1
|
Xue M, Wang S, Li C, Wang Y, Liu M, Huang X, Wang G, Yin Q, Xiao D, Yang S, Yan M, Niu L, Awais M, Shen C, Wang J, Lai R, Ni H, Tang X. Deficiency of neutrophil gelatinase-associated lipocalin elicits a hemophilia-like bleeding and clotting disorder in mice. Blood 2025; 145:975-987. [PMID: 39693621 DOI: 10.1182/blood.2024026476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/15/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024] Open
Abstract
ABSTRACT Coagulation is related to inflammation, but the key pathway, especially innate immune system and coagulation regulation, is not well understood and need to be further explored. Here, we demonstrated that neutrophil gelatinase-associated lipocalin (NGAL), an innate immune inflammatory mediator, is upregulated in patients with thrombosis. Furthermore, it contributes to the initiation and amplification of coagulation, hemostasis, and thrombosis. This occurs by enhancing tissue factor expression on the cell surface, potentiating various clotting factors such as thrombin, kallikrein, factor XIa (FXIa), and FVIIa, promoting thrombin-induced platelet aggregation, and inhibiting antithrombin. NGAL knockout led to strikingly prolonged clot reaction time and kinetic time in thromboelastography analysis, along with reduced thrombus generation angle and lower thrombus maximum amplitude, which were in line with remarkably prolonged activated partial thromboplastin time and prothrombin time. In several mouse hemostasis and thrombosis models, NGAL overexpression or IV administration promoted coagulation and hemostasis and aggravated thrombosis, whereas NGAL knockout or treatment with anti-NGAL monoclonal antibody significantly prolonged bleeding time and alleviated thrombus formation. Notably, NGAL knockout prolonged mouse tail bleeding time or artery occlusion time to over 40 or 60 minutes, respectively, resembling uncontrollable bleeding and clotting disorder seen in hemophilic mice. Furthermore, anti-NGAL monoclonal antibody treatment markedly reduced the formation of blood clots in inflammation-induced thrombosis models. Collectively, these findings unveil a previously unidentified role of NGAL in the processes of coagulation, hemostasis, and thrombosis, as well as the cross talk between innate immunity, inflammation, and coagulation. Thus, modulating NGAL levels could potentially help balance thrombotic and hemorrhagic risks.
Collapse
Affiliation(s)
- Min Xue
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Shaoying Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Changjiang Li
- Department of Emergency, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Center Medical Group), Qingdao, China
| | - Yuewei Wang
- Department of Vascular Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ming Liu
- Department of Pharmacology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Xiaoshan Huang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Gan Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Qikai Yin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Dandan Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Shuo Yang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Musan Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Liyuan Niu
- Department of Vascular Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Muhammad Awais
- Department of Pharmacology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Chuanbin Shen
- Department of Pharmacology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Jianxun Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ren Lai
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Heyu Ni
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital and Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Xiaopeng Tang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Qiao X, Shah W, Gao X, Gong Y, Li Y, Gao Y, Li J. Understanding how the immune system environment is controlled in high myopia cases. Int Immunopharmacol 2024; 143:113138. [PMID: 39362012 DOI: 10.1016/j.intimp.2024.113138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 10/05/2024]
Abstract
High myopia (HM) is characterized by a significant extension of the eye axis; it has emerged as a serious global public health issue recently. In addition to causing severe visual impairment, HM is associated with several problems that may compromise an individual's vision. Although genetic and environmental factors in HM have been extensively investigated, increasing evidence implicates the immune system and its microenvironment in its pathogenesis. In this review, we explore the complex interactions between cytokines, immune cells, and the eye environment to elucidate the complex processes controlling the immune response in HM. Furthermore, we investigated treatments modulating the immune response and alleviating the progression of HM and its complications. Through a review of the current relevant studies, we highlight the critical functions of the immune system in the multifactorial development of HM. With the evolving understanding of the immune system's involvement in HM, this review provides a valuable resource to clinicians and researchers to develop targeted interventions and personalized treatments for individuals with this vision-threatening condition.
Collapse
Affiliation(s)
- Xin Qiao
- Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan 030002, China
| | - Wahid Shah
- Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan 030002, China; Translational Medicine Research Center, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaoqin Gao
- Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan 030002, China
| | - Yuxing Gong
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan 030001, China
| | - Yanan Li
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan 030001, China
| | - Yuan Gao
- Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan 030002, China; Translational Medicine Research Center, Shanxi Medical University, Taiyuan 030001, China.
| | - Junhong Li
- Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan 030002, China.
| |
Collapse
|
3
|
Everts PA, Lana JF, Alexander RW, Dallo I, Kon E, Ambach MA, van Zundert A, Podesta L. Profound Properties of Protein-Rich, Platelet-Rich Plasma Matrices as Novel, Multi-Purpose Biological Platforms in Tissue Repair, Regeneration, and Wound Healing. Int J Mol Sci 2024; 25:7914. [PMID: 39063156 PMCID: PMC11277244 DOI: 10.3390/ijms25147914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/07/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Autologous platelet-rich plasma (PRP) preparations are prepared at the point of care. Centrifugation cellular density separation sequesters a fresh unit of blood into three main fractions: a platelet-poor plasma (PPP) fraction, a stratum rich in platelets (platelet concentrate), and variable leukocyte bioformulation and erythrocyte fractions. The employment of autologous platelet concentrates facilitates the biological potential to accelerate and support numerous cellular activities that can lead to tissue repair, tissue regeneration, wound healing, and, ultimately, functional and structural repair. Normally, after PRP preparation, the PPP fraction is discarded. One of the less well-known but equally important features of PPP is that particular growth factors (GFs) are not abundantly present in PRP, as they reside outside of the platelet alpha granules. Precisely, insulin-like growth factor-1 (IGF-1) and hepatocyte growth factor (HGF) are mainly present in the PPP fraction. In addition to their roles as angiogenesis activators, these plasma-based GFs are also known to inhibit inflammation and fibrosis, and they promote keratinocyte migration and support tissue repair and wound healing. Additionally, PPP is known for the presence of exosomes and other macrovesicles, exerting cell-cell communication and cell signaling. Newly developed ultrafiltration technologies incorporate PPP processing methods by eliminating, in a fast and efficient manner, plasma water, cytokines, molecules, and plasma proteins with a molecular mass (weight) less than the pore size of the fibers. Consequently, a viable and viscous protein concentrate of functional total proteins, like fibrinogen, albumin, and alpha-2-macroglobulin is created. Consolidating a small volume of high platelet concentrate with a small volume of highly concentrated protein-rich PPP creates a protein-rich, platelet-rich plasma (PR-PRP) biological preparation. After the activation of proteins, mainly fibrinogen, the PR-PRP matrix retains and facilitates interactions between invading resident cells, like macrophages, fibroblast, and mesenchymal stem cells (MSCs), as well as the embedded concentrated PRP cells and molecules. The administered PR-PRP biologic will ultimately undergo fibrinolysis, leading to a sustained release of concentrated cells and molecules that have been retained in the PR-PRP matrix until the matrix is dissolved. We will discuss the unique biological and tissue reparative and regenerative properties of the PR-PRP matrix.
Collapse
Affiliation(s)
- Peter A. Everts
- Gulf Coast Biologics, A Non-Profit Organization, Fort Myers, FL 33916, USA
- OrthoRegen Group, Max-Planck University, Indaiatuba 13334-170, SP, Brazil;
| | - José Fábio Lana
- OrthoRegen Group, Max-Planck University, Indaiatuba 13334-170, SP, Brazil;
| | - Robert W. Alexander
- Regenevita Biocellular Aesthetic & Reconstructive Surgery, Cranio-Maxillofacial Surgery, Regenerative and Wound Healing, Hamilton, MT 59840, USA;
- Department of Surgery & Maxillofacial Surgery, School of Medicine & Dentistry, University of Washington, Seattle, WA 98195, USA
| | - Ignacio Dallo
- Unit of Biological Therapies and MSK Interventionism, Department of Orthopaedic Surgery and Sports Medicine, Sport Me Medical Center, 41013 Seville, Spain;
| | - Elizaveta Kon
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
- IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Mary A. Ambach
- BioEvolve, San Diego Orthobiologics and Sports Center, San Diego, CA 92024, USA
| | - André van Zundert
- Department of Anaesthesia and Perioperative Medicine, Royal Brisbane and Women’s Hospital, Brisbane and The University of Queensland, Brisbane 4072, Australia;
| | - Luga Podesta
- Bluetail Medical Group & Podesta Orthopedic Sports Medicine, Naples, FL 34109, USA;
- Physical Medicine & Rehabilitation Orlando College of Osteopathic Medicine, Orlando, FL 32806, USA
| |
Collapse
|
4
|
Yang HW, Park JH, Shin JM, Son HG, Kim TH, Lee SH, Park IH. CHI3L1 on fibrinolytic system imbalance in chronic rhinosinusitis with nasal polyp. Front Immunol 2024; 15:1410948. [PMID: 38975344 PMCID: PMC11224434 DOI: 10.3389/fimmu.2024.1410948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Background Chronic rhinosinusitis (CRS) is an inflammatory disease affecting more than 10% of the global adult population. It is classified into Th1, Th2, and Th17 endotypes and eosinophilic and non-eosinophilic types. Th2-based inflammation and eosinophilic CRS (ECRS) are associated with tissue remodeling and fibrinolytic system impairment. Objective To elucidate the role of eosinophils in inducing fibrin deposition in CRS nasal polyp tissues and explore potential regulatory mechanisms. Methods We analyzed the expression of genes related to the serpin family and fibrinolytic system using Gene Expression Omnibus and Next-generation sequencing data. Differentially expression genes (DEGs) analysis was used to compare control and nasal polyp tissues, followed by KEGG and Gene ontology (GO) analysis. We measured the expression and correlation of plasminogen activator-1 (PAI-1), tissue plasminogen activator (t-PA), urokinase plasminogen activator (u-PA), and urokinase plasminogen activator surface receptor (u-PAR) in CRS tissues, and evaluated the effect of eosinophils on the fibrinolytic system using a cytokine array and co-culture. Results Nasal polyp tissues showed upregulated PAI-1, u-PA, and u-PAR expression and downregulated t-PA expression. Fibrinolytic system-related genes positively correlated with Th2 cytokines, except for t-PA. Eosinophil-derived Chitinase-3-like protein 1 (CHI3L1) increased PAI-1 expression and decreased t-PA levels in fibroblasts and epithelial cells. The inhibition of CHI3L1 suppresses these alterations. Conclusion CHI3L1 contributes to fibrin deposition by impairing the fibrinolytic system during nasal polyp formation. The regulation of CHI3L1 expression may inhibit fibrin deposition and edema in ECRS, presenting a potential treatment for this condition.
Collapse
Affiliation(s)
- Hyun-Woo Yang
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, Republic of Korea
| | - Joo-Hoo Park
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jae-Min Shin
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Anam Hospital, Seoul, Republic of Korea
| | - Hyeong-Guk Son
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, Republic of Korea
- Medical Device Usability Test Center, Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Tae-Hoon Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Anam Hospital, Seoul, Republic of Korea
| | - Seung-Hoon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Ansan Hospital, Ansan, Republic of Korea
| | - Il-Ho Park
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, Republic of Korea
- Medical Device Usability Test Center, Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Guro Hospital, Seoul, Republic of Korea
| |
Collapse
|
5
|
Kanno Y. The Roles of Fibrinolytic Factors in Bone Destruction Caused by Inflammation. Cells 2024; 13:516. [PMID: 38534360 PMCID: PMC10968824 DOI: 10.3390/cells13060516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Chronic inflammatory diseases, such as rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, Crohn's disease, periodontitis, and carcinoma metastasis frequently result in bone destruction. Pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and IL-17 are known to influence bone loss by promoting the differentiation and activation of osteoclasts. Fibrinolytic factors, such as plasminogen (Plg), plasmin, urokinase-type plasminogen activator (uPA), its receptor (uPAR), tissue-type plasminogen activator (tPA), α2-antiplasmin (α2AP), and plasminogen activator inhibitor-1 (PAI-1) are expressed in osteoclasts and osteoblasts and are considered essential in maintaining bone homeostasis by regulating the functions of both osteoclasts and osteoblasts. Additionally, fibrinolytic factors are associated with the regulation of inflammation and the immune system. This review explores the roles of fibrinolytic factors in bone destruction caused by inflammation.
Collapse
Affiliation(s)
- Yosuke Kanno
- Department of Molecular Pathology, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, 97-1 Kodo Kyotanabe, Kyoto 610-0395, Japan
| |
Collapse
|
6
|
Schrottmaier WC, Assinger A. The Concept of Thromboinflammation. Hamostaseologie 2024; 44:21-30. [PMID: 38417802 DOI: 10.1055/a-2178-6491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024] Open
Abstract
Inflammation and thrombosis are intricate and closely interconnected biological processes that are not yet fully understood and lack effective targeted therapeutic approaches. Thrombosis initiated by inflammatory responses, known as immunothrombosis, can confer advantages to the host by constraining the spread of pathogens within the bloodstream. Conversely, platelets and the coagulation cascade can influence inflammatory responses through interactions with immune cells, endothelium, or complement system. These interactions can lead to a state of heightened inflammation resulting from thrombotic processes, termed as thromboinflammation. This review aims to comprehensively summarize the existing knowledge of thromboinflammation and addressing its significance as a challenging clinical issue.
Collapse
Affiliation(s)
- Waltraud C Schrottmaier
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|