1
|
Montanari Borges B, Gama de Santana M, Willian Preite N, de Lima Kaminski V, Trentin G, Almeida F, Vieira Loures F. Extracellular vesicles from virulent P. brasiliensis induce TLR4 and dectin-1 expression in innate cells and promote enhanced Th1/Th17 response. Virulence 2024; 15:2329573. [PMID: 38511558 PMCID: PMC10962619 DOI: 10.1080/21505594.2024.2329573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane-enclosed nanoparticles that transport several biomolecules and are involved in important mechanisms and functions related to the pathophysiology of fungal diseases. EVs from Paracoccidioides brasiliensis, the main causative agent of Paracoccidioidomycosis (PCM), modulate the immune response of macrophages. In this study, we assessed the EVs proteome from a virulent P. brasiliensis isolated from granulomatous lesions and compared their immunomodulatory ability with EVs isolated from the fungus before the animal passage (control EVs) when challenging macrophages and dendritic cells (DCs). Proteome showed that virulent EVs have a higher abundance of virulence factors such as GP43, protein 14-3-3, GAPDH, as well as virulence factors never described in PCM, such as aspartyl aminopeptidase and a SidJ analogue compared with control EVs. Virulent extracellular vesicles induced higher expression of TLR4 and Dectin-1 than control EVs in macrophages and dendritic cells (DCs). In opposition, a lower TLR2 expression was induced by virulent EVs. Additionally, virulent EVs induced lower expression of CD80, CD86 and TNF-α, but promoted a higher expression of IL-6 and IL-10, suggesting that EVs isolated from virulent P. brasiliensis-yeast promote a milder DCs and macrophage maturation. Herein, we showed that EVs from virulent fungi stimulated a higher frequency of Th1/Tc1, Th17, and Treg cells, which gives new insights into fungal extracellular vesicles. Taken together, our results suggest that P. brasiliensis utilizes its EVs as virulence bags that manipulate the immune system in its favour, creating a milder immune response and helping with fungal evasion from the immune system.
Collapse
Affiliation(s)
- Bruno Montanari Borges
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, São Paulo, Brazil
| | - Monique Gama de Santana
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, São Paulo, Brazil
| | - Nycolas Willian Preite
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, São Paulo, Brazil
| | - Valéria de Lima Kaminski
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, São Paulo, Brazil
| | - Gabriel Trentin
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Flávio Vieira Loures
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, São Paulo, Brazil
| |
Collapse
|
2
|
de Matos Silva S, Echeverri CR, Mendes-Giannini MJS, Fusco-Almeida AM, Gonzalez A. Common virulence factors between Histoplasma and Paracoccidioides: Recognition of Hsp60 and Enolase by CR3 and plasmin receptors in host cells. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100246. [PMID: 39022313 PMCID: PMC11253281 DOI: 10.1016/j.crmicr.2024.100246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Over the last two decades, the incidence of Invasive Fungal Infections (IFIs) globally has risen, posing a considerable challenge despite available antifungal therapies. Addressing this, the World Health Organization (WHO) prioritized research on specific fungi, notably Histoplasma spp. and Paracoccidioides spp. These dimorphic fungi have a mycelial life cycle in soil and a yeast phase associated with tissues of mammalian hosts. Inhalation of conidia and mycelial fragments initiates the infection, crucially transforming into the yeast form within the host, influenced by factors like temperature, host immunity, and hormonal status. Survival and multiplication within alveolar macrophages are crucial for disease progression, where innate immune responses play a pivotal role in overcoming physical barriers. The transition to pathogenic yeast, triggered by increased temperature, involves yeast phase-specific gene expression, closely linked to infection establishment and pathogenicity. Cell adhesion mechanisms during host-pathogen interactions are intricately linked to fungal virulence, which is critical for tissue colonization and disease development. Yeast replication within macrophages leads to their rupture, aiding pathogen dissemination. Immune cells, especially macrophages, dendritic cells, and neutrophils, are key players during infection control, with macrophages crucial for defense, tissue integrity, and pathogen elimination. Recognition of common virulence molecules such as heat- shock protein-60 (Hsp60) and enolase by pattern recognition receptors (PRRs), mainly via the complement receptor 3 (CR3) and plasmin receptor pathways, respectively, could be pivotal in host-pathogen interactions for Histoplasma spp. and Paracoccidioides spp., influencing adhesion, phagocytosis, and inflammatory regulation. This review provides a comprehensive overview of the dynamic of these two IFIs between host and pathogen. Further research into these fungi's virulence factors promises insights into pathogenic mechanisms, potentially guiding the development of effective treatment strategies.
Collapse
Affiliation(s)
- Samanta de Matos Silva
- Laboratory of Mycology, Department of Clinical Analysis, School of Pharmaceutical Science, Paulista State University (UNESP), Araraquara, Brazil
- Nucleous of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Science, Paulista State University (UNESP), Araraquara, Brazil
- Basic and Applied Microbiology Group (MICROBA), School of Microbiology, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Carolina Rodriguez Echeverri
- Laboratory of Mycology, Department of Clinical Analysis, School of Pharmaceutical Science, Paulista State University (UNESP), Araraquara, Brazil
- Nucleous of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Science, Paulista State University (UNESP), Araraquara, Brazil
- Basic and Applied Microbiology Group (MICROBA), School of Microbiology, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Maria José Soares Mendes-Giannini
- Laboratory of Mycology, Department of Clinical Analysis, School of Pharmaceutical Science, Paulista State University (UNESP), Araraquara, Brazil
- Nucleous of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Science, Paulista State University (UNESP), Araraquara, Brazil
| | - Ana Marisa Fusco-Almeida
- Laboratory of Mycology, Department of Clinical Analysis, School of Pharmaceutical Science, Paulista State University (UNESP), Araraquara, Brazil
- Nucleous of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Science, Paulista State University (UNESP), Araraquara, Brazil
| | - Angel Gonzalez
- Basic and Applied Microbiology Group (MICROBA), School of Microbiology, Universidad de Antioquia (UdeA), Medellín, Colombia
| |
Collapse
|
3
|
Barros BCSC, Almeida BR, Barros DTL, Toledo MS, Suzuki E. Respiratory Epithelial Cells: More Than Just a Physical Barrier to Fungal Infections. J Fungi (Basel) 2022; 8:jof8060548. [PMID: 35736031 PMCID: PMC9225092 DOI: 10.3390/jof8060548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/12/2022] [Accepted: 05/21/2022] [Indexed: 02/06/2023] Open
Abstract
The respiratory epithelium is highly complex, and its composition varies along the conducting airways and alveoli. In addition to their primary function in maintaining the respiratory barrier and lung homeostasis for gas exchange, epithelial cells interact with inhaled pathogens, which can manipulate cell signaling pathways, promoting adhesion to these cells or hosting tissue invasion. Moreover, pathogens (or their products) can induce the secretion of chemokines and cytokines by epithelial cells, and in this way, these host cells communicate with the immune system, modulating host defenses and inflammatory outcomes. This review will focus on the response of respiratory epithelial cells to two human fungal pathogens that cause systemic mycoses: Aspergillus and Paracoccidioides. Some of the host epithelial cell receptors and signaling pathways, in addition to fungal adhesins or other molecules that are responsible for fungal adhesion, invasion, or induction of cytokine secretion will be addressed in this review.
Collapse
Affiliation(s)
- Bianca C. S. C. Barros
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo 05503-900, SP, Brazil;
| | - Bruna R. Almeida
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Ed. Antonio C. M. Paiva, São Paulo 04023-062, SP, Brazil; (B.R.A.); (D.T.L.B.)
| | - Debora T. L. Barros
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Ed. Antonio C. M. Paiva, São Paulo 04023-062, SP, Brazil; (B.R.A.); (D.T.L.B.)
| | - Marcos S. Toledo
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, Ed. Leal Prado, São Paulo 04023-062, SP, Brazil;
| | - Erika Suzuki
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Ed. Antonio C. M. Paiva, São Paulo 04023-062, SP, Brazil; (B.R.A.); (D.T.L.B.)
- Correspondence:
| |
Collapse
|
4
|
Kumari A, Tripathi AH, Gautam P, Gahtori R, Pande A, Singh Y, Madan T, Upadhyay SK. Adhesins in the virulence of opportunistic fungal pathogens of human. Mycology 2021; 12:296-324. [PMID: 34900383 PMCID: PMC8654403 DOI: 10.1080/21501203.2021.1934176] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Aspergillosis, candidiasis, and cryptococcosis are the most common cause of mycoses-related disease and death among immune-compromised patients. Adhesins are cell-surface exposed proteins or glycoproteins of pathogens that bind to the extracellular matrix (ECM) constituents or mucosal epithelial surfaces of the host cells. The forces of interaction between fungal adhesins and host tissues are accompanied by ligand binding, hydrophobic interactions and protein-protein aggregation. Adherence is the primary and critical step involved in the pathogenesis; however, there is limited information on fungal adhesins compared to that on the bacterial adhesins. Except a few studies based on screening of proteome for adhesin identification, majority are based on characterization of individual adhesins. Recently, based on their characteristic signatures, many putative novel fungal adhesins have been predicted using bioinformatics algorithms. Some of these novel adhesin candidates have been validated by in-vitro studies; though, most of them are yet to be characterised experimentally. Morphotype specific adhesin expression as well as tissue tropism are the crucial determinants for a successful adhesion process. This review presents a comprehensive overview of various studies on fungal adhesins and discusses the targetability of the adhesins and adherence phenomenon, for combating the fungal infection in a preventive or therapeutic mode.
Collapse
Affiliation(s)
- Amrita Kumari
- Department of Biotechnology, Sir J.C. Bose Technical campus, Kumaun University, Nainital, India
| | - Ankita H Tripathi
- Department of Biotechnology, Sir J.C. Bose Technical campus, Kumaun University, Nainital, India
| | - Poonam Gautam
- ICMR-National Institute of Pathology, New Delhi, India
| | - Rekha Gahtori
- Department of Biotechnology, Sir J.C. Bose Technical campus, Kumaun University, Nainital, India
| | - Amit Pande
- Directorate of Coldwater Fisheries Research (DCFR), Nainital, India
| | - Yogendra Singh
- Department of Zoology, University of Delhi, New Delhi, India
| | - Taruna Madan
- ICMR-National Institute for Research in Reproductive Health (NIRRH), Mumbai, India
| | - Santosh K Upadhyay
- Department of Biotechnology, Sir J.C. Bose Technical campus, Kumaun University, Nainital, India
| |
Collapse
|
5
|
Coimbra-Campos LMC, Silva WN, Baltazar LM, Costa PAC, Prazeres PHDM, Picoli CC, Costa AC, Rocha BGS, Santos GSP, Oliveira FMS, Pinto MCX, Amorim JH, Azevedo VAC, Souza DG, Russo RC, Resende RR, Mintz A, Birbrair A. Circulating Nestin-GFP + Cells Participate in the Pathogenesis of Paracoccidioides brasiliensis in the Lungs. Stem Cell Rev Rep 2021; 17:1874-1888. [PMID: 34003465 DOI: 10.1007/s12015-021-10181-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
Multiple infectious diseases lead to impaired lung function. Revealing the cellular mechanisms involved in this impairment is crucial for the understanding of how the lungs shift from a physiologic to a pathologic state in each specific condition. In this context, we explored the pathogenesis of Paracoccidioidomycosis, which affects pulmonary functioning. The presence of cells expressing Nestin-GFP has been reported in different tissues, and their roles as tissue-specific progenitors have been stablished in particular organs. Here, we explored how Nestin-GFP+ cells are affected after lung infection by Paracoccidioides brasiliensis, a model of lung granulomatous inflammation with fibrotic outcome. We used Nestin-GFP transgenic mice, parabiosis surgery, confocal microscopy and flow cytometry to investigate the participation of Nestin-GFP+ cells in Paracoccidioides brasiliensis pathogenesis. We revealed that these cells increase in the lungs post-Paracoccidioides brasiliensis infection, accumulating around granulomas. This increase was due mainly to Nestin-GPF+ cells derived from the blood circulation, not associated to blood vessels, that co-express markers suggestive of hematopoietic cells (Sca-1, CD45 and CXCR4). Therefore, our findings suggest that circulating Nestin-GFP+ cells participate in the Paracoccidioides brasiliensis pathogenesis in the lungs.
Collapse
Affiliation(s)
| | - Walison N Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ludmila M Baltazar
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro A C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro H D M Prazeres
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Caroline C Picoli
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alinne C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Beatriz G S Rocha
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gabryella S P Santos
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fabrício M S Oliveira
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro C X Pinto
- Laboratory of Neuropharmacology and Neurochemistry, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Jaime H Amorim
- Center of Biological Sciences and Health, Federal University of West Bahia, Barreiras, BA, Brazil
| | - Vasco A C Azevedo
- Cellular and Molecular Genetics Laboratory, Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Danielle G Souza
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Remo C Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo R Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
6
|
Braz JD, Sardi JDCO, Pitangui NDS, Voltan AR, Almeida AMF, Mendes-Giannini MJS. Gene expression of Paracoccidioides virulence factors after interaction with macrophages and fibroblasts. Mem Inst Oswaldo Cruz 2021; 116:e200592. [PMID: 33787770 PMCID: PMC8011670 DOI: 10.1590/0074-02760200592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/09/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Paracoccidioidomycosis (PCM) is a systemic mycosis with high prevalence in Latin America that is caused by thermodimorphic fungal species of the Paracoccidioides genus. OBJECTIVES In this study, we used quantitative polymerase chain reaction (qPCR) to investigate the expression of genes related to the virulence of Paracoccidioides brasiliensis (Pb18) and P. lutzii (Pb01) strains in their mycelial (M) and yeast (Y) forms after contact with alveolar macrophages (AMJ2-C11 cell line) and fibroblasts (MRC-5 cell line). METHODS The selected genes were those coding for 43 kDa glycoprotein (gp43), enolase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 14-3-3 protein (30 kDa), phospholipase, and aspartyl protease. FINDINGS In the Pb18 M form, the aspartyl protease gene showed the highest expression among all genes tested, both before and after infection of host cells. In the Pb18 Y form after macrophage infection, the 14-3-3 gene showed the highest expression among all genes tested, followed by the phospholipase and gp43 genes, and their expression was 50-fold, 10-fold, and 6-fold higher, respectively, than that in the M form. After fibroblast infection with the Pb18 Y form, the 14-3-3 gene showed the highest expression, followed by the phospholipase and aspartyl protease genes, and their expression was 25-fold, 10-fold, and 10-fold higher, respectively, than that in the M form. Enolase and aspartyl protease genes were expressed upon infection of both cell lines. After macrophage infection with the Pb01 Y form, the 14-3-3 gene showed the highest expression, followed by the phospholipase and aspartyl protease genes, and their expression was 18-fold, 12.5-fold, and 6-fold higher, respectively, than that in the M form. MAIN CONCLUSIONS In conclusion, the data show that the expression of the genes analysed may be upregulated upon fungus-host interaction. Therefore, these genes may be involved in the pathogenesis of paracoccidioidomycosis.
Collapse
Affiliation(s)
- Jaqueline Derissi Braz
- Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, SP, Brasil
| | - Janaina de Cássia Orlandi Sardi
- Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, SP, Brasil
- Universidade Federal de Mato Grosso do Sul, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Campo Grande, MS, Brasil
| | - Nayla de Souza Pitangui
- Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, SP, Brasil
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Biologia Celular e Molecular, Ribeirão Preto, SP, Brasil
| | - Aline Raquel Voltan
- Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, SP, Brasil
| | - Ana Marisa Fusco Almeida
- Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, SP, Brasil
| | - Maria José Soares Mendes-Giannini
- Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, SP, Brasil
| |
Collapse
|
7
|
Updates in Paracoccidioides Biology and Genetic Advances in Fungus Manipulation. J Fungi (Basel) 2021; 7:jof7020116. [PMID: 33557381 PMCID: PMC7915485 DOI: 10.3390/jof7020116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/28/2022] Open
Abstract
The dimorphic fungi of the Paracoccidioides genus are the causative agents of paracoccidioidomycosis (PCM). This disease is endemic in Latin America and primarily affects workers in rural areas. PCM is considered a neglected disease, despite being a disabling disease that has a notable impact on the public health system. Paracoccidioides spp. are thermally dimorphic fungi that present infective mycelia at 25 °C and differentiate into pathogenic yeast forms at 37 °C. This transition involves a series of morphological, structural, and metabolic changes which are essential for their survival inside hosts. As a pathogen, the fungus is subjected to several varieties of stress conditions, including the host immune response, which involves the production of reactive nitrogen and oxygen species, thermal stress due to temperature changes during the transition, pH alterations within phagolysosomes, and hypoxia inside granulomas. Over the years, studies focusing on understanding the establishment and development of PCM have been conducted with several limitations due to the low effectiveness of strategies for the genetic manipulation of Paracoccidioides spp. This review describes the most relevant biological features of Paracoccidioides spp., including aspects of the phylogeny, ecology, stress response, infection, and evasion mechanisms of the fungus. We also discuss the genetic aspects and difficulties of fungal manipulation, and, finally, describe the advances in molecular biology that may be employed in molecular research on this fungus in the future.
Collapse
|
8
|
Scorzoni L, Alves de Paula e Silva AC, de Oliveira HC, Tavares dos Santos C, de Lacorte Singulani J, Akemi Assato P, Maria Marcos C, Teodoro Oliveira L, Ferreira Fregonezi N, Rossi DCP, Buffoni Roque da Silva L, Pelleschi Taborda C, Fusco-Almeida AM, Soares Mendes-Giannini MJ. In Vitro and In Vivo Effect of Peptides Derived from 14-3-3 Paracoccidioides spp. Protein. J Fungi (Basel) 2021; 7:jof7010052. [PMID: 33451062 PMCID: PMC7828505 DOI: 10.3390/jof7010052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
Background: Paracoccidioidomycosis (PCM) is a chronic disease that causes sequelae and requires prolonged treatment; therefore, new therapeutic approaches are necessary. In view of this, three peptides from Paracoccidioides brasiliensis 14-3-3 protein were selected based on its immunogenicity and therapeutic potential. Methods: The in vitro antifungal activity and cytotoxicity of the 14-3-3 peptides were evaluated. The influence of the peptides in immunological and survival aspects was evaluated in vivo, using Galleria mellonella and the expression of antimicrobial peptide genes in Caenorhabditis elegans. Results: None of the peptides were toxic to HaCaT (skin keratinocyte), MRC-5 (lung fibroblast), and A549 (pneumocyte) cell lines, and only P1 exhibited antifungal activity against Paracoccidioides spp. The peptides could induce an immune response in G. mellonella. Moreover, the peptides caused a delay in the death of Paracoccidioides spp. infected larvae. Regarding C. elegans, the three peptides were able to increase the expression of the antimicrobial peptides. These peptides had essential effects on different aspects of Paracoccidioides spp. infection showing potential for a therapeutic vaccine. Future studies using mammalian methods are necessary to validate our findings.
Collapse
Affiliation(s)
- Liliana Scorzoni
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Ana Carolina Alves de Paula e Silva
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Haroldo Cesar de Oliveira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Claudia Tavares dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Junya de Lacorte Singulani
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Patricia Akemi Assato
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Caroline Maria Marcos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Lariane Teodoro Oliveira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Nathália Ferreira Fregonezi
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Diego Conrado Pereira Rossi
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (D.C.P.R.); (L.B.R.d.S.); (C.P.T.)
| | - Leandro Buffoni Roque da Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (D.C.P.R.); (L.B.R.d.S.); (C.P.T.)
| | - Carlos Pelleschi Taborda
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (D.C.P.R.); (L.B.R.d.S.); (C.P.T.)
| | - Ana Marisa Fusco-Almeida
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Maria José Soares Mendes-Giannini
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
- Correspondence:
| |
Collapse
|
9
|
Rodrigues AM, Kubitschek-Barreira PH, Pinheiro BG, Teixeira-Ferreira A, Hahn RC, de Camargo ZP. Immunoproteomic Analysis Reveals Novel Candidate Antigens for the Diagnosis of Paracoccidioidomycosis Due to Paracoccidioides lutzii. J Fungi (Basel) 2020; 6:jof6040357. [PMID: 33322269 PMCID: PMC7770604 DOI: 10.3390/jof6040357] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Paracoccidioidomycosis (PCM) is a life-threatening systemic infection caused by the fungal pathogen Paracoccidioides brasiliensis and related species. Whole-genome sequencing and stage-specific proteomic analysis of Paracoccidioides offer the opportunity to profile humoral immune responses against P. lutzii and P. brasiliensis s. str. infection using innovative screening approaches. Here, an immunoproteomic approach was used to identify PCM-associated antigens that elicit immune responses by combining 2-D electrophoresis of P. lutzii and P. brasiliensis proteomes, immunological detection using a gold-standard serum, and mass spectrometry analysis. A total of 16 and 25 highly immunoreactive proteins were identified in P. lutzii and P. brasiliensis, respectively, and 29 were shown to be the novel antigens for Paracoccidioides species, including seven uncharacterized proteins. Among the panel of proteins identified, most are involved in metabolic pathways, carbon metabolism, and biosynthesis of secondary metabolites in both immunoproteomes. Remarkably, six isoforms of the surface-associated enolase in the range of 54 kDa were identified as the major antigens in human PCM due to P. lutzii. These novel immunoproteomes of Paracoccidioides will be employed to develop a sensitive and affordable point-of-care diagnostic assay and an effective vaccine to identify infected hosts and prevent infection and development of human PCM. These findings provide a unique opportunity for the refinement of diagnostic tools of this important neglected systemic mycosis, which is usually associated with poverty.
Collapse
Affiliation(s)
- Anderson Messias Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil;
- Correspondence: (A.M.R.); (Z.P.d.C.); Tel.: +55-1155764551 (ext. 1540) (A.M.R.); +55-1155764551 (ext. 1512) (Z.P.d.C.)
| | - Paula Helena Kubitschek-Barreira
- Department of Cellular Biology, Roberto Alcantara Gomes Institute of Biology, Rio de Janeiro State University (UERJ), Rio de Janeiro 20511010, Brazil;
| | - Breno Gonçalves Pinheiro
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil;
| | - André Teixeira-Ferreira
- Toxinology Laboratory, Department of Physiology and Pharmacodynamics, Fiocruz, Rio de Janeiro 21040900, Brazil;
| | - Rosane Christine Hahn
- Laboratory of Mycology/Research, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá 78060900, Brazil;
- Júlio Muller University Hospital, Federal University of Mato Grosso, Cuiabá 78048902, Brazil
| | - Zoilo Pires de Camargo
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil;
- Department of Medicine, Discipline of Infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil
- Correspondence: (A.M.R.); (Z.P.d.C.); Tel.: +55-1155764551 (ext. 1540) (A.M.R.); +55-1155764551 (ext. 1512) (Z.P.d.C.)
| |
Collapse
|
10
|
Arunasri K, Mahesh M, Sai Prashanthi G, Jayasudha R, Kalyana Chakravarthy S, Tyagi M, Pappuru RR, Shivaji S. Mycobiome changes in the vitreous of post fever retinitis patients. PLoS One 2020; 15:e0242138. [PMID: 33211730 PMCID: PMC7676714 DOI: 10.1371/journal.pone.0242138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022] Open
Abstract
Fungi have been associated with various diseases of the eye like keratitis, uveitis and endophthalmitis. Despite this fact, fungal microbiome (mycobiome) studies compared to the bacterial microbiome studies have remained neglected. In the present study, using metagenomic sequencing, the mycobiomes of the vitreous of healthy control individuals (VC, n = 15) and individuals with post fever retinitis + non-PFR uveitis (PFR+, n = 9) were analysed and compared. The results indicated that Ascomycota was the most predominant phylum in both VC and PFR+ groups. Further, at the genera level it was observed that the abundance of 17 fungal genera were significantly different in post fever retinitis (PFR, n = 6) group compared to control group. Of these 17 genera, it was observed that 14 genera were relatively more abundant in PFR group and the remaining 3 genera in the VC group. Genus Saccharomyces, a commensal of the gut and skin, was predominantly present in the vitreous of both the cohorts, however it was significantly less abundant in PFR group. Further, significant increase in the genera that have a pathogenic interaction with the host were observed in PFR group. On the whole the mycobiome in both the groups differed significantly and formed two distinct clusters in the heatmap and Principal co-ordinate analysis. These results demonstrate significant changes in the mycobiome from the vitreous of post fever retinitis patients compared to healthy controls thus implying that dysbiotic changes in the fungal vitreous microbiome are associated with PFR.
Collapse
Affiliation(s)
- Kotakonda Arunasri
- Jhaveri Microbiology Centre, Prof Brien Holden Eye Research Centre, L V Prasad Eye Institute, L V Prasad Marg, Banjara Hills, Hyderabad, India
| | - Malleswarapu Mahesh
- Jhaveri Microbiology Centre, Prof Brien Holden Eye Research Centre, L V Prasad Eye Institute, L V Prasad Marg, Banjara Hills, Hyderabad, India
| | - Gumpili Sai Prashanthi
- Jhaveri Microbiology Centre, Prof Brien Holden Eye Research Centre, L V Prasad Eye Institute, L V Prasad Marg, Banjara Hills, Hyderabad, India
| | - Rajagopalaboopathi Jayasudha
- Jhaveri Microbiology Centre, Prof Brien Holden Eye Research Centre, L V Prasad Eye Institute, L V Prasad Marg, Banjara Hills, Hyderabad, India
| | - Sama Kalyana Chakravarthy
- Jhaveri Microbiology Centre, Prof Brien Holden Eye Research Centre, L V Prasad Eye Institute, L V Prasad Marg, Banjara Hills, Hyderabad, India
| | - Mudit Tyagi
- Smt. Kanuri Santhamma Centre for Vitreo Retinal Diseases, L V Prasad Eye Institute, L V Prasad Marg, Banjara Hills, Hyderabad, India
| | - Rajeev R. Pappuru
- Smt. Kanuri Santhamma Centre for Vitreo Retinal Diseases, L V Prasad Eye Institute, L V Prasad Marg, Banjara Hills, Hyderabad, India
| | - Sisinthy Shivaji
- Jhaveri Microbiology Centre, Prof Brien Holden Eye Research Centre, L V Prasad Eye Institute, L V Prasad Marg, Banjara Hills, Hyderabad, India
- * E-mail:
| |
Collapse
|
11
|
Singulani JDL, Silva JDFD, Gullo FP, Costa MC, Fusco-Almeida AM, Enguita FJ, Mendes-Giannini MJS. Fungal-host interactions: insights into microRNA in response to Paracoccidioides species. Mem Inst Oswaldo Cruz 2020; 115:e200238. [PMID: 32756740 PMCID: PMC7398106 DOI: 10.1590/0074-02760200238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Paracoccidioides spp. causes paracoccidioidomycosis (PCM), an important and frequent systemic mycosis that occurs in Latin America. The infectious process begins with contact between the fungus and lung cells, and the molecular pattern of this interaction is currently poorly understood. MicroRNAs (miRNAs) are small non-coding RNAs that regulate the gene expression in many biological processes, including in the infections. OBJECTIVE This study aimed to analyse the expression of miRNAs in lung cells as response to infection by Paracoccidioides spp. METHODS A quantitative real-time polymerase chain reaction (RT-qPCR) based screening was employed to verify differentially expressed miRNAs in human lung cells infected with three different species; Paracoccidioides lutzii, Paracoccidioides americana, and Paracoccidioides brasiliensis. Furthermore, the in silico predictions of target genes and pathways for miRNAs were obtained. FINDINGS The results showed that miRNAs identified in the lung cells were different according to the species studied. However, based on the predicted targets, the potential signaling pathways regulated by miRNAs are common and related to adhesion, actin cytoskeleton rearrangement, apoptosis, and immune response mediated by T cells and TGF-β. MAIN CONCLUSIONS In summary, this study showed the miRNAs pattern of epithelial cells in response to infection by Paracoccidioides species and the potential role of these molecules in the regulation of key pathogenesis mechanisms of PCM.
Collapse
Affiliation(s)
| | | | | | - Marina Célia Costa
- Instituto de Medicina Molecular, Universidade de Lisboa, Faculdade de Medicina, Lisboa, Portugal
| | | | - Francisco Javier Enguita
- Instituto de Medicina Molecular, Universidade de Lisboa, Faculdade de Medicina, Lisboa, Portugal
| | | |
Collapse
|
12
|
43 kDa Glycoprotein (gp43) from Paracoccidioides brasiliensis Induced IL-17A and PGE2 Production by Human Polymorphonuclear Neutrophils: Involvement of TLR2 and TLR4. J Immunol Res 2019; 2019:1790908. [PMID: 31886295 PMCID: PMC6899308 DOI: 10.1155/2019/1790908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/10/2019] [Accepted: 10/05/2019] [Indexed: 11/17/2022] Open
Abstract
The glycoprotein gp43 is the major antigenic/diagnostic component of Paracoccidioides brasiliensis, one of the etiologic agents of paracoccidioidomycosis (PCM). Gp43 has protective roles in mice, but due to adhesive properties, this glycoprotein has also been associated with immune evasion mechanisms. The present study evaluated gp43 interaction in vitro with Toll-like receptors 2 and 4 (TLR2 and TLR4) present in polymorphonuclear neutrophils (PMNs) from healthy human individuals and the consequent modulation of the immune response through the expression and release of cytokines and eicosanoids. PMNs were incubated in the absence or presence of monoclonal antibodies anti-TLR2 and anti-TLR4 (individually or in combination) before gp43 stimulation. Then, PMNs were analyzed for the expression of both surface receptors and the detection of intracytoplasmic IL-17A and IL-4 using flow cytometry, while the production of PGE2, LTB4, IL-6, IL-10, IL-12, IFN-γ, and TNF-α was evaluated in the supernatants by enzyme-linked immunosorbent assay (ELISA). Our results showed that gp43 increased TLR2 and TLR4 expression by PMNs and induced PGE2 and IL-17A via TLR4 and TLR2, respectively. Thus, our data suggest that gp43 from P. brasiliensis might modulate host susceptibility to the fungal infection by affecting PGE2 and IL-17A production.
Collapse
|
13
|
Almeida BR, Barros BCSC, Araújo ACL, Alcantara C, Suzuki E. Paracoccidioides species present distinct fungal adherence to epithelial lung cells and promote different IL-8 secretion levels. Med Microbiol Immunol 2019; 209:59-67. [PMID: 31673845 DOI: 10.1007/s00430-019-00639-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/11/2019] [Indexed: 10/25/2022]
Abstract
Fungi that belong to the genus Paracoccidioides are the etiologic agents of paracoccidioidomycosis, a human systemic mycosis, which occurs in Latin America. Epithelial cell is one of the first cells that interact with these fungi and responds by secreting inflammatory mediators such as cytokines. In the present study, we demonstrate that yeasts of different isolates of Paracoccidioides brasiliensis (Pb18 and Pb03) and Paracoccidioides lutzii (Pb01) distinctly promoted interleukin (IL)-8 secretion by the lung epithelial cell line A549. Depending on the isolate, this cytokine release may rely on the epithelial cell interaction with fungal secreted components or direct contact with the pathogen. In addition, adhesion of yeasts to the pulmonary epithelial cells was also different among Paracoccidioides isolates, and the highest percentage of A549 cells with adhered fungi was observed with P. lutzii. All Paracoccidioides isolates induced an expression increase of α3 and α5 integrins in A549 cells and, using small interfering RNA, we observed that the integrin silencing promoted a reduction of P. lutzii adhesion, which suggests the involvement of integrins in this event. Together, these results indicate that host epithelial cell response may depend on the isolate of Paracoccidioides.
Collapse
Affiliation(s)
- Bruna Rocha Almeida
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 862-Ed. Antônio C. M. Paiva-6 andar, São Paulo, SP, 04023-062, Brazil
| | - Bianca Carla Silva Campitelli Barros
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 862-Ed. Antônio C. M. Paiva-6 andar, São Paulo, SP, 04023-062, Brazil
| | - Ana Clara Liguori Araújo
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 862-Ed. Antônio C. M. Paiva-6 andar, São Paulo, SP, 04023-062, Brazil
| | - Cristiane Alcantara
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 862-Ed. Antônio C. M. Paiva-6 andar, São Paulo, SP, 04023-062, Brazil
| | - Erika Suzuki
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 862-Ed. Antônio C. M. Paiva-6 andar, São Paulo, SP, 04023-062, Brazil.
| |
Collapse
|
14
|
Hahn RC, Rodrigues AM, Della Terra PP, Nery AF, Hoffmann-Santos HD, Góis HM, Fontes CJF, de Camargo ZP. Clinical and epidemiological features of paracoccidioidomycosis due to Paracoccidioides lutzii. PLoS Negl Trop Dis 2019; 13:e0007437. [PMID: 31163028 PMCID: PMC6548353 DOI: 10.1371/journal.pntd.0007437] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/04/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The fungus Paracoccidioides lutzii was recently included as a new causative species of paracoccidioidomycosis (PCM) and most cases have been reported from Brazil. According to available epidemiological information, P. lutzii is concentrated in the Middle-West region in Brazil, mainly in the state of Mato Grosso. However, clinical and laboratorial data available on patients infected with P. lutzii remain extremely limited. METHODOLOGY/MAIN FINDINGS This work describes the clinical manifestations of 34 patients suffering from PCM caused by P. lutzii, treated along 5 years (2011-2017) at a reference service center for systemic mycoses in Mato Grosso, Brazil. Adult rural workers (men), aged between 28 and 67 predominated. All patients had the chronic form of the disease, and the oral mucosa (n = 19; 55.9%), lymph nodes (n = 23; 67.7%), skin (n = 16; 47.1%) and lung (n = 28; 82.4%) were the most affected sites. Alcohol intake (n = 19; 55.9%) and smoking (n = 29; 85.3%) were frequent habits among the patients. No patient suffered from any other life-threatening disease, such as tuberculosis, cancer or other inflammatory or infectious parasitic diseases. The positivity in culture examination (97.1%) was higher than that found for the direct mycological examination (88.2%). Particularly, one patient presented fungemia at diagnosis, which lead to his death. The time elapsed between the initial symptoms and the initiation of treatment of PCM caused by P. lutzii was 19.7 (31.5) months, with most patients diagnosed 7 months after the symptoms' onset. CONCLUSIONS/SIGNIFICANCE Compared with the classical clinical-epidemiological profile of PCM caused by P. brasiliensis, the results of this descriptive study did not show significant clinical or epidemiological differences that could be attributed to the species P. lutzii. Future studies may confirm or refute the existence of clinical differences between the two fungal species.
Collapse
Affiliation(s)
- Rosane Christine Hahn
- Federal University of Mato Grosso, Faculty of Medicine, Laboratory of Mycology/Research, Cuiabá, Mato Grosso, Brazil
- Federal University of Mato Grosso, Júlio Muller University Hospital, Mato Grosso, Brazil
- Federal University of São Paulo, Paulista School of Medicine, Department of Microbiology, Immunology and Parasitology, Cellular Biology Division, São Paulo, São Paulo, Brazil
| | - Anderson Messias Rodrigues
- Federal University of São Paulo, Paulista School of Medicine, Department of Microbiology, Immunology and Parasitology, Cellular Biology Division, São Paulo, São Paulo, Brazil
| | - Paula Portella Della Terra
- Federal University of São Paulo, Paulista School of Medicine, Department of Microbiology, Immunology and Parasitology, Cellular Biology Division, São Paulo, São Paulo, Brazil
| | - Andréia Ferreira Nery
- Federal University of Mato Grosso, Júlio Muller University Hospital, Mato Grosso, Brazil
| | - Hugo Dias Hoffmann-Santos
- Federal University of Mato Grosso, Faculty of Medicine, Laboratory of Mycology/Research, Cuiabá, Mato Grosso, Brazil
| | - Hellen Meira Góis
- Federal University of Mato Grosso, Júlio Muller University Hospital, Mato Grosso, Brazil
| | | | - Zoilo Pires de Camargo
- Federal University of São Paulo, Paulista School of Medicine, Department of Microbiology, Immunology and Parasitology, Cellular Biology Division, São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
15
|
Immune Response of Galleria mellonella against Human Fungal Pathogens. J Fungi (Basel) 2018; 5:jof5010003. [PMID: 30587801 PMCID: PMC6463112 DOI: 10.3390/jof5010003] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/14/2018] [Accepted: 12/20/2018] [Indexed: 01/20/2023] Open
Abstract
In many aspects, the immune response against pathogens in insects is similar to the innate immunity in mammals. This has caused a strong interest in the scientific community for the use of this model in research of host⁻pathogen interactions. In recent years, the use of Galleria mellonella larvae, an insect belonging to the Lepidoptera order, has emerged as an excellent model to study the virulence of human pathogens. It is a model that offers many advantages; for example, it is easy to handle and establish in every laboratory, the larvae have a low cost, and they tolerate a wide range of temperatures, including human temperature 37 °C. The immune response of G. mellonella is innate and is divided into a cellular component (hemocytes) and humoral component (antimicrobial peptides, lytic enzymes, and peptides and melanin) that work together against different intruders. It has been shown that the immune response of this insect has a great specificity and has the ability to distinguish between different classes of microorganisms. In this review, we delve into the different components of the innate immune response of Galleria mellonella, and how these components manifest in the infection of fungal pathogens including Candida albicans, Aspergillus fumigatus, Cryptococcus neoformans, and Histoplasma capsulatum.
Collapse
|
16
|
Singulani JL, Scorzoni L, de Oliveira HC, Marcos CM, Assato PA, Fusco-Almeida AM, Mendes-Giannini MJS. Applications of Invertebrate Animal Models to Dimorphic Fungal Infections. J Fungi (Basel) 2018; 4:jof4040118. [PMID: 30347646 PMCID: PMC6308930 DOI: 10.3390/jof4040118] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 02/07/2023] Open
Abstract
Dimorphic fungi can be found in the yeast form during infection and as hyphae in the environment and are responsible for a large number of infections worldwide. Invertebrate animals have been shown to be convenient models in the study of fungal infections. These models have the advantages of being low cost, have no ethical issues, and an ease of experimentation, time-efficiency, and the possibility of using a large number of animals per experiment compared to mammalian models. Invertebrate animal models such as Galleria mellonella, Caenorhabditis elegans, and Acanthamoebacastellanii have been used to study dimorphic fungal infections in the context of virulence, innate immune response, and the efficacy and toxicity of antifungal agents. In this review, we first summarize the features of these models. In this aspect, the growth temperature, genome sequence, availability of different strains, and body characteristics should be considered in the model choice. Finally, we discuss the contribution and advances of these models, with respect to dimorphic fungi Paracoccidioides spp., Histoplasma capsulatum, Blastomyces dermatitidis, Sporothrix spp., and Talaromyces marneffei (Penicillium marneffei).
Collapse
Affiliation(s)
- Junya L Singulani
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil.
| | - Liliana Scorzoni
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil.
| | - Haroldo C de Oliveira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil.
| | - Caroline M Marcos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil.
| | - Patricia A Assato
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil.
| | - Ana Marisa Fusco-Almeida
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil.
| | | |
Collapse
|
17
|
Köhler JR, Hube B, Puccia R, Casadevall A, Perfect JR. Fungi that Infect Humans. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0014-2016. [PMID: 28597822 PMCID: PMC11687496 DOI: 10.1128/microbiolspec.funk-0014-2016] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Indexed: 12/18/2022] Open
Abstract
Fungi must meet four criteria to infect humans: growth at human body temperatures, circumvention or penetration of surface barriers, lysis and absorption of tissue, and resistance to immune defenses, including elevated body temperatures. Morphogenesis between small round, detachable cells and long, connected cells is the mechanism by which fungi solve problems of locomotion around or through host barriers. Secretion of lytic enzymes, and uptake systems for the released nutrients, are necessary if a fungus is to nutritionally utilize human tissue. Last, the potent human immune system evolved in the interaction with potential fungal pathogens, so few fungi meet all four conditions for a healthy human host. Paradoxically, the advances of modern medicine have made millions of people newly susceptible to fungal infections by disrupting immune defenses. This article explores how different members of four fungal phyla use different strategies to fulfill the four criteria to infect humans: the Entomophthorales, the Mucorales, the Ascomycota, and the Basidiomycota. Unique traits confer human pathogenic potential on various important members of these phyla: pathogenic Onygenales comprising thermal dimorphs such as Histoplasma and Coccidioides; the Cryptococcus spp. that infect immunocompromised as well as healthy humans; and important pathogens of immunocompromised patients-Candida, Pneumocystis, and Aspergillus spp. Also discussed are agents of neglected tropical diseases important in global health such as mycetoma and paracoccidiomycosis and common pathogens rarely implicated in serious illness such as dermatophytes. Commensalism is considered, as well as parasitism, in shaping genomes and physiological systems of hosts and fungi during evolution.
Collapse
Affiliation(s)
- Julia R Köhler
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute Jena (HKI), Jena, Germany
| | - Rosana Puccia
- Disciplina de Biologia Celular, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina-Universidade Federal de São Paulo, São Paulo, Brazil
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - John R Perfect
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
18
|
Camacho E, Niño-Vega GA. Paracoccidioides Spp.: Virulence Factors and Immune-Evasion Strategies. Mediators Inflamm 2017; 2017:5313691. [PMID: 28553014 PMCID: PMC5434249 DOI: 10.1155/2017/5313691] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/01/2017] [Accepted: 02/21/2017] [Indexed: 12/21/2022] Open
Abstract
Paracoccidioides spp. are dimorphic fungal pathogens responsible for one of the most relevant systemic mycoses in Latin America, paracoccidioidomycosis (PCM). Their exact ecological niche remains unknown; however, they have been isolated from soil samples and armadillos (Dasypus novemcinctus), which have been proposed as animal reservoir for these fungi. Human infection occurs by inhalation of conidia or mycelia fragments and is mostly associated with immunocompetent hosts inhabiting and/or working in endemic rural areas. In this review focusing on the pathogen perspective, we will discuss some of the microbial attributes and molecular mechanisms that enable Paracoccidioides spp. to tolerate, adapt, and ultimately avoid the host immune response, establishing infection.
Collapse
Affiliation(s)
- Emma Camacho
- Department of Molecular Microbiology and Immunobiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Gustavo A. Niño-Vega
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, GTO, Mexico
| |
Collapse
|
19
|
Travassos LR, Taborda CP. Linear Epitopes of Paracoccidioides brasiliensis and Other Fungal Agents of Human Systemic Mycoses As Vaccine Candidates. Front Immunol 2017; 8:224. [PMID: 28344577 PMCID: PMC5344917 DOI: 10.3389/fimmu.2017.00224] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/16/2017] [Indexed: 12/19/2022] Open
Abstract
Dimorphic fungi are agents of systemic mycoses associated with significant morbidity and frequent lethality in the Americas. Among the pathogenic species are Paracoccidioides brasiliensis and Paracoccidioides lutzii, which predominate in South America; Histoplasma capsulatum, Coccidioides posadasii, and Coccidioides immitis, and the Sporothrix spp. complex are other important pathogens. Associated with dimorphic fungi other important infections are caused by yeast such as Candida spp. and Cryptococcus spp. or mold such as Aspergillus spp., which are also fungal agents of deadly infections. Nowadays, the actual tendency of therapy is the development of a pan-fungal vaccine. This is, however, not easy because of the complexity of eukaryotic cells and the particularities of different species and isolates. Albeit there are several experimental vaccines being studied, we will focus mainly on peptide vaccines or epitopes of T-cell receptors inducing protective fungal responses. These peptides can be carried by antibody inducing β-(1,3)-glucan oligo or polysaccharides, or be mixed with them for administration. The present review discusses the efficacy of linear peptide epitopes in the context of antifungal immunization and vaccine proposition.
Collapse
Affiliation(s)
- Luiz R Travassos
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo , São Paulo , Brazil
| | - Carlos P Taborda
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Laboratory of Medical Mycology IMTSP/LIM53/HCFMUSP, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
de Oliveira HC, Michaloski JS, da Silva JF, Scorzoni L, de Paula E Silva ACA, Marcos CM, Assato PA, Yamazaki DS, Fusco-Almeida AM, Giordano RJ, Mendes-Giannini MJS. Peptides Derived from a Phage Display Library Inhibit Adhesion and Protect the Host against Infection by Paracoccidioides brasiliensis and Paracoccidioides lutzii. Front Pharmacol 2016; 7:509. [PMID: 28066254 PMCID: PMC5179556 DOI: 10.3389/fphar.2016.00509] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/08/2016] [Indexed: 11/30/2022] Open
Abstract
Paracoccidioides brasiliensis and Paracoccidioides lutzii are dimorphic fungi and are the etiological agents of paracoccidioidomycosis (PCM). Adhesion is one of the most important steps in infections with Paracoccidioides and is responsible for the differences in the virulence of isolates of these fungi. Because of the importance of adhesion to the establishment of an infection, this study focused on the preliminary development of a new therapeutic strategy to inhibit adhesion by Paracoccidioides, thus inhibiting infection and preventing the disease. We used two phage display libraries to select peptides that strongly bind to the Paracoccidioides cell wall to inhibit adhesion to host cells and extracellular matrix (ECM) components (laminin, fibronectin, and type I and type IV collagen). This approach allowed us to identify four peptides that inhibited up to 64% of the adhesion of Paracoccidioides to pneumocytes in vitro and inhibited the adhesion to the ECM components by up to 57%. Encouraged by these results, we evaluated the ability of these peptides to protect Galleria mellonella from Paracoccidioides infection by treating G. mellonella larvae with the different peptides prior to infection with Paracoccidioides and observing larval survival. The results show that all of the peptides tested increased the survival of the larvae infected with P. brasiliensis by up to 64% and by up to 60% in those infected with P. lutzii. These data may open new horizons for therapeutic strategies to prevent PCM, and anti-adhesion therapy could be an important strategy.
Collapse
Affiliation(s)
- Haroldo C de Oliveira
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Câmpus Araraquara, São Paulo Brasil
| | - Jussara S Michaloski
- Universidade de São Paulo (USP), Instituto de Química, Câmpus São Paulo, São Paulo Brasil
| | - Julhiany F da Silva
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Câmpus Araraquara, São Paulo Brasil
| | - Liliana Scorzoni
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Câmpus Araraquara, São Paulo Brasil
| | - Ana C A de Paula E Silva
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Câmpus Araraquara, São Paulo Brasil
| | - Caroline M Marcos
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Câmpus Araraquara, São Paulo Brasil
| | - Patrícia A Assato
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Câmpus Araraquara, São Paulo Brasil
| | - Daniella S Yamazaki
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Câmpus Araraquara, São Paulo Brasil
| | - Ana M Fusco-Almeida
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Câmpus Araraquara, São Paulo Brasil
| | - Ricardo J Giordano
- Universidade de São Paulo (USP), Instituto de Química, Câmpus São Paulo, São Paulo Brasil
| | - Maria J S Mendes-Giannini
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Câmpus Araraquara, São Paulo Brasil
| |
Collapse
|
21
|
Garcia-Rodas R, Nosanchuk JD. Effects of silencing 14-3-3 protein in Paracoccidiodes brasiliensis infection. Virulence 2016; 7:68-9. [PMID: 26751188 DOI: 10.1080/21505594.2015.1137423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Rocio Garcia-Rodas
- a Institute of Biology Valrose (iBV) ; UMR CNRS7277 - INSERM1091 - University of Nice-Sophia Antipolis ; Nice , France
| | - Joshua D Nosanchuk
- b Department of Microbiology & Immunology ; Albert Einstein College of Medicine; Jack and Pearl Resnick Campus ; Bronx , NY USA
| |
Collapse
|
22
|
Marcos CM, da Silva JDF, de Oliveira HC, Assato PA, Singulani JDL, Lopez AM, Tamayo DP, Hernandez-Ruiz O, McEwen JG, Mendes-Giannini MJS, Fusco-Almeida AM. Decreased expression of 14-3-3 in Paracoccidioides brasiliensis confirms its involvement in fungal pathogenesis. Virulence 2015; 7:72-84. [PMID: 26646480 PMCID: PMC4994830 DOI: 10.1080/21505594.2015.1122166] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/05/2015] [Accepted: 11/12/2015] [Indexed: 10/22/2022] Open
Abstract
The interaction between the fungal pathogen Paracoccidioides brasiliensis and host cells is usually mediated by specific binding events between adhesins on the fungal surface and receptors on the host extracellular matrix or cell surface. One molecule implicated in the P. brasiliensis-host interaction is the 14-3-3 protein. The 14-3-3 protein belongs to a family of conserved regulatory molecules that are expressed in all eukaryotic cells and are involved in diverse cellular functions. Here, we investigated the relevance of the 14-3-3 protein to the virulence of P. brasiliensis. Using antisense RNA technology and Agrobacterium tumefaciens-mediated transformation, we generated a 14-3-3-silenced strain (expression reduced by ˜55%). This strain allowed us to investigate the interaction between 14-3-3 and the host and to correlate the functions of P. brasiliensis 14-3-3 with cellular features, such as morphological characteristics and virulence, that are important for pathogenesis.
Collapse
Affiliation(s)
- Caroline Maria Marcos
- Faculdade de Ciências Farmacêuticas de Araraquara; UNESP - Univ Estadual Paulista; Departamento de Análises Clínicas; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Julhiany de Fátima da Silva
- Faculdade de Ciências Farmacêuticas de Araraquara; UNESP - Univ Estadual Paulista; Departamento de Análises Clínicas; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Haroldo Cesar de Oliveira
- Faculdade de Ciências Farmacêuticas de Araraquara; UNESP - Univ Estadual Paulista; Departamento de Análises Clínicas; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Patrícia Akemi Assato
- Faculdade de Ciências Farmacêuticas de Araraquara; UNESP - Univ Estadual Paulista; Departamento de Análises Clínicas; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Junya de Lacorte Singulani
- Faculdade de Ciências Farmacêuticas de Araraquara; UNESP - Univ Estadual Paulista; Departamento de Análises Clínicas; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Angela Maria Lopez
- Unidad de Biología Celular y Molecular; Corporación para Investigaciones Biológicas (CIB) - Medellín, Colombia
| | - Diana Patricia Tamayo
- Unidad de Biología Celular y Molecular; Corporación para Investigaciones Biológicas (CIB) - Medellín, Colombia
| | - Orville Hernandez-Ruiz
- Unidad de Biología Celular y Molecular; Corporación para Investigaciones Biológicas (CIB) - Medellín, Colombia
- Escuela de Microbiología; Universidad de Antioquia; Medellín, Colombia
| | - Juan G McEwen
- Unidad de Biología Celular y Molecular; Corporación para Investigaciones Biológicas (CIB) - Medellín, Colombia
- Facultad de Medicina; Universidad de Antioquia; Medellín, Colombia
| | - Maria José Soares Mendes-Giannini
- Faculdade de Ciências Farmacêuticas de Araraquara; UNESP - Univ Estadual Paulista; Departamento de Análises Clínicas; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Ana Marisa Fusco-Almeida
- Faculdade de Ciências Farmacêuticas de Araraquara; UNESP - Univ Estadual Paulista; Departamento de Análises Clínicas; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| |
Collapse
|
23
|
de Oliveira HC, Assato PA, Marcos CM, Scorzoni L, de Paula E Silva ACA, Da Silva JDF, Singulani JDL, Alarcon KM, Fusco-Almeida AM, Mendes-Giannini MJS. Paracoccidioides-host Interaction: An Overview on Recent Advances in the Paracoccidioidomycosis. Front Microbiol 2015; 6:1319. [PMID: 26635779 PMCID: PMC4658449 DOI: 10.3389/fmicb.2015.01319] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/09/2015] [Indexed: 11/13/2022] Open
Abstract
Paracoccidioides brasiliensis and P. lutzii are etiologic agents of paracoccidioidomycosis (PCM), an important endemic mycosis in Latin America. During its evolution, these fungi have developed characteristics and mechanisms that allow their growth in adverse conditions within their host through which they efficiently cause disease. This process is multi-factorial and involves host-pathogen interactions (adaptation, adhesion, and invasion), as well as fungal virulence and host immune response. In this review, we demonstrated the glycoproteins and polysaccharides network, which composes the cell wall of Paracoccidioides spp. These are important for the change of conidia or mycelial (26°C) to parasitic yeast (37°C). The morphological switch, a mechanism for the pathogen to adapt and thrive inside the host, is obligatory for the establishment of the infection and seems to be related to pathogenicity. For these fungi, one of the most important steps during the interaction with the host is the adhesion. Cell surface proteins called adhesins, responsible for the first contact with host cells, contribute to host colonization and invasion by mediating this process. These fungi also present the capacity to form biofilm and through which they may evade the host's immune system. During infection, Paracoccidioides spp. can interact with different host cell types and has the ability to modulate the host's adaptive and/or innate immune response. In addition, it participates and interferes in the coagulation system and phenomena like cytoskeletal rearrangement and apoptosis. In recent years, Paracoccidioides spp. have had their endemic areas expanding in correlation with the expansion of agriculture. In response, several studies were developed to understand the infection using in vitro and in vivo systems, including alternative non-mammal models. Moreover, new advances were made in treating these infections using both well-established and new antifungal agents. These included natural and/or derivate synthetic substances as well as vaccines, peptides, and anti-adhesins sera. Because of all the advances in the PCM study, this review has the objective to summarize all of the recent discoveries on Paracoccidioides-host interaction, with particular emphasis on fungi surface proteins (molecules that play a fundamental role in the adhesion and/or dissemination of the fungi to host-cells), as well as advances in the treatment of PCM with new and well-established antifungal agents and approaches.
Collapse
Affiliation(s)
- Haroldo C de Oliveira
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Patrícia A Assato
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Caroline M Marcos
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Liliana Scorzoni
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Ana C A de Paula E Silva
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Julhiany De Fátima Da Silva
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Junya de Lacorte Singulani
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Kaila M Alarcon
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Ana M Fusco-Almeida
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Maria J S Mendes-Giannini
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| |
Collapse
|
24
|
Assato PA, da Silva JDF, de Oliveira HC, Marcos CM, Rossi D, Valentini SR, Mendes-Giannini MJS, Zanelli CF, Fusco-Almeida AM. Functional analysis of Paracoccidioides brasiliensis 14-3-3 adhesin expressed in Saccharomyces cerevisiae. BMC Microbiol 2015; 15:256. [PMID: 26537993 PMCID: PMC4634143 DOI: 10.1186/s12866-015-0586-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/23/2015] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND 14-3-3 proteins comprise a family of eukaryotic multifunctional proteins involved in several cellular processes. The Pb14-3-3 of Paracoccidioides brasiliensis seems to play an important role in the Paracoccidioides-host interaction. Paracoccidioides brasiliensis is an etiological agent of paracoccidioidomycosis, which is a systemic mycosis that is endemic in Latin America. In the initial steps of the infection, Paracoccidioides spp. synthetizes adhesins that allow it to adhere and invade host cells. Therefore, the aim of this work was to perform a functional analysis of Pb14-3-3 using Saccharomyces cerevisiae as a model. RESULTS The functional analysis of Pb14-3-3 was performed in S. cerevisiae, and it was found that Pb14-3-3 partially complemented S. cerevisiae proteins Bmh1p and Bmh2p, which are recognized as two yeast 14-3-3 homologues. When we evaluated the adhesion profile of S. cerevisiae transformants, Pb14-3-3 acted as an adhesin in S. cerevisiae; however, Bmh1p did not show this function. The influence of Pb14-3-3 in S. cerevisiae ergosterol pathway was also evaluated and our results showed that Pb14-3-3 up-regulates genes involved in ergosterol biosynthesis. CONCLUSIONS Our data showed that Pb14-3-3 was able to partially complement Bmh1p and Bmh2p proteins in S. cerevisiae; however, we suggest that Pb14-3-3 has a differential role as an adhesin. In addition, Pb-14-3-3 may be involved in Paracoccidioides spp. ergosterol biosynthesis which makes it an interest as a therapeutic target.
Collapse
Affiliation(s)
- Patricia Akemi Assato
- Laboratório de Micologia Clínica - Núcleo de Proteômica - Faculdade de Ciências Farmacêuticas- Unesp - Campus Araraquara, Rodovia Araraquara - Jaú Km 1, 14801-902, Araraquara, SP, Brazil.
| | - Julhiany de Fátima da Silva
- Laboratório de Micologia Clínica - Núcleo de Proteômica - Faculdade de Ciências Farmacêuticas- Unesp - Campus Araraquara, Rodovia Araraquara - Jaú Km 1, 14801-902, Araraquara, SP, Brazil.
| | - Haroldo Cesar de Oliveira
- Laboratório de Micologia Clínica - Núcleo de Proteômica - Faculdade de Ciências Farmacêuticas- Unesp - Campus Araraquara, Rodovia Araraquara - Jaú Km 1, 14801-902, Araraquara, SP, Brazil.
| | - Caroline Maria Marcos
- Laboratório de Micologia Clínica - Núcleo de Proteômica - Faculdade de Ciências Farmacêuticas- Unesp - Campus Araraquara, Rodovia Araraquara - Jaú Km 1, 14801-902, Araraquara, SP, Brazil.
| | - Danuza Rossi
- Laboratório de Biologia Molecular - Faculdade de Ciências Farmacêuticas- Unesp - Campus Araraquara, Rodovia Araraquara - Jaú Km 1, 14801-902, Araraquara, SP, Brazil.
| | - Sandro Roberto Valentini
- Laboratório de Biologia Molecular - Faculdade de Ciências Farmacêuticas- Unesp - Campus Araraquara, Rodovia Araraquara - Jaú Km 1, 14801-902, Araraquara, SP, Brazil.
| | - Maria José Soares Mendes-Giannini
- Laboratório de Micologia Clínica - Núcleo de Proteômica - Faculdade de Ciências Farmacêuticas- Unesp - Campus Araraquara, Rodovia Araraquara - Jaú Km 1, 14801-902, Araraquara, SP, Brazil.
| | - Cleslei Fernando Zanelli
- Laboratório de Biologia Molecular - Faculdade de Ciências Farmacêuticas- Unesp - Campus Araraquara, Rodovia Araraquara - Jaú Km 1, 14801-902, Araraquara, SP, Brazil.
| | - Ana Marisa Fusco-Almeida
- Laboratório de Micologia Clínica - Núcleo de Proteômica - Faculdade de Ciências Farmacêuticas- Unesp - Campus Araraquara, Rodovia Araraquara - Jaú Km 1, 14801-902, Araraquara, SP, Brazil.
| |
Collapse
|
25
|
Siqueira IM, Fraga CLF, Amaral AC, Souza ACO, Jerônimo MS, Correa JR, Magalhães KG, Inácio CA, Ribeiro AM, Burguel PH, Felipe MS, Tavares AH, Bocca AL. Distinct patterns of yeast cell morphology and host responses induced by representative strains of Paracoccidioides brasiliensis (Pb18) and Paracoccidioides lutzii (Pb01). Med Mycol 2015; 54:177-88. [PMID: 26384386 DOI: 10.1093/mmy/myv072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/07/2015] [Indexed: 11/14/2022] Open
Abstract
Paracoccidioidomycosis (PCM) is a systemic mycosis, widespread in Latin America. PCM is a granulomatous disease characterized by a polymorphism of lesions depending on the pathogen's virulence, the immune status of the host and its genetic susceptibility. The thermodimorphic fungus Paracoccidioides brasiliensis was considered the only etiologic agent of PCM, yet recent works have shown significant genetic diversity among different strains of P. brasiliensis. Therefore, it has been proposed for a new species within the Paracoccidioides genus, named Paracoccidioides lutzii. To better understand the fungus-host interactions elicited by strains Pb01 and Pb18 as key representatives of P. lutzii and P. brasiliensis, respectively, we carried out studies to investigate differences in morphology, induced immune response, virulence and pathology between these two Paracoccidioides species. Our results demonstrate distinct patterns of host-parasite interaction and pathology caused by Pb18 and Pb01. These results open up new fronts for NEW: clinical studies, which may result in significant consequences for the diagnosis and treatment of PCM. Considering that our results cannot be extended to all strains of both species, more studies about the virulence among Paracoccioides must be explored in the future.
Collapse
Affiliation(s)
- Isaque Medeiros Siqueira
- Molecular Pathology Post-Graduate Program, Faculty of Medicine, University of Brasília, D.F., Brazil
| | | | - André Correa Amaral
- Biotechnology, Institute of Tropical Pathology and Public Health, Federal University of Goiás
| | - Ana Camila Oliveira Souza
- Molecular Pathology Post-Graduate Program, Faculty of Medicine, University of Brasília, D.F., Brazil
| | - Márcio Souza Jerônimo
- Molecular Pathology Post-Graduate Program, Faculty of Medicine, University of Brasília, D.F., Brazil
| | | | | | - Carlos Antônio Inácio
- Biology Institute, Department of Entomology and Plant Pathology, Federal Rural University of Rio de Janeiro
| | | | - Pedro Henrique Burguel
- Molecular Pathology Post-Graduate Program, Faculty of Medicine, University of Brasília, D.F., Brazil
| | - Maria Sueli Felipe
- Biology Institute, University of Brasília, D.F., Brazil Genomic Science and Biotechnology Post-Graduate Program, Catholic University of Brasília, D.F., Brazil
| | | | | |
Collapse
|