1
|
Zhang H, Wei T, Li Q, Fu L, Li M, He L, Wang Y. Metagenomic 18S rDNA reads revealed zonation of eukaryotic communities in the Yongle blue hole. Front Microbiol 2024; 15:1420899. [PMID: 39135873 PMCID: PMC11317397 DOI: 10.3389/fmicb.2024.1420899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
The Yongle blue hole (YBH), situated in the South China Sea, represents a compelling subject of study in marine microbiology due to its unique redox-layered microbial ecosystems. However, the diversity and ecology of microbial eukaryotes within the YBH remains underexplored. This study endeavors to bridge this gap through the application of the in situ microbial filtration and fixation (ISMIFF) device to collect 0.22-30 μm microbial samples from 21 water layers of YBH. Subsequent extraction of 18S rRNA metagenomic reads of 21 metagenomes and 10 metatranscriptomes facilitated a comprehensive analysis of community structures. Findings revealed a pronounced superiority in the diversity and richness of eukaryotic microorganisms in the oxic zone compared to its suboxic and anoxic counterparts. Notably, Dinophyceae and Maxillopoda emerged as the predominant taxa based on the analysis of the 18S rRNA reads for the V4 and V9 regions, which showed stratification In their relative abundance and suggested their potential role in the thermo-halocline boundaries and oxic-anoxic interface. Specifically, In these eukaryotic microbial communities, Dinophyceae exhibited significant abundance at 20 m (20.01%) and 105 m (26.13%) water depths, while Maxillopoda was prevalent at 40 m (22.84%), 80 m (23.19%), and 100 m (15.42%) depths. A part of these organisms, identified as larvae and protists, were likely attracted by swarming chemosynthetic bacterial prey prevailing at the thermo-halocline boundaries and oxic-anoxic interface. Furthermore, the phylogenetic relationships of the major 18S operational taxonomic units (OTUs) showed a close adjacency to known species, except for three Dinophyceae OTUs. In conclusion, this study provides critical insights into the vertical distribution and transcriptional activity of <30-μm eukaryotic microbes, shedding light on the taxonomic novelty of eukaryotic microorganisms within the semi-enclosed blue holes.
Collapse
Affiliation(s)
- Hongxi Zhang
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Taoshu Wei
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Qingmei Li
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Liang Fu
- Sansha Track Ocean Coral Reef Conservation Research Institute Co., Ltd., Sansha, China
| | - Manjie Li
- Institute for Ocean Engineering, Shenzhen International Graduate School, Shenzhen, China
- Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Lisheng He
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Yong Wang
- Institute for Ocean Engineering, Shenzhen International Graduate School, Shenzhen, China
- Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| |
Collapse
|
2
|
Manirakiza B, Zhang S, Addo FG, Yu M, Alklaf SA. Interactions between water quality and microbes in epiphytic biofilm and superficial sediment of lake in trophic agriculture area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169321. [PMID: 38103607 DOI: 10.1016/j.scitotenv.2023.169321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/05/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Epiphytic and superficial sediment biofilm-dwelling microbial communities play a pivotal role in water quality regulation and biogeochemical cycling in shallow lakes. However, the interactions are far from clear between water physicochemical parameters and microbial community on aquatic plants and in surface sediments of lake in trophic agriculture area. This study employed Illumina sequencing, Partial Least Squares Path Modeling (PLS-PM), and physico-chemical analytical methods to explore the interactions between water quality and microbes (bacteria and eukaryotes) in three substrates of trophic shallow Lake Cyohoha North, Rwanda. The Lake Cyohoha was significantly polluted with total phosphorus (TP), total nitrogen (TN), nitrate nitrogen (NO3-N), and ammonia nitrogen (NH3-N) in the wet season compared to the dry season. PLS-PM revealed a strong positive correlation (+0.9301) between land use types and physico-chemical variables in the rainy season. In three substrates of the trophic lake, Proteobacteria, Cyanobacteria, Firmicutes, and Actinobacteria were dominant phyla in the bacterial communities, and Rotifers, Platyhelminthes, Gastrotricha, and Ascomycota dominated in microeukaryotic communities. As revealed by null and neutral models, stochastic processes predominantly governed the assembly of bacterial and microeukaryotic communities in biofilms and surface sediments. Network analysis revealed that the microbial interconnections in Ceratophyllum demersum were more stable and complex compared to those in Eichhornia crassipes and sediments. Co-occurrence network analysis (|r| > 0.7, p < 0.05) revealed that there were complex interactions among physicochemical parameters and microbes in epiphytic and sediment biofilms, and many keystone microbes on three substrates played important role in nutrients removal, food web and microbial community stable. These findings emphasize that eutrophic water influence the structure, composition, and interactions of microbes in epiphytic and surface sediment biofilms, and provided new insights into the interconnections between water quality and microbial community in presentative substrates in tropical lacustrine ecosystems in agriculturally polluted areas. The study provides useful information for water quality protection and aquatic plants restoration for policy making and catchment management.
Collapse
Affiliation(s)
- Benjamin Manirakiza
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; University of Rwanda (UR), College of Science and Technology (CST), Department of Biology, 3900, Kigali, Rwanda
| | - Songhe Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China.
| | - Felix Gyawu Addo
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Ma Yu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Salah Alden Alklaf
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
3
|
Minch B, Chakraborty M, Purkis S, Rodrigue M, Moniruzzaman M. Active prokaryotic and eukaryotic viral ecology across spatial scale in a deep-sea brine pool. ISME COMMUNICATIONS 2024; 4:ycae084. [PMID: 39021441 PMCID: PMC11252502 DOI: 10.1093/ismeco/ycae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/03/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024]
Abstract
Deep-sea brine pools represent rare, extreme environments, providing unique insight into the limits of life on Earth, and by analogy, the plausibility of life beyond it. A distinguishing feature of many brine pools is presence of thick microbial mats that develop at the brine-seawater interface. While these bacterial and archaeal communities have received moderate attention, viruses and their host interactions in these environments remain underexplored. To bridge this knowledge gap, we leveraged metagenomic and metatranscriptomic data from three distinct zones within the NEOM brine pool system (Gulf of Aqaba) to reveal the active viral ecology around the pools. We report a remarkable diversity and activity of viruses infecting microbial hosts in this environment, including giant viruses, RNA viruses, jumbo phages, and Polinton-like viruses. Many of these form distinct clades-suggesting presence of untapped viral diversity in this ecosystem. Brine pool viral communities exhibit zone-specific differences in infection strategy-with lysogeny dominating the bacterial mat further away from the pool's center. We linked viruses to metabolically important prokaryotes-including association between a jumbo phage and a key manganese-oxidizing and arsenic-metabolizing bacterium. These foundational results illuminate the role of viruses in modulating brine pool microbial communities and biogeochemistry through revealing novel viral diversity, host associations, and spatial heterogeneity in viral dynamics.
Collapse
Affiliation(s)
- Benjamin Minch
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL 33149, United States
| | - Morgan Chakraborty
- Department of Marine Geosciences, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL 33149, United States
| | - Sam Purkis
- Department of Marine Geosciences, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL 33149, United States
| | | | - Mohammad Moniruzzaman
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL 33149, United States
| |
Collapse
|
4
|
Xu Z, Chen J, Li Y, Shekarriz E, Wu W, Chen B, Liu H. High Microeukaryotic Diversity in the Cold-Seep Sediment. MICROBIAL ECOLOGY 2023; 86:2003-2020. [PMID: 36973438 DOI: 10.1007/s00248-023-02212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
Abstract
Microeukaryotic diversity, community structure, and their regulating mechanisms remain largely unclear in chemosynthetic ecosystems. Here, using high-throughput sequencing data of 18S rRNA genes, we explored microeukaryotic communities from the Haima cold seep in the northern South China Sea. We compared three distinct habitats: active, less active, and non-seep regions, with vertical layers (0-25 cm) from sediment cores. The results showed that seep regions harbored more abundant and diverse parasitic microeukaryotes (e.g., Apicomplexa and Syndiniales) as indicator species, compared to nearby non-seep region. Microeukaryotic community heterogeneity was larger between habitats than within habitat, and greatly increased when considering molecular phylogeny, suggesting the local diversification in cold-seep sediments. Microeukaryotic α-diversity at cold seeps was positively increased by metazoan richness and dispersal rate of microeukaryotes, while its β-diversity was promoted by heterogeneous selection mainly from metazoan communities (as potential hosts). Their combined effects led to the significant higher γ-diversity (i.e., total diversity in a region) at cold seeps than non-seep regions, suggesting cold-seep sediment as a hotspot for microeukaryotic diversity. Our study highlights the importance of microeukaryotic parasitism in cold-seep sediment and has implications for the roles of cold seep in maintaining and promoting marine biodiversity.
Collapse
Affiliation(s)
- Zhimeng Xu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jiawei Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yingdong Li
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Erfan Shekarriz
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Wenxue Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Bingzhang Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow, UK
| | - Hongbin Liu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China.
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.
- CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Sanya, China.
| |
Collapse
|
5
|
McClain CR, Bryant SR, Hanks G, Bowles MW. Extremophiles in Earth's Deep Seas: A View Toward Life in Exo-Oceans. ASTROBIOLOGY 2022; 22:1009-1028. [PMID: 35549348 DOI: 10.1089/ast.2021.0120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Humanity's search for extraterrestrial life is a modern manifestation of the exploratory and curious nature that has led us through millennia of scientific discoveries. With the ongoing exploration of extraterrestrial bodies, the potential for discovery of extraterrestrial life has expanded. We may better inform this search through an understanding of how life persists and flourishes on Earth in a myriad of environmental extremes. A significant proportion of our knowledge of extremophiles on Earth comes from studies on deep ocean life. Here, we review and synthesize the range of environmental extremes observed in the deep sea, the life that persists in these extreme conditions, and the biological adaptations utilized by these remarkable life-forms. We also review confirmed and predicted extraterrestrial oceans in our solar system and propose deep-sea sites that may serve as planetary field analog environments. We show that the clever ingenuity of evolution under deep-sea conditions suggests that the plausibility of extraterrestrial life is much greater than previously thought.
Collapse
Affiliation(s)
- Craig R McClain
- Louisiana Universities Marine Consortium, Chauvin, Louisiana, USA
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - S River Bryant
- Louisiana Universities Marine Consortium, Chauvin, Louisiana, USA
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - Granger Hanks
- Louisiana Universities Marine Consortium, Chauvin, Louisiana, USA
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | | |
Collapse
|
6
|
Manirakiza B, Zhang S, Addo FG, Isabwe A, Nsabimana A. Exploring microbial diversity and ecological function of epiphytic and surface sediment biofilm communities in a shallow tropical lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151821. [PMID: 34808175 DOI: 10.1016/j.scitotenv.2021.151821] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Microbial communities in epiphytic biofilms and surface sediments play a vital role in the biogeochemical cycles of the major chemical elements in freshwater. However, little is known about the diversity, composition, and ecological functions of microbial communities in shallow tropical lakes dominated by aquatic macrophytes. In this study, epiphytic bacterial and eukaryotic biofilm communities on submerged and floating macrophytes and surface sediments were investigated in Lake Rumira, Rwanda in August and November 2019. High-throughput sequencing data revealed that members of the phyla, including Firmicutes, Proteobacteria, Cyanobacteria, Actinobacteria, Chloroflexi, Bacteriodetes, Verrumicrobia, and Myxomycota, dominated bacterial communities, while the microeukaryotic communities were dominated by Unclassified (uncl) SAR(Stramenopiles, Alveolata, Rhizaria), Rotifers, Ascomycota, Gastrotricha, Platyhelminthes, Chloroplastida, and Arthropoda. Interestingly, the eukaryotic OTUs (operational taxonomic units) number and Shannon indices were significantly higher in sediments and epiphytic biofilms on Eicchornia crassipes than Ceratophyllum demersum (p < 0.05), while no differences were observed in bacterial OTUs number and Shannon values among substrates. Redundancy analysis (RDA) showed that water temperature, pH, dissolved oxygen (DO), total nitrogen (TN), and electrical conductivity (EC) were the most important abiotic factors closely related to the microbial community on C. demersum and E. crassipes. Furthermore, co-occurrence networks analysis (|r| > 0.7, p < 0.05) and functional prediction revealed more complex interactions among microbes on C. demersum than on E. crassipes and sediments, and those interactions include cross-feeding, parasitism, symbiosis, and predatism among organisms in biofilms. These results suggested that substrate-type and environmental factors were the strong driving forces of microbial diversity in epiphytic biofilms and surface sediments, thus shedding new insights into microbial community diversity in epiphytic biofilms and surface sediments and its ecological role in tropical lacustrine ecosystems.
Collapse
Affiliation(s)
- Benjamin Manirakiza
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; University of Rwanda (UR), College of Science and Technology (CST), Department of Biology, P.O. Box 3900, Kigali, Rwanda
| | - Songhe Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China.
| | - Felix Gyawu Addo
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Alain Isabwe
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Antoine Nsabimana
- University of Rwanda (UR), College of Science and Technology (CST), Department of Biology, P.O. Box 3900, Kigali, Rwanda
| |
Collapse
|
7
|
Hu XY, Wang CY, Li XM, Yang SQ, Li X, Wang BG, Si SY, Meng LH. Cytochalasin Derivatives from the Endozoic Curvularia verruculosa CS-129, a Fungus Isolated from the Deep-Sea Squat Lobster Shinkaia crosnieri Living in the Cold Seep Environment. JOURNAL OF NATURAL PRODUCTS 2021; 84:3122-3130. [PMID: 34846891 DOI: 10.1021/acs.jnatprod.1c00907] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A new cytochalasin dimer, verruculoid A (1), three new cytochalasin derivatives, including 12-nor-cytochalasin F (2), 22-methoxycytochalasin B6 (3), and 19-hydroxycytochalasin B (4), and 20-deoxycytochalasin B (5), a synthetic product obtained as a natural product for the first time, together with four known analogues (6-9), were isolated and identified from the culture extract of Curvularia verruculosa CS-129, an endozoic fungus obtained from the inner fresh tissue of the deep-sea squat lobster Shinkaia crosnieri, which was collected from the cold seep area of the South China Sea. Structurally, verruculoid A (1) represents the first cytochalasin homodimer containing a thioether bridge, while 12-nor-cytochalasin F (2) is the first 12-nor-cytochalasin derivative. Their structures were elucidated by detailed interpretation of the NMR spectroscopic and mass spectrometric data. X-ray crystallographic analysis and ECD calculations confirmed their structures and absolute configurations. Compound 1 displayed activity against the human pathogenic bacterium Escherichia coli (MIC = 2 μg/mL), while compounds 4, 8, and 9 showed cytotoxicity against three tumor cell lines (HCT-116, HepG-2, and MCF-7) with IC50 values from 5.2 to 12 μM. The structure-activity relationship was briefly discussed.
Collapse
Affiliation(s)
- Xue-Yi Hu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao 266071, People's Republic of China
- College of Marine Sciences, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, People's Republic of China
| | - Chen-Yin Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, and National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantanxili No 1, Beijing 100050, People's Republic of China
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao 266071, People's Republic of China
| | - Sui-Qun Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao 266071, People's Republic of China
| | - Xin Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao 266071, People's Republic of China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao 266071, People's Republic of China
- College of Marine Sciences, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, People's Republic of China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China
| | - Shu-Yi Si
- NHC Key Laboratory of Biotechnology of Antibiotics, and National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantanxili No 1, Beijing 100050, People's Republic of China
| | - Ling-Hong Meng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao 266071, People's Republic of China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China
| |
Collapse
|
8
|
Varrella S, Barone G, Tangherlini M, Rastelli E, Dell’Anno A, Corinaldesi C. Diversity, Ecological Role and Biotechnological Potential of Antarctic Marine Fungi. J Fungi (Basel) 2021; 7:391. [PMID: 34067750 PMCID: PMC8157204 DOI: 10.3390/jof7050391] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 11/28/2022] Open
Abstract
The Antarctic Ocean is one of the most remote and inaccessible environments on our planet and hosts potentially high biodiversity, being largely unexplored and undescribed. Fungi have key functions and unique physiological and morphological adaptations even in extreme conditions, from shallow habitats to deep-sea sediments. Here, we summarized information on diversity, the ecological role, and biotechnological potential of marine fungi in the coldest biome on Earth. This review also discloses the importance of boosting research on Antarctic fungi as hidden treasures of biodiversity and bioactive molecules to better understand their role in marine ecosystem functioning and their applications in different biotechnological fields.
Collapse
Affiliation(s)
- Stefano Varrella
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Giulio Barone
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), Largo Fiera della Pesca, 60125 Ancona, Italy;
| | - Michael Tangherlini
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica “Anton Dohrn”, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy;
| | - Eugenio Rastelli
- Department of Marine Biotechnology, Stazione Zoologica “Anton Dohrn”, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy;
| | - Antonio Dell’Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy;
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
9
|
Kapoore RV, Padmaperuma G, Maneein S, Vaidyanathan S. Co-culturing microbial consortia: approaches for applications in biomanufacturing and bioprocessing. Crit Rev Biotechnol 2021; 42:46-72. [PMID: 33980092 DOI: 10.1080/07388551.2021.1921691] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The application of microbial co-cultures is now recognized in the fields of biotechnology, ecology, and medicine. Understanding the biological interactions that govern the association of microorganisms would shape the way in which artificial/synthetic co-cultures or consortia are developed. The ability to accurately predict and control cell-to-cell interactions fully would be a significant enabler in synthetic biology. Co-culturing method development holds the key to strategically engineer environments in which the co-cultured microorganism can be monitored. Various approaches have been employed which aim to emulate the natural environment and gain access to the untapped natural resources emerging from cross-talk between partners. Amongst these methods are the use of a communal liquid medium for growth, use of a solid-liquid interface, membrane separation, spatial separation, and use of microfluidics systems. Maximizing the information content of interactions monitored is one of the major challenges that needs to be addressed by these designs. This review critically evaluates the significance and drawbacks of the co-culturing approaches used to this day in biotechnological applications, relevant to biomanufacturing. It is recommended that experimental results for a co-cultured species should be validated with different co-culture approaches due to variations in interactions that could exist as a result of the culturing method selected.
Collapse
Affiliation(s)
- Rahul Vijay Kapoore
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK.,Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | - Gloria Padmaperuma
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK
| | - Supattra Maneein
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK.,Department of Pharmaceutical, Chemical & Environmental Sciences, The University of Greenwich, Kent, UK
| | | |
Collapse
|
10
|
Kostygov AY, Karnkowska A, Votýpka J, Tashyreva D, Maciszewski K, Yurchenko V, Lukeš J. Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol 2021; 11:200407. [PMID: 33715388 PMCID: PMC8061765 DOI: 10.1098/rsob.200407] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Euglenozoa is a species-rich group of protists, which have extremely diverse lifestyles and a range of features that distinguish them from other eukaryotes. They are composed of free-living and parasitic kinetoplastids, mostly free-living diplonemids, heterotrophic and photosynthetic euglenids, as well as deep-sea symbiontids. Although they form a well-supported monophyletic group, these morphologically rather distinct groups are almost never treated together in a comparative manner, as attempted here. We present an updated taxonomy, complemented by photos of representative species, with notes on diversity, distribution and biology of euglenozoans. For kinetoplastids, we propose a significantly modified taxonomy that reflects the latest findings. Finally, we summarize what is known about viruses infecting euglenozoans, as well as their relationships with ecto- and endosymbiotic bacteria.
Collapse
Affiliation(s)
- Alexei Y. Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Zoological Institute, Russian Academy of Sciences, St Petersburg, Russia
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Jan Votýpka
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Daria Tashyreva
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Kacper Maciszewski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Julius Lukeš
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
11
|
Paecilomyces and Its Importance in the Biological Control of Agricultural Pests and Diseases. PLANTS 2020; 9:plants9121746. [PMID: 33321854 PMCID: PMC7763231 DOI: 10.3390/plants9121746] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 11/16/2022]
Abstract
Incorporating beneficial microorganisms in crop production is the most promising strategy for maintaining agricultural productivity and reducing the use of inorganic fertilizers, herbicides, and pesticides. Numerous microorganisms have been described in the literature as biological control agents for pests and diseases, although some have not yet been commercialised due to their lack of viability or efficacy in different crops. Paecilomyces is a cosmopolitan fungus that is mainly known for its nematophagous capacity, but it has also been reported as an insect parasite and biological control agent of several fungi and phytopathogenic bacteria through different mechanisms of action. In addition, species of this genus have recently been described as biostimulants of plant growth and crop yield. This review includes all the information on the genus Paecilomyces as a biological control agent for pests and diseases. Its growth rate and high spore production rate in numerous substrates ensures the production of viable, affordable, and efficient commercial formulations for agricultural use.
Collapse
|
12
|
Gonçalves MFM, Esteves AC, Alves A. Revealing the hidden diversity of marine fungi in Portugal with the description of two novel species, Neoascochyta fuci sp. nov. and Paraconiothyrium salinum sp. nov. Int J Syst Evol Microbiol 2020; 70:5337-5354. [PMID: 32845832 DOI: 10.1099/ijsem.0.004410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fungi are ubiquitous organisms with a wide distribution in almost all ecosystems, including marine environments. Coastal and estuarine ecosystems remain poorly unexplored as fungal habitats, potentially harbouring a hidden diversity with important ecological roles. During an extensive survey of marine fungi in coastal and estuarine Portuguese environments, a collection of 612 isolates was obtained from water, algae, sponges and driftwood. From these, 282 representative isolates were selected through microsatellite-primed PCR (MSP-PCR) fingerprinting analysis, which were identified based on DNA sequence data. The collection yielded 117 taxa from 38 distinct genera, which were identified using DNA sequence analysis. Overall, fungal community composition varied with host/substrate, but the most abundant taxa in the collection were Cladosporium cladosporioides, Penicillium terrigenum, Penicillium brevicompactum and Fusarium equiseti/incarnatum complex. The occurrence of a high fungal diversity harbouring novel species was disclosed. Through a multilocus phylogeny based on ITS, tub2 and tef1-α sequences, in conjunction with morphological and physiological data, we propose Neoascochyta fuci sp. nov. and Paraconiothyrium salinum sp. nov.
Collapse
Affiliation(s)
| | - Ana C Esteves
- Present address: Universidade Católica Portuguesa, Faculty of Dental Medicine, Center for Interdisciplinary Investigation (CIIS), Viseu, Portugal.,CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Artur Alves
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
13
|
Marine Fungi: Biotechnological Perspectives from Deep-Hypersaline Anoxic Basins. DIVERSITY 2019. [DOI: 10.3390/d11070113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Deep-sea hypersaline anoxic basins (DHABs) are one of the most hostile environments on Earth. Even though DHABs have hypersaline conditions, anoxia and high hydrostatic pressure, they host incredible microbial biodiversity. Among eukaryotes inhabiting these systems, recent studies demonstrated that fungi are a quantitatively relevant component. Here, fungi can benefit from the accumulation of large amounts of organic material. Marine fungi are also known to produce bioactive molecules. In particular, halophilic and halotolerant fungi are a reservoir of enzymes and secondary metabolites with valuable applications in industrial, pharmaceutical, and environmental biotechnology. Here we report that among the fungal taxa identified from the Mediterranean and Red Sea DHABs, halotolerant halophilic species belonging to the genera Aspergillus and Penicillium can be used or screened for enzymes and bioactive molecules. Fungi living in DHABs can extend our knowledge about the limits of life, and the discovery of new species and molecules from these environments can have high biotechnological potential.
Collapse
|
14
|
Ganesh Kumar A, Balamurugan K, Vijaya Raghavan R, Dharani G, Kirubagaran R. Studies on the antifungal and serotonin receptor agonist activities of the secondary metabolites from piezotolerant deep-sea fungus Ascotricha sp. Mycology 2019; 10:92-108. [PMID: 31069123 PMCID: PMC6493281 DOI: 10.1080/21501203.2018.1541934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/23/2018] [Indexed: 12/29/2022] Open
Abstract
The potent antifungal agent sesquiterpenes and serotonin 5-HT2C agonist ascotricin were produced by a newly isolated deep-sea fungus Ascotricha sp. This fungus was isolated from deep-sea sediment collected at a depth of 1235 m and characterized. Piezotolerance was successfully tested under high pressure-low temperature (100 bar pressure and 20ºC) microbial cultivation system. Production of secondary metabolites was enhanced at optimized culture conditions. The in-vivo antifungal activity of sesquiterpenes was studied using the Caenorhabditis elegans – Candida albicans model system. The sesquiterpenes affected the virulence of C. albicans and prolonged the life of the host C. elegans. These findings suggest that sesquiterpenes are attractive antifungal drug candidates. The 5-HT2C receptor agonist is a potential target for the development of drugs for a range of central nervous system disorders. The interaction of 5-HT2C agonist ascotricin with the receptor was studied through bioinformatic analysis. The in silico molecular docking and molecular dynamic simulation studies demonstrated that they fit into the serotonin 5-HT2C active site and the crucial amino acid residues involved in the interactions were identified. To our knowledge, this is first report of in vivo antifungal analysis of sesquiterpenes and in silico studies of serotonin 5-HT2C receptor-ascotricin complex.
Collapse
Affiliation(s)
- A Ganesh Kumar
- Marine Biotechnology Division, Ocean Science and Technology for Islands Group, ESSO - National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai, Tamilnadu, India
| | - K Balamurugan
- Department of Biotechnology, Alagappa University, Karaikudi, Tamilnadu, India
| | - R Vijaya Raghavan
- Marine Biotechnology Division, Ocean Science and Technology for Islands Group, ESSO - National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai, Tamilnadu, India
| | - G Dharani
- Marine Biotechnology Division, Ocean Science and Technology for Islands Group, ESSO - National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai, Tamilnadu, India
| | - R Kirubagaran
- Marine Biotechnology Division, Ocean Science and Technology for Islands Group, ESSO - National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai, Tamilnadu, India
| |
Collapse
|
15
|
Yubuki N, Leander BS. Diversity and Evolutionary History of the Symbiontida (Euglenozoa). Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Venter PC, Nitsche F, Domonell A, Heger P, Arndt H. The Protistan Microbiome of Grassland Soil: Diversity in the Mesoscale. Protist 2017; 168:546-564. [PMID: 28961455 DOI: 10.1016/j.protis.2017.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/10/2017] [Accepted: 03/30/2017] [Indexed: 12/22/2022]
Abstract
Genomic data for less than one quarter of ∼1.8 million named species on earth exist in public databases like GenBank. Little information exists on the estimated one million small sized (1-100μm) heterotrophic nanoflagellates and ciliates and their taxa-area relationship. We analyzed environmental DNA from 150 geo-referenced grassland plots representing topographical and land-use ranges typical for Central Europe. High through-put barcoding allowed the identification of operational taxonomic units (OTUs) at species level, with high pairwise identity to reference sequences (≥99.7%), but also the identification of sequences at the genus (≥97%) and class (≥80%) taxonomic level. Species richness analyses revealed, on average, 100 genus level OTUs (332 unique individual read (UIR) and 56 class level OTUs per gram of soil sample in the mesoscale (1-1000km). Database shortfalls were highlighted by increased uncertain taxonomic lineages at lower resolution (≥80% sequence identity). No single barcode occurred ubiquitously across all sites. Taxa-area relationships indicated that OTUs spread over the entire mesoscale were more similar than in the local scale and increased land-use (fertilization, mowing and grazing) promoted taxa-area separation. Only a small fraction of sequences strictly matched reference library sequences, suggesting a large protistan "dark matter" in soil which warrants further research.
Collapse
Affiliation(s)
- Paul Christiaan Venter
- University of Cologne, Department of Biology, Institute of Zoology, General Ecology, Zuelpicher Str. 47b, D-50674 Koeln (Cologne), Germany
| | - Frank Nitsche
- University of Cologne, Department of Biology, Institute of Zoology, General Ecology, Zuelpicher Str. 47b, D-50674 Koeln (Cologne), Germany
| | - Anne Domonell
- University of Cologne, Department of Biology, Institute of Zoology, General Ecology, Zuelpicher Str. 47b, D-50674 Koeln (Cologne), Germany
| | - Peter Heger
- University of Cologne, Department of Biology, Institute for Genetics, Bioinformatics & Population Genetics, Zuelpicher Str. 47a, D-50674 Koeln (Cologne), Germany
| | - Hartmut Arndt
- University of Cologne, Department of Biology, Institute of Zoology, General Ecology, Zuelpicher Str. 47b, D-50674 Koeln (Cologne), Germany.
| |
Collapse
|
17
|
|
18
|
Coelho FJRC, Louvado A, Domingues PM, Cleary DFR, Ferreira M, Almeida A, Cunha MR, Cunha Â, Gomes NCM. Integrated analysis of bacterial and microeukaryotic communities from differentially active mud volcanoes in the Gulf of Cadiz. Sci Rep 2016; 6:35272. [PMID: 27762306 PMCID: PMC5071872 DOI: 10.1038/srep35272] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/26/2016] [Indexed: 11/16/2022] Open
Abstract
The present study assesses the diversity and composition of sediment bacterial and microeukaryotic communities from deep-sea mud volcanoes (MVs) associated with strike-slip faults in the South-West Iberian Margin (SWIM). We used a 16S/18S rRNA gene based pyrosequencing approach to characterize and correlate the sediment bacterial and microeukaryotic communities from MVs with differing gas seep regimes and from an additional site with no apparent seeping activity. In general, our results showed significant compositional changes of bacterial and microeukaryotic communities in sampling sites with different seepage regimes. Sediment bacterial communities were enriched with Methylococcales (putative methanotrophs) but had lower abundances of Rhodospirillales, Nitrospirales and SAR202 in the more active MVs. Within microeukaryotic communities, members of the Lobosa (lobose amoebae) were enriched in more active MVs. We also showed a strong correlation between Methylococcales populations and lobose amoeba in active MVs. This study provides baseline information on the diversity and composition of bacterial and microeukaryotic communities in deep-sea MVs associated with strike-slip faults.
Collapse
Affiliation(s)
- Francisco J R C Coelho
- Department of Biology &CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - António Louvado
- Department of Biology &CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Patrícia M Domingues
- Department of Biology &CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.,Department of Chemistry &CICECO, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Daniel F R Cleary
- Department of Biology &CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Marina Ferreira
- Department of Biology &CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Adelaide Almeida
- Department of Biology &CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Marina R Cunha
- Department of Biology &CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Ângela Cunha
- Department of Biology &CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Newton C M Gomes
- Department of Biology &CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
19
|
Wang Y, Gao ZM, Li JT, Bougouffa S, Tian RM, Bajic VB, Qian PY. Draft genome of an Aerophobetes bacterium reveals a facultative lifestyle in deep-sea anaerobic sediments. Sci Bull (Beijing) 2016. [DOI: 10.1007/s11434-016-1135-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
20
|
Cao H, Zhang W, Wang Y, Qian PY. Microbial community changes along the active seepage site of one cold seep in the Red Sea. Front Microbiol 2015; 6:739. [PMID: 26284035 PMCID: PMC4523032 DOI: 10.3389/fmicb.2015.00739] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/06/2015] [Indexed: 01/11/2023] Open
Abstract
The active seepage of the marine cold seeps could be a critical process for the exchange of energy between the submerged geosphere and the sea floor environment through organic-rich fluids, potentially even affecting surrounding microbial habitats. However, few studies have investigated the associated microbial community changes. In the present study, 16S rRNA genes were pyrosequenced to decipher changes in the microbial communities from the Thuwal seepage point in the Red Sea to nearby marine sediments in the brine pool, normal marine sediments and water, and benthic microbial mats. An unexpected number of reads from unclassified groups were detected in these habitats; however, the ecological functions of these groups remain unresolved. Furthermore, ammonia-oxidizing archaeal community structures were investigated using the ammonia monooxygenase subunit A (amoA) gene. Analysis of amoA showed that planktonic marine habitats, including seeps and marine water, hosted archaeal ammonia oxidizers that differed from those in microbial mats and marine sediments, suggesting modifications of the ammonia oxidizing archaeal (AOA) communities along the environmental gradient from active seepage sites to peripheral areas. Changes in the microbial community structure of AOA in different habitats (water vs. sediment) potentially correlated with changes in salinity and oxygen concentrations. Overall, the present results revealed for the first time unanticipated novel microbial groups and changes in the ammonia-oxidizing archaea in response to environmental gradients near the active seepages of a cold seep.
Collapse
Affiliation(s)
- Huiluo Cao
- Division of Life Sciences, The Hong Kong University of Science and Technology Clear Water Bay, Hong Kong
| | - Weipeng Zhang
- Division of Life Sciences, The Hong Kong University of Science and Technology Clear Water Bay, Hong Kong
| | - Yong Wang
- Division of Life Sciences, The Hong Kong University of Science and Technology Clear Water Bay, Hong Kong ; Sanya Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences Sanya, China
| | - Pei-Yuan Qian
- Division of Life Sciences, The Hong Kong University of Science and Technology Clear Water Bay, Hong Kong
| |
Collapse
|
21
|
Rédou V, Navarri M, Meslet-Cladière L, Barbier G, Burgaud G. Species richness and adaptation of marine fungi from deep-subseafloor sediments. Appl Environ Microbiol 2015; 81:3571-83. [PMID: 25769836 PMCID: PMC4407237 DOI: 10.1128/aem.04064-14] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 03/11/2015] [Indexed: 11/20/2022] Open
Abstract
The fungal kingdom is replete with unique adaptive capacities that allow fungi to colonize a wide variety of habitats, ranging from marine habitats to freshwater and terrestrial habitats. The diversity, importance, and ecological roles of marine fungi have recently been highlighted in deep-subsurface sediments using molecular methods. Fungi in the deep-marine subsurface may be specifically adapted to life in the deep biosphere, but this can be demonstrated only using culture-based analyses. In this study, we investigated culturable fungal communities from a record-depth sediment core sampled from the Canterbury Basin (New Zealand) with the aim to reveal endemic or ubiquist adapted isolates playing a significant ecological role(s). About 200 filamentous fungi (68%) and yeasts (32%) were isolated. Fungal isolates were affiliated with the phyla Ascomycota and Basidiomycota, including 21 genera. Screening for genes involved in secondary metabolite synthesis also revealed their bioactive compound synthesis potential. Our results provide evidence that deep-subsurface fungal communities are able to survive, adapt, grow, and interact with other microbial communities and highlight that the deep-sediment habitat is another ecological niche for fungi.
Collapse
Affiliation(s)
- Vanessa Rédou
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Technopôle Brest-Iroise, Plouzané, France
| | - Marion Navarri
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Technopôle Brest-Iroise, Plouzané, France
| | - Laurence Meslet-Cladière
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Technopôle Brest-Iroise, Plouzané, France
| | - Georges Barbier
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Technopôle Brest-Iroise, Plouzané, France
| | - Gaëtan Burgaud
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Technopôle Brest-Iroise, Plouzané, France
| |
Collapse
|
22
|
Bernhard JM, Kormas K, Pachiadaki MG, Rocke E, Beaudoin DJ, Morrison C, Visscher PT, Cobban A, Starczak VR, Edgcomb VP. Benthic protists and fungi of Mediterranean deep hypsersaline anoxic basin redoxcline sediments. Front Microbiol 2014; 5:605. [PMID: 25452749 PMCID: PMC4233946 DOI: 10.3389/fmicb.2014.00605] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/24/2014] [Indexed: 11/24/2022] Open
Abstract
Some of the most extreme marine habitats known are the Mediterranean deep hypersaline anoxic basins (DHABs; water depth ∼3500 m). Brines of DHABs are nearly saturated with salt, leading many to suspect they are uninhabitable for eukaryotes. While diverse bacterial and protistan communities are reported from some DHAB water-column haloclines and brines, the existence and activity of benthic DHAB protists have rarely been explored. Here, we report findings regarding protists and fungi recovered from sediments of three DHAB (Discovery, Urania, L’ Atalante) haloclines, and compare these to communities from sediments underlying normoxic waters of typical Mediterranean salinity. Halocline sediments, where the redoxcline impinges the seafloor, were studied from all three DHABs. Microscopic cell counts suggested that halocline sediments supported denser protist populations than those in adjacent control sediments. Pyrosequencing analysis based on ribosomal RNA detected eukaryotic ribotypes in the halocline sediments from each of the three DHABs, most of which were fungi. Sequences affiliated with Ustilaginomycotina Basidiomycota were the most abundant eukaryotic signatures detected. Benthic communities in these DHABs appeared to differ, as expected, due to differing brine chemistries. Microscopy indicated that only a low proportion of protists appeared to bear associated putative symbionts. In a considerable number of cases, when prokaryotes were associated with a protist, DAPI staining did not reveal presence of any nuclei, suggesting that at least some protists were carcasses inhabited by prokaryotic scavengers.
Collapse
Affiliation(s)
- Joan M Bernhard
- Geology and Geophysics Department, Woods Hole Oceanographic Institution Woods Hole, MA, USA
| | - Konstantinos Kormas
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly Volos, Greece
| | - Maria G Pachiadaki
- Geology and Geophysics Department, Woods Hole Oceanographic Institution Woods Hole, MA, USA
| | - Emma Rocke
- Division of Life Sciences, Hong Kong University of Science and Technology, Clear Water Bay Kowloon, Hong Kong
| | - David J Beaudoin
- Biology Department, Woods Hole Oceanographic Institution Woods Hole, MA, USA
| | - Colin Morrison
- Biology Department, University of Nevada Reno Reno, NV, USA
| | - Pieter T Visscher
- Department of Marine Sciences, University of Connecticut Groton, CT, USA
| | - Alec Cobban
- Geology and Geophysics Department, Woods Hole Oceanographic Institution Woods Hole, MA, USA
| | - Victoria R Starczak
- Biology Department, Woods Hole Oceanographic Institution Woods Hole, MA, USA
| | - Virginia P Edgcomb
- Geology and Geophysics Department, Woods Hole Oceanographic Institution Woods Hole, MA, USA
| |
Collapse
|