1
|
Tarantini A, Crupi P, Ramires FA, D'Amico L, Romano G, Blando F, Branco P, Clodoveo ML, Corbo F, Cardinali A, Bleve G. Study of the effects of pasteurization and selected microbial starters on functional traits of fermented table olives. Food Microbiol 2024; 122:104537. [PMID: 38839217 DOI: 10.1016/j.fm.2024.104537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 06/07/2024]
Abstract
Table olives are one of the most known fruit consumed as fermented food, being a fundamental component of the Mediterranean diet. Their production and consumption continue to increase globally and represent an important economic source for the producing countries. One of the most stimulating challenges for the future is the modernization of olive fermentation process. Besides the demand for more reproducible and safer production methods that could be able to reduce product losses and potential risks, producers and consumers are increasingly attracted by the final product characteristics and properties on human health. In this study, the contribution of microbial starters to table olives was fully described in terms of specific enzymatic and microbiological profiles, nutrient components, fermentation-derived compounds, and content of bioactive compounds. The use of microbial starters from different sources was tested considering their technological features and potential ability to improve the functional traits of fermented black table olives. For each fermentation assay, the effects of controlled temperature (kept at 20 °C constantly) versus not controlled environmental conditions (oscillating between 7 and 17 °C), as well as the consequences of the pasteurization treatment were tested on the final products. Starter-driven fermentation strategies seemed to increase both total phenolic content and total antioxidant activity. Herein, among all the tested microbial starters, we provide data indicating that two bacterial strains (Leuconostoc mesenteroides KT 5-1 and Lactiplantibacillus plantarum BC T3-35), and two yeast strains (Saccharomyces cerevisiae 10A and Debaryomyces hansenii A15-44) were the better ones related to enzyme activities, total phenolic content and antioxidant activity. We also demonstrated that the fermentation of black table olives under not controlled environmental temperature conditions was more promising than the controlled level of 20 °C constantly in terms of technological and functional properties considered in this study. Moreover, we confirmed that the pasteurization process had a role in enhancing the levels of antioxidant compounds.
Collapse
Affiliation(s)
- Annamaria Tarantini
- Consiglio Nazionale Delle Ricerche - Istituto di Scienze Delle Produzioni Alimentari, Unità Operativa di Lecce, 73100, Lecce, Italy; University of Bari, Soil, Plant and Food Science Department (Di.S.S.P.A), Bari, Italy
| | - Pasquale Crupi
- Dipartimento Interdisciplinare di Medicina, Università Degli Studi Aldo Moro Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Francesca Anna Ramires
- Consiglio Nazionale Delle Ricerche - Istituto di Scienze Delle Produzioni Alimentari, Unità Operativa di Lecce, 73100, Lecce, Italy
| | - Leone D'Amico
- Consiglio Nazionale Delle Ricerche - Istituto di Scienze Delle Produzioni Alimentari, Unità Operativa di Lecce, 73100, Lecce, Italy
| | - Giuseppe Romano
- Consiglio Nazionale Delle Ricerche - Istituto di Scienze Delle Produzioni Alimentari, Unità Operativa di Lecce, 73100, Lecce, Italy
| | - Federica Blando
- Consiglio Nazionale Delle Ricerche - Istituto di Scienze Delle Produzioni Alimentari, Unità Operativa di Lecce, 73100, Lecce, Italy
| | | | - Maria Lisa Clodoveo
- Dipartimento Interdisciplinare di Medicina, Università Degli Studi Aldo Moro Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Filomena Corbo
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari, Campus Universitario E. Quagliarello Via Orabona, 4-70125, Bari, Italy
| | - Angela Cardinali
- Consiglio Nazionale Delle Ricerche - Istituto di Scienze Delle Produzioni Alimentari, Bari, 70126, Italy
| | - Gianluca Bleve
- Consiglio Nazionale Delle Ricerche - Istituto di Scienze Delle Produzioni Alimentari, Unità Operativa di Lecce, 73100, Lecce, Italy.
| |
Collapse
|
2
|
Han D, Bao X, Wang Y, Liao X, Wang K, Chen J, Li X, Yang Z, Wang Y. The impact of lactic acid bacteria inoculation on the fermentation and metabolomic dynamics of indigenous Beijing douzhi microbial communities. Front Microbiol 2024; 15:1435834. [PMID: 39139380 PMCID: PMC11319256 DOI: 10.3389/fmicb.2024.1435834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Background Douzhi, a traditional Chinese fermented beverage, features microbial communities primarily composed of lactic acid bacteria (LAB). As fermented foods continue to gain recognition and popularity, douzhi is attracting growing interest. However, investigation of the critical aspects of douzhi's fermentation processes, including fermentation characteristics and microbial community dynamics, remains vital for enhancing food safety and quality for douzhi, as well as for similar fermented food products. Method In this study, we collected douzhi microbial communities from four chain stores, using them as fermentation starter cultures. The microbial dynamics of the fermentation were analyzed, focusing on the inoculation of LAB strains and the transition from a mung bean-based matrix to skimmed milk. The metabolomic profiles of the fermented mung bean matrices were also studied. Results Douzhi samples obtained from representative chain stores were found to be overwhelmingly dominated by LAB. When inoculated along with the douzhi community, both LAB strains exhibited notable and substantial reductions in the pH value of the designated mung bean matrices compared to those inoculated indigenous microbiota. Specifically, Lactiplantibacillus plantarum CGMCC 1.1856 retained its population, whereas Pediococcus pentosaceus CGMCC 1.2695 exhibited a decrease in relative abundance. Using skimmed milk as a fermentation substrate instead of the mung bean matrix resulted in significant shifts in microbial communities, particularly leading to an increase in Escherichia sp. The metagenomic analyses and functional predictions illustrated that various metabolic functions were enhanced during the fermentation process due to LAB inoculation. The liquid chromatography-mass spectrometry based metabolomic analysis revealed that the inoculation of Lactiplantibacillus plantarum and Pediococcus pentosaceus in mung bean matrix did not introduce new metabolites but significantly altered the concentration and profile of existing metabolites, especially increased low molecular carbohydrates, which may enhance the nutritional potential of the fermented product. Discussion This study examines the microbial dynamics of douzhi microbiota fermentation, emphasizing the role of lactic acid bacteria in enhancing fermentation activity and metabolite profiles. These insights contribute to improving manufacturing processes and ensuring the safety and quality of douzhi and similar fermented foods.
Collapse
Affiliation(s)
- Dong Han
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xinyu Bao
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Yanfang Wang
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Xiaohong Liao
- China National Light Industry Council, Beijing, China
| | - Ke Wang
- China National Light Industry Council, Beijing, China
| | - Jian Chen
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Xiaolong Li
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Zhennai Yang
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Yanbo Wang
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
3
|
López-García E, Romero-Gil V, Arroyo-López FN, Benítez-Cabello A. Impact of lactic acid bacteria inoculation on fungal diversity during Spanish-style green table olive fermentations. Int J Food Microbiol 2024; 417:110689. [PMID: 38621325 DOI: 10.1016/j.ijfoodmicro.2024.110689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/15/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024]
Abstract
This study delved into the evolution of fungal population during the fermentation of Spanish-style green table olives (Manzanilla cultivar), determining the influence of different factors such as fermentation matrix (brine or fruit) or the use of a lactic acid bacteria inoculum, on its distribution. The samples (n = 24) were directly obtained from industrial fermentation vessels with approximately 10.000 kg of fruits and 6.000 L of brines. Our findings showcased a synchronized uptick in lactic acid bacteria counts alongside fungi proliferation. Metataxonomic analysis of the Internal Transcribed Spacer (ITS) region unearthed noteworthy disparities across different fermentation time points (0, 24, and 83 days). Statistical analysis pinpointed two Amplicon Sequence Variants (ASV), Candida and Aureobasidium, as accountable for the observed variances among the different fermentation time samples. Notably, Candida exhibited a marked increase during 83 days of fermentation, opposite to Aureobasidium, which demonstrated a decline. Fungal biodiversity was slightly higher in brines than in fruits, whilst no effect of inoculation was noticed. At the onset of fermentation, prominently detected genera were also Mycosphaerella (19.82 %) and Apohysomyces (16.31 %), hitherto unreported in the context of table olive processing. However, their prevalence dwindled to nearly negligible levels from 24th day fermentation onwards (<2 %). On the contrary, they were replaced by the fermentative yeasts Saccharomyces and Isstachenkia. Results obtained in this work will be useful for designing new strategies for better control of table olive fermentations.
Collapse
Affiliation(s)
- Elio López-García
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Ctra. Sevilla-Utrera, km 1. Building 46. Campus Universitario Pablo de Olavide, 41013 Seville, Spain
| | - Verónica Romero-Gil
- Department of Food Science and Technology, Agrifood Campus of International Excellence, University of Cordoba, 14014 Córdoba, Spain
| | - Francisco Noé Arroyo-López
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Ctra. Sevilla-Utrera, km 1. Building 46. Campus Universitario Pablo de Olavide, 41013 Seville, Spain
| | - Antonio Benítez-Cabello
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Ctra. Sevilla-Utrera, km 1. Building 46. Campus Universitario Pablo de Olavide, 41013 Seville, Spain.
| |
Collapse
|
4
|
Traina C, Ferrocino I, Bonciolini A, Cardenia V, Lin X, Rantsiou K, Cocolin L. Monitoring the yeasts ecology and volatiles profile throughout the spontaneous fermentation of Taggiasca cv. table olives through culture-dependent and independent methods. Int J Food Microbiol 2024; 417:110688. [PMID: 38615425 DOI: 10.1016/j.ijfoodmicro.2024.110688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024]
Abstract
Taggiasca table olives are typical of Liguria, a Northwestern Italian region, produced with a spontaneous fermentation carried out by placing the raw drupes directly into brine with a salt concentration of 8-12 % w/v. Such concentrations limit the development of unwanted microbes and favor the growth of yeasts. This process usually lasts up to 8 months. Yeasts are found throughout the entire fermentation process and they are mainly involved in the production of volatile organic compounds, which strongly impact the quality of the final product. The aim of this study was to evaluate the dynamics of autochthonous yeasts in brines and olives in a spontaneous process with no lye pre-treatment or addition of acids in the fermenting brine with 10 % NaCl (w/v) in two batches during 2021 harvest. Three hundred seventy-three yeast colonies were isolated, characterized by rep-PCR and identified by the D1/D2 region of the 26S rRNA gene sequencing. Mycobiota was also studied by 26S rRNA gene metataxonomics, while metabolome was assessed through GC-MS analysis. Traditional culture-dependent methods showed the dominance of Candida diddensiae, Wickerhamomyces anomalus, Pichia membranifaciens and Aureobasidium pullulans, with differences in species distribution between batches, sampling time and type of sample (olives/brines). Amplicon-based sequencing confirmed the dominance of W. anomalus in batch 1 throughout the entire fermentation, while Cyteromyces nyonsensis and Aureobasidium spp. were most abundant in the fermentation in batch 2. Volatilome results were analyzed and correlated to the mycobiota data, confirming differences between fermentation stages. Given the high appreciation for this traditional food, this study helps elucidate the mycobiota associated to Taggiasca cv. table olives and its relationship with the quality of the final product.
Collapse
Affiliation(s)
- Chiara Traina
- Department of Agricultural, Forest and Food Science (DISAFA), University of Torino, Grugliasco, Torino 10095, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Science (DISAFA), University of Torino, Grugliasco, Torino 10095, Italy
| | - Ambra Bonciolini
- Department of Agricultural, Forest and Food Science (DISAFA), University of Torino, Grugliasco, Torino 10095, Italy
| | - Vladimiro Cardenia
- Department of Agricultural, Forest and Food Science (DISAFA), University of Torino, Grugliasco, Torino 10095, Italy
| | - Xinping Lin
- Biotechnology National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Kalliopi Rantsiou
- Department of Agricultural, Forest and Food Science (DISAFA), University of Torino, Grugliasco, Torino 10095, Italy
| | - Luca Cocolin
- Department of Agricultural, Forest and Food Science (DISAFA), University of Torino, Grugliasco, Torino 10095, Italy.
| |
Collapse
|
5
|
Tsoungos A, Pemaj V, Slavko A, Kapolos J, Papadelli M, Papadimitriou K. The Rising Role of Omics and Meta-Omics in Table Olive Research. Foods 2023; 12:3783. [PMID: 37893676 PMCID: PMC10606081 DOI: 10.3390/foods12203783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Table olives are often the result of fermentation, a process where microorganisms transform raw materials into the final product. The microbial community can significantly impact the organoleptic characteristics and safety of table olives, and it is influenced by various factors, including the processing methods. Traditional culture-dependent techniques capture only a fraction of table olives' intricate microbiota, prompting a shift toward culture-independent methods to address this knowledge gap. This review explores recent advances in table olive research through omics and meta-omics approaches. Genomic analysis of microorganisms isolated from table olives has revealed multiple genes linked to technological and probiotic attributes. An increasing number of studies concern metagenomics and metabolomics analyses of table olives. The former offers comprehensive insights into microbial diversity and function, while the latter identifies aroma and flavor determinants. Although proteomics and transcriptomics studies remain limited in the field, they have the potential to reveal deeper layers of table olives' microbiome composition and functionality. Despite the challenges associated with implementing multi-omics approaches, such as the reliance on advanced bioinformatics tools and computational resources, they hold the promise of groundbreaking advances in table olive processing technology.
Collapse
Affiliation(s)
- Anastasios Tsoungos
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece; (A.T.); (V.P.); (A.S.); (J.K.); (M.P.)
| | - Violeta Pemaj
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece; (A.T.); (V.P.); (A.S.); (J.K.); (M.P.)
| | - Aleksandra Slavko
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece; (A.T.); (V.P.); (A.S.); (J.K.); (M.P.)
| | - John Kapolos
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece; (A.T.); (V.P.); (A.S.); (J.K.); (M.P.)
| | - Marina Papadelli
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece; (A.T.); (V.P.); (A.S.); (J.K.); (M.P.)
| | - Konstantinos Papadimitriou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
6
|
Ruiz-Barba JL, Sánchez AH, López-López A, Cortés-Delgado A, Montaño A. Microbial community and volatilome changes in brines along the spontaneous fermentation of Spanish-style and natural-style green table olives (Manzanilla cultivar). Food Microbiol 2023; 113:104286. [PMID: 37098427 DOI: 10.1016/j.fm.2023.104286] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/27/2023]
Abstract
Microbial community and volatilome of brines were monitored during the spontaneous fermentations of Spanish-style and Natural-style green table olives from Manzanilla cultivar. Fermentation of olives in the Spanish style was carried out by lactic acid bacteria (LAB) and yeasts, whereas halophilic Gram-negative bacteria and archaea, along with yeasts, drove the fermentation in the Natural style. Clear differences between the two olive fermentations regarding physicochemical and biochemical features were found. Lactobacillus, Pichia, and Saccharomyces were the dominant microbial communities in the Spanish style, whereas Allidiomarina, Halomonas, Saccharomyces, Pichia, and Nakazawaea predominated in the Natural style. Numerous qualitative and quantitative differences in individual volatiles between both fermentations were found. The final products mainly differed in total amounts of volatile acids and carbonyl compounds. In addition, in each olive style, strong positive correlations were found between the dominant microbial communities and various volatile compounds, some of them previously reported as aroma-active compounds in table olives. The findings from this study provide a better understanding of each fermentation process and may help the development of controlled fermentations using starter cultures of bacteria and/or yeasts for the production of high-quality green table olives from Manzanilla cultivar.
Collapse
Affiliation(s)
- José Luis Ruiz-Barba
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Utrera Road, km 1, 41013, Seville, Spain.
| | - Antonio Higinio Sánchez
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Utrera Road, km 1, 41013, Seville, Spain.
| | - Antonio López-López
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Utrera Road, km 1, 41013, Seville, Spain.
| | - Amparo Cortés-Delgado
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Utrera Road, km 1, 41013, Seville, Spain.
| | - Alfredo Montaño
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Utrera Road, km 1, 41013, Seville, Spain.
| |
Collapse
|
7
|
Ramires FA, Bavaro AR, D’Antuono I, Linsalata V, D’Amico L, Baruzzi F, Pinto L, Tarantini A, Garbetta A, Cardinali A, Bleve G. Liquid submerged fermentation by selected microbial strains for onion skins valorization and its effects on polyphenols. World J Microbiol Biotechnol 2023; 39:258. [PMID: 37493825 PMCID: PMC10371881 DOI: 10.1007/s11274-023-03708-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023]
Abstract
Onion skins, actually recycled as organic fertilizers, could be used as a substrate in environmental-friendly bioprocesses to recover high-value bioactive compounds and food ingredients.In this work, a bioprospecting method was carried out including 94 bacterial and 45 yeast strains from several agri-food and environmental niches to verify their ability to grow on onion skins as unique nutrients source.Red and yellow onion skins were assessed by newly selected starter-driven liquid submerged fermentation assays mainly aimed at the release and modification of polyphenols through microbial activities. Fermented onion skins were also investigated as a inexpensive favourable source of microbial enzymes (amylases, proteases, lipases, esterases, cellulases, xylanases).In red onion skins, the treatment with Lactiplantibacillus plantarum TB 11-32 produced a slight increase of bioactive compounds in terms of total phenolics, whereas with the yeast strain Zygosaccharomyces mrakii CL 30 - 29 the quercetin aglycone content increased of about 25% of the initial raw material.In yellow onion skins inoculated, the highest content of phenolic compounds was detected with the yeast strain Saccharomyces cerevisiae En SC, while quercetin aglycone increased of about 60% of the initial raw material in presence of the bacterial strain L. plantarum C 180 - 34.In conclusion, the proposed microbial pre-treatment method can be a potential strategy to re-use onion skins as a fermentation substrate, and as a first step in the development of a biorefinery process to produce value-added products from onion by-products.
Collapse
Affiliation(s)
- Francesca Anna Ramires
- Lecce Unit, National Research Council, - Institute of Sciences of Food Procuction (CNR-ISPA), Lecce, 73100 Italy
| | - Anna Rita Bavaro
- National Research Council, - Institute of Sciences of Food Procuction (CNR-ISPA), Bari, 70126 Italy
| | - Isabella D’Antuono
- National Research Council, - Institute of Sciences of Food Procuction (CNR-ISPA), Bari, 70126 Italy
| | - Vito Linsalata
- National Research Council, - Institute of Sciences of Food Procuction (CNR-ISPA), Bari, 70126 Italy
| | - Leone D’Amico
- Lecce Unit, National Research Council, - Institute of Sciences of Food Procuction (CNR-ISPA), Lecce, 73100 Italy
| | - Federico Baruzzi
- National Research Council, - Institute of Sciences of Food Procuction (CNR-ISPA), Bari, 70126 Italy
| | - Loris Pinto
- National Research Council, - Institute of Sciences of Food Procuction (CNR-ISPA), Bari, 70126 Italy
| | - Annamaria Tarantini
- Lecce Unit, National Research Council, - Institute of Sciences of Food Procuction (CNR-ISPA), Lecce, 73100 Italy
- University of Bari Aldo Moro, Plant and Food Science Department (Di.S.S.P.A), Soil, Bari, 70126 Italy
| | - Antonella Garbetta
- National Research Council, - Institute of Sciences of Food Procuction (CNR-ISPA), Bari, 70126 Italy
| | - Angela Cardinali
- National Research Council, - Institute of Sciences of Food Procuction (CNR-ISPA), Bari, 70126 Italy
| | - Gianluca Bleve
- Lecce Unit, National Research Council, - Institute of Sciences of Food Procuction (CNR-ISPA), Lecce, 73100 Italy
| |
Collapse
|
8
|
Ruiz-Barba JL, Sánchez AH, López-López A, Cortés-Delgado A, Montaño A. Microbial and Chemical Characterization of Natural-Style Green Table Olives from the Gordal, Hojiblanca and Manzanilla Cultivars. Foods 2023; 12:2386. [PMID: 37372597 DOI: 10.3390/foods12122386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Microbial and biochemical changes in the brine during the spontaneous fermentation of Gordal, Hojiblanca and Manzanilla olive cultivars processed according to the natural style were monitored. The microbial composition was assessed through a metagenomic study. Sugars, ethanol, glycerol, organic acids and phenolic compounds were quantified by standard methods. In addition, the volatile profiles, contents of phenolic compounds in the olives and quality parameters of the final products were compared. Fermentation in Gordal brines was conducted by lactic acid bacteria (mainly Lactobacillus and Pediococcus) and yeasts (mainly Candida boidinii, Candida tropicalis and Wickerhamomyces anomalus). In Hojiblanca and Manzanilla brines, halophilic Gram-negative bacteria (e.g., Halomonas, Allidiomarina and Marinobacter) along with yeasts (mainly, Saccharomyces) were responsible for the fermentation. Higher acidity and lower pH values were reached in Gordal brines compared to Hojiblanca and Manzanilla. After 30 days of fermentation, no sugars were detected in Gordal brine, but residual amounts were found in the brines from Hojiblanca (<0.2 g/L glucose) and Manzanilla (2.9 g/L glucose and 0.2 g/L fructose). Lactic acid was the main acid product in Gordal fermentation, whereas citric acid was the predominant organic acid in the Hojiblanca and Manzanilla brines. Manzanilla brine samples showed a greater concentration of phenolic compounds than Hojiblanca and Gordal brines. After a 6-month fermentation, Gordal olives were superior compared to the Hojiblanca and Manzanilla varieties regarding product safety (lower final pH and absence of Enterobacteriaceae), content of volatile compounds (richer aroma), content of bitter phenolics (lower content of oleuropein, which resulted in less perceived bitterness) and color parameters (more yellow and lighter color, indicating a higher visual appraisal). The results of the present study will contribute to a better understanding of each fermentation process and could help to promote natural-style elaborations using the above-mentioned olive cultivars.
Collapse
Affiliation(s)
- José Luis Ruiz-Barba
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Carretera de Utrera, Km. 1, 41013 Seville, Spain
| | - Antonio Higinio Sánchez
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Carretera de Utrera, Km. 1, 41013 Seville, Spain
| | - Antonio López-López
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Carretera de Utrera, Km. 1, 41013 Seville, Spain
| | - Amparo Cortés-Delgado
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Carretera de Utrera, Km. 1, 41013 Seville, Spain
| | - Alfredo Montaño
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Carretera de Utrera, Km. 1, 41013 Seville, Spain
| |
Collapse
|
9
|
Gounari Z, Bonatsou S, Ferrocino I, Cocolin L, Papadopoulou OS, Panagou EZ. Exploring yeast diversity of dry-salted naturally black olives from Greek retail outlets with culture dependent and independent molecular methods. Int J Food Microbiol 2023; 398:110226. [PMID: 37120943 DOI: 10.1016/j.ijfoodmicro.2023.110226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
In the present study, the physicochemical (pH, water activity, moisture content, salt concentration) classical plate counts (total viable counts, yeasts, lactic acid bacteria, Staphylococcus aureus, Pseudomonas spp., Enterobacteriaceae) and amplicon sequencing of naturally black dry-salted olives obtained from different retail outlets of the Greek market were investigated. According to the results, the values of the physicochemical characteristics presented great variability among the samples. Specifically, pH and water activity (aw) values ranged between 4.0 and 5.0, as well as between 0.58 and 0.91, respectively. Moisture content varied between 17.3 and 56.7 % (g Η2Ο/100 g of olive pulp), whereas salt concentration ranged from 5.26 to 9.15 % (g NaCl/100 g of olive pulp). No lactic acid bacteria, S. aureus, Pseudomonas spp. and Enterobacteriaceae were detected. The mycobiota consisted of yeasts that were further characterized and identified by culture-dependent (rep-PCR, ITS-PCR, and RFLP) and amplicon target sequencing (ATS). Pichia membranifaciens, Candida sorbosivorans, Citeromyces nyonsensis, Candida etchelsii, Wickerhamomyces subpelliculosus, Candida apicola, Wickerhamomyces anomalus, Torulaspora delbrueckii and Candida versatilis were the dominant species according to ITS sequencing (culture-dependent), while ATS revealed the dominance of C. etchelsii, Pichia triangularis, P. membranifaciens, and C. versatilis among samples. The results of this study demonstrated considerable variability in quality attributes among the different commercial samples of dry-salted olives, reflecting a lack of standardization in the processing of this commercial style. However, the majority of the samples were characterized by satisfactory microbiological and hygienic quality and complied with the requirements of the trade standard for table olives of the International Olive Council (IOC) for this processing style in terms of salt concentration. In addition, the diversity of yeast species was elucidated for the first time in commercially available products, increasing our knowledge on the microbial ecology of this traditional food. Further investigation into the technological and multifunctional traits of the dominant yeast species may result in better control during dry-salting and enhance the quality and shelf-life of the final product.
Collapse
Affiliation(s)
- Zoe Gounari
- Agricultural University of Athens, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Laboratory of Microbiology and Biotechnology of Foods, Iera Odos 75, Athens 11855, Greece
| | - Stamatoula Bonatsou
- Agricultural University of Athens, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Laboratory of Microbiology and Biotechnology of Foods, Iera Odos 75, Athens 11855, Greece
| | - Ilario Ferrocino
- University of Turin, Department of Agricultural, Forestry and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy
| | - Luca Cocolin
- University of Turin, Department of Agricultural, Forestry and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy
| | - Olga S Papadopoulou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, S. Venizelou 1, Lycovrissi 14123, Attiki, Greece
| | - Efstathios Z Panagou
- Agricultural University of Athens, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Laboratory of Microbiology and Biotechnology of Foods, Iera Odos 75, Athens 11855, Greece.
| |
Collapse
|
10
|
Assessment of Starters of Lactic Acid Bacteria and Killer Yeasts: Selected Strains in Lab-Scale Fermentations of Table Olives (Olea europaea L.) cv. Leccino. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Olives debittering, organoleptic quality and safety can be improved with yeasts and lactic acid bacteria (LABs) selected strain starters, that allow for better fermentation control with respect to natural fermentation. Two selected killer yeasts (Wickerhamomyces anomalus and Saccharomyces cerevisiae) and Lactobacillus plantarum strains were tested for olive (cv. Leccino) fermentation to compare different starter combinations and strategies; the aim was to assess their potential in avoiding pretreatments and the use of excessive salt in the brines and preservatives. Lactobacilli, yeasts, molds, Enterobacteriaceae and total aerobic bacteria were detected, as well as pH, soluble sugars, alcohols, organic acids, phenolic compounds, and rheological properties of olives. Sugars were rapidly consumed in the brines and olives; the pH dropped quickly, then rose until neutrality after six months. The oleuropein final levels in olives were unaffected by the treatments. The use of starters did not improve the LABs’ growth nor prevent the growth of Enterobacteriaceae and molds. The growth of undesirable microorganisms could have been induced by the availability of selective carbon source such as mannitol, whose concentration in olive trees rise under drought stress. The possible role of climate change on the quality and safety of fermented foods should be furtherly investigated. The improvement of olives’ nutraceutical value can be induced by yeasts and LABs starters due to the higher production of hydroxytyrosol.
Collapse
|
11
|
Kamilari E, Anagnostopoulos DA, Tsaltas D. Fermented table olives from Cyprus: Microbiota profile of three varieties from different regions through metabarcoding sequencing. Front Microbiol 2023; 13:1101515. [PMID: 36733778 PMCID: PMC9886855 DOI: 10.3389/fmicb.2022.1101515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
The knowledge about the microbial diversity of different olives varieties from diverse regions in the Mediterranean basin is limited. This work aimed to determine the microbial diversity of three different fermented olive varieties, collected from different regions in Cyprus, via Next Generation Sequencing (NGS) analysis. Olives were spontaneously fermented for 120 days, microbial DNA was extracted from the final products, and subjected to 16S rRNA gene and ITS1 loci metabarcoding analysis for the determination of bacterial and fungal communities, respectively. Results revealed that the bacterial profile of the studied varieties was similar, while no noteworthy differences were observed in olives from different regions. The bacterial profile was dominated by the co-existence of Lactobacillus and Streptococcus, while the genera Lactococcus and Salinivibrio and the family Leuconostocaceae were also present in increased relative abundances. Regarding fungal communities, the analysis indicated discrimination among the different varieties, especially in Kalamata ones. The most abundant fungi were mainly the genera Aspergillus, Botryosphaeria, Meyerozyma, and Zygosaccharomyces for Cypriot olives, the genera Botryosphaeria, Saccharomyces, Geosmithia, and Wickeromyces for Kalamata variety, while the dominant fungi in the Picual variety were mainly members of the genera Candida, Penicillium, Saccharomyces, Hanseniospora and Botryosphaeria. Potential microbial biomarkers that distinguish the three varieties are also proposed. Moreover, interaction networks analysis identified interactions among the key taxa of the communities. Overall, the present work provides useful information and sheds light on an understudied field, such as the comparison of microbiota profiles of different varieties from several regions in Cyprus. The study enriches our knowledge and highlights the similarities and the main differences between those aspects, booming in parallel the need for further works on this frontier, in the attempt to determine potentially olives' microbial terroir in Cyprus. Our work should be used as a benchmark for future works in this direction.
Collapse
|
12
|
Simões L, Fernandes N, Teixeira J, Abrunhosa L, Dias DR. Brazilian Table Olives: A Source of Lactic Acid Bacteria with Antimycotoxigenic and Antifungal Activity. Toxins (Basel) 2023; 15:71. [PMID: 36668890 PMCID: PMC9866039 DOI: 10.3390/toxins15010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Food and feed contamination by fungi, especially by toxigenic ones, is a global concern because it can pose serious health problems when the production of mycotoxins is involved. Lactic acid bacteria (LAB), well-known for fermenting foods, have been gaining attention for their antifungal and anti-mycotoxin properties. This work tested 14 LAB strains isolated from naturally fermented Brazilian table olives for growth inhibition of Aspergillus flavus, Aspergillus carbonarius, Penicillium nordicum, and Penicillium expansum. The strains Lacticaseibacillus paracasei subsp. paracasei CCMA 1764, Levilactobacillus brevis CCMA 1762, and Lactiplantibacillus pentosus CCMA 1768 showed the strongest antifungal activity, being more active against P. expansum. Aflatoxin B1 (AFB1), ochratoxin A (OTA), and patulin (PAT) production was reduced essentially by mycelia growth inhibition. The main organic acids detected in the cell free supernatant (CFS) were lactic and acetic acids. Tested LAB exhibited adsorption capacity against AFB1 (48-51%), OTA (28-33%), and PAT (23-24%). AFB1 was converted into aflatoxin B2a (AFB2a) by lactic and acetic acids produced by the strain CCMA 1764. A similar conversion was observed in solutions of these organic acids (0.1 M). These findings demonstrate the potential of isolated LAB strains as natural agents to control toxigenic fungi and their mycotoxins in fermented products, such as table olives.
Collapse
Affiliation(s)
- Luara Simões
- Biology Department, Federal University of Lavras, Lavras 37200-900, Brazil
- Centre of Molecular and Environmental Biology, University of Minho, 4710-057 Braga, Portugal
| | - Natália Fernandes
- Biology Department, Federal University of Lavras, Lavras 37200-900, Brazil
- Chemistry Department, University of California, Davis, CA 95616, USA
| | - José Teixeira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Luís Abrunhosa
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Disney Ribeiro Dias
- Department of Food Science, Federal University of Lavras, Lavras 37200-900, Brazil
| |
Collapse
|
13
|
Sánchez R, Pérez-Nevado F, Martillanes S, Montero-Fernández I, Lozano J, Martín-Vertedor D. Machine olfaction discrimination of Spanish-style green olives inoculated with spoilage mold species. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
Ramires FA, Bleve G, De Domenico S, Leone A. Combination of Solid State and Submerged Fermentation Strategies to Produce a New Jellyfish-Based Food. Foods 2022; 11:3974. [PMID: 36553715 PMCID: PMC9778331 DOI: 10.3390/foods11243974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
This study describes the set-up and optimization of a fermentation strategy applied to a composite raw material containing jellyfish biomass as the principal ingredient. New fermented food was developed by combining fresh jellyfish Rhizostoma pulmo and the sequential solid-state submerged liquid fermentation method used in Asian countries for processing a high-salt-containing raw material. Aspergillus oryzae was used to drive the first fermentation, conducted in solid-state conditions, of a jellyfish-based product, here named Jelly paste. The second fermentation was performed by inoculating the Jelly paste with different selected bacteria and yeasts, leading to a final product named fermented Jellyfish paste. For the first time, a set of safety parameters necessary for monitoring and describing a jellyfish-based fermented food was established. The new fermented products obtained by the use of Debaryomyces hansenii BC T3-23 yeast strain and the Bacillus amyloliquefaciens MS3 bacterial strain revealed desirable nutritional traits in terms of protein, lipids and total phenolic content, as well as valuable total antioxidant activity. The obtained final products also showed a complex enzyme profile rich in amylase, protease and lipase activities, thus making them characterized by unique composite sensory odor descriptors (umami, smoked, dried fruit, spices).
Collapse
Affiliation(s)
- Francesca Anna Ramires
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, Unità Operativa di Lecce, 73100 Lecce, Italy
| | - Gianluca Bleve
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, Unità Operativa di Lecce, 73100 Lecce, Italy
| | - Stefania De Domenico
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, Unità Operativa di Lecce, 73100 Lecce, Italy
- Dipartimento di Biologia e Scienze Biologiche e Ambientali (DiSTeBA), Campus Ecotekne, Università del Salento, 73100 Lecce, Italy
| | - Antonella Leone
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, Unità Operativa di Lecce, 73100 Lecce, Italy
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Local Unit of Lecce, 73100 Lecce, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
15
|
Fermentation of cv. Kalamata Natural Black Olives with Potential Multifunctional Yeast Starters. Foods 2022; 11:foods11193106. [PMID: 36230182 PMCID: PMC9563747 DOI: 10.3390/foods11193106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to explore the inoculated fermentation of cv. Kalamata natural black olives using selected strains of yeast cultures with multifunctional potential. For this purpose, five yeast starters belonging to Candida boidinii (four starters) and Saccharomyces cerevisiae (one starter), previously isolated from table olive fermentation of the same variety and screened for their technological characteristics and probiotic potential, were inoculated in brines at the beginning of fermentation. Microbial populations (lactic acid bacteria, yeasts, and Enterobacteriaceae), pH, titratable acidity, organic acids, and ethanol were monitored during fermentation for a period of 5 months. At the same time, the survival of each starter was assessed by culture-dependent molecular identification at the beginning (0 days), middle (75 days), and final stages (150 days) of fermentation in the brines and olives (at the end of the process only). The results revealed the coexistence of yeasts and lactic acid bacteria (LAB) throughout fermentation in most processes and also the absence of Enterobacteriaceae after the first 20 days of brining. The population of yeasts remained 2 log cycles below LAB counts, except for in the inoculated treatment with C. boidinii Y28, where the yeast starter prevailed from day 60 until the end of the fermentation, as well as in the inoculated treatment with C. boidinii Y30, where no LAB could be detected in the brines after 38 days. At the end of the process, LAB ranged between 4.6 and 6.8 log10 CFU/mL, while yeasts were close to 5.0 log10 CFU/mL, except for the inoculated fermentation with C. boidinii Y27 and spontaneous fermentation (control), in which the yeast counts were close to 3.5 log10 CFU/mL. At the end of fermentation, the recovery percentage of C. boidinii Y27 was 50% in the brines and 45% in the olives. C. boidinii Y28 and S. cerevisiae Y34 could be recovered at 25% and 5% in the brine, respectively, whereas neither starter could be detected in the olives. For C. boidinii Y30, the recovery percentage was 25% in the brine and 10% in the olives. Finally, C. boidinii Y31 could not be detected in the brines and survived at a low percentage (10%) in the olives.
Collapse
|
16
|
Maiorano G, Ramires FA, Durante M, Palamà IE, Blando F, De Rinaldis G, Perbellini E, Patruno V, Gadaleta Caldarola C, Vitucci S, Mita G, Bleve G. The Controlled Semi-Solid Fermentation of Seaweeds as a Strategy for Their Stabilization and New Food Applications. Foods 2022; 11:2811. [PMID: 36140940 PMCID: PMC9497830 DOI: 10.3390/foods11182811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
For centuries, macroalgae, or seaweeds, have been a significant part of East Asian diets. In Europe, seaweeds are not considered traditional foods, even though they are increasingly popular in Western diets in human food applications. In this study, a biological processing method based on semi-solid fermentation was optimized for the treatment of the seaweed Gracilaria gracilis. For the first time, selected lactic acid bacteria and non-conventional coagulase-negative staphylococci were used as starter preparations for driving a bio-processing and bio-stabilization of raw macroalga material to obtain new seaweed-based food prototypes for human consumption. Definite food safety and process hygiene criteria were identified and successfully applied. The obtained fermented products did not show any presence of pathogenic or spoilage microorganisms, thereby indicating safety and good shelf life. Lactobacillus acidophilus-treated seaweeds revealed higher α-amylase, protease, lipase, endo-cellulase, and endo-xylanase activity than in the untreated sample. This fermented sample showed a balanced n-6/n-3 fatty acid ratio. SBM-11 (Lactobacillus sakei, Staphylococcus carnosus and Staphylococcus xylosus) and PROMIX 1 (Staphylococcus xylosus) treated samples showed fatty acid compositions that were considered of good nutritional quality and contained relevant amounts of isoprenoids (vitamin E and A). All the starters improved the nutritional value of the seaweeds by significantly reducing the insoluble indigestible fractions. Preliminary data were obtained on the cytocompatibility of G. gracilis fermented products by in vitro tests. This approach served as a valid strategy for the easy bio-stabilization of this valuable but perishable food resource and could boost its employment for newly designed seaweed-based food products.
Collapse
Affiliation(s)
- Gabriele Maiorano
- Istituto di Nanotecnologie, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Francesca Anna Ramires
- Unità Operativa di Lecce, Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Miriana Durante
- Unità Operativa di Lecce, Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Ilaria Elena Palamà
- Istituto di Nanotecnologie, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Federica Blando
- Unità Operativa di Lecce, Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Gianluca De Rinaldis
- Istituto di Nanotecnologie, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | | | - Valeria Patruno
- Agenzia Regionale per la Tecnologia e l’Innovazione (ARTI)—Regione Puglia, 70124 Bari, Italy
| | | | - Santa Vitucci
- Struttura Speciale Cooperazione Territoriale, Regione Puglia, 70100 Bari, Italy
| | - Giovanni Mita
- Istituto di Nanotecnologie, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Gianluca Bleve
- Unità Operativa di Lecce, Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| |
Collapse
|
17
|
A Preliminary Approach to Define the Microbiological Profile of Naturally Fermented Peranzana Alta Daunia Table Olives. Foods 2022; 11:foods11142100. [PMID: 35885341 PMCID: PMC9315826 DOI: 10.3390/foods11142100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023] Open
Abstract
Samples of brines from Peranzana Alta Daunia olives at the end of fermentation were analyzed; samples were taken in two different years from eight different locations (Torremaggiore, San Severo, San Paolo di Civitate, Lucera, Chieuti, Serracapriola, Gargano and Termoli in Southern Italy). Total aerobic count, enterobacteria, pseudomonads, staphylococci, lactic acid bacteria and yeasts (Saccharomyces and non-Saccharomyces) were assessed; moreover, presumptive lactobacilli were characterized in relation to their ability to grow with salt added, and at 10 and 45 °C. Yeasts were generally more abundant than lactic acid bacteria (LAB), but two clusters were found: one including the areas of Torremaggiore, San Severo, Apricena, Lucera and San Paolo di Civitate (area 1, A1), and another comprising Gargano, Termoli and Serracapriola (area 2, A2). Lactobacilli of A1 were more resistant to stress conditions (growth at 10% of salt and at 10 °C); moreover, A1 was characterized by a lower abundance of yeasts. In some areas (Lucera and San Severo), a higher abundance of non-Saccharomyces yeasts was found. This paper offers a first insight into the profile of Peranzana Alta Daunia olives at the end of fermentation, suggesting that some indices (technological traits of lactobacilli, ratio yeasts vs. LAB, abundance of non-Saccharomyces yeasts) could be useful to define a microbiological profile of the variety.
Collapse
|
18
|
Penland M, Pawtowski A, Pioli A, Maillard MB, Debaets S, Deutsch SM, Falentin H, Mounier J, Coton M. Brine salt concentration reduction and inoculation with autochthonous consortia: Impact on Protected Designation of Origin Nyons black table olive fermentations. Food Res Int 2022; 155:111069. [DOI: 10.1016/j.foodres.2022.111069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/04/2022]
|
19
|
Selection of Lactiplantibacillus Strains for the Production of Fermented Table Olives. Microorganisms 2022; 10:microorganisms10030625. [PMID: 35336200 PMCID: PMC8956003 DOI: 10.3390/microorganisms10030625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/07/2022] Open
Abstract
Lactiplantibacillus strains (n. 77) were screened for technological properties (e.g., xylose fermentation, EPS production, antimicrobial activity, tolerance to NaCl and phenolic compounds, oleuropein degradation and hydroxytyrosol formation) relevant for the production of fermented table olives. Survival to olive mill wastewater (OMW) and to simulated gastro-intestinal tract (GIT), the capability to grow at different combinations of NaCl and pH values, radical scavenging activities and biofilm formation were further investigated in 15 selected strains. The screening step revealed high diversity among Lactiplantibacillus strains. Most of the strains were able to ferment xylose, while only a few strains produced EPS and had inhibitory activity against Y. lipolytica. Resistance to phenolic compounds (gallic, protocatechuic, hydroxybenzoic and syringic acids), as well as the ability to release hydroxytyrosol from oleuropein, was strain-specific. OMWs impaired the survival of selected strains, while combinations of NaCl ≤ 6% and pH ≥ 4.0 were well tolerated. DPPH and hydroxyl radical degradation were strain-dependent, while the capability to form biofilm was affected by incubation time. Strains were very tolerant to the GIT. The genome of Lpb. pentosus O17 was sequenced and analysed to verify the presence of genes involved in the degradation and metabolism of phenolic compounds. O17 lacks carboxylesterase and gallate decarboxylase (subunits B and D) sequences, and its gene profile differs from that of other publicly available Lpb. pentosus genomes.
Collapse
|
20
|
Vaccalluzzo A, Celano G, Pino A, Calabrese FM, Foti P, Caggia C, Randazzo C. Metagenetic and Volatilomic Approaches to Elucidate the Effect of Lactiplantibacillus plantarum Starter Cultures on Sicilian Table Olives. Front Microbiol 2022; 12:771636. [PMID: 35281313 PMCID: PMC8914321 DOI: 10.3389/fmicb.2021.771636] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/23/2021] [Indexed: 11/20/2022] Open
Abstract
The present study aimed to evaluate the effect of selected Lactiplantibacillus plantarum strains on both microbiota composition and volatile organic compound profile of Sicilian table olives. Two mixed cultures, named O1 and O2, were set up for pilot-plan scale fermentations at 5% of NaCl. Uninoculated table olives at 5 and 8% (C5 and C8) of salt were used as control. The fermentation process was monitored until 80 days through a dual approach, which included both classical microbiological and 16S amplicon-based sequencing and volatilomics analyses. Compared with control samples (C5 and C8), experimental samples, inoculated with starter cultures (O1 and O2), exhibited a faster acidification with a more pronounced drop in pH. Metagenetics data revealed significant differences of microbiota composition among samples, highlighting the dominance of lactobacilli in both experimental samples; a high occurrence of Enterobacter genus only in control samples with 5% of NaCl; and the presence of Bacteroides, Faecalibacterium, Klebsiella, and Raoultella genera only in control samples with 8% of NaCl. Furthermore, microbiota composition dynamics, through the fermentation process, significantly affected the volatile organic compounds of the final products, whereas no compounds involved in off-odors metabolites were detected in all samples investigated. In conclusion, the addition of the proposed starter cultures and the use of low concentrations of sodium chloride positively affected the microbiota and volatile organic compounds, ensuring the microbiological safety and the pleasant flavors of the final product.
Collapse
Affiliation(s)
- Amanda Vaccalluzzo
- Department of Agricultural, Food and Environment, University of Catania, Catania, Italy
| | - Giuseppe Celano
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Alessandra Pino
- Department of Agricultural, Food and Environment, University of Catania, Catania, Italy
- ProBioEtna srl, Spin-off of University of Catania, Catania, Italy
| | | | - Paola Foti
- Department of Agricultural, Food and Environment, University of Catania, Catania, Italy
| | - Cinzia Caggia
- Department of Agricultural, Food and Environment, University of Catania, Catania, Italy
- ProBioEtna srl, Spin-off of University of Catania, Catania, Italy
| | - Cinzia Randazzo
- Department of Agricultural, Food and Environment, University of Catania, Catania, Italy
- ProBioEtna srl, Spin-off of University of Catania, Catania, Italy
- *Correspondence: Cinzia Randazzo,
| |
Collapse
|
21
|
Anagnostopoulos DA, Tsaltas D. Current Status, Recent Advances, and Main Challenges on Table Olive Fermentation: The Present Meets the Future. Front Microbiol 2022; 12:797295. [PMID: 35095807 PMCID: PMC8793684 DOI: 10.3389/fmicb.2021.797295] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/01/2021] [Indexed: 01/18/2023] Open
Abstract
Table olives are among the most well-known fermented foods, being a vital part of the Mediterranean pyramid diet. They constitute a noteworthy economic factor for the producing countries since both their production and consumption are exponentially increasing year by year, worldwide. Despite its significance, olive’s processing is still craft based, not changed since antiquity, leading to the production of an unstable final product with potential risk concerns, especially related to deterioration. However, based on industrial needs and market demands for reproducible, safe, and healthy products, the modernization of olive fermentation processing is the most important challenge of the current decade. In this sense, the reduction of sodium content and more importantly the use of suitable starter cultures, exhibiting both technological and potential probiotic features, to drive the process may extremely contribute to this need. Prior, to achieve in this effort, the full understanding of table olive microbial ecology during fermentation, including an in-depth determination of microbiota presence and/or dominance and its functionality (genes responsible for metabolite production) that shape the sensorial characteristics of the final product, is a pre-requisite. The advent of meta-omics technology could provide a thorough study of this complex ecosystem, opening in parallel new insights in the field, such as the concept of microbial terroir. Herein, we provide an updated overview in the field of olive fermentation, pointing out some important challenges/perspectives that could be the key to the olive sector’s advancement and modernization.
Collapse
Affiliation(s)
- Dimitrios A Anagnostopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Dimitrios Tsaltas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
22
|
Bleve G, Ramires FA, De Domenico S, Leone A. An Alum-Free Jellyfish Treatment for Food Applications. Front Nutr 2021; 8:718798. [PMID: 34497822 PMCID: PMC8419267 DOI: 10.3389/fnut.2021.718798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022] Open
Abstract
Jellyfish, marketed and consumed as food in The Far East, are traditionally processed using salt and alum mixtures. In recent years, the interest of Western consumers in jellyfish (JF) as a food source is increasing. In Europe [European Union (EU)], JF-derived food products are regulated by a novel food law, but methods for JF treatment and processing have not been developed yet. In this study, a protocol for the stabilization and processing of JF into semi-finished food products without the use of alum is proposed for the first time. Safety and quality parameters, together with a series of technological and nutritional traits, were used to monitor the proposed process and for the characterization of the JF-derived products. Calcium lactate (E327), calcium citrate (E333), and calcium acetate (E263), which are food thickening/stabilizing agents allowed by EU regulations, were used in order to control the presence of possible microbial pathogens and spoilage species. The use of calcium lactate and citrate led to an increase in texture values (~1.7-1.8-fold higher than in starting raw materials) and in several nutritional traits such as antioxidant activity, and protein and fatty acid content. In particular, the combination of JF treatments with calcium salts and phenolic compounds resulted in an antioxidant activity increase of up to 8-fold, protein concentration increase of up to 2.6-fold, fatty acid composition maintenance, and a ω6/ω3 ratio lower than 1. For the first time, the application of phenolic compounds to improve JF technological and nutritional features was verified. This study proposes a new procedure for JF treatment and stabilization useful for future potential food applications in Western countries.
Collapse
Affiliation(s)
- Gianluca Bleve
- Unità Operativa di Lecce, Consiglio Nazionale delle Ricerche-Istituto di Scienze delle Produzioni Alimentari, Lecce, Italy
| | - Francesca Anna Ramires
- Unità Operativa di Lecce, Consiglio Nazionale delle Ricerche-Istituto di Scienze delle Produzioni Alimentari, Lecce, Italy
| | - Stefania De Domenico
- Unità Operativa di Lecce, Consiglio Nazionale delle Ricerche-Istituto di Scienze delle Produzioni Alimentari, Lecce, Italy
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Antonella Leone
- Unità Operativa di Lecce, Consiglio Nazionale delle Ricerche-Istituto di Scienze delle Produzioni Alimentari, Lecce, Italy
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Local Unit of Lecce, Lecce, Italy
| |
Collapse
|
23
|
Volatile Composition of Industrially Fermented Table Olives from Greece. Foods 2021; 10:foods10051000. [PMID: 34063279 PMCID: PMC8147446 DOI: 10.3390/foods10051000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 01/18/2023] Open
Abstract
Table olives represent one of the most important fermented products in Greece. Their highly appreciated flavor is directly associated with the volatile composition. However, extensive data on the volatile profile of table olives from Greek cultivars are scarce in the literature. For this reason, the volatile components of industrially fermented table olives from Kalamata, Conservolea and Halkidiki cultivars grown in different geographical areas within Greece were determined using headspace solid-phase microextraction combined with gas chromatography–mass spectrometry. More than 100 volatile compounds were identified and distributed over different chemical classes. All samples were rich in esters, alcohols and acids, whereas the samples of cv. Halkidiki were also characterized by increased levels of volatile phenols. Both qualitative and quantitative differences were observed, which resulted in the discrimination of the table olives according to olive cultivar and growing location. To the best of our knowledge, this is the first systematic study on the volatile profiles of table olives from Greek cultivars that also highlights the pronounced effect of olives’ growing location.
Collapse
|
24
|
Montaño A, Cortés-Delgado A, Sánchez AH, Ruiz-Barba JL. Production of volatile compounds by wild-type yeasts in a natural olive-derived culture medium. Food Microbiol 2021; 98:103788. [PMID: 33875216 DOI: 10.1016/j.fm.2021.103788] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/11/2021] [Accepted: 03/12/2021] [Indexed: 12/18/2022]
Abstract
The production of volatile compounds in naturally fermented green table olives from Manzanilla cultivar was investigated. A total of 62 volatile compounds were detected after 24 weeks of fermentation. To clarify the contribution of yeasts to the formation of these compounds, such microorganisms were isolated from the corresponding fermenting brines. Five major yeast strains were identified: Nakazawaea molendinolei NC168.1, Zygotorulaspora mrakii NC168.2, Pichia manshurica NC168.3, Candida adriatica NC168.4, and Candida boidinii NC168.5. When these yeasts were grown as pure cultures in an olive-derived culture medium, for 7 days at 25 °C, the number of volatiles produced ranged from 22 (P. manshurica NC168.3) to 60 (C. adriatica NC168.4). Contribution of each yeast strain to the qualitative volatile profile of fermenting brines ranged from 19% (P. manshurica NC168.3) to 48% (Z. mrakii NC168.2 and C. adriatica NC168.4). It was concluded that C. adriatica NC168.4 presented the best aromatic profile, being a solid candidate to be part of a novel starter culture to enhance the organoleptic properties of naturally fermented green table olives.
Collapse
Affiliation(s)
- Alfredo Montaño
- Food Biotechnology Department, Instituto de la Grasa-CSIC, Pablo de Olavide University Campus, Building 46, Carretera de Utrera km 1, 41013, Sevilla, Spain.
| | - Amparo Cortés-Delgado
- Food Biotechnology Department, Instituto de la Grasa-CSIC, Pablo de Olavide University Campus, Building 46, Carretera de Utrera km 1, 41013, Sevilla, Spain.
| | - Antonio Higinio Sánchez
- Food Biotechnology Department, Instituto de la Grasa-CSIC, Pablo de Olavide University Campus, Building 46, Carretera de Utrera km 1, 41013, Sevilla, Spain.
| | - José Luis Ruiz-Barba
- Food Biotechnology Department, Instituto de la Grasa-CSIC, Pablo de Olavide University Campus, Building 46, Carretera de Utrera km 1, 41013, Sevilla, Spain.
| |
Collapse
|
25
|
Tzamourani AP, Di Napoli E, Paramithiotis S, Economou‐Petrovits G, Panagiotidis S, Panagou EZ. Microbiological and physicochemical characterisation of green table olives of Halkidiki and Conservolea varieties processed by the Spanish method on industrial scale. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Aikaterini P. Tzamourani
- Laboratory of Microbiology and Biotechnology of Foods Department of Food Science and Human Nutrition School of Food and Nutritional Sciences Agricultural University of Athens Iera Odos 75 Athens11855Greece
| | - Elisa Di Napoli
- Department of Agricultural, Forest and Food Sciences University of Torino Largo Paolo Braccini 2 Grugliasco, Torino10095Italy
| | - Spiros Paramithiotis
- Laboratory of Food Quality Control and Hygiene Department of Food Science and Human Nutrition School of Food and Nutritional Sciences Agricultural University of Athens Athens Greece
| | | | - Stavros Panagiotidis
- PELOPAC S.A. Block 38, NB1A Street, Thessaloniki Industrial Area Sindos57022Greece
| | - Efstathios Z. Panagou
- Laboratory of Microbiology and Biotechnology of Foods Department of Food Science and Human Nutrition School of Food and Nutritional Sciences Agricultural University of Athens Iera Odos 75 Athens11855Greece
| |
Collapse
|
26
|
Ahmad M, Mehyar G, Othman G. Nutritional, functional and microbiological characteristics of Jordanian fermented green Nabali Baladi olives. GRASAS Y ACEITES 2021. [DOI: 10.3989/gya.1258192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The quality characteristics of green olives produced by the traditional spontaneous fermentation method in Jordan have never been studied. We investigated the nutritional, functional, and microbiological characteristics of Jordanian fermented green Nabali Baladi olives (GNBFO). Proximate composition, fatty acids, and total polyphenols were determined by standard protocols. Cultivable microflora was monitored over 3 months of fermentation. Isolated microorganisms were identified by molecular sequencing and in vitro probiotic traits were tested. GNBFO contained fiber (3g⁄100g), total polyphenols (306mg⁄100g), oil (19.3g ⁄100g), and oleic acid (70%). Yeast strains (Candida diddensiae and Candida naeodendra) were predominant and showed acid (pH=2.5) and bile salt (0.1% and 0.3%) resistant and high adhesion ability (ca∼107CFU/ml) to intestinal cell lines; they were positive to catalase and negative to lipase and none possessed antimicrobial activity against selected pathogens. Lactic acid bacteria were not detected. In conclusion, the GNBFO have promising functional characteristics as they contain valuable nutrients, antioxidants, and yeast strains with potential probiotic traits.
Collapse
|
27
|
Mujdeci GN, Ozbas ZY. Technological and enzymatic characterization of the yeasts isolated from natural fermentation media of Gemlik olives. J Appl Microbiol 2021; 131:801-818. [PMID: 33346384 DOI: 10.1111/jam.14979] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 11/30/2022]
Abstract
AIM To determine the technological and enzymatic characteristics of 54 yeast strains belonging to 16 species previously isolated from natural fermentation media of Gemlik olives. The distinguishing feature of these strains, according to their selective technological and enzymatic properties using principal component analysis (PCA), was also intended. METHODS AND RESULTS The technological properties of yeast strains, growth characteristics at different temperatures, pH and salt concentrations were examined. Besides, yeast strains' abilities to use oleuropein as a sole carbon source, to assimilate citric acid and to produce H2 S were examined and their catalase, pectolytic, proteolytic and killer activities were also tested. All strains could grow between 15 and 28°C which are favourable temperatures for natural olive fermentation and they were able to tolerate high salt concentration and low pH in the brine of natural fermentation media. As a result of enzymatic characterization with API-ZYM test system, all strains have esterase activity, which is an important feature for developing table olive aroma. In this research, β-glucosidase activity, which contributes to removing bitterness out of olives, was one of the main distinguishing features of yeast strains. Several strains of Candida hellenica, Pichia anomala and Candida pelliculosa species had β-glucosidase activity. PCA tested yeasts and several strains belonging to C. hellenica (AF84-1), P. anomala (BF1-1, BF46-2) and C. pelliculosa (BF46-3, BF143-2) species have promising technological and enzymatic properties for natural table olive production. CONCLUSION Five promising strains belonging to C. hellenica, P. anomala and C. pelliculosa species may be suitable adjunct starter cultures with lactic acid bacteria in natural fermentation media of table olive. SIGNIFICANCE AND IMPACT OF THE STUDY This study has been the first contribution to the enzymatic and technological characterization of yeasts isolated from Gemlik olives in Turkey. Some strains could be proposed as a promising adjunct culture in the production of table olives.
Collapse
Affiliation(s)
- G N Mujdeci
- Department of Food Engineering, Faculty of Engineering, Hitit University, Corum, Turkey
| | - Z Y Ozbas
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, Beytepe, Ankara, Turkey
| |
Collapse
|
28
|
Penland M, Deutsch SM, Falentin H, Pawtowski A, Poirier E, Visenti G, Le Meur C, Maillard MB, Thierry A, Mounier J, Coton M. Deciphering Microbial Community Dynamics and Biochemical Changes During Nyons Black Olive Natural Fermentations. Front Microbiol 2020; 11:586614. [PMID: 33133054 PMCID: PMC7578400 DOI: 10.3389/fmicb.2020.586614] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
French PDO Nyons black table olives are produced according to a traditional slow spontaneous fermentation in brine. The manufacture and unique sensorial properties of these olives thus only rely on the autochthonous complex microbiota. This study aimed at unraveling the microbial communities and dynamics of Nyons olives during a 1.5-year-long spontaneous fermentation to determine the main microbial drivers and link microbial species to key metabolites. Fermentations were monitored at a local producer plant at regular time intervals for two harvests and two olive types (organically and conventionally grown) using culture-dependent and metabarcoding (ITS2 for fungi, V3-V4 region for bacteria) approaches. Olives and brines were also sampled for volatiles, organic acids and phenolic compounds. No major differences in microbiota composition were observed according to olive type or harvest period. Throughout the fermentation, yeasts were clearly the most dominant. ITS2 sequencing data revealed complex fungal diversity dominated by Citeromyces nyonsensis, Wickerhamomyces anomalus, Zygotorulaspora mrakii, Candida boidinii and Pichia membranifaciens species. Bacterial communities were dominated by the Celerinatantimonas genus, while lactic acid bacteria remained scarce. Clear shifts in microbial communities and biochemical profiles were observed during fermentation and, by correlating metabolites and microbiota changes, four different phases were distinguished. During the first 7 days, phase I, a fast decrease of filamentous fungal and bacterial populations was observed. Between days 21 and 120, phase II, W. anomalus and C. nyonsensis for fungi and Celerinatantimonas diazotrophica for bacteria dominated the fermentation and were linked to the pH decrease and citric acid production. Phase III, between 120 and 183 days, was characterized by an increase in acids and esters and correlated to increased abundances of Z. mrakii, P. membranifaciens and C. boidinii. During the last months of fermentation, phase IV, microbial communities were dominated by P. membranifaciens and C. boidinii. Both species were strongly correlated to an increase in fruity esters and alcohol abundances. Overall, this study provides an in-depth understanding about microbial species succession and how the microbiota shapes the final distinct olive characteristics. It also constitutes a first step to identify key drivers of this fermentation.
Collapse
Affiliation(s)
- Marine Penland
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France.,STLO, INRAE, Institut Agro, Rennes, France
| | | | | | - Audrey Pawtowski
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | - Elisabeth Poirier
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | - Giorgia Visenti
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | - Christophe Le Meur
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | | | | | - Jérôme Mounier
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | - Monika Coton
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| |
Collapse
|
29
|
FoodOmics as a new frontier to reveal microbial community and metabolic processes occurring on table olives fermentation. Food Microbiol 2020; 92:103606. [PMID: 32950142 DOI: 10.1016/j.fm.2020.103606] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 01/18/2023]
Abstract
Table olives are considered the most widespread fermented food in the Mediterranean area and their consumption is expanding all over the world. This fermented vegetable can be considered as a natural functional food thanks to their high nutritional value and high content of bioactive compounds that contribute to the health and well-being of consumers. The presence of bioactive compounds is strongly influenced by a complex microbial consortium, traditionally exploited through culture-dependent approaches. Recently, the rapid spread of omics technologies has represented an important challenge to better understand the function, the adaptation and the exploitation of microbial diversity in different complex ecosystems, such as table olives. This review provides an overview of the potentiality of omics technologies to in depth investigate the microbial composition and the metabolic processes that drive the table olives fermentation, affecting both sensorial profile and safety properties of the final product. Finally, the review points out the role of omics approaches to raise at higher sophisticated level the investigations on microbial, gene, protein, and metabolite, with huge potential for the integration of table olives composition with functional assessments.
Collapse
|
30
|
A Review on Adventitious Lactic Acid Bacteria from Table Olives. Foods 2020; 9:foods9070948. [PMID: 32709144 PMCID: PMC7404733 DOI: 10.3390/foods9070948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 12/18/2022] Open
Abstract
Spontaneous fermentation constitutes the basis of the chief natural method of processing of table olives, where autochthonous strains of lactic acid bacteria (LAB) play a dominant role. A thorough literature search has unfolded 197 reports worldwide, published in the last two decades, that indicate an increasing interest in table olive-borne LAB, especially in Mediterranean countries. This review attempted to extract extra information from such a large body of work, namely, in terms of correlations between LAB strains isolated, manufacture processes, olive types, and geographical regions. Spain produces mostly green olives by Spanish-style treatment, whereas Italy and Greece produce mainly green and black olives, respectively, by both natural and Spanish-style. More than 40 species belonging to nine genera of LAB have been described; the genus most often cited is Lactobacillus, with L. plantarum and L. pentosus as most frequent species—irrespective of country, processing method, or olive type. Certain LAB species are typically associated with cultivar, e.g., Lactobacillus parafarraginis with Spanish Manzanilla, or L. paraplantarum with Greek Kalamata and Conservolea, Portuguese Galega, and Italian Tonda di Cagliari. Despite the potential of native LAB to serve as starter cultures, extensive research and development efforts are still needed before this becomes a commercial reality in table olive fermentation.
Collapse
|
31
|
Ramires FA, Durante M, Maiorano G, Migoni D, Rampino P, Fanizzi FP, Perrotta C, Mita G, Grieco F, Bleve G. Industrial scale bio-detoxification of raw olive mill wastewaters by the use of selected microbial yeast and bacterial strains to obtain a new source for fertigation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 265:110574. [PMID: 32421563 DOI: 10.1016/j.jenvman.2020.110574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/16/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
The Olive Mill Wastewaters (OMWs) are one of the most important agro-industrial wastes of the Mediterranean Countries and the disposal by draining them onto land has been proved to be damaging for soils, plants and groundwater due to their polluting power. The present report describes a new method for bio-detoxification of undiluted fresh OMW based on the driven selection of aerobic yeasts and bacteria. The identified yeast Candida boidinii A5y and the bacterium Paenibacillus albidus R32b strains allowed the treatment of freshly produced raw OMW characterized by very high COD value and phenolic content, when applied as sequential inoculum. The treated OMW showed the absence of antimicrobial effects and a strongly reduction of phytotoxic activity on the germination of several plant seeds. The process was successfully validated on an industrial scale without any pre-treatment, dilution and/or supplementation of the raw waste. Bio-detoxified OMW produced by this sustainable and low-cost process would be suitable for new non-chemical fertigation or soilless applications. The described procedure represents a virtuous example of circular economy efficaciously applied for a depleting agri-food resource.
Collapse
Affiliation(s)
- F A Ramires
- CNR - Institute of Sciences of Food Production (ISPA), Unit of Lecce, Via Provincial Lecce-Monteroni, 73100, Lecce, Italy
| | - M Durante
- CNR - Institute of Sciences of Food Production (ISPA), Unit of Lecce, Via Provincial Lecce-Monteroni, 73100, Lecce, Italy
| | - G Maiorano
- CNR - Institute of Sciences of Food Production (ISPA), Unit of Lecce, Via Provincial Lecce-Monteroni, 73100, Lecce, Italy
| | - D Migoni
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100, Lecce, Italy
| | - P Rampino
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100, Lecce, Italy
| | - F P Fanizzi
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100, Lecce, Italy
| | - C Perrotta
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100, Lecce, Italy
| | - G Mita
- CNR - Institute of Sciences of Food Production (ISPA), Unit of Lecce, Via Provincial Lecce-Monteroni, 73100, Lecce, Italy
| | - F Grieco
- CNR - Institute of Sciences of Food Production (ISPA), Unit of Lecce, Via Provincial Lecce-Monteroni, 73100, Lecce, Italy
| | - G Bleve
- CNR - Institute of Sciences of Food Production (ISPA), Unit of Lecce, Via Provincial Lecce-Monteroni, 73100, Lecce, Italy.
| |
Collapse
|
32
|
A Preliminary Report for the Design of MoS (Micro-Olive-Spreadsheet), a User-Friendly Spreadsheet for the Evaluation of the Microbiological Quality of Spanish-Style Bella di Cerignola Olives from Apulia (Southern Italy). Foods 2020; 9:foods9070848. [PMID: 32610531 PMCID: PMC7404787 DOI: 10.3390/foods9070848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 11/22/2022] Open
Abstract
A user friendly spreadsheet (Excel interface), designated MoS (Micro-Olive-Spreadsheet), is proposed in this paper as a tool to point out spoiling phenomena in Bella di Cerignola olive brines. The spreadsheet was designed as a protected Excel worksheet, where users input values for the microbiological criteria and pH of brines, and the output is a visual code, much like a traffic light: three red cells indicate a spoiling event, while two red cells indicate the possibility of a spoiling event. The input values are: (a) Total Aerobic Count (TAC); (b) Lactic Acid Bacteria (LAB); (c) yeasts; (d) staphylococci; (e) pH. TAC, LAB, yeasts, and pH are the input values for the first section (quality), while staphylococci count is the input for the second section (technological history). The worksheet can be modified by adding other indices or by setting different breakpoints; however, it is a simple tool for an effective application of hazard analysis and predictive microbiology in table olive production.
Collapse
|
33
|
Anagnostopoulos DA, Kamilari E, Tsaltas D. Evolution of Bacterial Communities, Physicochemical Changes and Sensorial Attributes of Natural Whole and Cracked Picual Table Olives During Spontaneous and Inoculated Fermentation. Front Microbiol 2020; 11:1128. [PMID: 32547528 PMCID: PMC7273852 DOI: 10.3389/fmicb.2020.01128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
Table olives are one of the most well-known traditionally fermented products, and their global consumption is exponentially increasing. In direct brining, table olives are produced spontaneously, without any debittering pre-treatment. Up to date, fermentation process remains empirical and inconstant, as it is affected by the physicochemical attributes of the fruit, tree and fruit management of pro and post-harvest. In the present study, whole and cracked Picual table olives were fermented at industrial scale for 120 days, using three distinct methods (natural fermentation, inoculation with lactic acid bacteria (LAB) at a 7 or a 10% NaCl concentration). Microbial, physicochemical and sensorial alterations monitored during the whole process, and several differences were observed between treatments. Results indicated that in all treatments, the dominant microflora were LAB. Yeasts also detected in noteworthy populations, especially in non-inoculated samples. However, LAB population was significantly higher in inoculated compared to non-inoculated samples. Microbial profiles identified by metagenomic approach showed meaningful differences between spontaneous and inoculated treatments. As a result, the profound dominance of starter culture had a severe effect on olives fermentation, resulting in lower pH and higher acidification, which was mainly caused by the higher levels of lactic acid produced. Furthermore, the elimination of Enterobacteriaceae was shortened, even at lower salt concentration. Although no effect observed concerning the quantitated organoleptic parameters such as color and texture, significantly higher levels in terms of antioxidant capacity were recorded in inoculated samples. At the same time, the degradation time of oleuropein was shortened, leading to the production of higher levels of hydroxytyrosol. Based on this evidence, the establishment of starter culture driven Picual olives fermentation is strongly recommended. It is crucial to mention that the inoculated treatment with reducing sodium content was highly appreciated by the sensory panel, enhancing the hypothesis that the production of Picual table olives at reduced NaCl levels is achievable.
Collapse
Affiliation(s)
- Dimitrios A Anagnostopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Eleni Kamilari
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Dimitrios Tsaltas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
34
|
Russo P, Tufariello M, Renna R, Tristezza M, Taurino M, Palombi L, Capozzi V, Rizzello CG, Grieco F. New Insights into the Oenological Significance of Candida zemplinina: Impact of Selected Autochthonous Strains on the Volatile Profile of Apulian Wines. Microorganisms 2020; 8:E628. [PMID: 32357569 PMCID: PMC7285007 DOI: 10.3390/microorganisms8050628] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 01/05/2023] Open
Abstract
In this investigation, we explored the oenological significance of Candida zemplinina (syn. Starmerella bacillaris) isolates from Apulian grape musts. Moreover, we provide the first evidence of the impact of different C. zemplinina strains on the wine aromatic properties tested as monocultures. We described the diversity of C. zemplinina strains isolated from grapes and the variability of 'volatile' phenotypes associated with this intraspecific variability. Thirty-three isolates were characterized at strain level by PCR-based approach and, among these, 16 strains were identified and then tested by microfermentation tests carried out in grape must. Analyzed strains were low producers of acetic acid and hydrogen sulphide, not able to decarboxylate a panel of representative amino acids, whereas they showed fructophilic character and significant glycerol production. Volatile profiles of produced wines were investigated by gas chromatography-mass spectrometry. The Odor Activity Values of all molecules were calculated and 12 compounds showed values above their odor thresholds. Two selected strains (35NC1 and 15PR1) could be considered as possible starter cultures since they were able to positively affect the sensory properties of obtained wine. This report firstly supplies evidence on the strain-specific impact of different C. zemplinina strains on the final aroma of produced wines.
Collapse
Affiliation(s)
- Pasquale Russo
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, 71121 Foggia, Italy
| | - Maria Tufariello
- CNR—Institute of Sciences of Food Production (ISPA), via Prov.le, Lecce-Monteroni, 73100 Lecce, Italy; (M.T.); (M.T.); (M.T.)
| | - Raffaela Renna
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola, 165/a, 70126 Bari, Italy; (R.R.); (C.G.R.)
| | - Mariana Tristezza
- CNR—Institute of Sciences of Food Production (ISPA), via Prov.le, Lecce-Monteroni, 73100 Lecce, Italy; (M.T.); (M.T.); (M.T.)
| | - Marco Taurino
- CNR—Institute of Sciences of Food Production (ISPA), via Prov.le, Lecce-Monteroni, 73100 Lecce, Italy; (M.T.); (M.T.); (M.T.)
| | - Lorenzo Palombi
- CNR—Institute for Applied Physics ‘Nello Carrara” (IFAC), Via Madonna del Piano 10, Sesto Fiorentino, 50019 Firenze, Italy;
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy;
| | - Carlo G. Rizzello
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola, 165/a, 70126 Bari, Italy; (R.R.); (C.G.R.)
| | - Francesco Grieco
- CNR—Institute of Sciences of Food Production (ISPA), via Prov.le, Lecce-Monteroni, 73100 Lecce, Italy; (M.T.); (M.T.); (M.T.)
| |
Collapse
|
35
|
Anagnostopoulos DA, Goulas V, Xenofontos E, Vouras C, Nikoloudakis N, Tsaltas D. Benefits of the Use of Lactic Acid Bacteria Starter in Green Cracked Cypriot Table Olives Fermentation. Foods 2019; 9:foods9010017. [PMID: 31878011 PMCID: PMC7023104 DOI: 10.3390/foods9010017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 02/02/2023] Open
Abstract
Table olives are one of the most established Mediterranean vegetables, having an exponential increase consumption year by year. In the natural-style processing, olives are produced by spontaneous fermentation, without any chemical debittering. This natural fermentation process remains empirical and variable since it is strongly influenced by physicochemical parameters and microorganism presence in olive drupes. In the present work, Cypriot green cracked table olives were processed directly in brine (natural olives), using three distinct methods: spontaneous fermentation, inoculation with lactic acid bacteria at a 7% or a 10% NaCl concentration. Sensory, physicochemical, and microbiological alterations were monitored at intervals, and major differences were detected across treatments. Results indicated that the predominant microorganisms in the inoculated treatments were lactic acid bacteria, while yeasts predominated in control. As a consequence, starter culture contributed to a crucial effect on olives fermentation, leading to faster acidification and lower pH. This was attributed to a successful lactic acid fermentation, contrasting the acetic and alcoholic fermentation observed in control. Furthermore, it was established that inhibition of enterobacteria growth was achieved in a shorter period and at a significantly lower salt concentration, compared to the spontaneous fermentation. Even though no significant variances were detected in terms of the total phenolic content and antioxidant capacity, the degradation of oleuropein was achieved faster in inoculated treatments, thus, producing higher levels of hydroxytyrosol. Notably, the reduction of salt concentration, in combination with the use of starter, accented novel organoleptic characteristics in the final product, as confirmed from a sensory panel; hence, it becomes obvious that the production of Cypriot table olives at reduced NaCl levels is feasible.
Collapse
|
36
|
Gerardi C, Tristezza M, Giordano L, Rampino P, Perrotta C, Baruzzi F, Capozzi V, Mita G, Grieco F. Exploitation of Prunus mahaleb fruit by fermentation with selected strains of Lactobacillus plantarum and Saccharomyces cerevisiae. Food Microbiol 2019; 84:103262. [DOI: 10.1016/j.fm.2019.103262] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/19/2019] [Accepted: 07/05/2019] [Indexed: 12/11/2022]
|
37
|
Bioactive Compounds and Stability of a Typical Italian Bakery Products " Taralli" Enriched with Fermented Olive Paste. Molecules 2019; 24:molecules24183258. [PMID: 31500173 PMCID: PMC6766877 DOI: 10.3390/molecules24183258] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 11/16/2022] Open
Abstract
Olive paste (OP) is a novel by-product of olive mill industry composed of water, olive pulp, and skin. Due to its richness in bioactive compounds, OP exploitation for human consumption has recently been proposed. Starter driven fermented OP is characterized by a well-balanced lipid profile, rich in mono and polyunsaturated fatty acids, and a very good oxidative stability due to the high concentration of fat-soluble antioxidants. These characteristics make OP particularly suitable as a functional ingredient for food/feed industry, as well as for the formulation of nutraceutical products. New types of taralli were produced by adding 20% of fermented OP from black olives (cv Cellina di Nardò and Leccino) to the dough. The levels of bioactive compounds (polyphenols, triterpenic acids, tocochromanols, and carotenoids), as well as the fatty acid profile, were monitored during 180 days of storage and compared with control taralli produced with the same flour without OP supplementation. Taralli enriched with fermented OP showed significantly higher levels of bioactive compounds than conventional ones. Furthermore, enriched taralli maintained a low amount of saturated fatty acids and high levels of polyphenols, triterpenic acids, tocochromanols, and carotenoids, compared to the initial value, up to about 90 days in the usual conditions of retailer shelves.
Collapse
|
38
|
Tufariello M, Anglana C, Crupi P, Virtuosi I, Fiume P, Di Terlizzi B, Moselhy N, Attay HA, Pati S, Logrieco AF, Mita G, Bleve G. Efficacy of yeast starters to drive and improve Picual, Manzanilla and Kalamàta table olive fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2504-2512. [PMID: 30379330 DOI: 10.1002/jsfa.9460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/28/2018] [Accepted: 10/28/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Table olive fermentation is an unpredictable process and frequently performed using traditional practices often inadequate to obtain products with acceptable quality and safety standards. In the present study, the efficacy of selected yeast strains as starters to drive fermentations of green and black table olives by the Greek method was investigated. Pilot-scale production by spontaneous fermentation as a control, olives started with previously selected Saccharomyces cerevisiae strains and fermentation driven by commercial S. cerevisiae baker's yeast strain were carried out for each of Manzanilla, Picual and Kalamàta table olive cultivars. RESULTS Time of fermentation was significantly shortened to 40 days to complete the transformation process for all three tested cultivars. Inoculated table olives were enhanced in their organoleptic and nutritional properties in comparison with corresponding samples obtained by spontaneous fermentation. The use of starters was also able to improve safety traits of table olives in terms of biogenic amine reduction as well as absence of undesired microorganisms at the end of the process. CONCLUSIONS Autochthonous, but also non-autochthonous, yeasts can be used to start and control table olive fermentations and can significantly improve quality and safety aspects of table olives produced by many smallholder farmers. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Maria Tufariello
- Consiglio Nazionale delle Ricerche - Istituto di Scienze delle Produzioni Alimentari, Unità Operativa di Lecce, Lecce, Italy
| | - Chiara Anglana
- Consiglio Nazionale delle Ricerche - Istituto di Scienze delle Produzioni Alimentari, Unità Operativa di Lecce, Lecce, Italy
| | - Pasquale Crupi
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura - Centro di Ricerca Viticoltura ed Enologia, Turi (BA), Italy
| | | | | | | | | | | | - Sandra Pati
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università di Foggia, Foggia, Italy
| | - Antonio F Logrieco
- Consiglio Nazionale delle Ricerche - Istituto di Scienze delle Produzioni Alimentari, Bari, Italy
| | - Giovanni Mita
- Consiglio Nazionale delle Ricerche - Istituto di Scienze delle Produzioni Alimentari, Unità Operativa di Lecce, Lecce, Italy
| | - Gianluca Bleve
- Consiglio Nazionale delle Ricerche - Istituto di Scienze delle Produzioni Alimentari, Unità Operativa di Lecce, Lecce, Italy
| |
Collapse
|
39
|
Pino A, Vaccalluzzo A, Solieri L, Romeo FV, Todaro A, Caggia C, Arroyo-López FN, Bautista-Gallego J, Randazzo CL. Effect of Sequential Inoculum of Beta-Glucosidase Positive and Probiotic Strains on Brine Fermentation to Obtain Low Salt Sicilian Table Olives. Front Microbiol 2019; 10:174. [PMID: 30800110 PMCID: PMC6376858 DOI: 10.3389/fmicb.2019.00174] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/22/2019] [Indexed: 11/13/2022] Open
Abstract
In the present study, the β-glucosidase positive strain Lactobacillus plantarum F3. 3 was used as starter during the fermentation of Sicilian table olives (Nocellara Etnea cultivar) at two different salt concentrations (5 and 8%), in order to accelerate the debittering process. The latter was monitored through the increase of hydroxytyrosol compound. In addition, the potential probiotic Lactobacillus paracasei N24 strain was added after 60 days of fermentation. Un-inoculated brine samples at 5 and 8% of salt were used as control. The fermentation was monitored till 120 days through physico-chemical and microbiological analyses. In addition, volatile organic compounds and sensorial analyses were performed during the process and at the end of the fermentation, respectively. Lactic acid bacteria and yeasts were, in depth, studied by molecular methods and the occurrence of the potential probiotic N24 strain in the final products was determined. Results highlighted that inoculated brines exhibited a higher acidification and debittering rate than control ones. In addition, inoculated brines at 5% of salt exhibited higher polyphenols (hydoxytyrosol, tyrosol, and verbascoside) content compared to samples at 8% of NaCl, suggesting a stronger oleuropeinolytic activity of the starter at low salt concentration. Lactobacilli and yeasts dominated during the fermentation process, with the highest occurrence of L. plantarum and Wickerhamomyces anomalus, respectively. Moreover, the potential probiotic L. paracasei N24 strain was able to survive in the final product. Hence, the sequential inoculum of beta-glucosidase positive and potential probiotic strains could be proposed as a suitable technology to produce low salt Sicilian table olives.
Collapse
Affiliation(s)
- Alessandra Pino
- Department of Agricultural, Food and Environment, University of Catania, Catania, Italy
| | - Amanda Vaccalluzzo
- Department of Agricultural, Food and Environment, University of Catania, Catania, Italy
| | - Lisa Solieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Flora V. Romeo
- Council for Agricultural Research and Economics, Research Centre for Olive, Citrus and Tree Fruit, Acireale, Italy
| | - Aldo Todaro
- Department of Agricultural, Food and Forest Science, University of Palermo, Palermo, Italy
| | - Cinzia Caggia
- Department of Agricultural, Food and Environment, University of Catania, Catania, Italy
| | - Francisco Noé Arroyo-López
- Food Biotechnology Department, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Seville, Spain
| | - Joaquin Bautista-Gallego
- Food Biotechnology Department, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Seville, Spain
| | - Cinzia L. Randazzo
- Department of Agricultural, Food and Environment, University of Catania, Catania, Italy
| |
Collapse
|
40
|
Tufariello M, Durante M, Veneziani G, Taticchi A, Servili M, Bleve G, Mita G. Patè Olive Cake: Possible Exploitation of a By-Product for Food Applications. Front Nutr 2019; 6:3. [PMID: 30805344 PMCID: PMC6371699 DOI: 10.3389/fnut.2019.00003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/10/2019] [Indexed: 12/15/2022] Open
Abstract
Patè Olive Cake (POC) is a new by-product derived from recently introduced new decanters in the olive oil production process. POC, is essentially composed of water, olive pulp and olive skin, and is rich in several valuable bioactive compounds. Moreover, it still contains about 8-12% residual olive oil. We characterized the main bioactive compounds in POC from black olives (cv. Leccino and Cellina di Nardò) and also verified the biotechnological aptitude of selected yeast and lactic acid bacteria from different sources, in transforming POC into a new fermented product. The strategy of sequential inoculum of Saccharomyces cerevisiae and Leuconostoc mesenteroides was successful in driving the fermentation process. In fermented POC total levels of phenols were slightly reduced when compared with a non-fermented sample nevertheless the content of the antioxidant hydroxytyrosol showed increased results. The total levels of triterpenic acids, carotenoids, and tocochromanols results were almost unchanged among the samples. Sensory notes were significantly improved after fermentation due to the increase of superior alcohols, esters, and acids. The results reported indicate a possible valorisation of this by-product for the preparation of food products enriched in valuable healthy compounds.
Collapse
Affiliation(s)
- Maria Tufariello
- Consiglio Nazionale delle Ricerche—Istituto di Scienze delle Produzioni Alimentari, Lecce, Italy
| | - Miriana Durante
- Consiglio Nazionale delle Ricerche—Istituto di Scienze delle Produzioni Alimentari, Lecce, Italy
| | - Gianluca Veneziani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Agnese Taticchi
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Maurizio Servili
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Gianluca Bleve
- Consiglio Nazionale delle Ricerche—Istituto di Scienze delle Produzioni Alimentari, Lecce, Italy
| | - Giovanni Mita
- Consiglio Nazionale delle Ricerche—Istituto di Scienze delle Produzioni Alimentari, Lecce, Italy
| |
Collapse
|
41
|
Caponio F, Difonzo G, Calasso M, Cosmai L, De Angelis M. Effects of olive leaf extract addition on fermentative and oxidative processes of table olives and their nutritional properties. Food Res Int 2019; 116:1306-1317. [DOI: 10.1016/j.foodres.2018.10.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/28/2018] [Accepted: 10/07/2018] [Indexed: 10/28/2022]
|
42
|
Ultrasonication effects on the phytochemical, volatile and sensorial characteristics of lactic acid fermented mulberry juice. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2018.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
43
|
Campus M, Değirmencioğlu N, Comunian R. Technologies and Trends to Improve Table Olive Quality and Safety. Front Microbiol 2018; 9:617. [PMID: 29670593 PMCID: PMC5894437 DOI: 10.3389/fmicb.2018.00617] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/16/2018] [Indexed: 12/17/2022] Open
Abstract
Table olives are the most widely consumed fermented food in the Mediterranean countries. Peculiar processing technologies are used to process olives, which are aimed at the debittering of the fruits and improvement of their sensory characteristics, ensuring safety of consumption at the same time. Processors demand for novel techniques to improve industrial performances, while consumers' attention for natural and healthy foods has increased in recent years. From field to table, new techniques have been developed to decrease microbial load of potential spoilage microorganisms, improve fermentation kinetics and ensure safety of consumption of the packed products. This review article depicts current technologies and recent advances in the processing technology of table olives. Attention has been paid on pre processing technologies, some of which are still under-researched, expecially physical techniques, such ad ionizing radiations, ultrasounds and electrolyzed water solutions, which are interesting also to ensure pesticide decontamination. The selections and use of starter cultures have been extensively reviewed, particularly the characterization of Lactic Acid Bacteria and Yeasts to fasten and safely drive the fermentation process. The selection and use of probiotic strains to address the request for functional foods has been reported, along with salt reduction strategies to address health concerns, associated with table olives consumption. In this respect, probiotics enriched table olives and strategies to reduce sodium intake are the main topics discussed. New processing technologies and post packaging interventions to extend the shelf life are illustrated, and main findings in modified atmosphere packaging, high pressure processing and biopreservaton applied to table olive, are reported and discussed.
Collapse
Affiliation(s)
- Marco Campus
- Agris Sardegna, Agricultural Research Agency of Sardinia, Sassari, Italy
| | - Nurcan Değirmencioğlu
- Department of Food Processing, Bandirma Vocational High School, Bandirma Onyedi Eylül University, Bandirma, Turkey
| | - Roberta Comunian
- Agris Sardegna, Agricultural Research Agency of Sardinia, Sassari, Italy
| |
Collapse
|
44
|
Bonatsou S, Karamouza M, Zoumpopoulou G, Mavrogonatou E, Kletsas D, Papadimitriou K, Tsakalidou E, Nychas GJE, Panagou EΖ. Evaluating the probiotic potential and technological characteristics of yeasts implicated in cv. Kalamata natural black olive fermentation. Int J Food Microbiol 2018; 271:48-59. [DOI: 10.1016/j.ijfoodmicro.2018.02.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/06/2018] [Accepted: 02/15/2018] [Indexed: 12/21/2022]
|
45
|
Bonatsou S, Paramithiotis S, Panagou EZ. Evolution of Yeast Consortia during the Fermentation of Kalamata Natural Black Olives upon Two Initial Acidification Treatments. Front Microbiol 2018; 8:2673. [PMID: 29375534 PMCID: PMC5767579 DOI: 10.3389/fmicb.2017.02673] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/21/2017] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to elucidate the yeast consortia structure and dynamics during Greek-style processing of Kalamata natural black olives in different brine solutions. Olives were subjected to spontaneous fermentation in 7% (w/v) NaCl brine solution (control treatment) or brine acidified with (a) 0.5% (v/v) vinegar, and (b) 0.1% (v/v) lactic acid at the onset of fermentation. Changes in microbial counts, pH, acidity, organic acids, sugars, and alcohols were analyzed for a period of 187 days. Yeast consortia diversity was evaluated at days 4, 34, 90, 140, and 187 of fermentation. A total of 260 isolates were characterized at sub-species level by rep-PCR genomic fingerprinting with the oligo-nucleotide primer (GTG)5. The characterization of yeast isolates at species level was performed by sequencing of the D1/D2 domain of 26S rRNA gene. Results showed that yeasts dominated the process presenting a relatively broad range of biodiversity composed of 11 genera and 21 species. No lactic acid bacteria (LAB) or Enterobacteriaceae could be enumerated after 20 and 10 days of fermentation, respectively. The dominant yeast species at the beginning were Aureobasidium pullulans for control and vinegar acidification treatments, and Candida naeodendra for lactic acid treatment. Between 34 and 140 days the dominant species were Candida boidinii, Candida molendinolei and Saccharomyces cerevisiae. In the end of fermentation the dominant species in all processes were C. boidinii and C. molendinolei, followed by Pichia manshurica and S. cerevisiae in lactic acid acidification treatment, P. manshurica in vinegar acidification treatment, and Pichia membranifaciens in control fermentation.
Collapse
Affiliation(s)
- Stamatoula Bonatsou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Spiros Paramithiotis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Efstathios Z. Panagou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
46
|
Sánchez AH, López-López A, Cortés-Delgado A, Beato VM, Medina E, de Castro A, Montaño A. Effect of post-fermentation and packing stages on the volatile composition of Spanish-style green table olives. Food Chem 2018; 239:343-353. [DOI: 10.1016/j.foodchem.2017.06.125] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/31/2017] [Accepted: 06/20/2017] [Indexed: 01/18/2023]
|
47
|
Affiliation(s)
- Nevin Şanlier
- Biruni University, Faculty of Health Sciences, Nutrition and Dietetics Department, İstanbul, Turkey
| | - Büşra Başar Gökcen
- Gazi University, Faculty of Health Sciences, Nutrition and Dietetics Department, Ankara, Turkey
| | - Aybüke Ceyhun Sezgin
- Gazi University, Faculty of Tourism, Department of Gastronomy and Culinary Art, Gölbaşı/Ankara, Turkey
| |
Collapse
|
48
|
|
49
|
Randazzo CL, Todaro A, Pino A, Pitino I, Corona O, Caggia C. Microbiota and metabolome during controlled and spontaneous fermentation of Nocellara Etnea table olives. Food Microbiol 2017; 65:136-148. [DOI: 10.1016/j.fm.2017.01.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 01/12/2017] [Accepted: 01/28/2017] [Indexed: 01/25/2023]
|
50
|
Bavaro SL, Susca A, Frisvad JC, Tufariello M, Chytiri A, Perrone G, Mita G, Logrieco AF, Bleve G. Isolation, Characterization, and Selection of Molds Associated to Fermented Black Table Olives. Front Microbiol 2017; 8:1356. [PMID: 28769914 PMCID: PMC5513898 DOI: 10.3389/fmicb.2017.01356] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/04/2017] [Indexed: 12/02/2022] Open
Abstract
Table olives are one of the most important fermented food in the Mediterranean countries. Apart from lactic acid bacteria and yeasts that mainly conduct the olive fermentation, molds can develop on the brine surface, and can have either deleterious or useful effects on this process. From the food safety point of view, occurring molds could also produce mycotoxins, so, it is important to monitor and control them. In this respect, identification of molds associated to two Italian and two Greek fermented black table olives cultivars, was carried out. Sixty strains were isolated and molecularly identified as Penicillium crustosum (21), P. roqueforti (29), P. paneum (1), P. expansum (6), P. polonicum (2), P. commune (1). A group of 20 selected isolates was subjected to technological (beta-glucosidase, cellulolytic, ligninolytic, pectolytic, and xylanolytic activities; proteolytic enzymes) and safety (biogenic amines and secondary metabolites, including mycotoxins) characterization. Combining both technological (presence of desired and absence of undesired enzymatic activities) and safety aspects (no or low production of biogenic amines and regulated mycotoxins), it was possible to select six strains with biotechnological interest. These are putative candidates for future studies as autochthonous co-starters with yeasts and lactic acid bacteria for black table olive production.
Collapse
Affiliation(s)
- Simona L Bavaro
- Consiglio Nazionale delle Ricerche-Istituto di Scienze delle Produzioni AlimentariBari, Italy
| | - Antonia Susca
- Consiglio Nazionale delle Ricerche-Istituto di Scienze delle Produzioni AlimentariBari, Italy
| | - Jens C Frisvad
- Department of Biotechnology and Biomedicine, Technical University of DenmarkKongens Lyngby, Denmark
| | - Maria Tufariello
- Consiglio Nazionale delle Ricerche-Istituto di Scienze delle Produzioni AlimentariLecce, Italy
| | - Agathi Chytiri
- Section of Food Chemistry, Department of Chemistry, University of IoanninaIoannina, Greece
| | - Giancarlo Perrone
- Consiglio Nazionale delle Ricerche-Istituto di Scienze delle Produzioni AlimentariBari, Italy
| | - Giovanni Mita
- Consiglio Nazionale delle Ricerche-Istituto di Scienze delle Produzioni AlimentariLecce, Italy
| | - Antonio F Logrieco
- Consiglio Nazionale delle Ricerche-Istituto di Scienze delle Produzioni AlimentariBari, Italy
| | - Gianluca Bleve
- Consiglio Nazionale delle Ricerche-Istituto di Scienze delle Produzioni AlimentariLecce, Italy
| |
Collapse
|