.
Collapse
Affiliation(s)
- Tim Rahmel
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany
| | - David Effinger
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilian-University Munich (LMU), 81377 Munich, Germany
- Department of Anaesthesiology, LMU University Hospital, 81377 Munich Germany
| | - Thilo Bracht
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany
| | - Leonore Griep
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany
| | - Björn Koos
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany
| | - Barbara Sitek
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany
| | - Max Hübner
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilian-University Munich (LMU), 81377 Munich, Germany
- Department of Anaesthesiology, LMU University Hospital, 81377 Munich Germany
| | - Simon Hirschberger
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilian-University Munich (LMU), 81377 Munich, Germany
- Department of Anaesthesiology, LMU University Hospital, 81377 Munich Germany
| | - Jale Basten
- Department of Medical Informatics, Biometry & Epidemiology, Ruhr-University of Bochum, 44780 Bochum, Germany
| | - Nina Timmesfeld
- Department of Medical Informatics, Biometry & Epidemiology, Ruhr-University of Bochum, 44780 Bochum, Germany
| | - Michael Adamzik
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany
| | - Simone Kreth
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilian-University Munich (LMU), 81377 Munich, Germany
- Department of Anaesthesiology, LMU University Hospital, 81377 Munich Germany
| |
Collapse
|
7
|
Wei Y, Yu W, Zhang Z, Liu S, Xue J, Wu C, Gao Z, Guo S. Comparative analysis of oropharyngeal microbiota in healthcare workers post-COVID-19. Front Cell Infect Microbiol 2024; 14:1347345. [PMID: 38828262 PMCID: PMC11140064 DOI: 10.3389/fcimb.2024.1347345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/25/2024] [Indexed: 06/05/2024] Open
Abstract
Background To date, more than 770 million individuals have become coronavirus disease 2019 (COVID-19) convalescents worldwide. Emerging evidence highlights the influence of COVID-19 on the oral microbiome during both acute and convalescent disease phases. Front-line healthcare workers are at an elevated risk of exposure to viral infections, and the effects of COVID-19 on their oral microbiome remain relatively unexplored. Methods Oropharyngeal swab specimens, collected one month after a negative COVID-19 test from a cohort comprising 55 healthcare workers, underwent 16S rRNA sequencing. We conducted a comparative analysis between this post-COVID-19 cohort and the pre-infection dataset from the same participants. Community composition analysis, indicator species analysis, alpha diversity assessment, beta diversity exploration, and functional prediction were evaluated. Results The Shannon and Simpson indexes of the oral microbial community declined significantly in the post-COVID-19 group when compared with the pre-infection cohort. Moreover, there was clear intergroup clustering between the two groups. In the post-COVID-19 group, the phylum Firmicutes showed a significant increase. Further, there were clear differences in relative abundance of several bacterial genera in contrast with the pre-infection group, including Streptococcus, Gemella, Granulicatella, Capnocytophaga, Leptotrichia, Fusobacterium, and Prevotella. We identified Gemella enrichment in the post-COVID-19 group, potentially serving as a recovery period performance indicator. Functional prediction revealed lipopolysaccharide biosynthesis downregulation in the post-COVID-19 group, an outcome with host inflammatory response modulation and innate defence mechanism implications. Conclusion During the recovery phase of COVID-19, the oral microbiome diversity of front-line healthcare workers failed to fully return to its pre-infection state. Despite the negative COVID-19 test result one month later, notable disparities persisted in the composition and functional attributes of the oral microbiota.
Collapse
Affiliation(s)
- Yue Wei
- Nursing of school, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wenyi Yu
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| | - Zhixia Zhang
- Nursing Department, Linfen Central Hospital, Shanxi, China
| | - Siqin Liu
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianbo Xue
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| | - Chunyan Wu
- Nursing of school, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhancheng Gao
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
- Institute of Chest and Lung Diseases, Shanxi Medical University, Linfen, Shanxi, China
| | - Shuming Guo
- Nursing of school, Shanxi Medical University, Taiyuan, Shanxi, China
- Nursing Department, Linfen Central Hospital, Shanxi, China
| |
Collapse
|
8
|
Palmucci JR, Sells BE, Giamberardino CD, Toffaletti DL, Dai B, Asfaw YG, Dubois LG, Li Z, Theriot B, Schell WA, Hope W, Tenor JL, Perfect JR. A ketogenic diet enhances fluconazole efficacy in murine models of systemic fungal infection. mBio 2024; 15:e0064924. [PMID: 38619236 PMCID: PMC11077957 DOI: 10.1128/mbio.00649-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/16/2024] Open
Abstract
Invasive fungal infections are a significant public health concern, with mortality rates ranging from 20% to 85% despite current treatments. Therefore, we examined whether a ketogenic diet could serve as a successful treatment intervention in murine models of Cryptococcus neoformans and Candida albicans infection in combination with fluconazole-a low-cost, readily available antifungal therapy. The ketogenic diet is a high-fat, low-carbohydrate diet that promotes fatty acid oxidation as an alternative to glycolysis through the production of ketone bodies. In this series of experiments, mice fed a ketogenic diet prior to infection with C. neoformans and treated with fluconazole had a significant decrease in fungal burden in both the brain (mean 2.66 ± 0.289 log10 reduction) and lung (mean 1.72 ± 0.399 log10 reduction) compared to fluconazole treatment on a conventional diet. During C. albicans infection, kidney fungal burden of mice in the keto-fluconazole combination group was significantly decreased compared to fluconazole alone (2.37 ± 0.770 log10-reduction). Along with higher concentrations of fluconazole in the plasma and brain tissue, fluconazole efficacy was maximized at a significantly lower concentration on a keto diet compared to a conventional diet, indicating a dramatic effect on fluconazole pharmacodynamics. Our findings indicate that a ketogenic diet potentiates the effect of fluconazole at multiple body sites during both C. neoformans and C. albicans infection and could have practical and promising treatment implications.IMPORTANCEInvasive fungal infections cause over 2.5 million deaths per year around the world. Treatments for fungal infections are limited, and there is a significant need to develop strategies to enhance antifungal efficacy, combat antifungal resistance, and mitigate treatment side effects. We determined that a high-fat, low-carbohydrate ketogenic diet significantly potentiated the therapeutic effect of fluconazole, which resulted in a substantial decrease in tissue fungal burden of both C. neoformans and C. albicans in experimental animal models. We believe this work is the first of its kind to demonstrate that diet can dramatically influence the treatment of fungal infections. These results highlight a novel strategy of antifungal drug enhancement and emphasize the need for future investigation into dietary effects on antifungal drug activity.
Collapse
Affiliation(s)
- Julia R Palmucci
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Blake E Sells
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Charles D Giamberardino
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Dena L Toffaletti
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Baodi Dai
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Yohannes G Asfaw
- Department of Laboratory Animal Resources, Duke University Medical Center, Durham, North Carolina, USA
| | - Laura G Dubois
- Duke Proteomics and Metabolomics Core Facility, Duke University, Durham, North Carolina, USA
| | - Zhong Li
- Duke Proteomics and Metabolomics Core Facility, Duke University, Durham, North Carolina, USA
| | - Barbara Theriot
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Wiley A Schell
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - William Hope
- Antimicrobial Pharmacodynamics and Therapeutics, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| | - Jennifer L Tenor
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - John R Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
9
|
Conte C, Cipponeri E, Roden M. Diabetes Mellitus, Energy Metabolism, and COVID-19. Endocr Rev 2024; 45:281-308. [PMID: 37934800 PMCID: PMC10911957 DOI: 10.1210/endrev/bnad032] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/30/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
Obesity, diabetes mellitus (mostly type 2), and COVID-19 show mutual interactions because they are not only risk factors for both acute and chronic COVID-19 manifestations, but also because COVID-19 alters energy metabolism. Such metabolic alterations can lead to dysglycemia and long-lasting effects. Thus, the COVID-19 pandemic has the potential for a further rise of the diabetes pandemic. This review outlines how preexisting metabolic alterations spanning from excess visceral adipose tissue to hyperglycemia and overt diabetes may exacerbate COVID-19 severity. We also summarize the different effects of SARS-CoV-2 infection on the key organs and tissues orchestrating energy metabolism, including adipose tissue, liver, skeletal muscle, and pancreas. Last, we provide an integrative view of the metabolic derangements that occur during COVID-19. Altogether, this review allows for better understanding of the metabolic derangements occurring when a fire starts from a small flame, and thereby help reducing the impact of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Caterina Conte
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome 00166, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan 20099, Italy
| | - Elisa Cipponeri
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan 20099, Italy
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg 85764, Germany
| |
Collapse
|
10
|
Nelson AB, Queathem ED, Puchalska P, Crawford PA. Metabolic Messengers: ketone bodies. Nat Metab 2023; 5:2062-2074. [PMID: 38092961 DOI: 10.1038/s42255-023-00935-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/20/2023] [Indexed: 12/21/2023]
Abstract
Prospective molecular targets and therapeutic applications for ketone body metabolism have increased exponentially in the past decade. Initially considered to be restricted in scope as liver-derived alternative fuel sources during periods of carbohydrate restriction or as toxic mediators during diabetic ketotic states, ketogenesis and ketone bodies modulate cellular homeostasis in multiple physiological states through a diversity of mechanisms. Selective signalling functions also complement the metabolic fates of the ketone bodies acetoacetate and D-β-hydroxybutyrate. Here we discuss recent discoveries revealing the pleiotropic roles of ketone bodies, their endogenous sourcing, signalling mechanisms and impact on target organs, and considerations for when they are either stimulated for endogenous production by diets or pharmacological agents or administered as exogenous wellness-promoting agents.
Collapse
Affiliation(s)
- Alisa B Nelson
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Eric D Queathem
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Patrycja Puchalska
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
| | - Peter A Crawford
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
11
|
Luda KM, Longo J, Kitchen-Goosen SM, Duimstra LR, Ma EH, Watson MJ, Oswald BM, Fu Z, Madaj Z, Kupai A, Dickson BM, DeCamp LM, Dahabieh MS, Compton SE, Teis R, Kaymak I, Lau KH, Kelly DP, Puchalska P, Williams KS, Krawczyk CM, Lévesque D, Boisvert FM, Sheldon RD, Rothbart SB, Crawford PA, Jones RG. Ketolysis drives CD8 + T cell effector function through effects on histone acetylation. Immunity 2023; 56:2021-2035.e8. [PMID: 37516105 PMCID: PMC10528215 DOI: 10.1016/j.immuni.2023.07.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 04/07/2023] [Accepted: 07/04/2023] [Indexed: 07/31/2023]
Abstract
Environmental nutrient availability influences T cell metabolism, impacting T cell function and shaping immune outcomes. Here, we identified ketone bodies (KBs)-including β-hydroxybutyrate (βOHB) and acetoacetate (AcAc)-as essential fuels supporting CD8+ T cell metabolism and effector function. βOHB directly increased CD8+ T effector (Teff) cell cytokine production and cytolytic activity, and KB oxidation (ketolysis) was required for Teff cell responses to bacterial infection and tumor challenge. CD8+ Teff cells preferentially used KBs over glucose to fuel the tricarboxylic acid (TCA) cycle in vitro and in vivo. KBs directly boosted the respiratory capacity and TCA cycle-dependent metabolic pathways that fuel CD8+ T cell function. Mechanistically, βOHB was a major substrate for acetyl-CoA production in CD8+ T cells and regulated effector responses through effects on histone acetylation. Together, our results identify cell-intrinsic ketolysis as a metabolic and epigenetic driver of optimal CD8+ T cell effector responses.
Collapse
Affiliation(s)
- Katarzyna M Luda
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA; University of Copenhagen, Novo Nordisk Foundation Center for Basic Metabolic Research, Blegdamsvej 3B, 2200 København, Denmark
| | - Joseph Longo
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Susan M Kitchen-Goosen
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Lauren R Duimstra
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Eric H Ma
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - McLane J Watson
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Brandon M Oswald
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Zhen Fu
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Zachary Madaj
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ariana Kupai
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Bradley M Dickson
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Lisa M DeCamp
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Michael S Dahabieh
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Shelby E Compton
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Robert Teis
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Irem Kaymak
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Kin H Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Daniel P Kelly
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patrycja Puchalska
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kelsey S Williams
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Connie M Krawczyk
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Dominique Lévesque
- Department of Anatomy and Cell Biology, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - François-Michel Boisvert
- Department of Anatomy and Cell Biology, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Ryan D Sheldon
- Mass Spectrometry Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Scott B Rothbart
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Peter A Crawford
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Russell G Jones
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
12
|
Effinger D, Hirschberger S, Yoncheva P, Schmid A, Heine T, Newels P, Schütz B, Meng C, Gigl M, Kleigrewe K, Holdt LM, Teupser D, Kreth S. A ketogenic diet substantially reshapes the human metabolome. Clin Nutr 2023; 42:1202-1212. [PMID: 37270344 DOI: 10.1016/j.clnu.2023.04.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/17/2023] [Accepted: 04/28/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND Western dietary habits (WD) have been shown to promote chronic inflammation, which favors the development of many of today's non-communicable diseases. Recently, ketogenic diets (KD) have emerged as an immune-regulating countermeasure for WD-induced metaflammation. To date, beneficial effects of KD have been solely attributed to the production and metabolism of ketone bodies. Given the drastic change in nutrient composition during KD, it is reasonable to assume that there are widespread changes in the human metabolome also contributing to the impact of KD on human immunity. The current study was conducted to gain insight into the changes of the human metabolic fingerprint associated with KD. This could allow to identify metabolites that may contribute to the overall positive effects on human immunity, but also help to recognize potential health risks of KD. METHODS We conducted a prospective nutritional intervention study enrolling 40 healthy volunteers to perform a three-week ad-libitum KD. Prior to the start and at the end of the nutritional intervention serum metabolites were quantified, untargeted mass spectrometric metabolome analyses and urine analyses of the tryptophan pathway were performed. RESULTS KD led to a marked reduction of insulin (-21.45% ± 6.44%, p = 0.0038) and c-peptide levels (-19.29% ± 5.45%, p = 0.0002) without compromising fasting blood glucose. Serum triglyceride concentration decreased accordingly (-13.67% ± 5.77%, p = 0.0247), whereas cholesterol parameters remained unchanged. LC-MS/MS-based untargeted metabolomic analyses revealed a profound shift of the human metabolism towards mitochondrial fatty acid oxidation, comprising highly elevated levels of free fatty acids and acylcarnitines. The serum amino acid (AA) composition was rearranged with lower abundance of glucogenic AA and an increase of BCAA. Furthermore, an increase of anti-inflammatory fatty acids eicosatetraenoic acid (p < 0.0001) and docosahexaenoic acid (p = 0.0002) was detected. Urine analyses confirmed higher utilization of carnitines, indicated by lower carnitine excretion (-62.61% ± 18.11%, p = 0.0047) and revealed changes to the tryptophan pathway depicting reduced quinolinic acid (-13.46% ± 6.12%, p = 0.0478) and elevated kynurenic acid concentrations (+10.70% ± 4.25%, p = 0.0269). CONCLUSIONS A KD fundamentally changes the human metabolome even after a short period of only three weeks. Besides a rapid metabolic switch to ketone body production and utilization, improved insulin and triglyceride levels and an increase in metabolites that mediate anti-inflammation and mitochondrial protection occurred. Importantly, no metabolic risk factors were identified. Thus, a ketogenic diet could be considered as a safe preventive and therapeutic immunometabolic tool in modern medicine. TRIAL REGISTRATION German Clinical Trials Register; DRKS-ID: DRKS00027992 (www.drks.de).
Collapse
Affiliation(s)
- David Effinger
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilian-University Munich (LMU), Munich, Germany; Department of Anaesthesiology, Research Unit Molecular Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Simon Hirschberger
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilian-University Munich (LMU), Munich, Germany; Department of Anaesthesiology, Research Unit Molecular Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Polina Yoncheva
- Department of Anaesthesiology, Research Unit Molecular Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Annika Schmid
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilian-University Munich (LMU), Munich, Germany; Department of Anaesthesiology, Research Unit Molecular Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Till Heine
- Biovis Diagnostik MVZ GmbH, Limburg, Germany.
| | | | | | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
| | - Michael Gigl
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
| | - Lesca-Miriam Holdt
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Daniel Teupser
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Simone Kreth
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilian-University Munich (LMU), Munich, Germany; Department of Anaesthesiology, Research Unit Molecular Medicine, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
13
|
Bolesławska I, Kowalówka M, Bolesławska-Król N, Przysławski J. Ketogenic Diet and Ketone Bodies as Clinical Support for the Treatment of SARS-CoV-2-Review of the Evidence. Viruses 2023; 15:1262. [PMID: 37376562 PMCID: PMC10326824 DOI: 10.3390/v15061262] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
One of the proposed nutritional therapies to support drug therapy in COVID-19 is the use of a ketogenic diet (KD) or ketone bodies. In this review, we summarized the evidence from tissue, animal, and human models and looked at the mechanisms of action of KD/ketone bodies against COVID-19. KD/ketone bodies were shown to be effective at the stage of virus entry into the host cell. The use of β-hydroxybutyrate (BHB), by preventing the metabolic reprogramming associated with COVID-19 infection and improving mitochondrial function, reduced glycolysis in CD4+ lymphocytes and improved respiratory chain function, and could provide an alternative carbon source for oxidative phosphorylation (OXPHOS). Through multiple mechanisms, the use of KD/ketone bodies supported the host immune response. In animal models, KD resulted in protection against weight loss and hypoxemia, faster recovery, reduced lung injury, and resulted in better survival of young mice. In humans, KD increased survival, reduced the need for hospitalization for COVID-19, and showed a protective role against metabolic abnormalities after COVID-19. It appears that the use of KD and ketone bodies may be considered as a clinical nutritional intervention to assist in the treatment of COVID-19, despite the fact that numerous studies indicate that SARS-CoV-2 infection alone may induce ketoacidosis. However, the use of such an intervention requires strong scientific validation.
Collapse
Affiliation(s)
- Izabela Bolesławska
- Department of Bromatology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (M.K.); (J.P.)
| | - Magdalena Kowalówka
- Department of Bromatology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (M.K.); (J.P.)
| | - Natasza Bolesławska-Król
- Student Society of Radiotherapy, Collegium Medicum, University of Zielona Gora, Zyta 28, 65-046 Zielona Góra, Poland;
| | - Juliusz Przysławski
- Department of Bromatology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (M.K.); (J.P.)
| |
Collapse
|
14
|
Hirschberger S, Schmid A, Kreth S. [Immunomodulation by nutritional intervention in critically ill patients]. DIE ANAESTHESIOLOGIE 2023; 72:229-244. [PMID: 36797533 PMCID: PMC9934515 DOI: 10.1007/s00101-023-01258-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 04/12/2023]
Abstract
Critically ill patients often suffer from a complex and severe immunological dysfunction. The differentiation and function of human immune cells are fundamentally controlled through metabolic processes. New concepts of immunonutrition therefore try to use enteral and parenteral nutrition to positively impact on the immune function of intensive care unit patients. This review article concisely presents the currently available evidence on the commonly used isolated supplements (anti-oxidative substances, amino acids, essential fatty acids) and difficulties related to their clinical use. The second part presents new and more comprehensive concepts of immunonutrition to influence the intestinal microbiome and to modulate the macronutrient composition. Immunonutrition of critically ill patients bears enormous potential and could become a valuable clinical tool for modulation of the immunometabolism of intensive care unit patients.
Collapse
Affiliation(s)
- Simon Hirschberger
- Klinik für Anaesthesiologie, LMU Klinikum München, München, Deutschland
- Walter-Brendel-Zentrum für experimentelle Medizin, Ludwig-Maximilians-Universität München (LMU), Marchioninistr. 68, 81377, München, Deutschland
| | - Annika Schmid
- Klinik für Anaesthesiologie, LMU Klinikum München, München, Deutschland
- Walter-Brendel-Zentrum für experimentelle Medizin, Ludwig-Maximilians-Universität München (LMU), Marchioninistr. 68, 81377, München, Deutschland
| | - Simone Kreth
- Klinik für Anaesthesiologie, LMU Klinikum München, München, Deutschland.
- Walter-Brendel-Zentrum für experimentelle Medizin, Ludwig-Maximilians-Universität München (LMU), Marchioninistr. 68, 81377, München, Deutschland.
| |
Collapse
|
15
|
Abstract
The ketone bodies beta-hydroxybutyrate and acetoacetate are hepatically produced metabolites catabolized in extrahepatic organs. Ketone bodies are a critical cardiac fuel and have diverse roles in the regulation of cellular processes such as metabolism, inflammation, and cellular crosstalk in multiple organs that mediate disease. This review focuses on the role of cardiac ketone metabolism in health and disease with an emphasis on the therapeutic potential of ketosis as a treatment for heart failure (HF). Cardiac metabolic reprogramming, characterized by diminished mitochondrial oxidative metabolism, contributes to cardiac dysfunction and pathologic remodeling during the development of HF. Growing evidence supports an adaptive role for ketone metabolism in HF to promote normal cardiac function and attenuate disease progression. Enhanced cardiac ketone utilization during HF is mediated by increased availability due to systemic ketosis and a cardiac autonomous upregulation of ketolytic enzymes. Therapeutic strategies designed to restore high-capacity fuel metabolism in the heart show promise to address fuel metabolic deficits that underpin the progression of HF. However, the mechanisms involved in the beneficial effects of ketone bodies in HF have yet to be defined and represent important future lines of inquiry. In addition to use as an energy substrate for cardiac mitochondrial oxidation, ketone bodies modulate myocardial utilization of glucose and fatty acids, two vital energy substrates that regulate cardiac function and hypertrophy. The salutary effects of ketone bodies during HF may also include extra-cardiac roles in modulating immune responses, reducing fibrosis, and promoting angiogenesis and vasodilation. Additional pleotropic signaling properties of beta-hydroxybutyrate and AcAc are discussed including epigenetic regulation and protection against oxidative stress. Evidence for the benefit and feasibility of therapeutic ketosis is examined in preclinical and clinical studies. Finally, ongoing clinical trials are reviewed for perspective on translation of ketone therapeutics for the treatment of HF.
Collapse
Affiliation(s)
- Timothy R. Matsuura
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Patrycja Puchalska
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Peter A. Crawford
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Daniel P. Kelly
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
16
|
Jayashankar SS, Arifin KT, Nasaruddin ML. β-Hydroxybutyrate Regulates Activated Microglia to Alleviate Neurodegenerative Processes in Neurological Diseases: A Scoping Review. Nutrients 2023; 15:524. [PMID: 36771231 PMCID: PMC9921456 DOI: 10.3390/nu15030524] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
This scoping review aimed to summarise the effects of the ketone body β-hydroxybutyrate. The review details the revealed pathways and functional properties following its intervention in the context of neurodegenerative diseases. In this study, 5 research publications that met the inclusion and exclusion criteria were shortlisted. Following the intervention, we discovered a tendency of reduced inflammatory status in microglia, as evidenced by lower levels of pro-inflammatory mediators produced, reduced microgliosis in afflicted tissues, and enhanced cognitive functions in neurodegenerative models. We found that there is a significant overlap in the mechanism of action of β-hydroxybutyrate (BHB) via activation of the G-protein-Coupled Receptor 109A (GPR109a) receptor and deactivation of the inflammasome complex. Furthermore, although comparing outcomes can be challenging due to the heterogeneity in the study model, the results we have assembled here were consistent, giving us confidence in the intervention's efficacy. We also discussed new studies where BHB is involved in various roles in regulating inflammation in microglia, allowing for fresh therapeutic targets against neurodegeneration. This brief review provides evidence to support the huge potential of BHB in the treatment of neurodegenerative illnesses.
Collapse
Affiliation(s)
| | | | - Muhammad Luqman Nasaruddin
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre (UKM-MC), Kuala Lumpur 56000, Malaysia
| |
Collapse
|
17
|
Srivastava S, Pawar V, Tyagi A, Sharma K, Kumar V, Shukla S. Immune Modulatory Effects of Ketogenic Diet in Different Disease Conditions. IMMUNO 2022; 3:1-15. [DOI: 10.3390/immuno3010001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Interceding nutrients have been acquiring increased attention and prominence in the field of healing and deterrence of various disorders. In this light, the present article encompasses several facets of ketogenic diet as an immunomodulator with respect to its expansive clinical applications. Accordingly, several scientific records, models, and case histories, including viral infections, cancer, chronic diseases, e.g., cardiovascular diseases, epilepsy, as well as numerous other neuro-disorders, are assembled, revealing a profound influence of KD in favor of improvement in the patient’s condition. We accentuate possible manifold mechanisms of KD that require further exploration.
Collapse
Affiliation(s)
- Shivani Srivastava
- Department of Pathology, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Vishakha Pawar
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anuradha Tyagi
- Department of cBRN, Institute of Nuclear Medicine and Allied Science, Delhi 110054, India
| | - Kanti Sharma
- Department of Nutrition Biology, Central University of Haryana, Mahendragarh 123029, India
| | - Vinay Kumar
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, 473 W 12th Ave, Columbus, OH 43210, USA
| | - Surendra Shukla
- Department of Oncology Science, OU Health Stephenson Cancer Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
18
|
Rössler T, Berezhnoy G, Singh Y, Cannet C, Reinsperger T, Schäfer H, Spraul M, Kneilling M, Merle U, Trautwein C. Quantitative Serum NMR Spectroscopy Stratifies COVID-19 Patients and Sheds Light on Interfaces of Host Metabolism and the Immune Response with Cytokines and Clinical Parameters. Metabolites 2022; 12:metabo12121277. [PMID: 36557315 PMCID: PMC9781847 DOI: 10.3390/metabo12121277] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The complex manifestations of COVID-19 are still not fully decoded on the molecular level. We combined quantitative the nuclear magnetic resonance (NMR) spectroscopy serum analysis of metabolites, lipoproteins and inflammation markers with clinical parameters and a targeted cytokine panel to characterize COVID-19 in a large (534 patient samples, 305 controls) outpatient cohort of recently tested PCR-positive patients. The COVID-19 cohort consisted of patients who were predominantly in the initial phase of the disease and mostly exhibited a milder disease course. Concerning the metabolic profiles of SARS-CoV-2-infected patients, we identified markers of oxidative stress and a severe dysregulation of energy metabolism. NMR markers, such as phenylalanine, inflammatory glycoproteins (Glyc) and their ratio with the previously reported supramolecular phospholipid composite (Glyc/SPC), showed a predictive power comparable to laboratory parameters such as C-reactive protein (CRP) or ferritin. We demonstrated interfaces between the metabolism and the immune system, e.g., we could trace an interleukin (IL-6)-induced transformation of a high-density lipoprotein (HDL) to a pro-inflammatory actor. Finally, we showed that metadata such as age, sex and constitution (e.g., body mass index, BMI) need to be considered when exploring new biomarkers and that adding NMR parameters to existing diagnoses expands the diagnostic toolbox for patient stratification and personalized medicine.
Collapse
Affiliation(s)
- Titus Rössler
- Werner Siemens Imaging Center, Department for Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Georgy Berezhnoy
- Werner Siemens Imaging Center, Department for Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Yogesh Singh
- Institute of Medical Genetics & Applied Genomics, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Claire Cannet
- Bruker BioSpin GmbH, Applied Industrial and Clinical Division, 76275 Ettlingen, Germany
| | - Tony Reinsperger
- Bruker BioSpin GmbH, Applied Industrial and Clinical Division, 76275 Ettlingen, Germany
| | - Hartmut Schäfer
- Bruker BioSpin GmbH, Applied Industrial and Clinical Division, 76275 Ettlingen, Germany
| | - Manfred Spraul
- Bruker BioSpin GmbH, Applied Industrial and Clinical Division, 76275 Ettlingen, Germany
| | - Manfred Kneilling
- Werner Siemens Imaging Center, Department for Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Department of Dermatology, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-guided and Functionally Instructed Tumor Therapies”, Medical Faculty, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Uta Merle
- Department of Internal Medicine IV, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Christoph Trautwein
- Werner Siemens Imaging Center, Department for Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Correspondence:
| |
Collapse
|
19
|
Bogdanov A, Bogdanov A, Chubenko V, Volkov N, Moiseenko F, Moiseyenko V. Tumor acidity: From hallmark of cancer to target of treatment. Front Oncol 2022; 12:979154. [PMID: 36106097 PMCID: PMC9467452 DOI: 10.3389/fonc.2022.979154] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/08/2022] [Indexed: 12/16/2022] Open
Abstract
Tumor acidity is one of the cancer hallmarks and is associated with metabolic reprogramming and the use of glycolysis, which results in a high intracellular lactic acid concentration. Cancer cells avoid acid stress major by the activation and expression of proton and lactate transporters and exchangers and have an inverted pH gradient (extracellular and intracellular pHs are acid and alkaline, respectively). The shift in the tumor acid-base balance promotes proliferation, apoptosis avoidance, invasiveness, metastatic potential, aggressiveness, immune evasion, and treatment resistance. For example, weak-base chemotherapeutic agents may have a substantially reduced cellular uptake capacity due to "ion trapping". Lactic acid negatively affects the functions of activated effector T cells, stimulates regulatory T cells, and promotes them to express programmed cell death receptor 1. On the other hand, the inversion of pH gradient could be a cancer weakness that will allow the development of new promising therapies, such as tumor-targeted pH-sensitive antibodies and pH-responsible nanoparticle conjugates with anticancer drugs. The regulation of tumor pH levels by pharmacological inhibition of pH-responsible proteins (monocarboxylate transporters, H+-ATPase, etc.) and lactate dehydrogenase A is also a promising anticancer strategy. Another idea is the oral or parenteral use of buffer systems, such as sodium bicarbonate, to neutralize tumor acidity. Buffering therapy does not counteract standard treatment methods and can be used in combination to increase effectiveness. However, the mechanisms of the anticancer effect of buffering therapy are still unclear, and more research is needed. We have attempted to summarize the basic knowledge about tumor acidity.
Collapse
Affiliation(s)
- Alexey Bogdanov
- Saint Petersburg Clinical Research and Practical Center of Specialized Types of Medical Care (Oncological), Saint Petersburg, Russia
| | | | | | | | | | | |
Collapse
|