1
|
Dalal D, Singh L, Singh A. Calycosin and kidney health: a molecular perspective on its protective mechanisms. Pharmacol Rep 2025:10.1007/s43440-025-00728-3. [PMID: 40249500 DOI: 10.1007/s43440-025-00728-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025]
Abstract
Kidney diseases encompass a diverse group of pathological conditions characterized by the progressive loss of renal function, leading to systemic complications and increased morbidity. Their global prevalence increasing, posing a substantial public health challenge. The underlying pathophysiology involves complex molecular interactions that drive inflammation, fibrosis, and tissue injury. Notably, the AGE/RAGE axis activates NF-κB, a pivotal transcription factor responsible for pro-inflammatory cytokine production. This response is further intensified by NLRP3-inflammasome activation, which detects cellular stress and promotes IL-1β release. Additionally, TGF-β signaling through SMADs and MAPK pathways induces ECM accumulation, contributing to tissue fibrosis. Besides this, oxidative stress-induced ferroptosis and apoptosis also play critical roles in disease progression. Given the multifactorial nature of kidney diseases, agents with multi-targeted actions are promising for effective renoprotection. Significant research interest has emerged in exploring calycosin's protective effects against kidney-related pathologies, owing to its diverse pharmacological properties, including anti-inflammatory, antioxidant, anti-apoptotic, and anti-fibrotic effects. Calycosin is a naturally occurring isoflavone primarily found in Astragalus membranaceus, a well-known medicinal herb in traditional Chinese medicine. Several studies have demonstrated that calycosin exerts its renoprotective effects by modulating key molecular mediators, including RAGE, NF-κB, TGF-β, MAPKs, NLRP3-inflammasome, Nrf-2, PPARγ, and Sirtuin-3, among others, thereby providing a multitargeted defense against kidney diseases. Considering the potential of calycosin in modulating these mediators, the present study was conceptualized to study the mechanistic interplay underlying its renoprotective effects. By investigating these interconnected pathways, this study will provide foundational insights that will enable future researchers to address existing gaps and further elucidate calycosin's potential in renal disorders.
Collapse
Affiliation(s)
- Diksha Dalal
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Lovedeep Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Anish Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
2
|
Phongphithakchai A, Tedasen A, Netphakdee R, Leelawattana R, Srithongkul T, Raksasuk S, Huang JC, Chatatikun M. Dapagliflozin in Chronic Kidney Disease: Insights from Network Pharmacology and Molecular Docking Simulation. Life (Basel) 2025; 15:437. [PMID: 40141782 PMCID: PMC11943942 DOI: 10.3390/life15030437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Chronic kidney disease (CKD) involves inflammation, oxidative stress, and fibrosis, leading to renal dysfunction. Dapagliflozin, an SGLT2 inhibitor, shows renoprotective effects beyond glucose control, but its precise molecular mechanisms remain unclear. This study utilizes network pharmacology and molecular docking to elucidate its multi-target effects in CKD. Dapagliflozin's SMILES structure was analyzed for ADMET properties. Potential targets were identified via SwissTargetPrediction, GeneCards, and SEA, and common CKD-related targets were determined. A protein-protein interaction (PPI) network was constructed, and key pathways were identified using GO and KEGG enrichment analyses. Molecular docking was conducted to validate dapagliflozin's binding affinities with hub proteins. A total of 208 common targets were identified, including EGFR, GSK3β, and IL-6. GO and KEGG analyses highlighted key pathways, such as PI3K-Akt, MAPK, and AGE-RAGE, involved in inflammation, oxidative stress, and metabolic regulation. Molecular docking confirmed strong binding affinities with EGFR (-8.42 kcal/mol), GSK3β (-7.70 kcal/mol), and IL-6 (-6.83 kcal/mol). Dapagliflozin exhibits multi-target therapeutic potential in CKD by modulating inflammation, oxidative stress, and metabolic pathways. This integrative approach enhances the understanding of its mechanisms, supporting future experimental validation and clinical application in CKD management.
Collapse
Affiliation(s)
- Atthaphong Phongphithakchai
- Nephrology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Aman Tedasen
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand; (A.T.); (R.N.)
- Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Ratana Netphakdee
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand; (A.T.); (R.N.)
| | - Rattana Leelawattana
- Endocrinology and Metabolism Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Thatsaphan Srithongkul
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.S.); (S.R.)
| | - Sukit Raksasuk
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.S.); (S.R.)
| | - Jason C. Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
| | - Moragot Chatatikun
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand; (A.T.); (R.N.)
- Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
3
|
Myette RL, Trentin-Sonoda M, Landry C, Holterman CE, Lin T, Burger D, Kennedy CR. Damage-Associated Molecular Patterns and Pattern Recognition Receptors in the Podocyte. J Am Soc Nephrol 2025; 36:136-143. [PMID: 39331471 PMCID: PMC11706563 DOI: 10.1681/asn.0000000531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024] Open
Abstract
Podocytes possess immune system components allowing for a variety of innate responses to endogenous and exogenous stimuli. Recently, several groups have linked inappropriate innate immune signaling to podocyte injury, particularly chronic, sustained injury; however, the immune capabilities of podocytes have not been fully elucidated. Damage-associated molecular patterns (DAMPs) are endogenous danger molecules released from damaged cells, including podocytes, and can elicit an inflammatory response and recruit immune cells to areas of injury. This is performed through binding to pattern recognition receptors. Believed largely to be protective and responsive to injury or infection, recent evidence suggests signaling through DAMP pathways can aggravate and promote chronic diseases already associated with inflammation. The purpose of this narrative review was to highlight current knowledge with respect to specific podocyte DAMPs and pattern recognition receptors and to provide insight into ongoing work and possible future research avenues to advance our understanding of podocyte immune mechanisms.
Collapse
Affiliation(s)
- Robert L. Myette
- Division of Pediatric Nephrology, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- Kidney Research Center, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mayra Trentin-Sonoda
- Kidney Research Center, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Chloé Landry
- Kidney Research Center, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Chet E. Holterman
- Kidney Research Center, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Tony Lin
- Kidney Research Center, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Dylan Burger
- Kidney Research Center, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Christopher R.J. Kennedy
- Kidney Research Center, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Ding S, Guo J, Chen H, Petretto E. Multi-scalar data integration decoding risk genes for chronic kidney disease. BMC Nephrol 2024; 25:364. [PMID: 39425076 PMCID: PMC11489995 DOI: 10.1186/s12882-024-03798-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Chronic Kidney Disease (CKD) impacts over 10% of the global population, and recent advancements in high-throughput analytical technologies are uncovering the complex physiology underlying this condition. By integrating Genome-Wide Association Studies (GWAS), RNA sequencing (RNA-seq/RNA array), and single-cell RNA sequencing (scRNA-seq) data, our study aimed to explore the genes and cell types relevant to CKD traits. METHODS GWAS summary data for end-stage renal failure (ESRD) and decreased eGFR (CKD) with or without diabetes and (micro)proteinuria were obtained from the GWAS Catalog and the UK Biobank (UKB) database. Two gene Expression Omnibus (GEO) transcriptome datasets were used to establish glomerular and tubular gene expression differences between CKD patients and healthy individuals. Two scRNA-seq datasets were utilized to obtain the expression of key genes at the single-cell level. The expression profile, differentially expressed genes (DEGs), gene-gene interaction, and pathway enrichment were analysed for these CKD risk genes. RESULTS A total of 779 distinct SNPs were identified from GWAS across different CKD traits, involving 681 genes. While many of these risk genes are specific to the CKD traits of renal failure, decreased eGFR, and (micro)proteinuria, they share common pathways, including extracellular matrix (ECM). ECM modeling was enriched in upregulated glomerular and tubular DEGs from CKD kidneys compared to healthy controls, with the expression of relevant collagen genes, such as COL1A2, prevalent in fibroblasts/myofibroblasts. Additionally, immune responses, including T cell differentiation, were dysregulated in CKD kidneys. The late podocyte signature gene THSD7A was enriched in podocytes but downregulated in CKD. We also highlighted that the regulated risk genes of CKD are mainly expressed in tubular cells and immune cells in the kidney. CONCLUSIONS Our integrated analysis highlight the genes, pathways, and relevant cell types associational with the pathogenesis of kidney traits, as a basis for further mechanistic studies to understand the pathogenesis of CKD.
Collapse
Affiliation(s)
- Shiqi Ding
- The NUS High School of Mathematics and Science , NUSH, 20 Clementi Ave 1, Singapore, Singapore
| | - Jing Guo
- Programme in Cardiovascular and Metabolic Disorders (CVMD) and Centre for Computational Biology (CCB), Duke-NUS Medical School, 8 College Road, Singapore, Singapore
| | - Huimei Chen
- Programme in Cardiovascular and Metabolic Disorders (CVMD) and Centre for Computational Biology (CCB), Duke-NUS Medical School, 8 College Road, Singapore, Singapore.
| | - Enrico Petretto
- Programme in Cardiovascular and Metabolic Disorders (CVMD) and Centre for Computational Biology (CCB), Duke-NUS Medical School, 8 College Road, Singapore, Singapore
| |
Collapse
|
5
|
Kulow VA, Labes R, Czopek CS, Rosenberger C, Fähling M. Galectin-3 protects distal convoluted tubules in rhabdomyolysis-induced kidney injury. Pflugers Arch 2024; 476:1571-1585. [PMID: 39042141 PMCID: PMC11381487 DOI: 10.1007/s00424-024-02987-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024]
Abstract
Advanced glycation endproducts (AGEs) contribute to cellular damage of various pathologies, including kidney diseases. Acute kidney injury (AKI) represents a syndrome seldom characterized by a single, distinct pathophysiological cause. Rhabdomyolysis-induced acute kidney injury (RIAKI) constitutes roughly 15% of AKI cases, yet its underlying pathophysiology remains poorly understood. Using a murine model of RIAKI induced by muscular glycerol injection, we observed elevated levels of AGEs and the AGE receptor galectin-3 (LGALS3) in the kidney. Immunofluorescence localized LGALS3 to distal nephron segments. According to transcriptomic profiling via next-generation sequencing, RIAKI led to profound changes in kidney metabolism, oxidative stress, and inflammation. Cellular stress was evident in both proximal and distal tubules, as shown by kidney injury markers KIM-1 and NGAL. However, only proximal tubules exhibited overt damage and apoptosis, as detected by routine morphology, active Caspase-3, and TUNEL assay, respectively. In vitro, distal convoluted tubule (DCT) cells challenged with AGEs underwent apoptosis, which was markedly enhanced by Lgals3 siRNA treatment. Thus, in RIAKI, the upregulation of LGALS3 may protect the distal nephron from AGE-mediated damage, while proximal tubules lacking LGALS3 stay at risk. Thus, stimulating LGALS3 in the proximal nephron, if achievable, may attenuate RIAKI.
Collapse
Affiliation(s)
- Vera A Kulow
- Institut für Translationale Physiologie (CCM), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Robert Labes
- Institut für Translationale Physiologie (CCM), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Claudia S Czopek
- Institut für Translationale Physiologie (CCM), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Christian Rosenberger
- Medizinische Klinik m.S. Nephrologie und Internistische Intensivmedizin (CCM), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Michael Fähling
- Institut für Translationale Physiologie (CCM), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
6
|
Lv X, Shang Y, Ning Y, Yu W, Wang J. Pharmacological targets of SGLT2 inhibitors on IgA nephropathy and membranous nephropathy: a mendelian randomization study. Front Pharmacol 2024; 15:1399881. [PMID: 38846092 PMCID: PMC11155304 DOI: 10.3389/fphar.2024.1399881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/30/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction Emerging research suggests that sodium-glucose cotransporter 2 (SGLT2) inhibitors may play a pivotal role in the treatment of primary glomerular diseases. This study was aimed to investigate potential pharmacological targets connecting SGLT2 inhibitors with IgA nephropathy (IgAN) and membranous nephropathy (MN). Methods A univariate Mendelian randomization (MR) analysis was conducted using publicly available genome-wide association studies (GWAS) datasets. Co-localization analysis was used to identify potential connections between target genes and IgAN and MN. Then, Comparative Toxicogenomics Database (CTD) was employed to predict diseases associated with these target genes and SGLT2 inhibitors (canagliflozin, dapagliflozin, and empagliflozin). Subsequently, phenotypic scan analyses were applied to explore the causal relationships between the predicted diseases and target genes. Finally, we analyzed the immune signaling pathways involving pharmacological target genes using the Kyoto encyclopedia of genes and genomes (KEGG). Results The results of MR analysis revealed that eight drug targets were causally linked to the occurrence of IgAN, while 14 drug targets were linked to MN. In the case of IgAN, LCN2 and AGER emerged as co-localized genes related to the pharmacological agent of dapagliflozin and the occurrence of IgAN. LCN2 was identified as a risk factor, while AGER was exhibited a protective role. KEGG analysis revealed that LCN2 is involved in the interleukin (IL)-17 immune signaling pathway, while AGER is associated with the neutrophil extracellular traps (NETs) signaling immune pathway. No positive co-localization results of the target genes were observed between two other SGLT2 inhibitors (canagliflozin and empagliflozin) and the occurrence of IgAN, nor between the three SGLT2 inhibitors and the occurrence of MN. Conclusion Our study provided evidence supporting a causal relationship between specific SGLT2 inhibitors and IgAN. Furthermore, we found that dapagliflozin may act on IgAN through the genes LCN2 and AGER.
Collapse
Affiliation(s)
- Xin Lv
- Department of Nephrology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Shang
- Department of Nephrology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Ning
- Department of Nephrology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weimin Yu
- Department of Nephrology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Wang
- Department of Nephrology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
7
|
Deepu V, Rai V, Agrawal DK. Quantitative Assessment of Intracellular Effectors and Cellular Response in RAGE Activation. ARCHIVES OF INTERNAL MEDICINE RESEARCH 2024; 7:80-103. [PMID: 38784044 PMCID: PMC11113086 DOI: 10.26502/aimr.0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The review delves into the methods for the quantitative assessment of intracellular effectors and cellular response of Receptor for Advanced Glycation End products (RAGE), a vital transmembrane receptor involved in a range of physiological and pathological processes. RAGE bind to Advanced Glycation End products (AGEs) and other ligands, which in turn activate diverse downstream signaling pathways that impact cellular responses such as inflammation, oxidative stress, and immune reactions. The review article discusses the intracellular signaling pathways activated by RAGE followed by differential activation of RAGE signaling across various diseases. This will ultimately guide researchers in developing targeted and effective interventions for diseases associated with RAGE activation. Further, we have discussed how PCR, western blotting, and microscopic examination of various molecules involved in downstream signaling can be leveraged to monitor, diagnose, and explore diseases involving proteins with unique post-translational modifications. This review article underscores the pressing need for advancements in molecular approaches for disease detection and management involving RAGE.
Collapse
Affiliation(s)
- Vinitha Deepu
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| |
Collapse
|
8
|
Wolszczak-Biedrzycka B, Dorf J, Matowicka-Karna J, Wojewódzka-Żeleźniakowicz M, Żukowski P, Zalewska A, Maciejczyk M. Significance of nitrosative stress and glycoxidation products in the diagnosis of COVID-19. Sci Rep 2024; 14:9198. [PMID: 38649417 PMCID: PMC11035544 DOI: 10.1038/s41598-024-59876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
Nitrosative stress promotes protein glycoxidation, and both processes can occur during an infection with the SARS-CoV-2 virus. Therefore, the aim of this study was to assess selected nitrosative stress parameters and protein glycoxidation products in COVID-19 patients and convalescents relative to healthy subjects, including in reference to the severity of COVID-19 symptoms. The diagnostic utility of nitrosative stress and protein glycoxidation biomarkers was also evaluated in COVID-19 patients. The study involved 218 patients with COVID-19, 69 convalescents, and 48 healthy subjects. Nitrosative stress parameters (NO, S-nitrosothiols, nitrotyrosine) and protein glycoxidation products (tryptophan, kynurenine, N-formylkynurenine, dityrosine, AGEs) were measured in the blood plasma or serum with the use of colorimetric/fluorometric methods. The levels of NO (p = 0.0480), S-nitrosothiols (p = 0.0004), nitrotyrosine (p = 0.0175), kynurenine (p < 0.0001), N-formylkynurenine (p < 0.0001), dityrosine (p < 0.0001), and AGEs (p < 0.0001) were significantly higher, whereas tryptophan fluorescence was significantly (p < 0.0001) lower in COVID-19 patients than in the control group. Significant differences in the analyzed parameters were observed in different stages of COVID-19. In turn, the concentrations of kynurenine (p < 0.0001), N-formylkynurenine (p < 0.0001), dityrosine (p < 0.0001), and AGEs (p < 0.0001) were significantly higher, whereas tryptophan levels were significantly (p < 0.0001) lower in convalescents than in healthy controls. The ROC analysis revealed that protein glycoxidation products can be useful for diagnosing infections with the SARS-CoV-2 virus because they differentiate COVID-19 patients (KN: sensitivity-91.20%, specificity-92.00%; NFK: sensitivity-92.37%, specificity-92.00%; AGEs: sensitivity-99,02%, specificity-100%) and convalescents (KN: sensitivity-82.22%, specificity-84.00%; NFK: sensitivity-82,86%, specificity-86,00%; DT: sensitivity-100%, specificity-100%; AGE: sensitivity-100%, specificity-100%) from healthy subjects with high sensitivity and specificity. Nitrosative stress and protein glycoxidation are intensified both during and after an infection with the SARS-CoV-2 virus. The levels of redox biomarkers fluctuate in different stages of the disease. Circulating biomarkers of nitrosative stress/protein glycoxidation have potential diagnostic utility in both COVID-19 patients and convalescents.
Collapse
Affiliation(s)
- Blanka Wolszczak-Biedrzycka
- Department of Psychology and Sociology of Health and Public Health, University of Warmia and Mazury in Olsztyn, 10-900, Olsztyn, Poland.
| | - Justyna Dorf
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15-089, Białystok, Poland
| | - Joanna Matowicka-Karna
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15-089, Białystok, Poland
| | | | - Piotr Żukowski
- Department of Restorative Dentistry, Croydon University Hospital, 530 London Road, Croydon, Surrey, CR7 7YE, UK
| | - Anna Zalewska
- Independent Laboratory of Experimental Dentistry, Medical University of Bialystok, 15-089, Białystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 15-089, Białystok, Poland
| |
Collapse
|
9
|
Dhanushkodi NR, Prakash S, Quadiri A, Zayou L, Srivastava R, Shaik AM, Suzer B, Ibraim IC, Landucci G, Tifrea DF, Singer M, Jamal L, Edwards RA, Vahed H, Brown L, BenMohamed L. Antiviral and Anti-Inflammatory Therapeutic Effect of RAGE-Ig Protein against Multiple SARS-CoV-2 Variants of Concern Demonstrated in K18-hACE2 Mouse and Syrian Golden Hamster Models. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:576-585. [PMID: 38180084 DOI: 10.4049/jimmunol.2300392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
SARS-CoV-2 variants of concern (VOCs) continue to evolve and reemerge with chronic inflammatory long COVID sequelae, necessitating the development of anti-inflammatory therapeutic molecules. Therapeutic effects of the receptor for advanced glycation end products (RAGE) were reported in many inflammatory diseases. However, a therapeutic effect of RAGE in COVID-19 has not been reported. In the present study, we investigated whether and how the RAGE-Ig fusion protein would have an antiviral and anti-inflammatory therapeutic effect in the COVID-19 system. The protective therapeutic effect of RAGE-Ig was determined in vivo in K18-hACE2 transgenic mice and Syrian golden hamsters infected with six VOCs of SARS-CoV-2. The underlying antiviral mechanism of RAGE-Ig was determined in vitro in SARS-CoV-2-infected human lung epithelial cells (BEAS-2B). Following treatment of K18-hACE2 mice and hamsters infected with various SARS-CoV-2 VOCs with RAGE-Ig, we demonstrated (1) significant dose-dependent protection (i.e., greater survival, less weight loss, lower virus replication in the lungs); (2) a reduction of inflammatory macrophages (F4/80+/Ly6C+) and neutrophils (CD11b+/Ly6G+) infiltrating the infected lungs; (3) a RAGE-Ig dose-dependent increase in the expression of type I IFNs (IFN-α and IFN-β) and type III IFN (IFNλ2) and a decrease in the inflammatory cytokines (IL-6 and IL-8) in SARS-CoV-2-infected human lung epithelial cells; and (4) a dose-dependent decrease in the expression of CD64 (FcgR1) on monocytes and lung epithelial cells from symptomatic COVID-19 patients. Our preclinical findings revealed type I and III IFN-mediated antiviral and anti-inflammatory therapeutic effects of RAGE-Ig protein against COVID-19 caused by multiple SARS-CoV-2 VOCs.
Collapse
Affiliation(s)
- Nisha Rajeswari Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA
| | - Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA
| | - Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA
| | - Amin Mohammed Shaik
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA
| | - Berfin Suzer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA
| | - Izabela Coimbra Ibraim
- High Containment Facility, University of California, Irvine, School of Medicine, Irvine, CA
| | - Gary Landucci
- High Containment Facility, University of California, Irvine, School of Medicine, Irvine, CA
| | - Delia F Tifrea
- Department of Pathology and Laboratory Medicine, University of California, Irvine School of Medicine, Irvine, CA
| | - Mahmoud Singer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA
| | - Leila Jamal
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA
| | - Robert A Edwards
- Department of Pathology and Laboratory Medicine, University of California, Irvine School of Medicine, Irvine, CA
| | - Hawa Vahed
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA
| | | | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA
- Department of Molecular Biology & Biochemistry, University of California, Irvine, School of Medicine, Irvine, CA
- Institute for Immunology, University of California, Irvine, School of Medicine, Irvine, CA
| |
Collapse
|
10
|
Lai SWT, Bhattacharya S, Lopez Gonzalez EDJ, Shuck SC. Methylglyoxal-Derived Nucleoside Adducts Drive Vascular Dysfunction in a RAGE-Dependent Manner. Antioxidants (Basel) 2024; 13:85. [PMID: 38247509 PMCID: PMC10812505 DOI: 10.3390/antiox13010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Diabetic kidney disease (DKD) is a leading cause of death in patients with diabetes. An early precursor to DKD is endothelial cell dysfunction (ECD), which often precedes and exacerbates vascular disease progression. We previously discovered that covalent adducts formed on DNA, RNA, and proteins by the reactive metabolic by-product methylglyoxal (MG) predict DKD risk in patients with type 1 diabetes up to 16 years pre-diagnosis. However, the mechanisms by which MG adducts contribute to vascular disease onset and progression remain unclear. Here, we report that the most predominant MG-induced nucleoside adducts, N2-(1-carboxyethyl)-deoxyguanosine (CEdG) and N2-(1-carboxyethyl)-guanosine (CEG), drive endothelial dysfunction. Following CEdG or CEG exposure, primary human umbilical vein endothelial cells (HUVECs) undergo endothelial dysfunction, resulting in enhanced monocyte adhesion, increased reactive oxygen species production, endothelial permeability, impaired endothelial homeostasis, and exhibit a dysfunctional transcriptomic signature. These effects were discovered to be mediated through the receptor for advanced glycation end products (RAGE), as an inhibitor for intracellular RAGE signaling diminished these dysfunctional phenotypes. Therefore, we found that not only are MG adducts biomarkers for DKD, but that they may also have a role as potential drivers of vascular disease onset and progression and a new therapeutic modality.
Collapse
Affiliation(s)
- Seigmund Wai Tsuen Lai
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (S.W.T.L.); (E.D.J.L.G.)
| | - Supriyo Bhattacharya
- Department of Computational and Quantitative Medicine, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Edwin De Jesus Lopez Gonzalez
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (S.W.T.L.); (E.D.J.L.G.)
| | - Sarah C. Shuck
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (S.W.T.L.); (E.D.J.L.G.)
| |
Collapse
|
11
|
Elbialy A, Megahed MME, Ibrahim AS, Elmesiry AM, Mohamed MSE, Ghit MM, Gazar YAM, Elazab SA. Bilateral Avascular Necrosis of the Femoral Heads After COVID-19 Infection without Steroid Treatment. Curr Rheumatol Rev 2024; 20:465-468. [PMID: 37870059 DOI: 10.2174/0115733971259997231012101534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/18/2023] [Accepted: 09/14/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Avascular necrosis (AVN) is a potentially serious multifactorial disease. In COVID-19 patients, AVN of many bones has been reported. Usually, the condition is linked to steroid therapy. In this case report, we describe our experience with bilateral AVN of femoral heads in an elderly patient months after being cured of COVID-19 infection without the use of steroids. CASE PRESENTATION A 68-year-old male was referred to the outpatient clinic of the rheumatology and rehabilitation department for progressive bilateral hip pain starting on the left side 5 months ago. An extensive review of the patient's medical history identified documented COVID-19 infection that required hospitalization 9 months before presentation. Multiplanar MRI with fat suppression of both hips showed ill-defined areas of abnormal signal intensity affecting the left femoral head, neck and intertrochanteric regions with associated subchondral fissuring and mild joint effusion. A similar smaller area was also seen affecting the postero-superior aspect of the right femoral head. CONCLUSION AVN in COVID-19 patients can be encountered even in the absence of steroid therapy.
Collapse
Affiliation(s)
- Adel Elbialy
- Department of Rheumatology and Rehabilitation, Al-Azhar University, Cairo, Egypt
| | | | - Amira Shahin Ibrahim
- Department of Rheumatology and Rehabilitation, Al-Azhar University, Cairo, Egypt
| | - Aml Mohamed Elmesiry
- Department of Rheumatology and Rehabilitation, Al-Azhar University, Cairo, Egypt
| | | | - Mohamed Magdy Ghit
- Department of Rheumatology and Rehabilitation, Al-Azhar University, Cairo, Egypt
| | | | | |
Collapse
|
12
|
Liu Y, Gu X, Li H, Zhang H, Xu J. Mechanisms of long COVID: An updated review. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:231-240. [PMID: 39171285 PMCID: PMC11332859 DOI: 10.1016/j.pccm.2023.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Indexed: 08/23/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has been ongoing for more than 3 years, with an enormous impact on global health and economies. In some patients, symptoms and signs may remain after recovery from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which cannot be explained by an alternate diagnosis; this condition has been defined as long COVID. Long COVID may exist in patients with both mild and severe disease and is prevalent after infection with different SARS-CoV-2 variants. The most common symptoms include fatigue, dyspnea, and other symptoms involving multiple organs. Vaccination results in lower rates of long COVID. To date, the mechanisms of long COVID remain unclear. In this narrative review, we summarized the clinical presentations and current evidence regarding the pathogenesis of long COVID.
Collapse
Affiliation(s)
- Yan Liu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China–Japan Friendship Hospital, Beijing 100029, China
- Department of Infectious Disease, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Xiaoying Gu
- Department of Clinical Research and Data Management, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Haibo Li
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China–Japan Friendship Hospital, Beijing 100029, China
| | - Hui Zhang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China–Japan Friendship Hospital, Beijing 100029, China
- Department of Pulmonary and Critical Care Medicine, China–Japan Friendship Hospital, Capital Medical University, Beijing 100029, China
| | - Jiuyang Xu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China–Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
13
|
Rai V. COVID-19 and Kidney: The Importance of Follow-Up and Long-Term Screening. Life (Basel) 2023; 13:2137. [PMID: 38004277 PMCID: PMC10672056 DOI: 10.3390/life13112137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/21/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Renal involvement and kidney injury are common in COVID-19 patients, and the symptoms are more severe if the patient already has renal impairment. Renal involvement in COVID-19 is multifactorial, and the renal tubule is mainly affected, along with podocyte injury during SARS-CoV-2 infection. Inflammation, complement activation, hypercoagulation, and crosstalk between the kidney and lungs, brain, and heart are contributory factors. Kidney injury during the acute phase, termed acute kidney injury (AKI), may proceed to chronic kidney disease if the patient is discharged with renal impairment. Both AKI and chronic kidney disease (CKD) increase mortality in COVID-19 patients. Further, COVID-19 infection in patients suffering from CKD is more severe and increases the mortality rate. Thus, it is important to address both categories of patients, either developing AKI or CKD after COVID-19 or previously having CKD, with proper management and treatment. This review discusses the pathophysiology involved in AKI and CKD in COVID-19 infection, followed by management and treatment of AKI and CKD. This is followed by a discussion of the importance of screening and treatment of CKD patients infected with COVID-19 and future perspectives to improve treatment in such patients.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
14
|
Reddy VP, Aryal P, Soni P. RAGE Inhibitors in Neurodegenerative Diseases. Biomedicines 2023; 11:biomedicines11041131. [PMID: 37189749 DOI: 10.3390/biomedicines11041131] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Nonenzymatic reactions of reducing sugars with primary amino groups of amino acids, proteins, and nucleic acids, followed by oxidative degradations would lead to the formation of advanced glycation endproducts (AGEs). The AGEs exert multifactorial effects on cell damage leading to the onset of neurological disorders. The interaction of AGEs with the receptors for advanced glycation endproducts (RAGE) contribute to the activation of intracellular signaling and the expression of the pro-inflammatory transcription factors and various inflammatory cytokines. This inflammatory signaling cascade is associated with various neurological diseases, including Alzheimer's disease (AD), secondary effects of traumatic brain injury (TBI), amyotrophic lateral sclerosis (ALS), and diabetic neuropathy, and other AGE-related diseases, including diabetes and atherosclerosis. Furthermore, the imbalance of gut microbiota and intestinal inflammation are also associated with endothelial dysfunction, disrupted blood-brain barrier (BBB) and thereby the onset and progression of AD and other neurological diseases. AGEs and RAGE play an important role in altering the gut microbiota composition and thereby increase the gut permeability and affect the modulation of the immune-related cytokines. The inhibition of the AGE-RAGE interactions, through small molecule-based therapeutics, prevents the inflammatory cascade of events associated with AGE-RAGE interactions, and thereby attenuates the disease progression. Some of the RAGE antagonists, such as Azeliragon, are currently in clinical development for treating neurological diseases, including AD, although currently there have been no FDA-approved therapeutics based on the RAGE antagonists. This review outlines the AGE-RAGE interactions as a leading cause of the onset of neurological diseases and the current efforts on developing therapeutics for neurological diseases based on the RAGE antagonists.
Collapse
Affiliation(s)
- V Prakash Reddy
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Puspa Aryal
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Pallavi Soni
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| |
Collapse
|
15
|
Wruck W, Boima V, Erichsen L, Thimm C, Koranteng T, Kwakyi E, Antwi S, Adu D, Adjaye J. Urine-Based Detection of Biomarkers Indicative of Chronic Kidney Disease in a Patient Cohort from Ghana. J Pers Med 2022; 13:jpm13010038. [PMID: 36675700 PMCID: PMC9863148 DOI: 10.3390/jpm13010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic kidney disease (CKD) is a global health burden with a continuously increasing prevalence associated with an increasing incidence of diabetes and hypertension in aging populations. CKD is characterized by low glomerular filtration rate (GFR) and other renal impairments including proteinuria, thus implying that multiple factors may contribute to the etiology this disease. While there are indications of ethnic differences, it is hard to disentangle these from confounding social factors. Usually, CKD is detected in later stages of the disease when irreversible renal damage has already occurred, thus suggesting a need for early non-invasive diagnostic markers. In this study, we explored the urine secretome of a CKD patient cohort from Ghana with 40 gender-matched patients and 40 gender-matched healthy controls employing a kidney injury and a more general cytokine assay. We identified panels of kidney-specific cytokine markers, which were also gender-specific, and a panel of gender-independent cytokine markers. The gender-specific markers are IL10 and MME for male and CLU, RETN, AGER, EGFR and VEGFA for female. The gender-independent cytokine markers were APOA1, ANGPT2, C5, CFD, GH1, ICAM1, IGFBP2, IL8, KLK4, MMP9 and SPP1 (up-regulated) and FLT3LG, CSF1, PDGFA, RETN and VEGFA (down-regulated). APOA1-the major component of HDL particles-was up-regulated in Ghanaian CKD patients and its co-occurrence with APOL1 in a subpopulation of HDL particles may point to specific CKD-predisposing APOL1 haplotypes in patients of African descent-this, however, needs further investigation. The identified panels, though preliminary, lay down the foundation for the development of robust CKD-diagnostic assays.
Collapse
Affiliation(s)
- Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Vincent Boima
- Department of Medicine & Therapeutics, University of Ghana Medical School, College of Health Sciences, Box 4236, University of Ghana, Accra P.O. Box LG 1181, Ghana
| | - Lars Erichsen
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Chantelle Thimm
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Theresa Koranteng
- NHS-Clover Health Centre, Equitable House, 10 Woolich New Road, Woolich, London SE18 6AB, UK
| | - Edward Kwakyi
- Department of Medicine & Therapeutics, University of Ghana Medical School, College of Health Sciences, Box 4236, University of Ghana, Accra P.O. Box LG 1181, Ghana
| | - Sampson Antwi
- Department of Child Health, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Komfo Anokye Teaching Hospital, Kumasi P.O. Box KS 9265, Ghana
| | - Dwomoa Adu
- Department of Medicine & Therapeutics, University of Ghana Medical School, College of Health Sciences, Box 4236, University of Ghana, Accra P.O. Box LG 1181, Ghana
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
- EGA Institute for Women’s Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK
- Correspondence:
| |
Collapse
|
16
|
Long COVID-19 and used cooking oil consumption in India: The potential for concurrent and cascading scourges - Correspondence. Int J Surg 2022; 107:106972. [PMID: 36330986 PMCID: PMC9617626 DOI: 10.1016/j.ijsu.2022.106972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/26/2022] [Indexed: 11/07/2022]
|