1
|
Wang D, Li Y, Li L, Chen Y, Min S, Wang Y, Feng J, Zhou J, Zhang Z, Fang Y. Synthesis of antibiofilm (1R,4S)-(-)-fenchone derivatives to control Pseudomonas syringae pv. tomato. PEST MANAGEMENT SCIENCE 2025; 81:1261-1273. [PMID: 39501917 DOI: 10.1002/ps.8525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/07/2024] [Accepted: 10/22/2024] [Indexed: 02/14/2025]
Abstract
BACKGROUND Biofilm plays a crucial role in Pseudomonas syringae pv. tomato (Pst) infection. We identified (1R,4S)-(-)-fenchone (FCH) as the most potent antibiofilm agent against Pst among 39 essential oil compounds. Subsequently, we synthesized a series of FCH oxime ester and acylhydrazine derivatives to explore more potent derivatives. RESULTS II3 was screened out as the most potent derivative, exhibiting a minimal biofilm inhibitory concentration of 60 μg mL-1 and a lowest concentration with maximal biofilm inhibition (LCMBI) of 200 μg mL-1, lower than those of FCH (80 and 500 μg mL-1, respectively). II3 and FCH showed minimum inhibitory concentration values >1000 μg mL-1 and similar maximal biofilm inhibition extents of 48.7% and 49.5% at their respective LCMBIs, respectively. Meanwhile, neither of them influenced cell viability or the activity of metabolic enzymes at their respective LCMBIs. II3 at its LCMBI significantly reduced biofilm thickness, extracellular polysaccharide content, and pectinase and cellulase production indices. In vivo assay results indicated that II3 could preventatively reduce the bacterial contents in tomato leaves at its LCMBI, and when combined with kasugamycin (KSG) (10 μg mL-1), II3 achieved the same level of bacterial reduction as the sole application of KSG (70 μg mL-1), thereby reducing the required dosage of KSG. Mechanistic studies demonstrated that II3 can down-regulate biofilm-related genes and inhibit PsyR/PsyI quorum sensing system, which differs from the bactericidal mechanisms. CONCLUSION These results underscore the potential of II3 as an antibiofilm agent for the control of Pst or FCH as a promising natural candidate for future in-depth optimization. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Delong Wang
- College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Yunpeng Li
- College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Linjing Li
- College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Yizhe Chen
- College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Shuoling Min
- College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Yong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Juntao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jianbo Zhou
- College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Zhijia Zhang
- College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Yali Fang
- College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
2
|
Galeva AV, Zhao D, Syutkin AS, Topilina MY, Shchyogolev SY, Pavlova EY, Selivanova OM, Kireev II, Surin AK, Burygin GL, Liu J, Xiang H, Pyatibratov MG. Tat-fimbriae ("tafi"): An unusual type of haloarchaeal surface structure depending on the twin-arginine translocation pathway. iScience 2025; 28:111793. [PMID: 39949959 PMCID: PMC11821415 DOI: 10.1016/j.isci.2025.111793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/13/2023] [Accepted: 01/09/2025] [Indexed: 02/16/2025] Open
Abstract
The surface structures of archaeal cells, many of which exist at high temperatures, high salinity, and non-physiological pH, are key factors for their adaptation to extreme living conditions. In the haloarchaeon Haloarcula hispanica, we have discovered a thin filamentous surface appendage called tat-fimbriae ("tafi"), which were identified to be composed of three protein subunits, TafA, TafC, and TafE, among which TafA is the major fimbrial subunit. Molecular genetic evidence demonstrates TafA was transported through the twin-arginine translocation pathway (Tat-pathway). Based on protein structure prediction (including AlphaFold 3), tafi exhibits a linear structure: TafC at the tip, TafE acting as an adapter, TafA forming the core filament, and they link the fourth subunit TafF, anchoring tafi to the cell wall. To our knowledge, this is the first case that the Tat-pathway has been linked to the secretion of protein subunits forming prokaryotic filamentous structures.
Collapse
Affiliation(s)
- Anna V. Galeva
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya st. 4, Pushchino, Moscow Region 142290, Russia
| | - Dahe Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Alexey S. Syutkin
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya st. 4, Pushchino, Moscow Region 142290, Russia
| | - Marina Yu Topilina
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya st. 4, Pushchino, Moscow Region 142290, Russia
| | - Sergei Yu Shchyogolev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov 410049, Russia
| | - Elena Yu Pavlova
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya st. 4, Pushchino, Moscow Region 142290, Russia
| | - Olga M. Selivanova
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya st. 4, Pushchino, Moscow Region 142290, Russia
| | - Igor I. Kireev
- A.N. Belozersky Institute of Physico-chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gori 1, Bldg 40, Moscow 119234, Russia
| | - Alexey K. Surin
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya st. 4, Pushchino, Moscow Region 142290, Russia
- Branch of the Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, Pushchino, Moscow Region 142290, Russia
- State Research Center for Applied Microbiology & Biotechnology, Obolensk, Serpukhov District, Moscow Region 142279, Russia
| | - Gennady L. Burygin
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov 410049, Russia
- Vavilov Saratov State Agrarian University, 1 Teatralnaya Ploshchad, Saratov 410012, Russia
| | - Jingfang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Mikhail G. Pyatibratov
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya st. 4, Pushchino, Moscow Region 142290, Russia
| |
Collapse
|
3
|
Bhowmick A, Recalde A, Bhattacharyya C, Banerjee A, Das J, Rodriguez-Cruz UE, Albers SV, Ghosh A. Role of VapBC4 toxin-antitoxin system of Sulfolobus acidocaldarius in heat stress adaptation. mBio 2024; 15:e0275324. [PMID: 39535218 PMCID: PMC11633383 DOI: 10.1128/mbio.02753-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Toxin-antitoxin (TA) systems are important for stress adaptation in prokaryotes, including persistence, antibiotic resistance, pathogenicity, and biofilm formation. Toxins can cause cell death, reversible growth stasis, and direct inhibition of crucial cellular processes through various mechanisms, while antitoxins neutralize the effects of toxins. In bacteria, these systems have been studied in detail, whereas their function in archaea remains elusive. During heat stress, the thermoacidophilic archaeon Sulfolobus acidocaldarius exhibited an increase in the expression of several bicistronic type II vapBC TA systems, with the highest expression observed in the vapBC4 system. In the current study, we performed a comprehensive biochemical characterization of the VapBC4 TA system, establishing it as a bonafide type II toxin-antitoxin system. The VapC4 toxin is shown to have high-temperature catalyzed RNase activity specific for mRNA and rRNA, while the VapB4 antitoxin inhibits the toxic activity of VapC4 by interacting with it. VapC4 toxin expression led to heat-induced persister-like cell formation, allowing the cell to cope with the stress. Furthermore, this study explored the impact of vapBC4 deletion on biofilm formation, whereby deletion of vapC4 led to increased biofilm formation, suggesting its role in regulating biofilm formation. Thus, during heat stress, the liberated VapC4 toxin in cells could potentially signal a preference for persister cell formation over biofilm growth. Thus, our findings shed light on the diverse roles of the VapC4 toxin in inhibiting translation, inducing persister cell formation, and regulating biofilm formation in S. acidocaldarius, enhancing our understanding of TA systems in archaea. IMPORTANCE This research enhances our knowledge of toxin-antitoxin (TA) systems in archaea, specifically in the thermoacidophilic archaeon Sulfolobus acidocaldarius. TA systems are widespread in both bacterial and archaeal genomes, indicating their evolutionary importance. However, their exact functions in archaeal cellular physiology are still not well understood. This study sheds light on the complex roles of TA systems and their critical involvement in archaeal stress adaptation, including persistence and biofilm formation. By focusing on S. acidocaldarius, which lives in habitats with fluctuating temperatures that can reach up to 90°C, the study reveals the unique challenges and survival mechanisms of this organism. The detailed biochemical analysis of the VapBC4 TA system, and its crucial role during heat stress, provides insights into how extremophiles can survive in harsh conditions. The findings of this study show the various functions of the VapC4 toxin, including inhibiting translation, inducing persister-like cell formation, and regulating biofilm formation. This knowledge improves our understanding of TA systems in thermoacidophiles and has broader implications for understanding how microorganisms adapt to extreme environments.
Collapse
Affiliation(s)
- Arghya Bhowmick
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Alejandra Recalde
- Molecular Biology of Archaea, Microbiology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Ankita Banerjee
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Jagriti Das
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Ulises E. Rodriguez-Cruz
- Department of Evolutionary Ecology, Institute of Ecology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Microbiology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Abhrajyoti Ghosh
- Department of Biological Sciences, Bose Institute, Kolkata, India
| |
Collapse
|
4
|
Doloman A, Besteman MS, Sanders MG, Sousa DZ. Methanogenic partner influences cell aggregation and signalling of Syntrophobacterium fumaroxidans. Appl Microbiol Biotechnol 2024; 108:127. [PMID: 38229305 DOI: 10.1007/s00253-023-12955-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/15/2023] [Accepted: 12/01/2023] [Indexed: 01/18/2024]
Abstract
For several decades, the formation of microbial self-aggregates, known as granules, has been extensively documented in the context of anaerobic digestion. However, current understanding of the underlying microbial-associated mechanisms responsible for this phenomenon remains limited. This study examined morphological and biochemical changes associated with cell aggregation in model co-cultures of the syntrophic propionate oxidizing bacterium Syntrophobacterium fumaroxidans and hydrogenotrophic methanogens, Methanospirillum hungatei or Methanobacterium formicicum. Formerly, we observed that when syntrophs grow for long periods with methanogens, cultures tend to form aggregates visible to the eye. In this study, we maintained syntrophic co-cultures of S. fumaroxidans with either M. hungatei or M. formicicum for a year in a fed-batch growth mode to stimulate aggregation. Millimeter-scale aggregates were observed in both co-cultures within the first 5 months of cultivation. In addition, we detected quorum sensing molecules, specifically N-acyl homoserine lactones, in co-culture supernatants preceding the formation of macro-aggregates (with diameter of more than 20 μm). Comparative transcriptomics revealed higher expression of genes related to signal transduction, polysaccharide secretion and metal transporters in the late-aggregation state co-cultures, compared to the initial ones. This is the first study to report in detail both biochemical and physiological changes associated with the aggregate formation in syntrophic methanogenic co-cultures. KEYPOINTS: • Syntrophic co-cultures formed mm-scale aggregates within 5 months of fed-batch cultivation. • N-acyl homoserine lactones were detected during the formation of aggregates. • Aggregated co-cultures exhibited upregulated expression of adhesins- and polysaccharide-associated genes.
Collapse
Affiliation(s)
- Anna Doloman
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, The Netherlands.
| | - Maaike S Besteman
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, The Netherlands
| | - Mark G Sanders
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708, WG, Wageningen, The Netherlands
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, The Netherlands
- Centre for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Princetonlaan 6, 3584, CB, Utrecht, The Netherlands
| |
Collapse
|
5
|
Fernandes-Martins MC, Springer C, Colman DR, Boyd ES. Acquisition of elemental sulfur by sulfur-oxidising Sulfolobales. Environ Microbiol 2024; 26:e16691. [PMID: 39206712 DOI: 10.1111/1462-2920.16691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Elemental sulfur (S8 0)-oxidising Sulfolobales (Archaea) dominate high-temperature acidic hot springs (>80°C, pH <4). However, genomic analyses of S8 0-oxidising members of the Sulfolobales reveal a patchy distribution of genes encoding sulfur oxygenase reductase (SOR), an S8 0 disproportionating enzyme attributed to S8 0 oxidation. Here, we report the S8 0-dependent growth of two Sulfolobales strains previously isolated from acidic hot springs in Yellowstone National Park, one of which associated with bulk S8 0 during growth and one that did not. The genomes of each strain encoded different sulfur metabolism enzymes, with only one encoding SOR. Dialysis membrane experiments showed that direct contact is not required for S8 0 oxidation in the SOR-encoding strain. This is attributed to the generation of hydrogen sulfide (H2S) from S8 0 disproportionation that can diffuse out of the cell to solubilise bulk S8 0 to form soluble polysulfides (Sx 2-) and/or S8 0 nanoparticles that readily diffuse across dialysis membranes. The Sulfolobales strain lacking SOR required direct contact to oxidise S8 0, which could be overcome by the addition of H2S. High concentrations of S8 0 inhibited the growth of both strains. These results implicate alternative strategies to acquire and metabolise sulfur in Sulfolobales and have implications for their distribution and ecology in their hot spring habitats.
Collapse
Affiliation(s)
| | - Carli Springer
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Daniel R Colman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
6
|
Doloman A, Sousa DZ. Mechanisms of microbial co-aggregation in mixed anaerobic cultures. Appl Microbiol Biotechnol 2024; 108:407. [PMID: 38963458 PMCID: PMC11224092 DOI: 10.1007/s00253-024-13246-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Co-aggregation of anaerobic microorganisms into suspended microbial biofilms (aggregates) serves ecological and biotechnological functions. Tightly packed aggregates of metabolically interdependent bacteria and archaea play key roles in cycling of carbon and nitrogen. Additionally, in biotechnological applications, such as wastewater treatment, microbial aggregates provide a complete metabolic network to convert complex organic material. Currently, experimental data explaining the mechanisms behind microbial co-aggregation in anoxic environments is scarce and scattered across the literature. To what extent does this process resemble co-aggregation in aerobic environments? Does the limited availability of terminal electron acceptors drive mutualistic microbial relationships, contrary to the commensal relationships observed in oxygen-rich environments? And do co-aggregating bacteria and archaea, which depend on each other to harvest the bare minimum Gibbs energy from energy-poor substrates, use similar cellular mechanisms as those used by pathogenic bacteria that form biofilms? Here, we provide an overview of the current understanding of why and how mixed anaerobic microbial communities co-aggregate and discuss potential future scientific advancements that could improve the study of anaerobic suspended aggregates. KEY POINTS: • Metabolic dependency promotes aggregation of anaerobic bacteria and archaea • Flagella, pili, and adhesins play a role in the formation of anaerobic aggregates • Cyclic di-GMP/AMP signaling may trigger the polysaccharides production in anaerobes.
Collapse
Affiliation(s)
- Anna Doloman
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
- Centre for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Princetonlaan 6, 3584 CB, Utrecht, The Netherlands
| |
Collapse
|
7
|
Chatterjee P, Garcia MA, Cote JA, Yun K, Legerme GP, Habib R, Tripepi M, Young C, Kulp D, Dyall-Smith M, Pohlschroder M. Involvement of ArlI, ArlJ, and CirA in archaeal type IV pilin-mediated motility regulation. J Bacteriol 2024; 206:e0008924. [PMID: 38819156 PMCID: PMC11332145 DOI: 10.1128/jb.00089-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024] Open
Abstract
Many prokaryotes use swimming motility to move toward favorable conditions and escape adverse surroundings. Regulatory mechanisms governing bacterial flagella-driven motility are well-established; however, little is yet known about the regulation underlying swimming motility propelled by the archaeal cell surface structure, the archaella. Previous research showed that the deletion of the adhesion pilins (PilA1-6), subunits of the type IV pili cell surface structure, renders the model archaeon Haloferax volcanii non-motile. In this study, we used ethyl methanesulfonate mutagenesis and a motility assay to identify motile suppressors of the ∆pilA[1-6] strain. Of the eight suppressors identified, six contain missense mutations in archaella biosynthesis genes, arlI and arlJ. In trans expression of arlI and arlJ mutant constructs in the respective multi-deletion strains ∆pilA[1-6]∆arlI and ∆pilA[1-6]∆arlJ confirmed their role in suppressing the ∆pilA[1-6] motility defect. Additionally, three suppressors harbor co-occurring disruptive missense and nonsense mutations in cirA, a gene encoding a proposed regulatory protein. A deletion of cirA resulted in hypermotility, while cirA expression in trans in wild-type cells led to decreased motility. Moreover, quantitative real-time PCR analysis revealed that in wild-type cells, higher expression levels of arlI, arlJ, and the archaellin gene arlA1 were observed in motile early-log phase rod-shaped cells compared to non-motile mid-log phase disk-shaped cells. Conversely, ∆cirA cells, which form rods during both early- and mid-log phases, exhibited similar expression levels of arl genes in both growth phases. Our findings contribute to a deeper understanding of the mechanisms governing archaeal motility, highlighting the involvement of ArlI, ArlJ, and CirA in pilin-mediated motility regulation.IMPORTANCEArchaea are close relatives of eukaryotes and play crucial ecological roles. Certain behaviors, such as swimming motility, are thought to be important for archaeal environmental adaptation. Archaella, the archaeal motility appendages, are evolutionarily distinct from bacterial flagella, and the regulatory mechanisms driving archaeal motility are largely unknown. Previous research has linked the loss of type IV pili subunits to archaeal motility suppression. This study reveals three Haloferax volcanii proteins involved in pilin-mediated motility regulation, offering a deeper understanding of motility regulation in this understudied domain while also paving the way for uncovering novel mechanisms that govern archaeal motility. Understanding archaeal cellular processes will help elucidate the ecological roles of archaea as well as the evolution of these processes across domains.
Collapse
Affiliation(s)
- Priyanka Chatterjee
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marco A. Garcia
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jacob A. Cote
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kun Yun
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Georgio P. Legerme
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rumi Habib
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Manuela Tripepi
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Criston Young
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel Kulp
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Mike Dyall-Smith
- Computational Biology Group, Max Planck Institute of Biochemistry, Martinsried, Germany
- Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Australia
| | - Mecky Pohlschroder
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Liu J, Eastep GN, Cvirkaite-Krupovic V, Rich-New ST, Kreutzberger MAB, Egelman EH, Krupovic M, Wang F. Two distinct archaeal type IV pili structures formed by proteins with identical sequence. Nat Commun 2024; 15:5049. [PMID: 38877064 PMCID: PMC11178852 DOI: 10.1038/s41467-024-45062-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/10/2024] [Indexed: 06/16/2024] Open
Abstract
Type IV pili (T4P) represent one of the most common varieties of surface appendages in archaea. These filaments, assembled from small pilin proteins, can be many microns long and serve diverse functions, including adhesion, biofilm formation, motility, and intercellular communication. Here, we determine atomic structures of two distinct adhesive T4P from Saccharolobus islandicus via cryo-electron microscopy (cryo-EM). Unexpectedly, both pili were assembled from the same pilin polypeptide but under different growth conditions. One filament, denoted mono-pilus, conforms to canonical archaeal T4P structures where all subunits are equivalent, whereas in the other filament, the tri-pilus, the same polypeptide exists in three different conformations. The three conformations in the tri-pilus are very different from the single conformation found in the mono-pilus, and involve different orientations of the outer immunoglobulin-like domains, mediated by a very flexible linker. Remarkably, the outer domains rotate nearly 180° between the mono- and tri-pilus conformations. Both forms of pili require the same ATPase and TadC-like membrane pore for assembly, indicating that the same secretion system can produce structurally very different filaments. Our results show that the structures of archaeal T4P appear to be less constrained and rigid than those of the homologous archaeal flagellar filaments that serve as helical propellers.
Collapse
Affiliation(s)
- Junfeng Liu
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France
| | - Gunnar N Eastep
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Shane T Rich-New
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mark A B Kreutzberger
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France.
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
9
|
Gaines MC, Sivabalasarma S, Isupov MN, Haque RU, McLaren M, Hanus C, Gold VAM, Albers SV, Daum B. CryoEM reveals the structure of an archaeal pilus involved in twitching motility. Nat Commun 2024; 15:5050. [PMID: 38877033 PMCID: PMC11178815 DOI: 10.1038/s41467-024-45831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/02/2024] [Indexed: 06/16/2024] Open
Abstract
Amongst the major types of archaeal filaments, several have been shown to closely resemble bacterial homologues of the Type IV pili (T4P). Within Sulfolobales, member species encode for three types of T4P, namely the archaellum, the UV-inducible pilus system (Ups) and the archaeal adhesive pilus (Aap). Whereas the archaellum functions primarily in swimming motility, and the Ups in UV-induced cell aggregation and DNA-exchange, the Aap plays an important role in adhesion and twitching motility. Here, we present a cryoEM structure of the Aap of the archaeal model organism Sulfolobus acidocaldarius. We identify the component subunit as AapB and find that while its structure follows the canonical T4P blueprint, it adopts three distinct conformations within the pilus. The tri-conformer Aap structure that we describe challenges our current understanding of pilus structure and sheds new light on the principles of twitching motility.
Collapse
Affiliation(s)
- Matthew C Gaines
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, Faculty of Health and Life Sciences, Exeter, UK
| | - Shamphavi Sivabalasarma
- Institute of Biology, Molecular Biology of Archaea, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Michail N Isupov
- Henry Wellcome Building for Biocatalysis, Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Risat Ul Haque
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, Faculty of Health and Life Sciences, Exeter, UK
| | - Mathew McLaren
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, Faculty of Health and Life Sciences, Exeter, UK
| | - Cyril Hanus
- Institute of Psychiatry and Neurosciences of Paris, Inserm UMR1266 - Université Paris Cité, Paris, France
| | - Vicki A M Gold
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, Faculty of Health and Life Sciences, Exeter, UK
| | - Sonja-Verena Albers
- Institute of Biology, Molecular Biology of Archaea, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBBS, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Bertram Daum
- Living Systems Institute, University of Exeter, Exeter, UK.
- Department of Biosciences, Faculty of Health and Life Sciences, Exeter, UK.
| |
Collapse
|
10
|
St John E, Reysenbach AL. Genomic comparison of deep-sea hydrothermal genera related to Aeropyrum, Thermodiscus and Caldisphaera, and proposed emended description of the family Acidilobaceae. Syst Appl Microbiol 2024; 47:126507. [PMID: 38703419 DOI: 10.1016/j.syapm.2024.126507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/02/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024]
Abstract
Deep-sea hydrothermal vents host archaeal and bacterial thermophilic communities, including taxonomically and functionally diverse Thermoproteota. Despite their prevalence in high-temperature submarine communities, Thermoproteota are chronically under-represented in genomic databases and issues have emerged regarding their nomenclature, particularly within the Aeropyrum-Thermodiscus-Caldisphaera. To resolve some of these problems, we identified 47 metagenome-assembled genomes (MAGs) within this clade, from 20 previously published deep-sea hydrothermal vent and submarine volcano metagenomes, and 24 MAGs from public databases. Using phylogenomic analysis, Genome Taxonomy Database Toolkit (GTDB-Tk) taxonomic assessment, 16S rRNA gene phylogeny, average amino acid identity (AAI) and functional gene patterns, we re-evaluated of the taxonomy of the Aeropyrum-Thermodiscus-Caldisphaera. At least nine genus-level clades were identified with two or more MAGs. In accordance with SeqCode requirements and recommendations, we propose names for three novel genera, viz. Tiamatella incendiivivens, Hestiella acidicharens and Calypsonella navitae. A fourth genus was also identified related to Thermodiscus maritimus, for which no available sequenced genome exists. We propose the novel species Thermodiscus eudorianus to describe our high-quality Thermodiscus MAG, which represents the type genome for the genus. All three novel genera and T. eudorianus are likely anaerobic heterotrophs, capable of fermenting protein-rich carbon sources, while some Tiamatella, Calypsonella and T. eudorianus may also reduce polysulfides, thiosulfate, sulfur and/or selenite, and the likely acidophile, Hestiella, may reduce nitrate and/or perchlorate. Based on phylogenomic evidence, we also propose the family Acidilobaceae be amended to include Caldisphaera, Aeropyrum, Thermodiscus and Stetteria and the novel genera described here.
Collapse
Affiliation(s)
- Emily St John
- Center for Life in Extreme Environments, Portland State University, Portland, OR 97201, USA.
| | - Anna-Louise Reysenbach
- Center for Life in Extreme Environments, Portland State University, Portland, OR 97201, USA.
| |
Collapse
|
11
|
Xu Y, Liu Q, Wang B, Li Q, Chen Y, Yang Y, Zhu Z, Gong D, Zhang C, Wang G, Qian H. Tobramycin-mediated self-assembly of DNA nanostructures for targeted treatment of Pseudomonas aeruginosa-infected lung inflammation. Biomater Sci 2024; 12:2331-2340. [PMID: 38488889 DOI: 10.1039/d3bm02121a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Pseudomonas aeruginosa (PA) is one of the most common multidrug-resistant pathogens found in clinics, often manifesting as biofilms. However, due to the emergence of superbugs in hospitals and the overuse of antibiotics, the prevention and treatment of PA infections have become increasingly challenging. Utilizing DNA nanostructures for packaging and delivering antibiotics presents an intervention strategy with significant potential. Nevertheless, construction of functional DNA nanostructures with multiple functionalities and enhanced stability in physiological settings remains challenging. In this study, the authors propose a magnesium-free assembly method that utilizes tobramycin (Tob) as a mediator to assemble DNA nanostructures, allowing for the functionalization of DNA nanostructures by combining DNA and antibiotics. Additionally, our study incorporates maleimide-modified DNA into the nanostructures to act as a targeting moiety specifically directed towards the pili of PA. The targeting ability of the constructed functional DNA nanostructure significantly improves the local concentration of Tob, thereby reducing the side effects of antibiotics. Our results demonstrate the successful construction of a maleimide-decorated Tob/DNA nanotube (NTTob-Mal) for the treatment of PA-infected lung inflammation. The stability and biocompatibility of NTTob-Mal are confirmed, highlighting its potential for clinical applications. Furthermore, its specificity in recognizing and adhering to PA has been validated. In vitro experiments have shown its efficacy in inhibiting PA biofilm formation, and in a murine model, NTTob-Mal has exhibited significant therapeutic effectiveness against PA-induced pneumonia. In summary, the proposed antibiotic drug-mediated DNA nanostructure assembly approach holds promise as a novel strategy for targeted treatment of PA infections.
Collapse
Affiliation(s)
- Yuhang Xu
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Qian Liu
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
- Laboratory of Pharmacy and Chemistry, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Bin Wang
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing 400037, China
| | - Quan Li
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Yue Chen
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Yao Yang
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Zhihao Zhu
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Daohui Gong
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guansong Wang
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing 400037, China
| | - Hang Qian
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing 400037, China
| |
Collapse
|
12
|
Hackley RK, Hwang S, Herb JT, Bhanap P, Lam K, Vreugdenhil A, Darnell CL, Pastor MM, Martin JH, Maupin-Furlow JA, Schmid AK. TbsP and TrmB jointly regulate gapII to influence cell development phenotypes in the archaeon Haloferax volcanii. Mol Microbiol 2024; 121:742-766. [PMID: 38204420 PMCID: PMC11023807 DOI: 10.1111/mmi.15225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/09/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
Microbial cells must continually adapt their physiology in the face of changing environmental conditions. Archaea living in extreme conditions, such as saturated salinity, represent important examples of such resilience. The model salt-loving organism Haloferax volcanii exhibits remarkable plasticity in its morphology, biofilm formation, and motility in response to variations in nutrients and cell density. However, the mechanisms regulating these lifestyle transitions remain unclear. In prior research, we showed that the transcriptional regulator, TrmB, maintains the rod shape in the related species Halobacterium salinarum by activating the expression of enzyme-coding genes in the gluconeogenesis metabolic pathway. In Hbt. salinarum, TrmB-dependent production of glucose moieties is required for cell surface glycoprotein biogenesis. Here, we use a combination of genetics and quantitative phenotyping assays to demonstrate that TrmB is essential for growth under gluconeogenic conditions in Hfx. volcanii. The ∆trmB strain rapidly accumulated suppressor mutations in a gene encoding a novel transcriptional regulator, which we name trmB suppressor, or TbsP (a.k.a. "tablespoon"). TbsP is required for adhesion to abiotic surfaces (i.e., biofilm formation) and maintains wild-type cell morphology and motility. We use functional genomics and promoter fusion assays to characterize the regulons controlled by each of TrmB and TbsP, including joint regulation of the glucose-dependent transcription of gapII, which encodes an important gluconeogenic enzyme. We conclude that TrmB and TbsP coregulate gluconeogenesis, with downstream impacts on lifestyle transitions in response to nutrients in Hfx. volcanii.
Collapse
Affiliation(s)
- Rylee K. Hackley
- Biology Department, Duke University, Durham, North Carolina, USA
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, USA
| | - Sungmin Hwang
- Biology Department, Duke University, Durham, North Carolina, USA
| | - Jake T. Herb
- Biology Department, Duke University, Durham, North Carolina, USA
| | - Preeti Bhanap
- Biology Department, Duke University, Durham, North Carolina, USA
| | - Katie Lam
- Biology Department, Duke University, Durham, North Carolina, USA
| | | | | | | | - Johnathan H. Martin
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Julie A. Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
- Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Amy K. Schmid
- Biology Department, Duke University, Durham, North Carolina, USA
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, USA
| |
Collapse
|
13
|
Chatterjee P, Garcia MA, Cote JA, Yun K, Legerme GP, Habib R, Tripepi M, Young C, Kulp D, Dyall-Smith M, Pohlschroder M. Involvement of ArlI, ArlJ, and CirA in Archaeal Type-IV Pilin-Mediated Motility Regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583388. [PMID: 38562816 PMCID: PMC10983859 DOI: 10.1101/2024.03.04.583388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Many prokaryotes use swimming motility to move toward favorable conditions and escape adverse surroundings. Regulatory mechanisms governing bacterial flagella-driven motility are well-established, however, little is yet known about the regulation underlying swimming motility propelled by the archaeal cell surface structure, the archaella. Previous research showed that deletion of the adhesion pilins (PilA1-6), subunits of the type IV pili cell surface structure, renders the model archaeon Haloferax volcanii non-motile. In this study, we used EMS mutagenesis and a motility assay to identify motile suppressors of the ΔpilA[1-6] strain. Of the eight suppressors identified, six contain missense mutations in archaella biosynthesis genes, arlI and arlJ. Overexpression of these arlI and arlJ mutant constructs in the respective multi-deletion strains ΔpilA[1-6]ΔarlI and ΔpilA[1-6]ΔarlJ confirmed their role in suppressing the ΔpilA[1-6] motility defect. Additionally, three suppressors harbor co-occurring disruptive missense and nonsense mutations in cirA, a gene encoding a proposed regulatory protein. A deletion of cirA resulted in hypermotility, while cirA overexpression in wild-type cells led to decreased motility. Moreover, qRT-PCR analysis revealed that in wild-type cells, higher expression levels of arlI, arlJ, and the archaellin gene arlA1 were observed in motile early-log phase rod-shaped cells compared to non-motile mid-log phase disk-shaped cells. Conversely, ΔcirA cells, which form rods during both early and mid-log phases, exhibited similar expression levels of arl genes in both growth phases. Our findings contribute to a deeper understanding of the mechanisms governing archaeal motility, highlighting the involvement of ArlI, ArlJ, and CirA in pilin-mediated motility regulation.
Collapse
Affiliation(s)
- Priyanka Chatterjee
- University of Pennsylvania, Department of Biology, Philadelphia PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia PA, USA
| | - Marco A. Garcia
- University of Pennsylvania, Department of Biology, Philadelphia PA, USA
| | - Jacob A. Cote
- University of Pennsylvania, Department of Biology, Philadelphia PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia PA, USA
| | - Kun Yun
- University of Pennsylvania, Department of Biology, Philadelphia PA, USA
| | | | - Rumi Habib
- Perelman School of Medicine, University of Pennsylvania, Philadelphia PA, USA
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia PA, USA
| | - Manuela Tripepi
- University of Pennsylvania, Department of Biology, Philadelphia PA, USA
| | - Criston Young
- University of Pennsylvania, Department of Biology, Philadelphia PA, USA
| | - Daniel Kulp
- Perelman School of Medicine, University of Pennsylvania, Philadelphia PA, USA
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia PA, USA
| | - Mike Dyall-Smith
- Computational Biology Group, Max Planck Institute of Biochemistry, Martinsreid, Germany
- Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Australia
| | | |
Collapse
|
14
|
Kato S, Tahara YO, Nishimura Y, Uematsu K, Arai T, Nakane D, Ihara A, Nishizaka T, Iwasaki W, Itoh T, Miyata M, Ohkuma M. Cell surface architecture of the cultivated DPANN archaeon Nanobdella aerobiophila. J Bacteriol 2024; 206:e0035123. [PMID: 38289045 PMCID: PMC10882981 DOI: 10.1128/jb.00351-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/22/2023] [Indexed: 02/23/2024] Open
Abstract
The DPANN archaeal clade includes obligately ectosymbiotic species. Their cell surfaces potentially play an important role in the symbiotic interaction between the ectosymbionts and their hosts. However, little is known about the mechanism of ectosymbiosis. Here, we show cell surface structures of the cultivated DPANN archaeon Nanobdella aerobiophila strain MJ1T and its host Metallosphaera sedula strain MJ1HA, using a variety of electron microscopy techniques, i.e., negative-staining transmission electron microscopy, quick-freeze deep-etch TEM, and 3D electron tomography. The thickness, unit size, and lattice symmetry of the S-layer of strain MJ1T were different from those of the host archaeon strain MJ1HA. Genomic and transcriptomic analyses highlighted the most highly expressed MJ1T gene for a putative S-layer protein with multiple glycosylation sites and immunoglobulin-like folds, which has no sequence homology to known S-layer proteins. In addition, genes for putative pectin lyase- or lectin-like extracellular proteins, which are potentially involved in symbiotic interaction, were found in the MJ1T genome based on in silico 3D protein structure prediction. Live cell imaging at the optimum growth temperature of 65°C indicated that cell complexes of strains MJ1T and MJ1HA were motile, but sole MJ1T cells were not. Taken together, we propose a model of the symbiotic interaction and cell cycle of Nanobdella aerobiophila.IMPORTANCEDPANN archaea are widely distributed in a variety of natural and artificial environments and may play a considerable role in the microbial ecosystem. All of the cultivated DPANN archaea so far need host organisms for their growth, i.e., obligately ectosymbiotic. However, the mechanism of the ectosymbiosis by DPANN archaea is largely unknown. To this end, we performed a comprehensive analysis of the cultivated DPANN archaeon, Nanobdella aerobiophila, using electron microscopy, live cell imaging, transcriptomics, and genomics, including 3D protein structure prediction. Based on the results, we propose a reasonable model of the symbiotic interaction and cell cycle of Nanobdella aerobiophila, which will enhance our understanding of the enigmatic physiology and ecological significance of DPANN archaea.
Collapse
Affiliation(s)
- Shingo Kato
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Yuhei O. Tahara
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Yuki Nishimura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | | | | | - Daisuke Nakane
- Department of Physics, Gakushuin University, Tokyo, Japan
| | - Ayaka Ihara
- Department of Physics, Gakushuin University, Tokyo, Japan
| | | | - Wataru Iwasaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Takashi Itoh
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Makoto Miyata
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| |
Collapse
|
15
|
Balbay MG, Shlafstein MD, Cockell C, Cady SL, Prescott RD, Lim DSS, Chain PSG, Donachie SP, Decho AW, Saw JH. Metabolic versatility of Caldarchaeales from geothermal features of Hawai'i and Chile as revealed by five metagenome-assembled genomes. Front Microbiol 2023; 14:1216591. [PMID: 37799600 PMCID: PMC10547907 DOI: 10.3389/fmicb.2023.1216591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023] Open
Abstract
Members of the archaeal order Caldarchaeales (previously the phylum Aigarchaeota) are poorly sampled and are represented in public databases by relatively few genomes. Additional representative genomes will help resolve their placement among all known members of Archaea and provide insights into their roles in the environment. In this study, we analyzed 16S rRNA gene amplicons belonging to the Caldarchaeales that are available in public databases, which demonstrated that archaea of the order Caldarchaeales are diverse, widespread, and most abundant in geothermal habitats. We also constructed five metagenome-assembled genomes (MAGs) of Caldarchaeales from two geothermal features to investigate their metabolic potential and phylogenomic position in the domain Archaea. Two of the MAGs were assembled from microbial community DNA extracted from fumarolic lava rocks from Mauna Ulu, Hawai'i, and three were assembled from DNA obtained from hot spring sinters from the El Tatio geothermal field in Chile. MAGs from Hawai'i are high quality bins with completeness >95% and contamination <1%, and one likely belongs to a novel species in a new genus recently discovered at a submarine volcano off New Zealand. MAGs from Chile have lower completeness levels ranging from 27 to 70%. Gene content of the MAGs revealed that these members of Caldarchaeales are likely metabolically versatile and exhibit the potential for both chemoorganotrophic and chemolithotrophic lifestyles. The wide array of metabolic capabilities exhibited by these members of Caldarchaeales might help them thrive under diverse harsh environmental conditions. All the MAGs except one from Chile harbor putative prophage regions encoding several auxiliary metabolic genes (AMGs) that may confer a fitness advantage on their Caldarchaeales hosts by increasing their metabolic potential and make them better adapted to new environmental conditions. Phylogenomic analysis of the five MAGs and over 3,000 representative archaeal genomes showed the order Caldarchaeales forms a monophyletic group that is sister to the clade comprising the orders Geothermarchaeales (previously Candidatus Geothermarchaeota), Conexivisphaerales and Nitrososphaerales (formerly known as Thaumarchaeota), supporting the status of Caldarchaeales members as a clade distinct from the Thaumarchaeota.
Collapse
Affiliation(s)
- Manolya Gul Balbay
- Department of Biological Sciences, The George Washington University, Washington, DC, United States
| | | | - Charles Cockell
- UK Centre for Astrobiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Sherry L. Cady
- Department of Geology, Portland State University, Portland, OR, United States
| | - Rebecca D. Prescott
- UK Centre for Astrobiology, University of Edinburgh, Edinburgh, United Kingdom
- School of Life Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
- Department of Biology, University of Mississippi, Oxford, MS, United States
| | | | | | - Stuart P. Donachie
- School of Life Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Alan W. Decho
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
| | - Jimmy H. Saw
- Department of Biological Sciences, The George Washington University, Washington, DC, United States
| |
Collapse
|
16
|
Liu J, Eastep GN, Cvirkaite-Krupovic V, Rich-New ST, Kreutzberger MAB, Egelman EH, Krupovic M, Wang F. Two dramatically distinct archaeal type IV pili structures formed by the same pilin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.07.552285. [PMID: 37609343 PMCID: PMC10441282 DOI: 10.1101/2023.08.07.552285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Type IV pili (T4P) represent one of the most common varieties of surface appendages in archaea. These filaments, assembled from relatively small pilin proteins, can be many microns long and serve diverse functions, including adhesion, biofilm formation, motility, and intercellular communication. Using cryo-electron microscopy (cryo-EM), we determined atomic structures of two dramatically different T4P from Saccharolobus islandicus REY15A. Unexpectedly, both pili were assembled from the same pilin protein but under different growth conditions. One filament, denoted mono-pilus, conforms to canonical archaeal T4P structures where all subunits are equivalent, whereas in the other filament, the tri-pilus, the same protein exists in three different conformations. The three conformations involve different orientations of the outer immunoglobulin (Ig)-like domains, mediated by a very flexible linker, and all three of these conformations are very different from the single conformation found in the mono-pilus. Remarkably, the outer domains rotate nearly 180° between the mono- and tri-pilus conformations, formally similar to what has been shown for outer domains in bacterial flagellar filaments, despite lack of homology between bacterial flagella and archaeal T4P. Interestingly, both forms of pili require the same ATPase and TadC-like membrane pore for assembly, indicating that the same secretion system can produce structurally very different filaments. However, the expression of the ATPase and TadC genes was significantly different under the conditions yielding mono- and tri-pili. While archaeal T4P are homologs of archaeal flagellar filaments, our results show that in contrast to the rigid supercoil that the flagellar filaments must adopt to serve as helical propellers, archaeal T4P are likely to have fewer constraints on their structure and enjoy more internal degrees of freedom.
Collapse
|
17
|
Odermatt PD, Nussbaum P, Monnappa S, Talà L, Li Z, Sivabalasarma S, Albers SV, Persat A. Archaeal type IV pili stabilize Haloferax volcanii biofilms in flow. Curr Biol 2023; 33:3265-3271.e4. [PMID: 37473762 DOI: 10.1016/j.cub.2023.06.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/01/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023]
Abstract
Multicellular communities of contiguous cells attached to solid surfaces called biofilms represent a common microbial strategy to improve resilience in adverse environments.1,2,3 While bacterial biofilms have been under intense investigation, whether archaeal biofilms follow similar assembly rules remains unknown.4,5Haloferax volcanii is an extremely halophilic euryarchaeon that commonly colonizes salt crust surfaces. H. volcanii produces long and thin appendages called type IV pili (T4Ps). These play a role in surface attachment and biofilm formation in both archaea and bacteria. In this study, we employed biophysical experiments to identify the function of T4Ps in H. volcanii biofilm morphogenesis. H. volcanii expresses not one but six types of major pilin subunits that are predicted to compose T4Ps. Non-invasive imaging of T4Ps in live cells using interferometric scattering (iSCAT) microscopy reveals that piliation varies across mutants expressing single major pilin isoforms. T4Ps are necessary to secure attachment of single cells to surfaces, and the adhesive strength of pilin mutants correlates with their level of piliation. In flow, H. volcanii forms clonal biofilms that extend in three dimensions. Notably, the expression of PilA2, a single pilin isoform, is sufficient to maintain levels of piliation, surface attachment, and biofilm formation that are indistinguishable from the wild type. Furthermore, we discovered that fluid flow stabilizes biofilm integrity; as in the absence of flow, biofilms tend to lose cohesion and disperse in a density-dependent manner. Overall, our results demonstrate that T4P-surface and possibly T4P-T4P interactions promote biofilm formation and integrity and that flow is a key factor regulating archaeal biofilm formation.
Collapse
Affiliation(s)
- Pascal D Odermatt
- Global Health Institute and Institute for Bioengineering, School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Phillip Nussbaum
- Molecular Biology of Archaea, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Sourabh Monnappa
- Global Health Institute and Institute for Bioengineering, School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Lorenzo Talà
- Global Health Institute and Institute for Bioengineering, School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Zhengqun Li
- Molecular Biology of Archaea, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Shamphavi Sivabalasarma
- Molecular Biology of Archaea, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.
| | - Alexandre Persat
- Global Health Institute and Institute for Bioengineering, School of Life Sciences, EPFL, 1015 Lausanne, Switzerland.
| |
Collapse
|
18
|
Kreutzberger MAB, Cvirkaite-Krupovic V, Liu Y, Baquero DP, Liu J, Sonani RR, Calladine CR, Wang F, Krupovic M, Egelman EH. The evolution of archaeal flagellar filaments. Proc Natl Acad Sci U S A 2023; 120:e2304256120. [PMID: 37399404 PMCID: PMC10334743 DOI: 10.1073/pnas.2304256120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/08/2023] [Indexed: 07/05/2023] Open
Abstract
Flagellar motility has independently arisen three times during evolution: in bacteria, archaea, and eukaryotes. In prokaryotes, the supercoiled flagellar filaments are composed largely of a single protein, bacterial or archaeal flagellin, although these two proteins are not homologous, while in eukaryotes, the flagellum contains hundreds of proteins. Archaeal flagellin and archaeal type IV pilin are homologous, but how archaeal flagellar filaments (AFFs) and archaeal type IV pili (AT4Ps) diverged is not understood, in part, due to the paucity of structures for AFFs and AT4Ps. Despite having similar structures, AFFs supercoil, while AT4Ps do not, and supercoiling is essential for the function of AFFs. We used cryo-electron microscopy to determine the atomic structure of two additional AT4Ps and reanalyzed previous structures. We find that all AFFs have a prominent 10-strand packing, while AT4Ps show a striking structural diversity in their subunit packing. A clear distinction between all AFF and all AT4P structures involves the extension of the N-terminal α-helix with polar residues in the AFFs. Additionally, we characterize a flagellar-like AT4P from Pyrobaculum calidifontis with filament and subunit structure similar to that of AFFs which can be viewed as an evolutionary link, showing how the structural diversity of AT4Ps likely allowed for an AT4P to evolve into a supercoiling AFF.
Collapse
Affiliation(s)
- Mark A. B. Kreutzberger
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA22903
| | | | - Ying Liu
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris75015, France
| | - Diana P. Baquero
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris75015, France
| | - Junfeng Liu
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris75015, France
| | - Ravi R. Sonani
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA22903
| | - Chris R. Calladine
- Department of Engineering, University of Cambridge, CambridgeCB2 1PZ, United Kingdom
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA22903
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris75015, France
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA22903
| |
Collapse
|
19
|
van Wolferen M, Pulschen AA, Baum B, Gribaldo S, Albers SV. The cell biology of archaea. Nat Microbiol 2022; 7:1744-1755. [PMID: 36253512 PMCID: PMC7613921 DOI: 10.1038/s41564-022-01215-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
Abstract
The past decade has revealed the diversity and ubiquity of archaea in nature, with a growing number of studies highlighting their importance in ecology, biotechnology and even human health. Myriad lineages have been discovered, which expanded the phylogenetic breadth of archaea and revealed their central role in the evolutionary origins of eukaryotes. These discoveries, coupled with advances that enable the culturing and live imaging of archaeal cells under extreme environments, have underpinned a better understanding of their biology. In this Review we focus on the shape, internal organization and surface structures that are characteristic of archaeal cells as well as membrane remodelling, cell growth and division. We also highlight some of the technical challenges faced and discuss how new and improved technologies will help address many of the key unanswered questions.
Collapse
Affiliation(s)
- Marleen van Wolferen
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Buzz Baum
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Simonetta Gribaldo
- Evolutionary Biology of the Microbial Cell Unit, CNRS UMR2001, Department of Microbiology, Institute Pasteur, Paris, France.
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
20
|
Venturini C, Petrovic Fabijan A, Fajardo Lubian A, Barbirz S, Iredell J. Biological foundations of successful bacteriophage therapy. EMBO Mol Med 2022; 14:e12435. [PMID: 35620963 PMCID: PMC9260219 DOI: 10.15252/emmm.202012435] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/20/2022] Open
Abstract
Bacteriophages (phages) are selective viral predators of bacteria. Abundant and ubiquitous in nature, phages can be used to treat bacterial infections (phage therapy), including refractory infections and those resistant to antibiotics. However, despite an abundance of anecdotal evidence of efficacy, significant hurdles remain before routine implementation of phage therapy into medical practice, including a dearth of robust clinical trial data. Phage-bacterium interactions are complex and diverse, characterized by co-evolution trajectories that are significantly influenced by the environments in which they occur (mammalian body sites, water, soil, etc.). An understanding of the molecular mechanisms underpinning these dynamics is essential for successful clinical translation. This review aims to cover key aspects of bacterium-phage interactions that affect bacterial killing by describing the most relevant published literature and detailing the current knowledge gaps most likely to influence therapeutic success.
Collapse
Affiliation(s)
- Carola Venturini
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of ScienceSydney School of Veterinary ScienceThe University of SydneySydneyNSWAustralia
| | - Aleksandra Petrovic Fabijan
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of Health and MedicineSchool of MedicineSydney Medical SchoolThe University of SydneySydneyNSWAustralia
| | - Alicia Fajardo Lubian
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of Health and MedicineSchool of MedicineSydney Medical SchoolThe University of SydneySydneyNSWAustralia
| | - Stefanie Barbirz
- Department of MedicineScience FacultyMSB Medical School BerlinBerlinGermany
| | - Jonathan Iredell
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of Health and MedicineSchool of MedicineSydney Medical SchoolThe University of SydneySydneyNSWAustralia
- Westmead HospitalWestern Sydney Local Health DistrictWestmeadNSWAustralia
| |
Collapse
|
21
|
De Castro RE, Giménez MI, Cerletti M, Paggi RA, Costa MI. Proteolysis at the Archaeal Membrane: Advances on the Biological Function and Natural Targets of Membrane-Localized Proteases in Haloferax volcanii. Front Microbiol 2022; 13:940865. [PMID: 35814708 PMCID: PMC9263693 DOI: 10.3389/fmicb.2022.940865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
Abstract
Proteolysis plays a fundamental role in many processes that occur within the cellular membrane including protein quality control, protein export, cell signaling, biogenesis of the cell envelope among others. Archaea are a distinct and physiologically diverse group of prokaryotes found in all kinds of habitats, from the human and plant microbiomes to those with extreme salt concentration, pH and/or temperatures. Thus, these organisms provide an excellent opportunity to extend our current understanding on the biological functions that proteases exert in cell physiology including the adaptation to hostile environments. This revision describes the advances that were made on archaeal membrane proteases with regard to their biological function and potential natural targets focusing on the model haloarchaeon Haloferax volcanii.
Collapse
|
22
|
Gophna U, Altman-Price N. Horizontal Gene Transfer in Archaea-From Mechanisms to Genome Evolution. Annu Rev Microbiol 2022; 76:481-502. [PMID: 35667126 DOI: 10.1146/annurev-micro-040820-124627] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Archaea remains the least-studied and least-characterized domain of life despite its significance not just to the ecology of our planet but also to the evolution of eukaryotes. It is therefore unsurprising that research into horizontal gene transfer (HGT) in archaea has lagged behind that of bacteria. Indeed, several archaeal lineages may owe their very existence to large-scale HGT events, and thus understanding both the molecular mechanisms and the evolutionary impact of HGT in archaea is highly important. Furthermore, some mechanisms of gene exchange, such as plasmids that transmit themselves via membrane vesicles and the formation of cytoplasmic bridges that allows transfer of both chromosomal and plasmid DNA, may be archaea specific. This review summarizes what we know about HGT in archaea, and the barriers that restrict it, highlighting exciting recent discoveries and pointing out opportunities for future research. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Uri Gophna
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; ,
| | - Neta Altman-Price
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; , .,Department of Natural and Life Sciences, The Open University of Israel, Raanana, Israel
| |
Collapse
|
23
|
Gambelli L, Isupov MN, Conners R, McLaren M, Bellack A, Gold V, Rachel R, Daum B. An archaellum filament composed of two alternating subunits. Nat Commun 2022; 13:710. [PMID: 35132062 PMCID: PMC8821640 DOI: 10.1038/s41467-022-28337-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
Archaea use a molecular machine, called the archaellum, to swim. The archaellum consists of an ATP-powered intracellular motor that drives the rotation of an extracellular filament composed of multiple copies of proteins named archaellins. In many species, several archaellin homologs are encoded in the same operon; however, previous structural studies indicated that archaellum filaments mainly consist of only one protein species. Here, we use electron cryo-microscopy to elucidate the structure of the archaellum from Methanocaldococcus villosus at 3.08 Å resolution. The filament is composed of two alternating archaellins, suggesting that the architecture and assembly of archaella is more complex than previously thought. Moreover, we identify structural elements that may contribute to the filament’s flexibility. The archaellum is a molecular machine used by archaea to swim, consisting of an intracellular motor that drives the rotation of an extracellular filament composed of multiple copies of proteins named archaellins. Here, the authors use electron cryo-microscopy to elucidate the structure of an archaellum, and find that the filament is composed of two alternating archaellins.
Collapse
Affiliation(s)
- Lavinia Gambelli
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK.,College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
| | - Michail N Isupov
- Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Rebecca Conners
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK.,College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Mathew McLaren
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK.,College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Annett Bellack
- Institute of Microbiology and Archaea Centre, University of Regensburg, 93053, Regensburg, Germany
| | - Vicki Gold
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK.,College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Reinhard Rachel
- Institute of Microbiology and Archaea Centre, University of Regensburg, 93053, Regensburg, Germany
| | - Bertram Daum
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK. .,College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
24
|
Advanced understanding of prokaryotic biofilm formation using a cost-effective and versatile multi-panel adhesion (mPAD) mount. Appl Environ Microbiol 2022; 88:e0228321. [DOI: 10.1128/aem.02283-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most microorganisms exist in biofilms, which comprise aggregates of cells surrounded by an extracellular matrix that provides protection from external stresses. Based on the conditions under which they form, biofilm structures vary in significant ways. For instance, biofilms that develop when microbes are incubated under static conditions differ from those formed when microbes encounter the shear forces of a flowing liquid. Moreover, biofilms develop dynamically over time. Here, we describe a cost-effective, 3D-printed coverslip holder that facilitates surface adhesion assays under a broad range of standing and shaking culture conditions. This multi-panel adhesion (mPAD) mount further allows cultures to be sampled at multiple time points, ensuring consistency and comparability between samples and enabling analyses of the dynamics of biofilm formation. As a proof of principle, using the mPAD mount for shaking, oxic cultures, we confirm previous flow chamber experiments showing that
Pseudomonas aeruginosa
wild type and a phenazine deletion mutant (Δ
phz
) form biofilms with similar structure but reduced density in the mutant strain. Extending this analysis to anoxic conditions, we reveal that microcolony and biofilm formation can only be observed under shaking conditions and are decreased in the Δ
phz
mutant compared to wild-type cultures, indicating that phenazines are crucial for the formation of biofilms if oxygen as an electron acceptor is unavailable. Furthermore, while the model archaeon
Haloferax volcanii
does not require archaella for surface attachment under static conditions, we demonstrate that
H. volcanii
mutants that lack archaella are impaired in early stages of biofilm formation under shaking conditions.
Importance:
Due to the versatility of the mPAD mount, we anticipate that it will aid the analysis of biofilm formation in a broad range of bacteria and archaea. Thereby, it contributes to answering critical biological questions about the regulatory and structural components of biofilm formation and understanding this process in a wide array of environmental, biotechnological, and medical contexts.
Collapse
|
25
|
Schulze S, Schiller H, Mutan Z, Solomonic J, Telhan O, Pohlschroder M. Cost-Effective and Versatile Analysis of Archaeal Surface Adhesion Under Shaking and Standing Conditions. Methods Mol Biol 2022; 2522:397-406. [PMID: 36125766 DOI: 10.1007/978-1-0716-2445-6_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biofilms are aggregates of cells surrounded by an extracellular matrix providing protection from external stresses. While biofilms are commonly studied in bacteria, archaea also form such cell aggregates both in liquid cultures and on solid surfaces. Biofilm architectures vary when in liquid cultures versus on surfaces as well as when incubated under static conditions versus under shear forces of flowing liquid. Moreover, biofilms develop dynamically over time. Here, we describe surface adhesion assays employing a cost-effective, 3D-printed coverslip holder that can be used under a broad range of standing and shaking culture conditions. This multi-panel adhesion (mPAD) mount further allows the same culture to be sampled at multiple time points, ensuring consistency and comparability between samples and enabling analysis of the dynamics of biofilm formation. Additionally, a traditional surface adhesion assay in a 12-well plate under standing conditions is outlined as well. We anticipate the combination of these protocols to be useful for analyzing a wide array of biofilms and answering a multitude of biological questions.
Collapse
Affiliation(s)
- Stefan Schulze
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Heather Schiller
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Zuha Mutan
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jordan Solomonic
- Weitzman School of Design, University of Pennsylvania, Philadelphia, PA, USA
| | - Orkan Telhan
- Weitzman School of Design, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
26
|
Mutan Z, Schiller H, Schulze S, Pohlschroder M. Immersed Liquid Biofilm and Honeycomb Pattern Formations in Haloferax volcanii. Methods Mol Biol 2022; 2522:387-395. [PMID: 36125765 DOI: 10.1007/978-1-0716-2445-6_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biofilms are cellular aggregates encased in extracellular polymeric substances and are commonly formed by single-celled eukaryotes, bacteria, and archaea. In addition to attaching to solid surfaces, these cellular aggregates can also be observed floating on or immersed within liquid cultures. While biofilms on surfaces have been studied in some archaea, little is known about liquid biofilms. Surprisingly, immersed liquid biofilms of the model archaeon Haloferax volcanii do not require the same set of machinery needed to form surface-attached biofilms. In fact, to date not a single gene has been identified that is involved in forming immersed liquid biofilms. Interestingly, after an immersed liquid biofilm forms, removal of the Petri dish lid induces rapid, transient, and reproducible honeycomb patterns within the immersed liquid biofilm itself, triggered by a reduction in humidity. In this chapter, we outline a protocol for both immersed liquid biofilm and honeycomb pattern formations. This protocol will be essential for determining the novel components required for the formation of immersed liquid biofilms and honeycomb patterns.
Collapse
Affiliation(s)
- Zuha Mutan
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Heather Schiller
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Stefan Schulze
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
27
|
Charles-Orszag A, Lord SJ, Mullins RD. High-Temperature Live-Cell Imaging of Cytokinesis, Cell Motility, and Cell-Cell Interactions in the Thermoacidophilic Crenarchaeon Sulfolobus acidocaldarius. Front Microbiol 2021; 12:707124. [PMID: 34447359 PMCID: PMC8383144 DOI: 10.3389/fmicb.2021.707124] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/21/2021] [Indexed: 11/13/2022] Open
Abstract
Significant technical challenges have limited the study of extremophile cell biology. Here we describe a system for imaging samples at 75°C using high numerical aperture, oil-immersion lenses. With this system we observed and quantified the dynamics of cell division in the model thermoacidophilic crenarchaeon Sulfolobus acidocaldarius with unprecedented resolution. In addition, we observed previously undescribed dynamic cell shape changes, cell motility, and cell-cell interactions, shedding significant new light on the high-temperature lifestyle of this organism.
Collapse
Affiliation(s)
| | | | - R. Dyche Mullins
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
28
|
Patin NV, Dietrich ZA, Stancil A, Quinan M, Beckler JS, Hall ER, Culter J, Smith CG, Taillefert M, Stewart FJ. Gulf of Mexico blue hole harbors high levels of novel microbial lineages. THE ISME JOURNAL 2021; 15:2206-2232. [PMID: 33612832 PMCID: PMC8319197 DOI: 10.1038/s41396-021-00917-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 01/14/2021] [Accepted: 01/27/2021] [Indexed: 01/31/2023]
Abstract
Exploration of oxygen-depleted marine environments has consistently revealed novel microbial taxa and metabolic capabilities that expand our understanding of microbial evolution and ecology. Marine blue holes are shallow karst formations characterized by low oxygen and high organic matter content. They are logistically challenging to sample, and thus our understanding of their biogeochemistry and microbial ecology is limited. We present a metagenomic and geochemical characterization of Amberjack Hole on the Florida continental shelf (Gulf of Mexico). Dissolved oxygen became depleted at the hole's rim (32 m water depth), remained low but detectable in an intermediate hypoxic zone (40-75 m), and then increased to a secondary peak before falling below detection in the bottom layer (80-110 m), concomitant with increases in nutrients, dissolved iron, and a series of sequentially more reduced sulfur species. Microbial communities in the bottom layer contained heretofore undocumented levels of the recently discovered phylum Woesearchaeota (up to 58% of the community), along with lineages in the bacterial Candidate Phyla Radiation (CPR). Thirty-one high-quality metagenome-assembled genomes (MAGs) showed extensive biochemical capabilities for sulfur and nitrogen cycling, as well as for resisting and respiring arsenic. One uncharacterized gene associated with a CPR lineage differentiated hypoxic from anoxic zone communities. Overall, microbial communities and geochemical profiles were stable across two sampling dates in the spring and fall of 2019. The blue hole habitat is a natural marine laboratory that provides opportunities for sampling taxa with under-characterized but potentially important roles in redox-stratified microbial processes.
Collapse
Affiliation(s)
- N V Patin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA.
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA.
- Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA.
- Stationed at Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USA.
| | | | - A Stancil
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Ft. Pierce, FL, USA
| | - M Quinan
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Ft. Pierce, FL, USA
| | - J S Beckler
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Ft. Pierce, FL, USA
| | - E R Hall
- Mote Marine Laboratory, Sarasota, FL, USA
| | - J Culter
- Mote Marine Laboratory, Sarasota, FL, USA
| | - C G Smith
- U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, USA
| | - M Taillefert
- School of Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - F J Stewart
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
29
|
Open Issues for Protein Function Assignment in Haloferax volcanii and Other Halophilic Archaea. Genes (Basel) 2021; 12:genes12070963. [PMID: 34202810 PMCID: PMC8305020 DOI: 10.3390/genes12070963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Annotation ambiguities and annotation errors are a general challenge in genomics. While a reliable protein function assignment can be obtained by experimental characterization, this is expensive and time-consuming, and the number of such Gold Standard Proteins (GSP) with experimental support remains very low compared to proteins annotated by sequence homology, usually through automated pipelines. Even a GSP may give a misleading assignment when used as a reference: the homolog may be close enough to support isofunctionality, but the substrate of the GSP is absent from the species being annotated. In such cases, the enzymes cannot be isofunctional. Here, we examined a variety of such issues in halophilic archaea (class Halobacteria), with a strong focus on the model haloarchaeon Haloferax volcanii. Results: Annotated proteins of Hfx. volcanii were identified for which public databases tend to assign a function that is probably incorrect. In some cases, an alternative, probably correct, function can be predicted or inferred from the available evidence, but this has not been adopted by public databases because experimental validation is lacking. In other cases, a probably invalid specific function is predicted by homology, and while there is evidence that this assigned function is unlikely, the true function remains elusive. We listed 50 of those cases, each with detailed background information, so that a conclusion about the most likely biological function can be drawn. For reasons of brevity and comprehension, only the key aspects are listed in the main text, with detailed information being provided in a corresponding section of the Supplementary Materials. Conclusions: Compiling, describing and summarizing these open annotation issues and functional predictions will benefit the scientific community in the general effort to improve the evaluation of protein function assignments and more thoroughly detail them. By highlighting the gaps and likely annotation errors currently in the databases, we hope this study will provide a framework for experimentalists to systematically confirm (or disprove) our function predictions or to uncover yet more unexpected functions.
Collapse
|
30
|
Eliseikina MG, Beleneva IA, Kukhlevsky AD, Shamshurina EV. Identification and analysis of the biological activity of the new strain of Pseudoalteromonas piscicida isolated from the hemal fluid of the bivalve Modiolus kurilensis (F. R. Bernard, 1983). Arch Microbiol 2021; 203:4461-4473. [PMID: 34142183 DOI: 10.1007/s00203-021-02432-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
A cultivated form of bacteria (strain 2202) was isolated from the hemal fluid of the bivalve mollusk Modiolus kurilensis. Based on the set of data collected by genetic and physiological/biochemical analyses, the strain was identified as the species Pseudoalteromonas piscicida. Strain 2202 exhibits antimicrobial activity against Staphylococcus aureus, Candida albicans, and Bacillus subtilis but not against Escherichia coli and Pseudomonas aeruginosa. These activities characterize the behavior of strain 2202 as predator-like and classify it as a facultative predator. Being part of the normal microflora in the hemolymph of M. kurilensis, when external conditions change, strain 2202 shows features of opportunistic microflora. The strain 2202 exhibits selective toxicity towards larvae of various invertebrates: it impairs the early development of Mytilus edulis, but not of Strongylocentrotus nudus. Thus, the selective manner in which P. piscicida strains interact with various species of microorganisms and eukaryotes should be taken into consideration when using their biotechnological potential as a probiotic in aquaculture, source of antimicrobial substances, and factors that prevent fouling.
Collapse
Affiliation(s)
- Marina G Eliseikina
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russia.
| | - Irina A Beleneva
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russia
| | - Andrey D Kukhlevsky
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russia
| | - Ekaterina V Shamshurina
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russia
| |
Collapse
|
31
|
Tittes C, Schwarzer S, Pfeiffer F, Dyall-Smith M, Rodriguez-Franco M, Oksanen HM, Quax TEF. Cellular and Genomic Properties of Haloferax gibbonsii LR2-5, the Host of Euryarchaeal Virus HFTV1. Front Microbiol 2021; 12:625599. [PMID: 33664716 PMCID: PMC7921747 DOI: 10.3389/fmicb.2021.625599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/28/2021] [Indexed: 01/14/2023] Open
Abstract
Hypersaline environments are the source of many viruses infecting different species of halophilic euryarchaea. Information on infection mechanisms of archaeal viruses is scarce, due to the lack of genetically accessible virus–host models. Recently, a new archaeal siphovirus, Haloferax tailed virus 1 (HFTV1), was isolated together with its host belonging to the genus Haloferax, but it is not infectious on the widely used model euryarcheon Haloferax volcanii. To gain more insight into the biology of HFTV1 host strain LR2-5, we studied characteristics that might play a role in its virus susceptibility: growth-dependent motility, surface layer, filamentous surface structures, and cell shape. Its genome sequence showed that LR2-5 is a new strain of Haloferax gibbonsii. LR2-5 lacks obvious viral defense systems, such as CRISPR-Cas, and the composition of its cell surface is different from Hfx. volcanii, which might explain the different viral host range. This work provides first deep insights into the relationship between the host of halovirus HFTV1 and other members of the genus Haloferax. Given the close relationship to the genetically accessible Hfx. volcanii, LR2-5 has high potential as a new model for virus–host studies in euryarchaea.
Collapse
Affiliation(s)
- Colin Tittes
- Archaeal Virus-Host Interactions, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sabine Schwarzer
- Archaeal Virus-Host Interactions, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Friedhelm Pfeiffer
- Computational Biology Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Mike Dyall-Smith
- Computational Biology Group, Max Planck Institute of Biochemistry, Martinsried, Germany.,Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| | | | - Hanna M Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Tessa E F Quax
- Archaeal Virus-Host Interactions, Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
32
|
Tittes C, Schwarzer S, Quax TEF. Viral Hijack of Filamentous Surface Structures in Archaea and Bacteria. Viruses 2021; 13:v13020164. [PMID: 33499367 PMCID: PMC7911016 DOI: 10.3390/v13020164] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/30/2022] Open
Abstract
The bacterial and archaeal cell surface is decorated with filamentous surface structures that are used for different functions, such as motility, DNA exchange and biofilm formation. Viruses hijack these structures and use them to ride to the cell surface for successful entry. In this review, we describe currently known mechanisms for viral attachment, translocation, and entry via filamentous surface structures. We describe the different mechanisms used to exploit various surface structures bacterial and archaeal viruses. This overview highlights the importance of filamentous structures at the cell surface for entry of prokaryotic viruses.
Collapse
|
33
|
Schiller H, Schulze S, Mutan Z, de Vaulx C, Runcie C, Schwartz J, Rados T, Bisson Filho AW, Pohlschroder M. Haloferax volcanii Immersed Liquid Biofilms Develop Independently of Known Biofilm Machineries and Exhibit Rapid Honeycomb Pattern Formation. mSphere 2020; 5:e00976-20. [PMID: 33328348 PMCID: PMC7771232 DOI: 10.1128/msphere.00976-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/19/2020] [Indexed: 12/21/2022] Open
Abstract
The ability to form biofilms is shared by many microorganisms, including archaea. Cells in a biofilm are encased in extracellular polymeric substances that typically include polysaccharides, proteins, and extracellular DNA, conferring protection while providing a structure that allows for optimal nutrient flow. In many bacteria, flagella and evolutionarily conserved type IV pili are required for the formation of biofilms on solid surfaces or floating at the air-liquid interface of liquid media. Similarly, in many archaea it has been demonstrated that type IV pili and, in a subset of these species, archaella are required for biofilm formation on solid surfaces. Additionally, in the model archaeon Haloferax volcanii, chemotaxis and AglB-dependent glycosylation play important roles in this process. H. volcanii also forms immersed biofilms in liquid cultures poured into petri dishes. This study reveals that mutants of this haloarchaeon that interfere with the biosynthesis of type IV pili or archaella, as well as a chemotaxis-targeting transposon and aglB deletion mutants, lack obvious defects in biofilms formed in liquid cultures. Strikingly, we have observed that these liquid-based biofilms are capable of rearrangement into honeycomb-like patterns that rapidly form upon removal of the petri dish lid, a phenomenon that is not dependent on changes in light or oxygen concentration but can be induced by controlled reduction of humidity. Taken together, this study demonstrates that H. volcanii requires novel, unidentified strategies for immersed liquid biofilm formation and also exhibits rapid structural rearrangements.IMPORTANCE This first molecular biological study of archaeal immersed liquid biofilms advances our basic biological understanding of the model archaeon Haloferax volcanii Data gleaned from this study also provide an invaluable foundation for future studies to uncover components required for immersed liquid biofilms in this haloarchaeon and also potentially for liquid biofilm formation in general, which is poorly understood compared to the formation of biofilms on surfaces. Moreover, this first description of rapid honeycomb pattern formation is likely to yield novel insights into the underlying structural architecture of extracellular polymeric substances and cells within immersed liquid biofilms.
Collapse
Affiliation(s)
- Heather Schiller
- Department of Biology, Leidy Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stefan Schulze
- Department of Biology, Leidy Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zuha Mutan
- Department of Biology, Leidy Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Charlotte de Vaulx
- Department of Biology, Leidy Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Catalina Runcie
- Department of Biology, Leidy Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessica Schwartz
- Department of Biology, Leidy Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Theopi Rados
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Alexandre W Bisson Filho
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Mechthild Pohlschroder
- Department of Biology, Leidy Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
34
|
Type IV-Like Pili Facilitate Transformation in Naturally Competent Archaea. J Bacteriol 2020; 202:JB.00355-20. [PMID: 32817089 DOI: 10.1128/jb.00355-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022] Open
Abstract
Naturally competent organisms are capable of DNA uptake directly from the environment through the process of transformation. Despite the importance of transformation to microbial evolution, DNA uptake remains poorly characterized outside of the bacterial domain. Here, we identify the pilus as a necessary component of the transformation machinery in archaea. We describe two naturally competent organisms, Methanococcus maripaludis and Methanoculleus thermophilus In M. maripaludis, replicative vectors were transferred with an average efficiency of 2.4 × 103 transformants μg-1 DNA. In M. thermophilus, integrative vectors were transferred with an average efficiency of 2.7 × 103 transformants μg-1 DNA. Additionally, natural transformation of M. thermophilus could be used to introduce chromosomal mutations. To our knowledge, this is the first demonstration of a method to introduce targeted mutations in a member of the order Methanomicrobiales For both organisms, mutants lacking structural components of the type IV-like pilus filament were defective for DNA uptake, demonstrating the importance of pili for natural transformation. Interestingly, competence could be induced in a noncompetent strain of M. maripaludis by expressing pilin genes from a replicative vector. These results expand the known natural competence pili to include examples from the archaeal domain and highlight the importance of pili for DNA uptake in diverse microbial organisms.IMPORTANCE Microbial organisms adapt and evolve by acquiring new genetic material through horizontal gene transfer. One way that this occurs is natural transformation, the direct uptake and genomic incorporation of environmental DNA by competent organisms. Archaea represent up to a third of the biodiversity on Earth, yet little is known about transformation in these organisms. Here, we provide the first characterization of a component of the archaeal DNA uptake machinery. We show that the type IV-like pilus is essential for natural transformation in two archaeal species. This suggests that pili are important for transformation across the tree of life and further expands our understanding of gene flow in archaea.
Collapse
|
35
|
The structures of two archaeal type IV pili illuminate evolutionary relationships. Nat Commun 2020; 11:3424. [PMID: 32647180 PMCID: PMC7347861 DOI: 10.1038/s41467-020-17268-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
We have determined the cryo-electron microscopic (cryo-EM) structures of two archaeal type IV pili (T4P), from Pyrobaculum arsenaticum and Saccharolobus solfataricus, at 3.8 Å and 3.4 Å resolution, respectively. This triples the number of high resolution archaeal T4P structures, and allows us to pinpoint the evolutionary divergence of bacterial T4P, archaeal T4P and archaeal flagellar filaments. We suggest that extensive glycosylation previously observed in T4P of Sulfolobus islandicus is a response to an acidic environment, as at even higher temperatures in a neutral environment much less glycosylation is present for Pyrobaculum than for Sulfolobus and Saccharolobus pili. Consequently, the Pyrobaculum filaments do not display the remarkable stability of the Sulfolobus filaments in vitro. We identify the Saccharolobus and Pyrobaculum T4P as host receptors recognized by rudivirus SSRV1 and tristromavirus PFV2, respectively. Our results illuminate the evolutionary relationships among bacterial and archaeal T4P filaments and provide insights into archaeal virus-host interactions. Archaeal type IV pili (T4P) mediate adhesion to surfaces and are receptors for hyperthermophilic archaeal viruses. Here, the authors present the cryo-EM structures of two archaeal T4P from Pyrobaculum arsenaticum and Saccharolobus solfataricus and discuss evolutionary relationships between bacterial T4P, archaeal T4P and archaeal flagellar filaments.
Collapse
|
36
|
Ligthart K, Belzer C, de Vos WM, Tytgat HLP. Bridging Bacteria and the Gut: Functional Aspects of Type IV Pili. Trends Microbiol 2020; 28:340-348. [PMID: 32298612 DOI: 10.1016/j.tim.2020.02.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/31/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022]
Abstract
Cell-surface-located proteinaceous appendages, such as flagella and fimbriae or pili, are ubiquitous in bacterial communities. Here, we focus on conserved type IV pili (T4P) produced by bacteria in the intestinal tract, one of the most densely populated human ecosystems. Computational analysis revealed that approximately 30% of known intestinal bacteria are predicted to produce T4P. To rationalize how T4P allow intestinal bacteria to interact with their environment, other microbiota members, and host cells, we review their established role in gut commensals and pathogens with respect to adherence, motility, and biofilm formation, as well as protein secretion and DNA uptake. This work indicates that T4P are widely spread among the known members of the intestinal microbiota and that their contribution to human health might be underestimated.
Collapse
Affiliation(s)
- Kate Ligthart
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands; Research Program Human Microbiome, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hanne L P Tytgat
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
37
|
Silva YRDO, Contreras-Martel C, Macheboeuf P, Dessen A. Bacterial secretins: Mechanisms of assembly and membrane targeting. Protein Sci 2020; 29:893-904. [PMID: 32020694 DOI: 10.1002/pro.3835] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/25/2020] [Accepted: 01/28/2020] [Indexed: 12/20/2022]
Abstract
Secretion systems are employed by bacteria to transport macromolecules across membranes without compromising their integrities. Processes including virulence, colonization, and motility are highly dependent on the secretion of effector molecules toward the immediate cellular environment, and in some cases, into the host cytoplasm. In Type II and Type III secretion systems, as well as in Type IV pili, homomultimeric complexes known as secretins form large pores in the outer bacterial membrane, and the localization and assembly of such 1 MDa molecules often relies on pilotins or accessory proteins. Significant progress has been made toward understanding details of interactions between secretins and their partner proteins using approaches ranging from bacterial genetics to cryo electron microscopy. This review provides an overview of the mode of action of pilotins and accessory proteins for T2SS, T3SS, and T4PS secretins, highlighting recent near-atomic resolution cryo-EM secretin complex structures and underlining the importance of these interactions for secretin functionality.
Collapse
Affiliation(s)
- Yuri Rafael de Oliveira Silva
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas, São Paulo, Brazil.,Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Carlos Contreras-Martel
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Pauline Macheboeuf
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Andréa Dessen
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas, São Paulo, Brazil.,Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| |
Collapse
|
38
|
Abstract
Cells from all three domains of life on Earth utilize motile macromolecular devices that protrude from the cell surface to generate forces that allow them to swim through fluid media. Research carried out on archaea during the past decade or so has led to the recognition that, despite their common function, the motility devices of the three domains display fundamental differences in their properties and ancestry, reflecting a striking example of convergent evolution. Thus, the flagella of bacteria and the archaella of archaea employ rotary filaments that assemble from distinct subunits that do not share a common ancestor and generate torque using energy derived from distinct fuel sources, namely chemiosmotic ion gradients and FlaI motor-catalyzed ATP hydrolysis, respectively. The cilia of eukaryotes, however, assemble via kinesin-2-driven intraflagellar transport and utilize microtubules and ATP-hydrolyzing dynein motors to beat in a variety of waveforms via a sliding filament mechanism. Here, with reference to current structural and mechanistic information about these organelles, we briefly compare the evolutionary origins, assembly and tactic motility of archaella, flagella and cilia.
Collapse
Affiliation(s)
- Shahid Khan
- Molecular Biology Consortium, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Jonathan M Scholey
- Department of Molecular and Cell Biology, University of California @ Davis, CA 95616, USA.
| |
Collapse
|
39
|
Abstract
Biofilms are structured and organized communities of microorganisms that represent one of the most successful forms of life on Earth. Bacterial biofilms have been studied in great detail, and many molecular details are known about the processes that govern bacterial biofilm formation, however, archaea are ubiquitous in almost all habitats on Earth and can also form biofilms. In recent years, insights have been gained into the development of archaeal biofilms, how archaea communicate to form biofilms and how the switch from a free-living lifestyle to a sessile lifestyle is regulated. In this Review, we explore the different stages of archaeal biofilm development and highlight similarities and differences between archaea and bacteria on a molecular level. We also consider the role of archaeal biofilms in industry and their use in different industrial processes.
Collapse
Affiliation(s)
- Marleen van Wolferen
- Molecular Biology of Archaea, Institute of Biology II, Microbiology, University of Freiburg, Freiburg, Germany
| | - Alvaro Orell
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, Microbiology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
40
|
Denise R, Abby SS, Rocha EPC. Diversification of the type IV filament superfamily into machines for adhesion, protein secretion, DNA uptake, and motility. PLoS Biol 2019; 17:e3000390. [PMID: 31323028 PMCID: PMC6668835 DOI: 10.1371/journal.pbio.3000390] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/31/2019] [Accepted: 07/03/2019] [Indexed: 12/21/2022] Open
Abstract
Processes of molecular innovation require tinkering and shifting in the function of existing genes. How this occurs in terms of molecular evolution at long evolutionary scales remains poorly understood. Here, we analyse the natural history of a vast group of membrane-associated molecular systems in Bacteria and Archaea-the type IV filament (TFF) superfamily-that diversified in systems involved in flagellar or twitching motility, adhesion, protein secretion, and DNA uptake. The phylogeny of the thousands of detected systems suggests they may have been present in the last universal common ancestor. From there, two lineages-a bacterial and an archaeal-diversified by multiple gene duplications, gene fissions and deletions, and accretion of novel components. Surprisingly, we find that the 'tight adherence' (Tad) systems originated from the interkingdom transfer from Archaea to Bacteria of a system resembling the 'EppA-dependent' (Epd) pilus and were associated with the acquisition of a secretin. The phylogeny and content of ancestral systems suggest that initial bacterial pili were engaged in cell motility and/or DNA uptake. In contrast, specialised protein secretion systems arose several times independently and much later in natural history. The functional diversification of the TFF superfamily was accompanied by genetic rearrangements with implications for genetic regulation and horizontal gene transfer: systems encoded in fewer loci were more frequently exchanged between taxa. This may have contributed to their rapid evolution and spread across Bacteria and Archaea. Hence, the evolutionary history of the superfamily reveals an impressive catalogue of molecular evolution mechanisms that resulted in remarkable functional innovation and specialisation from a relatively small set of components.
Collapse
Affiliation(s)
- Rémi Denise
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris, France
- Sorbonne Université, Collège doctoral, Paris, France
| | - Sophie S. Abby
- Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France
| | - Eduardo P. C. Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris, France
| |
Collapse
|
41
|
Wang F, Cvirkaite-Krupovic V, Kreutzberger MAB, Su Z, de Oliveira GAP, Osinski T, Sherman N, DiMaio F, Wall JS, Prangishvili D, Krupovic M, Egelman EH. An extensively glycosylated archaeal pilus survives extreme conditions. Nat Microbiol 2019; 4:1401-1410. [PMID: 31110358 PMCID: PMC6656605 DOI: 10.1038/s41564-019-0458-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 04/15/2019] [Indexed: 11/09/2022]
Abstract
Pili on the surface of Sulfolobus islandicus are used for many functions, and serve as receptors for certain archaeal viruses. The cells grow optimally at pH 3 and ~80 °C, exposing these extracellular appendages to a very harsh environment. The pili, when removed from cells, resist digestion by trypsin or pepsin, and survive boiling in sodium dodecyl sulfate or 5 M guanidine hydrochloride. We used electron cryo-microscopy to determine the structure of these filaments at 4.1 Å resolution. An atomic model was built by combining the electron density map with bioinformatics without previous knowledge of the pilin sequence-an approach that should prove useful for assemblies where all of the components are not known. The atomic structure of the pilus was unusual, with almost one-third of the residues being either threonine or serine, and with many hydrophobic surface residues. While the map showed extra density consistent with glycosylation for only three residues, mass measurements suggested extensive glycosylation. We propose that this extensive glycosylation renders these filaments soluble and provides the remarkable structural stability. We also show that the overall fold of the archaeal pilin is remarkably similar to that of archaeal flagellin, establishing common evolutionary origins.
Collapse
Affiliation(s)
- Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | | | - Mark A B Kreutzberger
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Zhangli Su
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | | | - Tomasz Osinski
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Nicholas Sherman
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | - David Prangishvili
- Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, Paris, France
| | - Mart Krupovic
- Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, Paris, France.
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
42
|
Nagel C, Machulla A, Zahn S, Soppa J. Several One-Domain Zinc Finger µ-Proteins of Haloferax Volcanii Are Important for Stress Adaptation, Biofilm Formation, and Swarming. Genes (Basel) 2019; 10:genes10050361. [PMID: 31083437 PMCID: PMC6562870 DOI: 10.3390/genes10050361] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 11/16/2022] Open
Abstract
Zinc finger domains are highly structured and can mediate interactions to DNA, RNA, proteins, lipids, and small molecules. Accordingly, zinc finger proteins are very versatile and involved in many biological functions. Eukaryotes contain a wealth of zinc finger proteins, but zinc finger proteins have also been found in archaea and bacteria. Large zinc finger proteins have been well studied, however, in stark contrast, single domain zinc finger µ-proteins of less than 70 amino acids have not been studied at all, with one single exception. Therefore, 16 zinc finger µ-proteins of the haloarchaeon Haloferax volcanii were chosen and in frame deletion mutants of the cognate genes were generated. The phenotypes of mutants and wild-type were compared under eight different conditions, which were chosen to represent various pathways and involve many genes. None of the mutants differed from the wild-type under optimal or near-optimal conditions. However, 12 of the 16 mutants exhibited a phenotypic difference under at least one of the four following conditions: Growth in synthetic medium with glycerol, growth in the presence of bile acids, biofilm formation, and swarming. In total, 16 loss of function and 11 gain of function phenotypes were observed. Five mutants indicated counter-regulation of a sessile versus a motile life style in H. volcanii. In conclusion, the generation and analysis of a set of deletion mutants demonstrated the high importance of zinc finger µ-proteins for various biological functions, and it will be the basis for future mechanistic insight.
Collapse
Affiliation(s)
- Chantal Nagel
- Department of Biosciences, Institute for Molecular Biosciences, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany.
| | - Anja Machulla
- Department of Biosciences, Institute for Molecular Biosciences, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany.
| | - Sebastian Zahn
- Department of Biosciences, Institute for Molecular Biosciences, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany.
| | - Jörg Soppa
- Department of Biosciences, Institute for Molecular Biosciences, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany.
| |
Collapse
|
43
|
Characterization of the transcriptome of Haloferax volcanii, grown under four different conditions, with mixed RNA-Seq. PLoS One 2019; 14:e0215986. [PMID: 31039177 PMCID: PMC6490895 DOI: 10.1371/journal.pone.0215986] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/11/2019] [Indexed: 12/21/2022] Open
Abstract
Haloferax volcanii is a well-established model species for haloarchaea. Small scale RNomics and bioinformatics predictions were used to identify small non-coding RNAs (sRNAs), and deletion mutants revealed that sRNAs have important regulatory functions. A recent dRNA-Seq study was used to characterize the primary transcriptome. Unexpectedly, it was revealed that, under optimal conditions, H. volcanii contains more non-coding sRNAs than protein-encoding mRNAs. However, the dRNA-Seq approach did not contain any length information. Therefore, a mixed RNA-Seq approach was used to determine transcript length and to identify additional transcripts, which are not present under optimal conditions. In total, 50 million paired end reads of 150 nt length were obtained. 1861 protein-coding RNAs (cdRNAs) were detected, which encoded 3092 proteins. This nearly doubled the coverage of cdRNAs, compared to the previous dRNA-Seq study. About 2/3 of the cdRNAs were monocistronic, and 1/3 covered more than one gene. In addition, 1635 non-coding sRNAs were identified. The highest fraction of non-coding RNAs were cis antisense RNAs (asRNAs). Analysis of the length distribution revealed that sRNAs have a median length of about 150 nt. Based on the RNA-Seq and dRNA-Seq results, genes were chosen to exemplify characteristics of the H. volcanii transcriptome by Northern blot analyses, e.g. 1) the transcript patterns of gene clusters can be straightforward, but also very complex, 2) many transcripts differ in expression level under the four analyzed conditions, 3) some genes are transcribed into RNA isoforms of different length, which can be differentially regulated, 4) transcripts with very long 5'-UTRs and with very long 3'-UTRs exist, and 5) about 30% of all cdRNAs have overlapping 3'-ends, which indicates, together with the asRNAs, that H. volcanii makes ample use of sense-antisense interactions. Taken together, this RNA-Seq study, together with a previous dRNA-Seq study, enabled an unprecedented view on the H. volcanii transcriptome.
Collapse
|
44
|
Legerme G, Pohlschroder M. Limited Cross-Complementation Between Haloferax volcanii PilB1-C1 and PilB3-C3 Paralogs. Front Microbiol 2019; 10:700. [PMID: 31068907 PMCID: PMC6491452 DOI: 10.3389/fmicb.2019.00700] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/20/2019] [Indexed: 01/05/2023] Open
Abstract
Type IV pili are evolutionarily conserved cell surface filaments that promote surface adhesion and cell aggregation providing bacteria and archaea protection from a variety of stress conditions. In fact, prokaryotic genomes frequently contain several copies of the core biosynthesis genes, pilB and pilC, encoding an ATPase and membrane anchor, respectively. Recent phylogenetic analyses suggest that in haloarchaea, a subset of pilB-C paralogs, such as the Haloferax volcanii pilB1-C1, were gained via horizontal transfer from the crenarchaea, while the co-regulated type IV pilus subunits, the pilins, evolved by duplication, followed by diversification of the ancestral euryarchaeal pilins. Here, we report the identification of an H. volcanii pilB1 transposon mutant that exhibits an adhesion defect in defined media. A similar defect observed in an H. volcanii ∆pilB1-C1 strain can be rescued by expressing pilB1-C1 in trans. However, these proteins cannot rescue the severe adhesion defect of a previously reported ∆pilB3-C3 strain. Conversely, pilB3-C3, which are not predicted to have been laterally transferred, expressed in trans can rescue the adhesion defect of a ∆pilB1-C1 strain. This cross-complementation supports the proposed hybrid origin of the operon containing pilB1-C1 and shows that at least certain euryarchaeal PilB paralogs can work with different pilin sets. Efficient recognition of the euryarchaeal pilins by the crenarchaeal PilB1-C1 may have required some degree of pilin modification, but perhaps the modifications were minor enough that PilB3 recognition of these pilins was not precluded, resulting in modular evolution and an extensive combinatorial diversity that allows for adaptation to a variety of stress conditions and attachment to varied surfaces.
Collapse
Affiliation(s)
- Georgio Legerme
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| | | |
Collapse
|
45
|
Clark DP, Pazdernik NJ, McGehee MR. Bacterial Genetics. Mol Biol 2019. [DOI: 10.1016/b978-0-12-813288-3.00028-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Biofilm and Quorum Sensing in Archaea. ACTA BIOLOGICA 2019. [DOI: 10.18276/ab.2019.26-04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
47
|
Pohlschroder M, Pfeiffer F, Schulze S, Abdul Halim MF. Archaeal cell surface biogenesis. FEMS Microbiol Rev 2018; 42:694-717. [PMID: 29912330 PMCID: PMC6098224 DOI: 10.1093/femsre/fuy027] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
Cell surfaces are critical for diverse functions across all domains of life, from cell-cell communication and nutrient uptake to cell stability and surface attachment. While certain aspects of the mechanisms supporting the biosynthesis of the archaeal cell surface are unique, likely due to important differences in cell surface compositions between domains, others are shared with bacteria or eukaryotes or both. Based on recent studies completed on a phylogenetically diverse array of archaea, from a wide variety of habitats, here we discuss advances in the characterization of mechanisms underpinning archaeal cell surface biogenesis. These include those facilitating co- and post-translational protein targeting to the cell surface, transport into and across the archaeal lipid membrane, and protein anchoring strategies. We also discuss, in some detail, the assembly of specific cell surface structures, such as the archaeal S-layer and the type IV pili. We will highlight the importance of post-translational protein modifications, such as lipid attachment and glycosylation, in the biosynthesis as well as the regulation of the functions of these cell surface structures and present the differences and similarities in the biogenesis of type IV pili across prokaryotic domains.
Collapse
Affiliation(s)
| | - Friedhelm Pfeiffer
- Computational Biology Group, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Stefan Schulze
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
48
|
Syutkin AS, van Wolferen M, Surin AK, Albers SV, Pyatibratov MG, Fedorov OV, Quax TEF. Salt-dependent regulation of archaellins in Haloarcula marismortui. Microbiologyopen 2018; 8:e00718. [PMID: 30270530 PMCID: PMC6528647 DOI: 10.1002/mbo3.718] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/26/2022] Open
Abstract
Microorganisms require a motility structure to move towards optimal growth conditions. The motility structure from archaea, the archaellum, is fundamentally different from its bacterial counterpart, the flagellum, and is assembled in a similar fashion as type IV pili. The archaellum filament consists of thousands of copies of N‐terminally processed archaellin proteins. Several archaea, such as the euryarchaeon Haloarcula marismortui, encode multiple archaellins. Two archaellins of H. marismortui display differential stability under various ionic strengths. This suggests that these proteins behave as ecoparalogs and perform the same function under different environmental conditions. Here, we explored this intriguing system to study the differential regulation of these ecoparalogous archaellins by monitoring their transcription, translation, and assembly into filaments. The salt concentration of the growth medium induced differential expression of the two archaellins. In addition, this analysis indicated that archaellation in H. marismortui is majorly regulated on the level of secretion, by a still unknown mechanism. These findings indicate that in archaea, multiple encoded archaellins are not completely redundant, but in fact can display subtle functional differences, which enable cells to cope with varying environmental conditions.
Collapse
Affiliation(s)
- Alexey S Syutkin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
| | - Marleen van Wolferen
- Molecular Biology of Archaea, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Alexey K Surin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Oleg V Fedorov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
| | - Tessa E F Quax
- Molecular Biology of Archaea, Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
49
|
Cerletti M, Giménez MI, Tröetschel C, D' Alessandro C, Poetsch A, De Castro RE, Paggi RA. Proteomic Study of the Exponential-Stationary Growth Phase Transition in the Haloarchaea Natrialba magadii and Haloferax volcanii. Proteomics 2018; 18:e1800116. [PMID: 29888524 DOI: 10.1002/pmic.201800116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/09/2018] [Indexed: 11/12/2022]
Abstract
The dynamic changes that take place along the phases of microbial growth (lag, exponential, stationary, and death) have been widely studied in bacteria at the molecular and cellular levels, but little is known for archaea. In this study, a high-throughput approach was used to analyze and compare the proteomes of two haloarchaea during exponential and stationary growth: the neutrophilic Haloferax volcanii and the alkaliphilic Natrialba magadii. Almost 2000 proteins were identified in each species (≈50% of the predicted proteome). Among them, 532 and 432 were found to be differential between growth phases in H. volcanii and N. magadii, respectively. Changes upon entrance into stationary phase included an overall increase in proteins involved in the transport of small molecules and ions, stress response, and fatty acid catabolism. Proteins related to genetic processes and cell division showed a notorious decrease in amount. The data reported in this study not only contributes to our understanding of the exponential-stationary growth phase transition in extremophilic archaea but also provides the first comprehensive analysis of the proteome composition of N. magadii. The MS proteomics data have been deposited in the ProteomeXchange Consortium with the dataset identifier JPST000395.
Collapse
Affiliation(s)
- Micaela Cerletti
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, 7600, Argentina
| | - María Ines Giménez
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, 7600, Argentina
| | | | - Celeste D' Alessandro
- Laboratório de Patologia e Controle Microbiano de Insetos, ESALQ-USP, Piracicaba-SP, 13418-900, Brazil
| | - Ansgar Poetsch
- Plant Biochemistry, Ruhr University Bochum, Bochum, 44801, Germany.,School of Biomedical and Healthcare Sciences, Plymouth University, Plymouth, PL4 8AA, United Kingdom
| | - Rosana Ester De Castro
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, 7600, Argentina
| | - Roberto A Paggi
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, 7600, Argentina
| |
Collapse
|
50
|
Dorati F, Barrett GA, Sanchez-Contreras M, Arseneault T, José MS, Studholme DJ, Murillo J, Caballero P, Waterfield NR, Arnold DL, Shaw LJ, Jackson RW. Coping with Environmental Eukaryotes; Identification of Pseudomonas syringae Genes during the Interaction with Alternative Hosts or Predators. Microorganisms 2018; 6:microorganisms6020032. [PMID: 29690522 PMCID: PMC6027264 DOI: 10.3390/microorganisms6020032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/09/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022] Open
Abstract
Understanding the molecular mechanisms underpinning the ecological success of plant pathogens is critical to develop strategies for controlling diseases and protecting crops. Recent observations have shown that plant pathogenic bacteria, particularly Pseudomonas, exist in a range of natural environments away from their natural plant host e.g., water courses, soil, non-host plants. This exposes them to a variety of eukaryotic predators such as nematodes, insects and amoebae present in the environment. Nematodes and amoeba in particular are bacterial predators while insect herbivores may act as indirect predators, ingesting bacteria on plant tissue. We therefore postulated that bacteria are probably under selective pressure to avoid or survive predation and have therefore developed appropriate coping mechanisms. We tested the hypothesis that plant pathogenic Pseudomonas syringae are able to cope with predation pressure and found that three pathovars show weak, but significant resistance or toxicity. To identify the gene systems that contribute to resistance or toxicity we applied a heterologous screening technique, called Rapid Virulence Annotation (RVA), for anti-predation and toxicity mechanisms. Three cosmid libraries for P. syringae pv. aesculi, pv. tomato and pv. phaseolicola, of approximately 2000 cosmids each, were screened in the susceptible/non-toxic bacterium Escherichia coli against nematode, amoebae and an insect. A number of potential conserved and unique genes were identified which included genes encoding haemolysins, biofilm formation, motility and adhesion. These data provide the first multi-pathovar comparative insight to how plant pathogens cope with different predation pressures and infection of an insect gut and provide a foundation for further study into the function of selected genes and their role in ecological success.
Collapse
Affiliation(s)
- Federico Dorati
- School of Biological Sciences, University of Reading, Reading, RG6 6UR, UK.
| | - Glyn A Barrett
- School of Biological Sciences, University of Reading, Reading, RG6 6UR, UK.
| | | | - Tanya Arseneault
- School of Biological Sciences, University of Reading, Reading, RG6 6UR, UK.
- Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, Research and Development Centre, Quebec, J3B 3E6, Canada.
| | - Mateo San José
- School of Biological Sciences, University of Reading, Reading, RG6 6UR, UK.
| | | | - Jesús Murillo
- Instituto de Agrobiotecnología, Universidad Pública de Navarra, 31192 Mutilva, Spain.
| | - Primitivo Caballero
- Instituto de Agrobiotecnología, Universidad Pública de Navarra, 31192 Mutilva, Spain.
| | - Nicholas R Waterfield
- Department of Biology and Biochemistry, University of Bath, Bath, BA1 9BJ, UK.
- Warwick Medical School, University of Warwick, Warwick, CV4 7AL, UK.
| | - Dawn L Arnold
- Centre for Research in Bioscience, Faculty of Health and Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK.
| | - Liz J Shaw
- School of Archaeology, Geography and Environmental Science, University of Reading, Reading, RG6 6AX, UK.
| | - Robert W Jackson
- School of Biological Sciences, University of Reading, Reading, RG6 6UR, UK.
| |
Collapse
|