1
|
López-Valverde L, Vázquez-Mosquera ME, Colón-Mejeras C, Álvarez JV, López-Pardo BM, López LL, Sánchez-Martínez R, López-Mendoza M, López-Rodríguez M, Villacorta-Argüelles E, Goicoechea-Diezhandino MA, Guerrero-Márquez FJ, Ortolano S, Leao-Teles E, Hermida-Ameijeiras Á, Couce ML. Disrupted synaptic gene expression in Fabry disease: Findings from RNA sequencing. Neurobiol Dis 2025; 209:106908. [PMID: 40233852 DOI: 10.1016/j.nbd.2025.106908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/20/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025] Open
Abstract
Fabry disease (FD) is a rare X-linked lysosomal storage disorder caused by a deficiency in the enzyme α-galactosidase A. This defect leads to the progressive accumulation of glycosphingolipids, resulting in kidney, heart, and nervous system damage, which contributes to significant morbidity and mortality. Early diagnosis is essential to prevent irreversible damage and optimize treatment strategies. Recent research aims to provide a better understanding of FD pathophysiology to improve management approaches. This study is an international, multicenter, cross-sectional analysis that used RNA sequencing (RNA-seq) to compare blood samples from 50 FD patients and 50 age- and sex-matched healthy controls. The objective was to identify gene expression patterns and investigate secondary cellular pathways affected by lysosomal dysfunction. Among the more than 400 differentially expressed genes detected, 207 were protein-coding genes, most of which were overexpressed in the FD cohort. Functional enrichment analysis highlighted processes related to synaptic function, specifically concerning chemical synaptic transmission and membrane potential regulation. Identified genes included those related to voltage-gated ion channels, neurotransmitter receptors, cell adhesion molecules, scaffold proteins, and proteins associated with synaptic vesicles and neurotrophic signaling, all linked to lipid rafts. Notable identified genes included those encoding voltage-gated potassium channel genes (KCNQ2, KCNQ3, KCNMA1) and ionotropic receptor genes involved in glutamatergic (GRIN2A, GRIN2B) and GABAergic systems (GABRA4, GABRB1, GABRG2, GABRQ). These findings suggest that lysosomal dysfunction contributes to synaptic defects in FD, paving the way for further research into the role of synaptic pathology and lipid rafts in the underlying pathogenesis and clinical outcomes in FD.
Collapse
Affiliation(s)
- Laura López-Valverde
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, A Coruña, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, A Coruña, Spain.
| | - María E Vázquez-Mosquera
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, A Coruña, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, A Coruña, Spain.
| | - Cristóbal Colón-Mejeras
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, A Coruña, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, A Coruña, Spain.
| | - J Víctor Álvarez
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, A Coruña, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, A Coruña, Spain.
| | - Beatriz Martín López-Pardo
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, A Coruña, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, A Coruña, Spain.
| | - Lluis Lis López
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, A Coruña, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, A Coruña, Spain.
| | - Rosario Sánchez-Martínez
- Internal Medicine Department, Alicante General University Hospital-Alicante Institute of Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain.
| | - Manuel López-Mendoza
- Department of Nephrology, Hospital Universitario Virgen del Rocío, Manuel Siurot s/n, 41013 Sevilla, Spain
| | - Mónica López-Rodríguez
- Internal Medicine Department, Hospital Universitario Ramón y Cajal, IRYCIS, Colmenar Viejo, 28034 Madrid, Spain; Faculty of Medicine and Health Sciences, Universidad de Alcalá (UAH), Av. de Madrid, 28871 Alcalá de Henares, Spain.
| | - Eduardo Villacorta-Argüelles
- Department of Cardiology, Complejo Asistencial Universitario de Salamanca, P°. de San Vicente 58, 37007 Salamanca, Spain.
| | | | - Francisco J Guerrero-Márquez
- Department of Cardiology, Internal Medicine Service, Hospital de la Serranía, San Pedro, 29400 Ronda, Málaga, Spain
| | - Saida Ortolano
- Rare Diseases and Pediatric Medicine Research Group, Galicia Sur Health Research Institute-SERGAS-UVIGO, Clara Campoamor 341, 36213 Vigo, Spain.
| | - Elisa Leao-Teles
- Centro de Referência de Doenças Hereditárias do Metabolismo, Centro Hospitalar Universitário de São João, Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Álvaro Hermida-Ameijeiras
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, A Coruña, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, A Coruña, Spain.
| | - María L Couce
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, A Coruña, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, A Coruña, Spain.
| |
Collapse
|
2
|
Kummer K, Choconta JL, Edenhofer ML, Bajpai A, Dharmalingam G, Kalpachidou T, Collier DA, Kress M. Anxiety-like behavior and altered hippocampal activity in a transgenic mouse model of Fabry disease. Neurobiol Dis 2025; 205:106797. [PMID: 39788162 DOI: 10.1016/j.nbd.2025.106797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/02/2025] [Accepted: 01/05/2025] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Fabry disease (FD) patients are known to be at high risk of developing neuropsychiatric symptoms such as anxiety, depression and cognitive deficits. Despite this, they are underdiagnosed and inadequately treated. It is unknown whether these symptoms arise from pathological glycosphingolipid deposits or from cerebrovascular abnormalities affecting neuronal functions in the central nervous system. We therefore aimed to fill this knowledge gap by exploring a transgenic FD mouse model with a combination of behavior, transcriptomic, functional and morphological assessments, with a particular focus on the hippocampus. RESULTS Male FD mice exhibited increased anxiety-like behavior in the open field test, accompanied by a reduced exploratory drive in the Barnes maze, which could be related to the increased deposition of globotriaosylceramide (Gb3) identified in the dentate gyrus (DG). Hippocampus single-cell sequencing further revealed that Gb3 accumulation was associated with differential gene expression in neuronal and non-neuronal cell populations with granule, excitatory and interneurons, as well as microglia and endothelial cells as the main clusters with the most dysregulated genes. Particularly FD hippocampal neurons showed decreased electrical baseline activity in the DG and increased activity in the CA3 region of acutely dissected hippocampal slices. CONCLUSIONS Our study highlights transcriptional and functional alterations in non-neuronal and neuronal cell clusters in the hippocampus of FD mice, which are suggested to be causally related to anxiety-like behavior developing as a consequence of FD pathology in mouse models of the disease and in patients.
Collapse
Affiliation(s)
- Kai Kummer
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Jeiny Luna Choconta
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | | | | | | | | | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
3
|
Chen Y, Lu T, Dai Y, Xue Y, Zhao B, Wu X. Exosomal miR-222-3p derived from dermal papilla cells inhibits melanogenesis in melanocytes by targeting SOX10 in rabbits. Anim Biosci 2025; 38:236-246. [PMID: 39210791 PMCID: PMC11725748 DOI: 10.5713/ab.24.0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/23/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE Dermal papilla cells (DPCs) play a pivotal role in hair follicle development and can modulate melanogenesis in melanocytes (MCs) through their microenvironment. Our previous studies have demonstrated that the levels of exosomal miR-222-3p derived from DPCs of white Rex rabbits are significantly higher than those of black Rex rabbits. However, the specific role and underlying molecular mechanisms of exosomal miR-222-3p in melanogenesis remain elusive. METHODS DPCs and MCs were isolated from hair follicles of Rex rabbits and identified using western blotting (WB) and immunofluorescent staining. Exosomes derived from DPCs (DPCs-exos) were characterized using nanoparticle tracking analysis, transmission electron microscopy, and WB. To investigate cell-cell crosstalk mediated by exosomes, MCs were co-cultured with CM-Dil-labeled DPCs-exos. The expression of miR-222-3p in skin tissue and exosomes was quantitatively assessed using quantitative real-time polymerase chain reaction. The transmission of DPCs-secreted exosomal miR-222-3p to MCs was demonstrated using Cy3-labeled miR-222-3p in conjunction with transwell assays. The impact of miR-222-3p on melanin synthesis was evaluated using the NaOH method, cell counting kit-8, and annexin V-fluorescein isothiocyanate/propidium iodide assays. Sex determining region Y-box 10 (SOX10), a potential target gene regulated by miR-222-3p, was validated using a dual-luciferase reporter assay, site-specific mutation, and WB. RESULTS Increased levels of miR-222-3p were observed in the skin and DPCs-exos of white Rex rabbits compared to those of black Rex rabbits. Effective internalization of CM-Dillabeled DPCs-exos by MCs was observed. Furthermore, exosomal miR-222-3p derived from DPCs was transferred to MCs. Functionally, miR-222-3p significantly inhibited MCs proliferation, induced apoptosis and inhibited melanin synthesis. SOX10 was confirmed as a direct target of miR-222-3p in this regulatory cascade. CONCLUSION The findings demonstrate that exosomal miR-222-3p, derived from DPCs, suppresses melanogenesis in MCs by targeting SOX10, thus unveiling a novel mechanism of exosome involvement in melanogenesis.
Collapse
Affiliation(s)
- Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009,
China
| | - Tingting Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009,
China
| | - Yingying Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009,
China
| | - Yu Xue
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009,
China
| | - Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009,
China
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009,
China
| |
Collapse
|
4
|
Jin C, Xue L, Zhang L, Yu L, Wu P, Qian H. Engineered Nanoparticles for Theranostic Applications in Kidney Repair. Adv Healthc Mater 2025; 14:e2402480. [PMID: 39617999 DOI: 10.1002/adhm.202402480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/05/2024] [Indexed: 01/03/2025]
Abstract
Kidney diseases are characterized by their intricate nature and complexity, posing significant challenges in their treatment and diagnosis. Nanoparticles (NPs), which can be further classified as synthetic and biomimetic NPs, have emerged as promising candidates for treating various diseases. In recent years, the development of engineered nanotherapeutics has focused on targeting damaged tissues and serving as drug delivery vehicles. Additionally, these NPs have shown superior sensitivity and specificity in diagnosis and imaging, thus providing valuable insights for the early detection of diseases. This review aims to focus on the application of engineered synthetic and biomimetic NPs in kidney diseases in the aspects of treatment, diagnosis, and imaging. Notably, the current perspectives and challenges are evaluated, which provide inspiration for future research directions, and encourage the clinical application of NPs in this field.
Collapse
Affiliation(s)
- Can Jin
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, 215300, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Lingling Xue
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Leilei Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Lixia Yu
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, 215300, China
| | - Peipei Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
5
|
Xie B, Pang S, Xie Y, Tan Q, Li S, Jili M, Huang Y, Zhao B, Yuan H, Mi J, Chen X, Ruan L, Chen H, Li X, Hu B, Huang J, Yang R, Li W. Urinary TYROBP and HCK as genetic biomarkers for non-invasive diagnosis and therapeutic targeting in IgA nephropathy. Front Genet 2024; 15:1516513. [PMID: 39777260 PMCID: PMC11703869 DOI: 10.3389/fgene.2024.1516513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Background IgA nephropathy (IgAN) is a leading cause of renal failure, but its pathogenesis remains unclear, complicating diagnosis and treatment. The invasive nature of renal biopsy highlights the need for non-invasive diagnostic biomarkers. Bulk RNA sequencing (RNA-seq) of urine offers a promising approach for identifying molecular changes relevant to IgAN. Methods We performed bulk RNA-seq on 53 urine samples from 11 untreated IgAN patients and 11 healthy controls, integrating these data with public renal RNA-seq, microarray, and scRNA-seq datasets. Machine learning was used to identify key differentially expressed genes, with protein expression validated by immunohistochemistry (IHC) and drug-target interactions explored via molecular docking. Results Urine RNA-seq analysis revealed differential expression profiles, from which TYROBP and HCK were identified as key biomarkers using machine learning. These biomarkers were validated in both a test cohort and an external validation cohort, demonstrating strong predictive accuracy. scRNA-seq confirmed their cell-specific expression patterns, correlating with renal function metrics such as GFR and serum creatinine. IHC further validated protein expression, and molecular docking suggested potential therapeutic interactions with IgAN treatments. Conclusion TYROBP and HCK are promising non-invasive urinary biomarkers for IgAN. Their predictive accuracy, validated through machine learning, along with IHC confirmation and molecular docking insights, supports their potential for both diagnostic and therapeutic applications in IgAN.
Collapse
Affiliation(s)
- Boji Xie
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shuting Pang
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yuli Xie
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, University Engineering Research Center of Digital Medicine and Healthcare, Guangxi Medical University, Nanning, Guangxi, China
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Qiuyan Tan
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shanshan Li
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Mujia Jili
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, University Engineering Research Center of Digital Medicine and Healthcare, Guangxi Medical University, Nanning, Guangxi, China
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Yian Huang
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, University Engineering Research Center of Digital Medicine and Healthcare, Guangxi Medical University, Nanning, Guangxi, China
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Binran Zhao
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hao Yuan
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, University Engineering Research Center of Digital Medicine and Healthcare, Guangxi Medical University, Nanning, Guangxi, China
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Junhao Mi
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, University Engineering Research Center of Digital Medicine and Healthcare, Guangxi Medical University, Nanning, Guangxi, China
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
- Medical Laboratory Department, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, China
| | - Xuesong Chen
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Liangping Ruan
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hong Chen
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaolai Li
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Boning Hu
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jing Huang
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Rirong Yang
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, University Engineering Research Center of Digital Medicine and Healthcare, Guangxi Medical University, Nanning, Guangxi, China
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Wei Li
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
6
|
Lawson JS, Williams TL. Extracellular vesicles in kidney disease - A veterinary perspective. Vet J 2024; 308:106247. [PMID: 39276847 DOI: 10.1016/j.tvjl.2024.106247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/21/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Extracellular vesicles (EVs) are membrane bound vesicles secreted from cells into the extracellular space which have an emerging role in both normal kidney physiology and the pathophysiology of kidney injury, predominantly as mediators of intercellular communication. EVs contain proteins and RNA cargo which reflect their cell of origin and can be isolated from the urine of cats and dogs. The majority of urinary EVs (uEVs) originate from the kidney, and both the uEV proteome and transcriptome have been investigated as sources of biomarkers of kidney disease. In addition to their possible diagnostic role, EVs may also have therapeutic potential, and veterinary species have been used as models to demonstrate the efficacy of exogenous EVs derived from mesenchymal stromal cells in the treatment of acute kidney injury. Furthermore, bioengineered EVs may represent a novel vehicle for the administration of drugs or therapeutic nucleic acids in kidney disease. This article reviews the biological functions of EVs within the kidney, techniques for their isolation, and their potential use as biomarkers and therapeutic agents, with particular focus on the potential significance to veterinary patients.
Collapse
Affiliation(s)
- Jack S Lawson
- The Royal Veterinary College, Hawkshead Ln, Brookmans Park, Hatfield AL9 7TA, UK.
| | - Timothy L Williams
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| |
Collapse
|
7
|
Fang JY, Ayyadurai S, Pybus AF, Sugimoto H, Qian MG. Exploring the diagnostic potential of miRNA signatures in the Fabry disease serum: A comparative study of automated and manual sample isolations. PLoS One 2024; 19:e0301733. [PMID: 39466827 PMCID: PMC11515968 DOI: 10.1371/journal.pone.0301733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/19/2024] [Indexed: 10/30/2024] Open
Abstract
Fabry disease, an X-linked lysosomal storage disorder caused by galactosidase α (GLA) gene mutations, exhibits diverse clinical manifestations, and poses significant diagnostic challenges. Early diagnosis and treatment are crucial for improved patient outcomes, pressing the need for reliable biomarkers. In this study, we aimed to identify miRNA candidates as potential biomarkers for Fabry disease using the KingFisher™ automated isolation method and NanoString nCounter® miRNA detection assay. Clinical serum samples were collected from both healthy subjects and Fabry disease patients. RNA extraction from the samples was performed using the KingFisher™ automated isolation method with the MagMAX mirVanaTM kit or manually using the Qiagen miRNeasy kit. The subsequent NanoString nCounter® miRNA detection assay showed consistent performance and no correlation between RNA input concentration and raw count, ensuring reliable and reproducible results. Interestingly, the detection range and highly differential miRNA between the control and disease groups were found to be distinct depending on the isolation method employed. Nevertheless, enrichment analysis of miRNA-targeting genes consistently revealed significant associations with angiogenesis pathways in both isolation methods. Additionally, our investigation into the impact of enzyme replacement therapy on miRNA expression indicated that some differential miRNAs may be sensitive to treatment. Our study provides valuable insights to identify miRNA biomarkers for Fabry disease. While different isolation methods yielded various detection ranges and highly differential miRNAs, the consistent association with angiogenesis pathways suggests their significance in disease progression. These findings lay the groundwork for further investigations and validation studies, ultimately leading to the development of non-invasive and reliable biomarkers to aid in early diagnosis and treatment monitoring for Fabry disease.
Collapse
Affiliation(s)
- Josephine Y. Fang
- Takeda Development Center Americas Inc., Cambridge, MA, United States of America
| | - Saravanan Ayyadurai
- Takeda Development Center Americas Inc., Cambridge, MA, United States of America
| | - Alyssa F. Pybus
- Takeda Development Center Americas Inc., Cambridge, MA, United States of America
| | - Hiroshi Sugimoto
- Takeda Development Center Americas Inc., Cambridge, MA, United States of America
| | - Mark G. Qian
- Takeda Development Center Americas Inc., Cambridge, MA, United States of America
| |
Collapse
|
8
|
Kurdi H, Lavalle L, Moon JCC, Hughes D. Inflammation in Fabry disease: stages, molecular pathways, and therapeutic implications. Front Cardiovasc Med 2024; 11:1420067. [PMID: 38932991 PMCID: PMC11199868 DOI: 10.3389/fcvm.2024.1420067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Fabry disease, a multisystem X-linked disorder caused by mutations in the alpha-galactosidase gene. This leads to the accumulation of globotriaosylceramide (Gb3) and globotriaosylsphingosine (Lyso-Gb3), culminating in various clinical signs and symptoms that significantly impact quality of life. Although treatments such as enzyme replacement, oral chaperone, and emerging therapies like gene therapy exist; delayed diagnosis often curtails their effectiveness. Our review highlights the importance of delineating the stages of inflammation in Fabry disease to enhance the timing and efficacy of diagnosis and interventions, particularly before the progression to fibrosis, where treatment options are less effective. Inflammation is emerging as an important aspect of the pathogenesis of Fabry disease. This is thought to be predominantly mediated by the innate immune response, with growing evidence pointing towards the potential involvement of adaptive immune mechanisms that remain poorly understood. Highlighted by the fact that Fabry disease shares immune profiles with systemic autoinflammatory diseases, blurring the distinctions between these disorders and highlighting the need for a nuanced understanding of immune dynamics. This insight is crucial for developing targeted therapies and improving the administration of current treatments like enzyme replacement. Moreover, our review discusses the complex interplay between these inflammatory processes and current treatments, such as the challenges posed by anti-drug antibodies. These antibodies can attenuate the effectiveness of therapies, necessitating more refined approaches to mitigate their impact. By advancing our understanding of the molecular changes, inflammatory mediators and causative factors that drive inflammation in Fabry disease, we aim to clarify their role in the disease's progression. This improved understanding will help us see how these processes fit into the current landscape of Fabry disease. Additionally, it will guide the development of more effective diagnostic and therapeutic approaches, ultimately improving patient care.
Collapse
Affiliation(s)
- Hibba Kurdi
- Institute of Cardiovascular Science, University College London, London, United Kingdom
- Cardiovascular Imaging Department, Barts Heart Centre, London, United Kingdom
| | - Lucia Lavalle
- Institute of Cardiovascular Science, University College London, London, United Kingdom
- Lysosomal Storage Disorders Unit, The Royal Free Hospital, London, United Kingdom
| | - James C. C. Moon
- Institute of Cardiovascular Science, University College London, London, United Kingdom
- Cardiovascular Imaging Department, Barts Heart Centre, London, United Kingdom
| | - Derralynn Hughes
- Institute of Cardiovascular Science, University College London, London, United Kingdom
- Lysosomal Storage Disorders Unit, The Royal Free Hospital, London, United Kingdom
| |
Collapse
|
9
|
Baroni A, Lamberti N, Gandolfi M, Rimondini M, Bertagnolo V, Grassilli S, Zerbinati L, Manfredini F, Straudi S. Traditional versus progressive robot-assisted gait training in people with multiple sclerosis and severe gait disability: study protocol for the PROGR-EX randomised controlled trial. BMJ Open Sport Exerc Med 2024; 10:e002039. [PMID: 38779575 PMCID: PMC11110587 DOI: 10.1136/bmjsem-2024-002039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Gait disorders are the most frequent symptoms associated to multiple sclerosis (MS). Robot-assisted gait training (RAGT) in people with MS (PwMS) has been proposed as a possible effective treatment option for severe motor disability without significant superiority when compared to intensive overground gait training (OGT). Furthermore, RAGT at high intensity may enhance fatigue and spasticity. This study aims to evaluate the effects of a low-intensity RAGT at progressively increasing intensity compared to conventional RAGT and OGT in PwMS and moderate to severe walking impairment. 24 PwMS will be recruited and assigned to one of the three treatment groups: low-intensity RAGT at progressively increasing intensity, conventional RAGT and OGT. All participants will receive 3-weekly treatment sessions of 3 hours each for 4 weeks. In the first 2 hours of treatment, all participants will receive a rehabilitation programme based on stretching exercises, muscle strengthening and educational interventions. During the last hour, subjects will undergo specific gait training according to the assignment group. Outcomes will be assessed before and after treatment and at 3-month follow-up. The primary outcome is walking speed. Secondary outcomes include mobility and balance, psychological measures, muscle oxygen consumption, electrical and haemodynamic brain activity, urinary biomarkers, usability, and acceptability of robotic devices for motor rehabilitation. The results of this study will provide a safe, affordable and non-operator-dependent, intervention for PwMS. Results in terms of functional, psychological, neurophysiological and biological outcomes will confirm our hypothesis. The study's trial registration number: NCT06381440.
Collapse
Affiliation(s)
- Andrea Baroni
- Department of Neuroscience and Rehabilitation, Ferrara University, Ferrara, Italy
- Department of Neuroscience, Ferrara University Hospital, Ferrara, Italy
| | - Nicola Lamberti
- Department of Neuroscience and Rehabilitation, Ferrara University, Ferrara, Italy
- Department of Neuroscience, Ferrara University Hospital, Ferrara, Italy
| | - Marialuisa Gandolfi
- Department of Neurosciences, Biomedicine and Movement Sciences, Verona University, Verona, Italy
| | - Michela Rimondini
- Department of Neurosciences, Biomedicine and Movement Sciences, Verona University, Verona, Italy
| | - Valeria Bertagnolo
- Department of Translational Medicine, Ferrara University, Ferrara, Italy
| | - Silvia Grassilli
- Department of Environment and Prevention Sciences, Ferrara University, Ferrara, Italy
| | - Luigi Zerbinati
- Department of Neuroscience and Rehabilitation, Ferrara University, Ferrara, Italy
- Department of Neuroscience, Ferrara University Hospital, Ferrara, Italy
| | - Fabio Manfredini
- Department of Neuroscience and Rehabilitation, Ferrara University, Ferrara, Italy
- Department of Neuroscience, Ferrara University Hospital, Ferrara, Italy
| | - Sofia Straudi
- Department of Neuroscience and Rehabilitation, Ferrara University, Ferrara, Italy
- Department of Neuroscience, Ferrara University Hospital, Ferrara, Italy
| |
Collapse
|
10
|
Germain DP, Linhart A. Pegunigalsidase alfa: a novel, pegylated recombinant alpha-galactosidase enzyme for the treatment of Fabry disease. Front Genet 2024; 15:1395287. [PMID: 38680424 PMCID: PMC11045972 DOI: 10.3389/fgene.2024.1395287] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/27/2024] [Indexed: 05/01/2024] Open
Abstract
Fabry disease, a rare X-linked genetic disorder, results from pathogenic variants in GLA, leading to deficient lysosomal α-galactosidase A enzyme activity and multi-organ manifestations. Since 2001, enzyme replacement therapy (ERT), using agalsidase alfa or agalsidase beta, has been the mainstay treatment, albeit with limitations such as rapid clearance and immunogenicity. Pegunigalsidase alfa, a novel PEGylated recombinant alpha-galactosidase, offers promise as an alternative. Produced in plant cells, pegunigalsidase alfa exhibits enhanced stability, prolonged half-life, and reduced immunogenicity due to pegylation. A phase 1/2 clinical trial demonstrated Gb3 clearance from renal capillary endothelial cells and its 48-month extension study revealed notable outcomes in renal function preservation. Three phase 3 clinical trials (BRIDGE, BRIGHT, and BALANCE) have shown favorable efficacy and safety profile, although caution is warranted in interpreting the results of BRIDGE and BRIGHT which lacked control groups. In BALANCE, the pivotal phase 3 trial comparing pegunigalsidase alfa with agalsidase beta, an intention-to-treat analysis of the eGFR decline over 2 years showed that the intergroup difference [95%confidence interval] in the median slope was -0.36 mL/min/1.73 m2/year [-2.44; 1.73]. The confidence interval had a lower limit above the prespecified value of -3 mL/min/1.73 m2/year and included zero. Despite challenges such as occasional hypersensitivity reactions and immune-complex-mediated glomerulonephritis, pegunigalsidase alfa approval by the European Medicines Agency and the Food and Drug Administration represents a significant addition to Fabry disease therapeutic landscape providing an option for patients in whom enzyme replacement therapy with current formulations is poorly tolerated or poorly effective.
Collapse
Affiliation(s)
- Dominique P. Germain
- Division of Medical Genetics, University of Versailles–St Quentin en Yvelines (UVSQ), Paris–Saclay University, Montigny, France
- Second Department of Medicine, Charles University, General University Hospital, Prague, Czechia
| | - Ales Linhart
- Second Department of Medicine, Charles University, General University Hospital, Prague, Czechia
| |
Collapse
|
11
|
Coelho-Ribeiro B, Silva HG, Sampaio-Marques B, Fraga AG, Azevedo O, Pedrosa J, Ludovico P. Inflammation and Exosomes in Fabry Disease Pathogenesis. Cells 2024; 13:654. [PMID: 38667269 PMCID: PMC11049543 DOI: 10.3390/cells13080654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/01/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Fabry Disease (FD) is one of the most prevalent lysosomal storage disorders, resulting from mutations in the GLA gene located on the X chromosome. This genetic mutation triggers glo-botriaosylceramide (Gb-3) buildup within lysosomes, ultimately impairing cellular functions. Given the role of lysosomes in immune cell physiology, FD has been suggested to have a profound impact on immunological responses. During the past years, research has been focusing on this topic, and pooled evidence strengthens the hypothesis that Gb-3 accumulation potentiates the production of pro-inflammatory mediators, revealing the existence of an acute inflammatory process in FD that possibly develops to a chronic state due to stimulus persistency. In parallel, extracellular vesicles (EVs) have gained attention due to their function as intercellular communicators. Considering EVs' capacity to convey cargo from parent to distant cells, they emerge as potential inflammatory intermediaries capable of transporting cytokines and other immunomodulatory molecules. In this review, we revisit the evidence underlying the association between FD and altered immune responses and explore the potential of EVs to function as inflammatory vehicles.
Collapse
Affiliation(s)
- Bruna Coelho-Ribeiro
- Life and Health Sciences Research Institute (ICVS), 4710-057 Braga, Portugal; (B.C.-R.); (H.G.S.); (B.S.-M.); (A.G.F.); (J.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Helena G. Silva
- Life and Health Sciences Research Institute (ICVS), 4710-057 Braga, Portugal; (B.C.-R.); (H.G.S.); (B.S.-M.); (A.G.F.); (J.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), 4710-057 Braga, Portugal; (B.C.-R.); (H.G.S.); (B.S.-M.); (A.G.F.); (J.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Alexandra G. Fraga
- Life and Health Sciences Research Institute (ICVS), 4710-057 Braga, Portugal; (B.C.-R.); (H.G.S.); (B.S.-M.); (A.G.F.); (J.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Olga Azevedo
- Reference Center on Lysosomal Storage Disorders, Hospital Senhora da Oliveira, 4835-044 Guimarães, Portugal;
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS), 4710-057 Braga, Portugal; (B.C.-R.); (H.G.S.); (B.S.-M.); (A.G.F.); (J.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), 4710-057 Braga, Portugal; (B.C.-R.); (H.G.S.); (B.S.-M.); (A.G.F.); (J.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| |
Collapse
|