1
|
Duran-Bedolla J, Téllez-Sosa J, Bocanegra-Ibarias P, Schilmann A, Bravo-Romero S, Reyna-Flores F, Villa-Reyes T, Barrios-Camacho H. Citrobacter spp. and Enterobacter spp. as reservoirs of carbapenemase blaNDM and blaKPC resistance genes in hospital wastewater. Appl Environ Microbiol 2024; 90:e0116524. [PMID: 39012101 PMCID: PMC11337798 DOI: 10.1128/aem.01165-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
Antibiotic resistance has emerged as a global threat to public health, generating a growing interest in investigating the presence of antibiotic-resistant bacteria in environments influenced by anthropogenic activities. Wastewater treatment plants in hospital serve as significant reservoirs of antimicrobial-resistant bacteria, where a favorable environment is established, promoting the proliferation and transfer of resistance genes among different bacterial species. In our study, we isolated a total of 243 strains from 5 hospital wastewater sites in Mexico, belonging to 21 distinct Gram-negative bacterial species. The presence of β-lactamase was detected in 46.9% (114/243) of the isolates, which belonging to the Enterobacteriaceae family. We identified a total of 169 β-lactamase genes; blaTEM in 33.1%, blaCTX-M in 25.4%, blaKPC in 25.4%, blaNDM 8.8%, blaSHV in 5.3%, and blaOXA-48 in 1.1% distributed in 12 different bacteria species. Among the 114 of the isolates, 50.8% were found to harbor at least one carbapenemase and were discharged into the environment. The carbapenemase blaKPC was found in six Citrobacter spp. and E. coli, while blaNDM was detected in two distinct Enterobacter spp. and E. coli. Notably, blaNDM-1 was identified in a 110 Kb IncFII conjugative plasmid in E. cloacae, E. xiangfangensis, and E. coli within the same hospital wastewater. In conclusion, hospital wastewater showed the presence of Enterobacteriaceae carrying a high frequency of carbapenemase blaKPC and blaNDM. We propose that hospital wastewater serves as reservoirs for resistance mechanism within bacterial communities and creates an optimal environment for the exchange of this resistance mechanism among different bacterial strains. IMPORTANCE The significance of this study lies in its findings regarding the prevalence and diversity of antibiotic-resistant bacteria and genes identified in hospital wastewater in Mexico. The research underscores the urgent need for enhanced surveillance and prevention strategies to tackle the escalating challenge of antibiotic resistance, particularly evident through the elevated frequencies of carbapenemase genes such as blaKPC and blaNDM within the Enterobacteriaceae family. Moreover, the identification of these resistance genes on conjugative plasmids highlights the potential for widespread transmission via horizontal gene transfer. Understanding the mechanisms of antibiotic resistance in hospital wastewater is crucial for developing targeted interventions aimed at reducing transmission, thereby safeguarding public health and preserving the efficacy of antimicrobial therapies.
Collapse
Affiliation(s)
- Josefina Duran-Bedolla
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Cuernavaca, Morelos, Mexico
| | - Juan Téllez-Sosa
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Cuernavaca, Morelos, Mexico
| | - Paola Bocanegra-Ibarias
- Facultad de Medicina, Hospital Universitario "Dr. José Eleuterio González", Departamento de Enfermedades Infecciosas, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Astrid Schilmann
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación en Salud Poblacional, Cuernavaca, Morelos, Mexico
| | - Sugey Bravo-Romero
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Cuernavaca, Morelos, Mexico
| | - Fernando Reyna-Flores
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Cuernavaca, Morelos, Mexico
| | - Tania Villa-Reyes
- Coordinación Nacional de la Red Hospitalaria de Vigilancia Epidemiológica, Dirección General de Epidemiología, Ciudad de México, Mexico
| | - Humberto Barrios-Camacho
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Cuernavaca, Morelos, Mexico
| |
Collapse
|
2
|
Sadreghaemy M, Gamba MA, Bloem LT, Egberts TCG. Leftover of Amoxicillin Suspension After Use by Children in the Netherlands. Pharmacoepidemiol Drug Saf 2024; 33:e5868. [PMID: 39092463 DOI: 10.1002/pds.5868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE In clinical practice, a discrepancy may exist between the prescribed amount of a drug and the commercially available pack sizes in the pharmacy, potentially contributing to drug waste. This study aimed-as an example of this phenomena-to quantify leftover of amoxicillin suspension prescribed to children, due to discrepancies between physician-prescribed and pharmacy-dispensed amounts. METHODS We performed a retrospective cohort study including amoxicillin suspension dispensations for patients aged 0-12 years between 2017 and 2019 utilizing the Dutch PHARMO database. Leftover amount of amoxicillin was estimated by assessing the discrepancy between the prescribed and dispensed amounts. Extrapolated amoxicillin weight and economic spillage estimates for the Netherlands were determined. The impact of two theoretical interventions on leftover amount was assessed: (1) introducing vials with half the volume of the current 100 and 30 mL vials and (2) a combination of the first intervention with a maximum of 10% round-down by the dispensing pharmacy of the prescribed dose. RESULTS We included 79 512 amoxicillin suspension dispensations for 62 252 patients. The mean leftover amount of amoxicillin suspension per dispensing was 27%. The yearly amount of amoxicillin leftover was 49.8 kg in the study cohort, equivalent to yearly 633 kg and €621 000 when extrapolated to the Netherlands. Employing the first theoretical intervention reduced the mean leftover per dispensing to 20%, reducing the yearly leftover to 31.6 kg amoxicillin in the study cohort, and to 400 kg and €400 000 extrapolated. The second theoretical intervention further reduced leftover to 17%, reducing the yearly leftover to 24.3 kg amoxicillin in the study cohort, and to 300 kg and €300 000 extrapolated. CONCLUSION Approximately a quarter of amoxicillin suspension remains as leftover per dispensing. Applying different theoretical intervention shows the potential for a significant reduction of amoxicillin leftover.
Collapse
Affiliation(s)
- Milad Sadreghaemy
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Magdalena A Gamba
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Lourens T Bloem
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Toine C G Egberts
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
3
|
Flores-Vargas G, Bergsveinson J, Korber DR. Environmentally Relevant Antibiotic Concentrations Exert Stronger Selection Pressure on River Biofilm Resistomes than AMR-Reservoir Effluents. Antibiotics (Basel) 2024; 13:539. [PMID: 38927205 PMCID: PMC11200958 DOI: 10.3390/antibiotics13060539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Freshwater environments are primary receiving systems of wastewater and effluents, which carry low concentrations of antibiotics and antimicrobial-resistant (AMR) bacteria and genes. Aquatic microbial communities are thus exposed to environmentally relevant concentrations of antibiotics (ERCA) that presumably influence the acquisition and spread of environmental AMR. Here, we analyzed ERCA exposure with and without the additional presence of municipal wastewater treatment plant effluent (W) and swine manure run-off (M) on aquatic biofilm resistomes. Microscopic analyses revealed decreased taxonomic diversity and biofilm structural integrity, while metagenomic analysis revealed an increased abundance of resistance, virulence, and mobile element-related genes at the highest ERCA exposure levels, with less notable impacts observed when solely exposed to W or M effluents. Microbial function predictions indicated increased gene abundance associated with energy and cell membrane metabolism and heavy metal resistance under ERCA conditions. In silico predictions of increased resistance mechanisms did not correlate with observed phenotypic resistance patterns when whole communities were exposed to antimicrobial susceptibility testing. This reveals important insight into the complexity of whole-community coordination of physical and genetic responses to selective pressures. Lastly, the environmental AMR risk assessment of metagenomic data revealed a higher risk score for biofilms grown at sub-MIC antibiotic conditions.
Collapse
Affiliation(s)
- Gabriela Flores-Vargas
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada;
| | - Jordyn Bergsveinson
- Environment and Climate Change Canada, 11 Innovation Blvd., Saskatoon, SK S7N 3H5, Canada;
| | - Darren R. Korber
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada;
| |
Collapse
|
4
|
Stanton IC, Tipper HJ, Chau K, Klümper U, Subirats J, Murray AK. Does Environmental Exposure to Pharmaceutical and Personal Care Product Residues Result in the Selection of Antimicrobial-Resistant Microorganisms, and is this Important in Terms of Human Health Outcomes? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:623-636. [PMID: 36416260 DOI: 10.1002/etc.5498] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/14/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The environment plays a critical role in the development, dissemination, and transmission of antimicrobial resistance (AMR). Pharmaceuticals and personal care products (PPCPs) enter the environment through direct application to the environment and through anthropogenic pollution. Although there is a growing body of evidence defining minimal selective concentrations (MSCs) of antibiotics and the role antibiotics play in horizontal gene transfer (HGT), there is limited evidence on the role of non-antibiotic PPCPs. Existing data show associations with the development of resistance or effects on bacterial growth rather than calculating selective endpoints. Research has focused on laboratory-based systems rather than in situ experiments, although PPCP concentrations found throughout wastewater, natural water, and soil environments are often within the range of laboratory-derived MSCs and at concentrations shown to promote HGT. Increased selection and HGT of AMR by PPCPs will result in an increase in total AMR abundance in the environment, increasing the risk of exposure and potential transmission of environmental AMR to humans. There is some evidence to suggest that humans can acquire resistance from environmental settings, with water environments being the most frequently studied. However, because this is currently limited, we recommend that more evidence be gathered to understand the risk the environment plays in regard to human health. In addition, we recommend that future research efforts focus on MSC-based experiments for non-antibiotic PPCPS, particularly in situ, and investigate the effect of PPCP mixtures on AMR. Environ Toxicol Chem 2024;43:623-636. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | | | - Kevin Chau
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Uli Klümper
- Institute of Hydrobiology, Technische Universitӓt Dresden, Dresden, Germany
| | - Jessica Subirats
- Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research (IDAEA-CSIC), Barcelona, Spain
| | - Aimee K Murray
- College of Medicine and Health, University of Exeter, Cornwall, UK
| |
Collapse
|
5
|
Abstract
Antibiotic resistance genes predate the therapeutic uses of antibiotics. However, the current antimicrobial resistance crisis stems from our extensive use of antibiotics and the generation of environmental stressors that impose new selective pressure on microbes and drive the evolution of resistant pathogens that now threaten human health. Similar to climate change, this global threat results from human activities that change habitats and natural microbiomes, which in turn interact with human-associated ecosystems and lead to adverse impacts on human health. Human activities that alter our planet at global scales exacerbate the current resistance crisis and exemplify our central role in large-scale changes in which we are both protagonists and architects of our success but also casualties of unanticipated collateral outcomes. As cognizant participants in this ongoing planetary experiment, we are driven to understand and find strategies to curb the ongoing crises of resistance and climate change.
Collapse
Affiliation(s)
- María Mercedes Zambrano
- Corpogen Research Center, Bogotá, Colombia;
- Dirección de Investigaciones y Transferencia de Conocimiento, Universidad Central, Bogotá, Colombia
| |
Collapse
|
6
|
Cho S, Hiott LM, Read QD, Damashek J, Westrich J, Edwards M, Seim RF, Glinski DA, Bateman McDonald JM, Ottesen EA, Lipp EK, Henderson WM, Jackson CR, Frye JG. Distribution of Antibiotic Resistance in a Mixed-Use Watershed and the Impact of Wastewater Treatment Plants on Antibiotic Resistance in Surface Water. Antibiotics (Basel) 2023; 12:1586. [PMID: 37998788 PMCID: PMC10668835 DOI: 10.3390/antibiotics12111586] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
The aquatic environment has been recognized as a source of antibiotic resistance (AR) that factors into the One Health approach to combat AR. To provide much needed data on AR in the environment, a comprehensive survey of antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs), and antibiotic residues was conducted in a mixed-use watershed and wastewater treatment plants (WWTPs) within the watershed to evaluate these contaminants in surface water. A culture-based approach was used to determine prevalence and diversity of ARB in surface water. Low levels of AR Salmonella (9.6%) and Escherichia coli (6.5%) were detected, while all Enterococcus were resistant to at least one tested antibiotic. Fewer than 20% of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae (17.3%) and carbapenem-resistant Enterobacteriaceae (CRE) (7.7%) were recovered. Six ARGs were detected using qPCR, primarily the erythromycin-resistance gene, ermB. Of the 26 antibiotics measured, almost all water samples (98.7%) had detectable levels of antibiotics. Analysis of wastewater samples from three WWTPs showed that WWTPs did not completely remove AR contaminants. ARGs and antibiotics were detected in all the WWTP effluent discharges, indicating that WWTPs are the source of AR contaminants in receiving water. However, no significant difference in ARGs and antibiotics between the upstream and downstream water suggests that there are other sources of AR contamination. The widespread occurrence and abundance of medically important antibiotics, bacteria resistant to antibiotics used for human and veterinary purposes, and the genes associated with resistance to these antibiotics, may potentially pose risks to the local populations exposed to these water sources.
Collapse
Affiliation(s)
- Sohyun Cho
- Poultry Microbiological Safety and Processing Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA; (S.C.); (L.M.H.); (C.R.J.)
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA;
| | - Lari M. Hiott
- Poultry Microbiological Safety and Processing Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA; (S.C.); (L.M.H.); (C.R.J.)
| | - Quentin D. Read
- Agricultural Research Service, U.S. Department of Agriculture, Southeast Area, Raleigh, NC 27606, USA;
| | - Julian Damashek
- Department of Biology, Utica University, Utica, NY 13502, USA;
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; (J.W.); (E.A.O.)
| | - Jason Westrich
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; (J.W.); (E.A.O.)
| | - Martinique Edwards
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA; (M.E.); (E.K.L.)
| | - Roland F. Seim
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA;
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Athens, GA 30605, USA; (D.A.G.); (W.M.H.)
| | - Donna A. Glinski
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Athens, GA 30605, USA; (D.A.G.); (W.M.H.)
| | - Jacob M. Bateman McDonald
- Lewis F. Rogers Institute for Environmental and Spatial Analysis, University of North Georgia, Oakwood, GA 30566, USA;
| | - Elizabeth A. Ottesen
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; (J.W.); (E.A.O.)
| | - Erin K. Lipp
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA; (M.E.); (E.K.L.)
| | - William Matthew Henderson
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Athens, GA 30605, USA; (D.A.G.); (W.M.H.)
| | - Charlene R. Jackson
- Poultry Microbiological Safety and Processing Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA; (S.C.); (L.M.H.); (C.R.J.)
| | - Jonathan G. Frye
- Poultry Microbiological Safety and Processing Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA; (S.C.); (L.M.H.); (C.R.J.)
| |
Collapse
|
7
|
Sanchez-Cid C, Ghaly TM, Gillings MR, Vogel TM. Sub-inhibitory gentamicin pollution induces gentamicin resistance gene integration in class 1 integrons in the environment. Sci Rep 2023; 13:8612. [PMID: 37244902 PMCID: PMC10224954 DOI: 10.1038/s41598-023-35074-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023] Open
Abstract
Antibiotics at sub-inhibitory concentrations are often found in the environment. Here they could impose selective pressure on bacteria, leading to the selection and dissemination of antibiotic resistance, despite being under the inhibitory threshold. The goal of this study was to evaluate the effects of sub-inhibitory concentrations of gentamicin on environmental class 1 integron cassettes in natural river microbial communities. Gentamicin at sub-inhibitory concentrations promoted the integration and selection of gentamicin resistance genes (GmRG) in class 1 integrons after only a one-day exposure. Therefore, sub-inhibitory concentrations of gentamicin induced integron rearrangements, increasing the mobilization potential of gentamicin resistance genes and potentially increasing their dissemination in the environment. This study demonstrates the effects of antibiotics at sub-inhibitory concentrations in the environment and supports concerns about antibiotics as emerging pollutants.
Collapse
Affiliation(s)
- Concepcion Sanchez-Cid
- Environmental Microbial Genomics, UMR 5005 Laboratoire Ampère, CNRS, École Centrale de Lyon, Université de Lyon, Écully, France.
| | - Timothy M Ghaly
- School of Natural Sciences, Macquarie University, NSW, 2109, Australia
| | - Michael R Gillings
- School of Natural Sciences, Macquarie University, NSW, 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, NSW, 2109, Australia
| | - Timothy M Vogel
- Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAe 1418, VetAgro Sup, Ecologie Microbienne, F-69622, Villeurbanne, France
| |
Collapse
|
8
|
Ma D, Chen H, Feng Q, Zhang X, Wu D, Feng J, Cheng S, Wang D, Liu Z, Zhong Q, Wei J, Liu G. Dissemination of antibiotic resistance genes through fecal sewage treatment facilities to the ecosystem in rural area. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 333:117439. [PMID: 36758406 DOI: 10.1016/j.jenvman.2023.117439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Infection of antibiotic-resistant pathogens mostly occurs in rural areas. In this paper, the dissemination of antibiotic resistance genes (ARGs) through fecal sewage treatment facilities to the ecosystem in a typical rural area is investigated. Household three-chamber septic tanks (TCs), household biogas digesters (BDs), wastewater treatment plants (WWTPs), vegetable plots, water ponds, etc. Are taken into account. The relative abundance of ARGs in fecal sewage can be reduced by BDs and WWTPs by 80% and 60%, respectively. While TCs show no reduction ability for ARGs. Fast expectation-maximization microbial source tracking (FEAST) analysis revealed that TCs and BDs contribute a considerable percentage (15-22%) of ARGs to the surface water bodies (water ponds) in the rural area. Most ARGs tend to precipitate in the sediments of water bodies and stop moving downstream. Meanwhile, the immigration of microorganisms is more active than that of ARGs. The results provide scientific basic data for the management of fecal sewage and the controlling of ARGs in rural areas.
Collapse
Affiliation(s)
- Dachao Ma
- School of Resources, Environment and Materials, Key Laboratory of Environmental Protection, Guangxi University, Nanning, 530004, China
| | - Hongcheng Chen
- School of Resources, Environment and Materials, Key Laboratory of Environmental Protection, Guangxi University, Nanning, 530004, China
| | - Qingge Feng
- School of Resources, Environment and Materials, Key Laboratory of Environmental Protection, Guangxi University, Nanning, 530004, China.
| | - Xuan Zhang
- College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Jinghang Feng
- School of Resources, Environment and Materials, Key Laboratory of Environmental Protection, Guangxi University, Nanning, 530004, China
| | - Shikun Cheng
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing , 100083, China
| | - Dongbo Wang
- School of Resources, Environment and Materials, Key Laboratory of Environmental Protection, Guangxi University, Nanning, 530004, China
| | - Zheng Liu
- School of Resources, Environment and Materials, Key Laboratory of Environmental Protection, Guangxi University, Nanning, 530004, China
| | - Qisong Zhong
- School of Resources, Environment and Materials, Key Laboratory of Environmental Protection, Guangxi University, Nanning, 530004, China
| | - Jinye Wei
- School of Resources, Environment and Materials, Key Laboratory of Environmental Protection, Guangxi University, Nanning, 530004, China
| | - Guozi Liu
- School of Resources, Environment and Materials, Key Laboratory of Environmental Protection, Guangxi University, Nanning, 530004, China
| |
Collapse
|
9
|
Winchell KM, Losos JB, Verrelli BC. Urban evolutionary ecology brings exaptation back into focus. Trends Ecol Evol 2023:S0169-5347(23)00060-5. [PMID: 37024381 DOI: 10.1016/j.tree.2023.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 04/08/2023]
Abstract
The contribution of pre-existing phenotypic variation to evolution in novel environments has long been appreciated. Nevertheless, evolutionary ecologists have struggled with communicating these aspects of the adaptive process. In 1982, Gould and Vrba proposed terminology to distinguish character states shaped via natural selection for the roles they currently serve ('adaptations') from those shaped under preceding selective regimes ('exaptations'), with the intention of replacing the inaccurate 'preadaptation'. Forty years later, we revisit Gould and Vrba's ideas which, while often controversial, continue to be widely debated and highly cited. We use the recent emergence of urban evolutionary ecology as a timely opportunity to reintroduce the ideas of Gould and Vrba as an integrated framework to understand contemporary evolution in novel environments.
Collapse
Affiliation(s)
- Kristin M Winchell
- Department of Biology, New York University, New York, NY 10003, USA; Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA; Department of Biology, Washington University, St Louis, MO 63130, USA.
| | - Jonathan B Losos
- Department of Biology, Washington University, St Louis, MO 63130, USA
| | - Brian C Verrelli
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
10
|
Miranda CD, Concha C, Godoy FA, Lee MR. Aquatic Environments as Hotspots of Transferable Low-Level Quinolone Resistance and Their Potential Contribution to High-Level Quinolone Resistance. Antibiotics (Basel) 2022; 11:1487. [PMID: 36358142 PMCID: PMC9687057 DOI: 10.3390/antibiotics11111487] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 08/27/2023] Open
Abstract
The disposal of antibiotics in the aquatic environment favors the selection of bacteria exhibiting antibiotic resistance mechanisms. Quinolones are bactericidal antimicrobials extensively used in both human and animal medicine. Some of the quinolone-resistance mechanisms are encoded by different bacterial genes, whereas others are the result of mutations in the enzymes on which those antibiotics act. The worldwide occurrence of quinolone resistance genes in aquatic environments has been widely reported, particularly in areas impacted by urban discharges. The most commonly reported quinolone resistance gene, qnr, encodes for the Qnr proteins that protect DNA gyrase and topoisomerase IV from quinolone activity. It is important to note that low-level resistance usually constitutes the first step in the development of high-level resistance, because bacteria carrying these genes have an adaptive advantage compared to the highly susceptible bacterial population in environments with low concentrations of this antimicrobial group. In addition, these genes can act additively with chromosomal mutations in the sequences of the target proteins of quinolones leading to high-level quinolone resistance. The occurrence of qnr genes in aquatic environments is most probably caused by the release of bacteria carrying these genes through anthropogenic pollution and maintained by the selective activity of antimicrobial residues discharged into these environments. This increase in the levels of quinolone resistance has consequences both in clinical settings and the wider aquatic environment, where there is an increased exposure risk to the general population, representing a significant threat to the efficacy of quinolone-based human and animal therapies. In this review the potential role of aquatic environments as reservoirs of the qnr genes, their activity in reducing the susceptibility to various quinolones, and the possible ways these genes contribute to the acquisition and spread of high-level resistance to quinolones will be discussed.
Collapse
Affiliation(s)
- Claudio D. Miranda
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1780000, Chile
| | - Christopher Concha
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1780000, Chile
| | - Félix A. Godoy
- Centro i~mar, Universidad de Los Lagos, Puerto Montt 5480000, Chile
| | - Matthew R. Lee
- Centro i~mar, Universidad de Los Lagos, Puerto Montt 5480000, Chile
| |
Collapse
|
11
|
Williams NLR, Siboni N, McLellan SL, Potts J, Scanes P, Johnson C, James M, McCann V, Seymour JR. Rainfall leads to elevated levels of antibiotic resistance genes within seawater at an Australian beach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119456. [PMID: 35561796 DOI: 10.1016/j.envpol.2022.119456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/29/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Anthropogenic waste streams can be major sources of antibiotic resistant microbes within the environment, creating a potential risk to public health. We examined patterns in the occurrence of a suite of antibiotic resistance genes (ARGs) and their links to enteric bacteria at a popular swimming beach in Australia that experiences intermittent contamination by sewage, with potential points of input including stormwater drains and a coastal lagoon. Samples were collected throughout a significant rainfall event (40.8 mm over 3 days) and analysed using both qPCR and 16S rRNA amplicon sequencing. Before the rainfall event, low levels of faecal indicator bacteria and a microbial source tracking human faeces (sewage) marker (Lachno3) were observed. These levels increased over 10x following rainfall. Within lagoon, drain and seawater samples, levels of the ARGs sulI, dfrA1 and qnrS increased by between 1 and 2 orders of magnitude after 20.4 mm of rain, while levels of tetA increased by an order of magnitude after a total of 40.8 mm. After 40.8 mm of rain sulI, tetA and qnrS could be detected 300 m offshore with levels remaining high five days after the rain event. Highest levels of sewage markers and ARGs were observed adjacent to the lagoon (when opened) and in-front of the stormwater drains, pinpointing these as the points of ARG input. Significant positive correlations were observed between all ARGs, and a suite of Amplicon Sequence Variants that were identified as stormwater drain indicator taxa using 16S rRNA amplicon sequencing data. Of note, some stormwater drain indicator taxa, which exhibited correlations to ARG abundance, included the human pathogens Arcobacter butzleri and Bacteroides fragilis. Given that previous research has linked high levels of ARGs in recreationally used environments to antimicrobial resistant pathogen infections, the observed patterns indicate a potentially elevated human health risk at a popular swimming beach following significant rainfall events.
Collapse
Affiliation(s)
- Nathan L R Williams
- Climate Change Cluster Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Nachshon Siboni
- Climate Change Cluster Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Sandra L McLellan
- University of Wisconsin-Milwaukee, School of Freshwater Sciences, 600 E Greenfield Ave, Milwaukee, WI, USA
| | - Jaimie Potts
- Waters, Wetlands, Coasts Science Branch, NSW Department of Primary Industries and Environment, Lidcombe, NSW, 2141, Australia
| | - Peter Scanes
- Waters, Wetlands, Coasts Science Branch, NSW Department of Primary Industries and Environment, Lidcombe, NSW, 2141, Australia
| | - Colin Johnson
- Waters, Wetlands, Coasts Science Branch, NSW Department of Primary Industries and Environment, Lidcombe, NSW, 2141, Australia
| | - Melanie James
- Central Coast Council, Hely Street, Wyong, NSW, 2259, Australia
| | - Vanessa McCann
- Central Coast Council, Hely Street, Wyong, NSW, 2259, Australia
| | - Justin R Seymour
- Climate Change Cluster Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
12
|
Silverio MP, Kraychete GB, Rosado AS, Bonelli RR. Pseudomonas fluorescens Complex and Its Intrinsic, Adaptive, and Acquired Antimicrobial Resistance Mechanisms in Pristine and Human-Impacted Sites. Antibiotics (Basel) 2022; 11:antibiotics11080985. [PMID: 35892375 PMCID: PMC9331890 DOI: 10.3390/antibiotics11080985] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/16/2022] Open
Abstract
Pseudomonas spp. are ubiquitous microorganisms that exhibit intrinsic and acquired resistance to many antimicrobial agents. Pseudomonas aeruginosa is the most studied species of this genus due to its clinical importance. In contrast, the Pseudomonas fluorescens complex consists of environmental and, in some cases, pathogenic opportunistic microorganisms. The records of antimicrobial-resistant P. fluorescens are quite scattered, which hinders the recognition of patterns. This review compiles published data on antimicrobial resistance in species belonging to the P. fluorescens complex, which were identified through phylogenomic analyses. Additionally, we explored the occurrence of clinically relevant antimicrobial resistance genes in the genomes of the respective species available in the NCBI database. Isolates were organized into two categories: strains isolated from pristine sites and strains isolated from human-impacted or metal-polluted sites. Our review revealed that many reported resistant phenotypes in this complex might be related to intrinsic features, whereas some of them might be ascribed to adaptive mechanisms such as colistin resistance. Moreover, a few studies reported antimicrobial resistance genes (ARGs), mainly β-lactamases. In-silico analysis corroborated the low occurrence of transferable resistance mechanisms in this Pseudomonas complex. Both phenotypic and genotypic assays are necessary to gain insights into the evolutionary aspects of antimicrobial resistance in the P. fluorescens complex and the possible role of these ubiquitous species as reservoirs of clinically important and transmissible ARGs.
Collapse
Affiliation(s)
- Myllena Pereira Silverio
- Laboratório de Ecologia Molecular Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
- Laboratório de Investigação em Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Gabriela Bergiante Kraychete
- Laboratório de Investigação em Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Alexandre Soares Rosado
- Laboratório de Ecologia Molecular Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Raquel Regina Bonelli
- Laboratório de Investigação em Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
13
|
Sanchez-Cid C, Guironnet A, Keuschnig C, Wiest L, Vulliet E, Vogel TM. Gentamicin at sub-inhibitory concentrations selects for antibiotic resistance in the environment. ISME COMMUNICATIONS 2022; 2:29. [PMID: 37938295 PMCID: PMC9723587 DOI: 10.1038/s43705-022-00101-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 06/01/2023]
Abstract
Antibiotics released into the environment at low (sub-inhibitory) concentrations could select for antibiotic resistance that might disseminate to the human microbiome. In this case, low-level anthropogenic sources of antibiotics would have a significant impact on human health risk. In order to provide data necessary for the evaluation of this risk, we implemented river water microcosms at both sub-inhibitory and inhibitory concentrations of gentamicin as determined previously based on bacterial growth in enriched media. Using metagenomic sequencing and qPCR/RT-qPCR, we assessed the effects of gentamicin on water bacterial communities and their resistome. A change in the composition of total and active communities, as well as a gentamicin resistance gene selection identified via mobile genetic elements, was observed during a two-day exposure. We demonstrated the effects of sub-inhibitory concentrations of gentamicin on bacterial communities and their associated resistome in microcosms (simulating in situ conditions). In addition, we established relationships between antibiotic dose and the magnitude of the community response in the environment. The scope of resistance selection under sub-inhibitory concentrations of antibiotics and the mechanisms underlying this process might provide the basis for understanding resistance dispersion and associated risks in relatively low impacted ecosystems.
Collapse
Affiliation(s)
- Concepcion Sanchez-Cid
- Environmental Microbial Genomics, Laboratoire Ampère, Ecole Centrale de Lyon, Université de Lyon, Ecully, France.
- Promega France, 69100, Charbonnières-les-Bains, France.
| | - Alexandre Guironnet
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100, Villeurbanne, France
| | - Christoph Keuschnig
- Environmental Microbial Genomics, Laboratoire Ampère, Ecole Centrale de Lyon, Université de Lyon, Ecully, France
| | - Laure Wiest
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100, Villeurbanne, France
| | - Emmanuelle Vulliet
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100, Villeurbanne, France
| | - Timothy M Vogel
- Environmental Microbial Genomics, Laboratoire Ampère, Ecole Centrale de Lyon, Université de Lyon, Ecully, France
| |
Collapse
|
14
|
Ghaly TM, Penesyan A, Pritchard A, Qi Q, Rajabal V, Tetu SG, Gillings MR. Methods for the targeted sequencing and analysis of integrons and their gene cassettes from complex microbial communities. Microb Genom 2022; 8. [PMID: 35298369 PMCID: PMC9176274 DOI: 10.1099/mgen.0.000788] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Integrons are microbial genetic elements that can integrate mobile gene cassettes. They are mostly known for spreading antibiotic resistance cassettes among human pathogens. However, beyond clinical settings, gene cassettes encode an extraordinarily diverse range of functions important for bacterial adaptation. The recovery and sequencing of cassettes has promising applications, including: surveillance of clinically important genes, particularly antibiotic resistance determinants; investigating the functional diversity of integron-carrying bacteria; and novel enzyme discovery. Although gene cassettes can be directly recovered using PCR, there are no standardised methods for their amplification and, importantly, for validating sequences as genuine integron gene cassettes. Here, we present reproducible methods for the amplification, sequence processing, and validation of gene cassette amplicons from complex communities. We describe two different PCR assays that either amplify cassettes together with integron integrases, or gene cassettes together within cassette arrays. We compare the performance of Nanopore and Illumina sequencing, and present bioinformatic pipelines that filter sequences to ensure that they represent amplicons from genuine integrons. Using a diverse set of environmental DNAs, we show that our approach can consistently recover thousands of unique cassettes per sample and up to hundreds of different integron integrases. Recovered cassettes confer a wide range of functions, including antibiotic resistance, with as many as 300 resistance cassettes found in a single sample. In particular, we show that class one integrons are collecting and concentrating resistance genes out of the broader diversity of cassette functions. The methods described here can be applied to any environmental or clinical microbiome sample.
Collapse
Affiliation(s)
- Timothy M Ghaly
- School of Natural Sciences, Macquarie University, New South Wales 2109, Australia
| | - Anahit Penesyan
- School of Natural Sciences, Macquarie University, New South Wales 2109, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, New South Wales 2109, Australia
| | - Alexander Pritchard
- Division of Food Sciences, University of Nottingham, Loughborough LE12 5RD, Australia
| | - Qin Qi
- School of Natural Sciences, Macquarie University, New South Wales 2109, Australia
| | - Vaheesan Rajabal
- School of Natural Sciences, Macquarie University, New South Wales 2109, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, New South Wales 2109, Australia
| | - Sasha G Tetu
- School of Natural Sciences, Macquarie University, New South Wales 2109, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, New South Wales 2109, Australia
| | - Michael R Gillings
- School of Natural Sciences, Macquarie University, New South Wales 2109, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, New South Wales 2109, Australia
| |
Collapse
|
15
|
Zhang Z, Li X, Liu H, Zamyadi A, Guo W, Wen H, Gao L, Nghiem LD, Wang Q. Advancements in detection and removal of antibiotic resistance genes in sludge digestion: A state-of-art review. BIORESOURCE TECHNOLOGY 2022; 344:126197. [PMID: 34710608 DOI: 10.1016/j.biortech.2021.126197] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Sludge from wastewater treatment plants can act as a repository and crucial environmental provider of antibiotic resistance genes (ARGs). Over the past few years, people's knowledge regarding the occurrence and removal of ARGs in sludge has broadened remarkably with advancements in molecular biological techniques. Anaerobic and aerobic digestion were found to effectively achieve sludge reduction and ARGs removal. This review summarized advanced detection and removal techniques of ARGs, in the last decade, in the sludge digestion field. The fate of ARGs due to different sludge digestion strategies (i.e., anaerobic and aerobic digestion under mesophilic or thermophilic conditions, and in combination with relevant pretreatment technologies (e.g., thermal hydrolysis pretreatment, microwave pretreatment and alkaline pretreatment) and additives (e.g., ferric chloride and zero-valent iron) were systematically summarized and compared in this review. To date, this is the first review that provides a comprehensive assessment of the state-of-the-art technologies and future recommendations.
Collapse
Affiliation(s)
- Zehao Zhang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Xuan Li
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia.
| | - Huan Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Arash Zamyadi
- Water Research Australia Limited, Melbourne & Adelaide SA 5001, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Haiting Wen
- School of Environment and Nature Resources, Renmin University of China, Beijing 100872, PR China
| | - Li Gao
- South East Water, 101 Wells Street, Frankston, VIC 3199, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
16
|
Flores-Vargas G, Bergsveinson J, Lawrence JR, Korber DR. Environmental Biofilms as Reservoirs for Antimicrobial Resistance. Front Microbiol 2022; 12:766242. [PMID: 34970233 PMCID: PMC8713029 DOI: 10.3389/fmicb.2021.766242] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
Characterizing the response of microbial communities to a range of antibiotic concentrations is one of the strategies used to understand the impact of antibiotic resistance. Many studies have described the occurrence and prevalence of antibiotic resistance in microbial communities from reservoirs such as hospitals, sewage, and farm feedlots, where bacteria are often exposed to high and/or constant concentrations of antibiotics. Outside of these sources, antibiotics generally occur at lower, sub-minimum inhibitory concentrations (sub-MICs). The constant exposure to low concentrations of antibiotics may serve as a chemical "cue" that drives development of antibiotic resistance. Low concentrations of antibiotics have not yet been broadly described in reservoirs outside of the aforementioned environments, nor is the transfer and dissemination of antibiotic resistant bacteria and genes within natural microbial communities fully understood. This review will thus focus on low antibiotic-concentration environmental reservoirs and mechanisms that are important in the dissemination of antibiotic resistance to help identify key knowledge gaps concerning the environmental resistome.
Collapse
Affiliation(s)
| | | | - John R Lawrence
- Environment and Climate Change Canada, Saskatoon, SK, Canada
| | - Darren R Korber
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
17
|
Baghal Asghari F, Dehghani MH, Dehghanzadeh R, Farajzadeh D, Shanehbandi D, Mahvi AH, Yaghmaeian K, Rajabi A. Performance evaluation of ozonation for removal of antibiotic-resistant Escherichia coli and Pseudomonas aeruginosa and genes from hospital wastewater. Sci Rep 2021; 11:24519. [PMID: 34972828 PMCID: PMC8720092 DOI: 10.1038/s41598-021-04254-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/20/2021] [Indexed: 02/06/2023] Open
Abstract
The performance of ozonation for the removal of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) using Escherichia coli and Pseudomonas aeruginosa carrying ARGs from hospital wastewaters was evaluated in this study. Bacterial inactivation was determined using plate count methods and real time PCR for ARG damage (Sul1, blatem, blactx, blavim and qnrS). The reduction rate of bacterial cells and ARGs was increased by different amounts of transferred ozone dose from 11 to 45 mg/L. The concentration of 108 cfu/ml bacteria was reduced to an acceptable level by ozone treatment after a 5 min contact time, Although the removal rate was much higher for concentrations of 106 cfu/ml and 104 cfu/ml bacteria. Overall, the tendency of gene reduction by ozonation from more to less was 16S rRNA > sul1 > blatem > blactx > qnrS > blavim. Given that plasmid-borne ARGs can potentially be transferred to other bacteria even after the disinfection process, our results can provide important insights into the fate of ARGs during hospital wastewater ozonation.
Collapse
Affiliation(s)
- Farzaneh Baghal Asghari
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran.
- Institute for Environmental Research, Center for Water Quality Research, Tehran University of Medical Sciences, Tehran, Iran.
| | - Reza Dehghanzadeh
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Davoud Farajzadeh
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Hossein Mahvi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamyar Yaghmaeian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Akbar Rajabi
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Andersson DI, Bampidis V, Bengtsson‐Palme J, Bouchard D, Ferran A, Kouba M, López Puente S, López‐Alonso M, Nielsen SS, Pechová A, Petkova M, Girault S, Broglia A, Guerra B, Innocenti ML, Liébana E, López‐Gálvez G, Manini P, Stella P, Peixe L. Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 12: Tetracyclines: tetracycline, chlortetracycline, oxytetracycline, and doxycycline. EFSA J 2021; 19:e06864. [PMID: 34729092 PMCID: PMC8546800 DOI: 10.2903/j.efsa.2021.6864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The specific concentrations of tetracycline, chlortetracycline, oxytetracycline and doxycycline in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. The FARSC for these four tetracyclines was estimated. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels in feed that showed to have an effect on growth promotion/increased yield were reported for tetracycline, chlortetracycline, oxytetracycline, whilst for doxycycline no suitable data for the assessment were available. Uncertainties and data gaps associated with the levels reported were addressed. It was recommended to perform further studies to supply more diverse and complete data related to the requirements for calculation of the FARSC for these antimicrobials.
Collapse
|
19
|
Michael CA, Gillings MR, Blaskovich MAT, Franks AE. The Antimicrobial Resistance Crisis: An Inadvertent, Unfortunate but Nevertheless Informative Experiment in Evolutionary Biology. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.692674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The global rise of antimicrobial resistance (AMR) phenotypes is an exemplar for rapid evolutionary response. Resistance arises as a consequence of humanity’s widespread and largely indiscriminate use of antimicrobial compounds. However, some features of this crisis remain perplexing. The remarkably widespread and rapid rise of diverse, novel and effective resistance phenotypes is in stark contrast to the apparent paucity of antimicrobial producers in the global microbiota. From the viewpoint of evolutionary theory, it should be possible to use selection coefficients to examine these phenomena. In this work we introduce an elaboration on the selection coefficient s termed selective efficiency, considering the genetic, metabolic, ecological and evolutionary impacts that accompany selective phenotypes. We then demonstrate the utility of the selective efficiency concept using AMR and antimicrobial production phenotypes as ‘worked examples’ of the concept. In accomplishing this objective, we also put forward cogent hypotheses to explain currently puzzling aspects of the AMR crisis. Finally, we extend the selective efficiency concept into a consideration of the ongoing management of the AMR crisis.
Collapse
|
20
|
Canellas ALB, Lopes IR, Mello MP, Paranhos R, de Oliveira BFR, Laport MS. Vibrio Species in an Urban Tropical Estuary: Antimicrobial Susceptibility, Interaction with Environmental Parameters, and Possible Public Health Outcomes. Microorganisms 2021; 9:1007. [PMID: 34067081 PMCID: PMC8151235 DOI: 10.3390/microorganisms9051007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/17/2022] Open
Abstract
The genus Vibrio comprises pathogens ubiquitous to marine environments. This study evaluated the cultivable Vibrio community in the Guanabara Bay (GB), a recreational, yet heavily polluted estuary in Rio de Janeiro, Brazil. Over one year, 66 water samples from three locations along a pollution gradient were investigated. Isolates were identified by MALDI-TOF mass spectrometry, revealing 20 Vibrio species, including several potential pathogens. Antimicrobial susceptibility testing confirmed resistance to aminoglycosides, beta-lactams (including carbapenems and third-generation cephalosporins), fluoroquinolones, sulfonamides, and tetracyclines. Four strains were producers of extended-spectrum beta-lactamases (ESBL), all of which carried beta-lactam and heavy metal resistance genes. The toxR gene was detected in all V. parahaemolyticus strains, although none carried the tdh or trh genes. Higher bacterial isolation rates occurred in months marked by higher water temperatures, lower salinities, and lower phosphorus and nitrogen concentrations. The presence of non-susceptible Vibrio spp. was related to indicators of eutrophication and sewage inflow. DNA fingerprinting analyses revealed that V. harveyi and V. parahaemolyticus strains non-susceptible to antimicrobials might persist in these waters throughout the year. Our findings indicate the presence of antimicrobial-resistant and potentially pathogenic Vibrio spp. in a recreational environment, raising concerns about the possible risks of human exposure to these waters.
Collapse
Affiliation(s)
- Anna L. B. Canellas
- Laboratório de Bacteriologia Molecular e Marinha, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, Brazil; (A.L.B.C.); (I.R.L.); (B.F.R.d.O.)
| | - Isabelle R. Lopes
- Laboratório de Bacteriologia Molecular e Marinha, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, Brazil; (A.L.B.C.); (I.R.L.); (B.F.R.d.O.)
| | - Marianne P. Mello
- Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941617, Brazil; (M.P.M.); (R.P.)
| | - Rodolfo Paranhos
- Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941617, Brazil; (M.P.M.); (R.P.)
| | - Bruno F. R. de Oliveira
- Laboratório de Bacteriologia Molecular e Marinha, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, Brazil; (A.L.B.C.); (I.R.L.); (B.F.R.d.O.)
| | - Marinella S. Laport
- Laboratório de Bacteriologia Molecular e Marinha, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, Brazil; (A.L.B.C.); (I.R.L.); (B.F.R.d.O.)
| |
Collapse
|
21
|
Chaturvedi P, Singh A, Chowdhary P, Pandey A, Gupta P. Occurrence of emerging sulfonamide resistance (sul1 and sul2) associated with mobile integrons-integrase (intI1 and intI2) in riverine systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:142217. [PMID: 33181985 DOI: 10.1016/j.scitotenv.2020.142217] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
Global use of antibiotics has exceedingly enhanced in agricultural, veterinary and prophylactic human use in recent days. Hence, these antibiotics can easily be found in the environment. This study revealed the occurrence of emerging MDR and ESBL producing strains, pollution profile, and factors integrons (intI1 and intI2) and environmental factors associated, in the riverine systems under different ecological and geo-climatic zones were investigated. The samples were collected based on anthropogenic intervention such as discharge of domestic wastes, industrial wastes, hospital, and municipal wastes. Among 160bacterial morphotypes, 121 (75.62%) exhibited MDR trait with maximum resistance towards lincosamide (CD = 71.3%), beta-lactams (P = 70.6%; AMX = 66.3%), cephalosporin (CZ = 60.6%; CXM = 34.4%), sulfonamide (COT = 50.6%; TR = 43.8%) followed by macrolide (E = 29.4%), tetracycline (TET = 18.8%), aminoglycosides (S = 18.8%; GEN = 6.3%), fluoroquinolones (NX = 18.1%; OF = 4.4%) and carbapenem (IPM = 5.0%). IntI1 gene was detected in 73 (60.3%) of isolates, whereas intI2 was found in 11 (9.09%) isolates. Eight (6.61%) isolates carried both integron genes (intI1 and intI2). sul1 and dfrA1 genes were detected in 53 (72.6%) and 63 (86.3%) isolates, respectively. A total of 103 (85.1%) were found ESBL positive with the presence of ESBL genes in 100 (97.08%) isolates. In riverine systems most prevalent ESBL gene blaTEM (93.0%) was detected alone as well as in combination with bla genes. The data can be utilized for public awareness and regulation of guidelines by local governing bodies as an alarming threat to look-out against the prevalent resistance in environment thereby assisting in risk management during epidemics. This study is a comprehensive investigation of emerging antibiotic pollutants and its resistance in bacteria associated with factors integrons-integrase responsible for its dissemination. It may also assist in global surveillance of antibiotic resistance and policies to curtail unnecessary antibiotic use.
Collapse
Affiliation(s)
- Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Department of Biotechnology, National Institute of Technology-Raipur, G.E. Road, Raipur 492010, Chhattisgarh, India.
| | - Anuradha Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Pankaj Chowdhary
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Ashok Pandey
- Centre for Innovation and Transnational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, Uttar Pradesh, India
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology-Raipur, G.E. Road, Raipur 492010, Chhattisgarh, India.
| |
Collapse
|
22
|
Zhang K, Xin R, Zhao Z, Li W, Wang Y, Wang Q, Niu Z, Zhang Y. Mobile genetic elements are the Major driver of High antibiotic resistance genes abundance in the Upper reaches of huaihe River Basin. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123271. [PMID: 32629348 DOI: 10.1016/j.jhazmat.2020.123271] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/16/2020] [Accepted: 06/20/2020] [Indexed: 05/12/2023]
Abstract
Rivers are considered a vital reservoir of antibiotic resistance genes (ARGs) and are critical to disseminate ARGs. The present study delved into the ARGs pollution of the sediments in the upper reaches of Huaihe river, one of the seven longest rivers in China, by high-throughput quantitative PCR. Subsequently, the relationship between ARGs and the bacterial community/mobile genetic elements (MGEs) was determined. As revealed from the results, the overall ARGs ranged from 2.65×10-3 to 6.14×10-2/16S copies, and the abundance of ARGs in the tributaries was significantly higher than that in the mainstreams (p<0.05). Moreover, the ARGs introduced by tributaries were capable of affecting the whole mainstream of Huaihe river. As suggested from the results of co-occurrence analysis and pRDA analysis, MGEs were reported as the major driver to disseminate ARGs in the upper reaches of Huaihe river basin. The larger the MGEs proportion, the higher the likelihood of ARGs transferring from antibiotic resistance bacteria to human pathogens in Huaihe river.
Collapse
Affiliation(s)
- Kai Zhang
- School of Geographic Sciences, Xinyang Normal University, Xinyang, 464000, China; Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, Xinyang Normal University, Xinyang, 464000, China
| | - Rui Xin
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Ze Zhao
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Wenpeng Li
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Yanan Wang
- School of Geographic Sciences, Xinyang Normal University, Xinyang, 464000, China; Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, Xinyang Normal University, Xinyang, 464000, China
| | - Qian Wang
- School of Geographic Sciences, Xinyang Normal University, Xinyang, 464000, China; Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, Xinyang Normal University, Xinyang, 464000, China
| | - Zhiguang Niu
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Ying Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
23
|
Chow LKM, Ghaly TM, Gillings MR. A survey of sub-inhibitory concentrations of antibiotics in the environment. J Environ Sci (China) 2021; 99:21-27. [PMID: 33183698 DOI: 10.1016/j.jes.2020.05.030] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/31/2020] [Accepted: 05/31/2020] [Indexed: 05/05/2023]
Abstract
Antibiotics are poorly metabolized, and can enter the environment via human waste streams, agricultural run-off and pharmaceutical effluent. We consequently expect to see a concentration gradient of antibiotic compounds radiating from areas of human population. Such antibiotics should be thought of as pollutants, as they can accumulate, and have biological effects. These antibiotic pollutants can increase rates of mutation and lateral transfer events, and continue to exert selection pressure even at sub-inhibitory concentrations. Here, we conducted a literature survey on environmental concentrations of antibiotics. We collated 887 data points from 40 peer-reviewed papers. We then determined whether these concentrations were biologically relevant by comparing them to their minimum selective concentrations, usually defined as between 1/4 and 1/230 of the minimum inhibitory concentration. Environmental concentrations of antibiotics surveyed often fall into this range. In general, the antibiotic concentrations recorded in aquatic and sediment samples were similar. These findings indicate that environmental concentrations of antibiotics are likely to be influencing microbial ecology, and to be driving the selection of antibiotic resistant bacteria.
Collapse
Affiliation(s)
- Louise K M Chow
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia.
| | - Timothy M Ghaly
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia
| | - Michael R Gillings
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, NSW 2109, Australia
| |
Collapse
|
24
|
Ngogang MP, Ernest T, Kariuki J, Mouliom Mouiche MM, Ngogang J, Wade A, van der Sande MAB. Microbial Contamination of Chicken Litter Manure and Antimicrobial Resistance Threat in an Urban Area Setting in Cameroon. Antibiotics (Basel) 2020; 10:antibiotics10010020. [PMID: 33383622 PMCID: PMC7824223 DOI: 10.3390/antibiotics10010020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 02/01/2023] Open
Abstract
We conducted a pilot study to assess microbiological safety of chicken litter, an affordable organic and main fertilizer used in Cameroon and worldwide. A convenience sampling of 26 farms was done and a questionnaire was administered. Samples of litter were aseptically collected. E. coli and Salmonella spp. were isolated using CLSI standards. Antibiotic susceptibility testing was performed using the disc diffusion method and a micro broth dilution method for colistin. In broiler farms, 90% of participating farmers gave antibiotic prophylaxis. The prevalence of E. coli and Salmonella spp. was 59.1% and 15.5%, respectively. All E. coli isolates were multidrug resistant as well as 36.4% for Salmonella spp. No resistance was found against cefepime and imipenem. All Salmonella spp. tested were found sensitive to colistin while 26.7% of E. coli spp. were colistin resistant. Contamination of chicken litter may be an underestimated source of antimicrobial resistance (AMR) transmission towards animals, humans and the environment with multidrug resistant E. coli and Salmonella spp. This shows the need and opportunity for a One Health approach in AMR surveillance and control in Cameroon. Continued surveillance in chicken litter would enable monitoring of AMR risks and trends.
Collapse
Affiliation(s)
- Marie Paule Ngogang
- Laboratoire de Recherche et d’Expertise Biomédicale (LABOREB), P.O. Box 35262 Yaoundé, Cameroon; (T.E.); (J.N.)
- Institute of Tropical Medicine, 2000 Antwerp, Belgium; (J.K.); (M.A.B.v.d.S.)
- Correspondence:
| | - Tambo Ernest
- Laboratoire de Recherche et d’Expertise Biomédicale (LABOREB), P.O. Box 35262 Yaoundé, Cameroon; (T.E.); (J.N.)
- Higher Institute of Health Sciences, Université des Montagnes, P.O. Box 208 Bagangté, Cameroon
| | - Jennifer Kariuki
- Institute of Tropical Medicine, 2000 Antwerp, Belgium; (J.K.); (M.A.B.v.d.S.)
| | | | - Jeanne Ngogang
- Laboratoire de Recherche et d’Expertise Biomédicale (LABOREB), P.O. Box 35262 Yaoundé, Cameroon; (T.E.); (J.N.)
| | - Abel Wade
- Laboratoire National Veterinaire (LANAVET), P.O. Box 503 Garoua, Cameroon;
| | - Marianne Antonia Bernada van der Sande
- Institute of Tropical Medicine, 2000 Antwerp, Belgium; (J.K.); (M.A.B.v.d.S.)
- Global Health, Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
25
|
Ching C, Orubu ESF, Sutradhar I, Wirtz VJ, Boucher HW, Zaman MH. Bacterial antibiotic resistance development and mutagenesis following exposure to subinhibitory concentrations of fluoroquinolones in vitro: a systematic review of the literature. JAC Antimicrob Resist 2020; 2:dlaa068. [PMID: 34223024 PMCID: PMC8210091 DOI: 10.1093/jacamr/dlaa068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/15/2020] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Understanding social and scientific drivers of antibiotic resistance is critical to help preserve antibiotic efficacy. These drivers include exposure to subinhibitory antibiotic concentrations in the environment and clinic. OBJECTIVES To summarize and quantify the relationship between subinhibitory fluoroquinolone exposure and antibiotic resistance and mutagenesis to better understand resistance patterns and mechanisms. METHODS Following PRISMA guidelines, PubMed, Web of Science and Embase were searched for primary in vitro experimental studies on subinhibitory fluoroquinolone exposure and bacterial antibiotic resistance and mutagenesis, from earliest available dates through to 2018 without language limitation. A specifically developed non-weighted tool was used to assess risk of bias. RESULTS Evidence from 62 eligible studies showed that subinhibitory fluoroquinolone exposure results in increased resistance to the selecting fluoroquinolone. Most increases in MIC were low (median minimum of 3.7-fold and median maximum of 32-fold) and may not be considered clinically relevant. Mechanistically, resistance is partly explained by target mutations but also changes in drug efflux. Collaterally, resistance to other fluoroquinolones and unrelated antibiotic classes also develops. The mean ± SD quality score for all studies was 2.6 ± 1.8 with a range of 0 (highest score) to 7 (lowest score). CONCLUSIONS Low and moderate levels of resistance and efflux changes can create an opportunity for higher-level resistance or MDR. Future studies, to elucidate the genetic regulation of specific resistance mechanisms, and increased policies, including surveillance of low-level resistance changes or genomic surveillance of efflux pump genes and regulators, could serve as a predictor of MDR development.
Collapse
Affiliation(s)
- Carly Ching
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Ebiowei S F Orubu
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Institute for Health System Innovation & Policy, Boston University, Boston, MA, USA
| | - Indorica Sutradhar
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Veronika J Wirtz
- Department of Global Health, Boston University School of Public Health, Boston, MA, USA
| | - Helen W Boucher
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA, USA
| | - Muhammad H Zaman
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Howard Hughes Medical Institute, Boston University, Boston, MA, USA
| |
Collapse
|
26
|
Candida albicans Genetic Background Influences Mean and Heterogeneity of Drug Responses and Genome Stability during Evolution in Fluconazole. mSphere 2020; 5:5/3/e00480-20. [PMID: 32581072 PMCID: PMC7316494 DOI: 10.1128/msphere.00480-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Antimicrobial resistance is an evolutionary phenomenon with clinical implications. We tested how replicates from diverse strains of Candida albicans, a prevalent human fungal pathogen, evolve in the commonly prescribed antifungal drug fluconazole. Replicates on average increased in fitness in the level of drug they were evolved to, with the least fit parental strains improving the most. Very few replicates increased resistance above the drug level they were evolved in. Notably, many replicates increased in genome size and changed in drug tolerance (a drug response where a subpopulation of cells grow slowly in high levels of drug), and variability among replicates in fitness, tolerance, and genome size was higher in strains that initially were more sensitive to the drug. Genetic background influenced the average degree of adaptation and the evolved variability of many phenotypes, highlighting that different strains from the same species may respond and adapt very differently during adaptation. The importance of within-species diversity in determining the evolutionary potential of a population to evolve drug resistance or tolerance is not well understood, including in eukaryotic pathogens. To examine the influence of genetic background, we evolved replicates of 20 different clinical isolates of Candida albicans, a human fungal pathogen, in fluconazole, the commonly used antifungal drug. The isolates hailed from the major C. albicans clades and had different initial levels of drug resistance and tolerance to the drug. The majority of replicates rapidly increased in fitness in the evolutionary environment, with the degree of improvement inversely correlated with parental strain fitness in the drug. Improvement was largely restricted to up to the evolutionary level of drug: only 4% of the evolved replicates increased resistance (MIC) above the evolutionary level of drug. Prevalent changes were altered levels of drug tolerance (slow growth of a subpopulation of cells at drug concentrations above the MIC) and increased diversity of genome size. The prevalence and predominant direction of these changes differed in a strain-specific manner, but neither correlated directly with parental fitness or improvement in fitness. Rather, low parental strain fitness was correlated with high levels of heterogeneity in fitness, tolerance, and genome size among evolved replicates. Thus, parental strain background is an important determinant in mean improvement to the evolutionary environment as well as the diversity of evolved phenotypes, and the range of possible responses of a pathogen to an antimicrobial drug cannot be captured by in-depth study of a single strain background. IMPORTANCE Antimicrobial resistance is an evolutionary phenomenon with clinical implications. We tested how replicates from diverse strains of Candida albicans, a prevalent human fungal pathogen, evolve in the commonly prescribed antifungal drug fluconazole. Replicates on average increased in fitness in the level of drug they were evolved to, with the least fit parental strains improving the most. Very few replicates increased resistance above the drug level they were evolved in. Notably, many replicates increased in genome size and changed in drug tolerance (a drug response where a subpopulation of cells grow slowly in high levels of drug), and variability among replicates in fitness, tolerance, and genome size was higher in strains that initially were more sensitive to the drug. Genetic background influenced the average degree of adaptation and the evolved variability of many phenotypes, highlighting that different strains from the same species may respond and adapt very differently during adaptation.
Collapse
|
27
|
Osińska A, Korzeniewska E, Harnisz M, Felis E, Bajkacz S, Jachimowicz P, Niestępski S, Konopka I. Small-scale wastewater treatment plants as a source of the dissemination of antibiotic resistance genes in the aquatic environment. JOURNAL OF HAZARDOUS MATERIALS 2020; 381:121221. [PMID: 31561123 DOI: 10.1016/j.jhazmat.2019.121221] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 05/08/2023]
Abstract
Wastewater treatment plants (WWTPs) are significant source of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which can spread further in the environment by reaching rivers together with effluents discharged from WWTPs. In this study untreated and treated wastewater (UWW, TWW), upstream and downstream river water (URW, DRW) were collected from 4 WWTPs, in the winter and autumn seasons. The occurrence of ARB resistant to beta-lactams and tetracyclines as well as the presence of antibiotics from these classes were analysed in water and wastewater samples. Additionally, the amounts of 12 ARGs, 2 genes of mobile genetic elements (MGEs), gene uidA identifying E. coli and 16S rRNA were also determined. Resistance to beta-lactams prevailed among ARB in water and wastewater samples (constituting 82-88% of total counts of bacteria). The dominant genes in water and wastewater samples were blaTEM, tetA, sul1. The gene blaOXA demonstrated high variability of its concentration in samples collected in both seasons. Despite the high per cent reduction of ARB and ARGs concentration observed during the wastewater treatment processes, their large quantities are still transmitted into the environment. The research focuses on WWTPs' role in the dissemination of ARGs and MGEs in the aquatic environment.
Collapse
Affiliation(s)
- Adriana Osińska
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-720, Olsztyn, Poland
| | - Ewa Korzeniewska
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-720, Olsztyn, Poland.
| | - Monika Harnisz
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-720, Olsztyn, Poland
| | - Ewa Felis
- Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka 2 Str., 44-100, Gliwice, Poland; The Biotechnology Centre, Silesian University of Technology, Krzywoustego 8 Str., 44-100, Gliwice, Poland
| | - Sylwia Bajkacz
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 6 Str., 44-100, Gliwice, Poland; The Biotechnology Centre, Silesian University of Technology, Krzywoustego 8 Str., 44-100, Gliwice, Poland
| | - Piotr Jachimowicz
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-720, Olsztyn, Poland
| | - Sebastian Niestępski
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-720, Olsztyn, Poland
| | - Iwona Konopka
- Chair of Plant Raw Materials Chemistry and Processing, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Pl. Cieszyński 1, 10-957, Olsztyn, Poland
| |
Collapse
|
28
|
Carney RL, Labbate M, Siboni N, Tagg KA, Mitrovic SM, Seymour JR. Urban beaches are environmental hotspots for antibiotic resistance following rainfall. WATER RESEARCH 2019; 167:115081. [PMID: 31574348 DOI: 10.1016/j.watres.2019.115081] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
To reveal the occurrence and mechanisms for dispersal of antibiotic resistance (AbR) among the microbial assemblages inhabiting impacted coastal environments, we performed a weekly, two-year duration time-series study at two urban beaches between 2014 and 2016. We combined quantitative PCR and multiplex PCR/reverse line blot techniques to track patterns in the occurrence of 31 AbR genes, including genes that confer resistance to antibiotics that are critically important antimicrobials for human medicine. Patterns in the abundance of these genes were linked to specific microbial groups and environmental parameters by coupling qPCR and 16S rRNA amplicon sequencing data with network analysis. Up to 100-fold increases in the abundance of several AbR genes, including genes conferring resistance to quinolones, trimethoprim, sulfonamides, tetracycline, vancomycin and carbapenems, occurred following storm-water and modelled wet-weather sewer overflow events. The abundance of AbR genes strongly and significantly correlated with several potentially pathogenic bacterial OTUs regularly associated with wastewater infrastructure, such as Arcobacter, Acinetobacter, Aeromonas and Cloacibacterium. These high-resolution observations provide clear links between storm-water discharge and sewer overflow events and the occurrence of AbR in the coastal microbial assemblages inhabiting urban beaches, highlighting a direct mechanism for potentially significant AbR exposure risks to humans.
Collapse
Affiliation(s)
- Richard L Carney
- Climate Change Cluster, University of Technology Sydney, Australia
| | - Maurizio Labbate
- School of Life Sciences, University of Technology Sydney, Australia
| | - Nachshon Siboni
- Climate Change Cluster, University of Technology Sydney, Australia
| | - Kaitlin A Tagg
- Westmead Institute for Medical Research, University of Sydney, NSW, Australia; IHRC, Inc., Atlanta, GA, USA
| | - Simon M Mitrovic
- School of Life Sciences, University of Technology Sydney, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Australia.
| |
Collapse
|
29
|
Ma J, Gu J, Wang X, Peng H, Wang Q, Zhang R, Hu T, Bao J. Effects of nano-zerovalent iron on antibiotic resistance genes during the anaerobic digestion of cattle manure. BIORESOURCE TECHNOLOGY 2019; 289:121688. [PMID: 31247529 DOI: 10.1016/j.biortech.2019.121688] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the effects of adding nano-zerovalent iron (nZVI) at three concentrations (0, 80, and 160 mg/L) on the methane yield and the fate of antibiotic resistance genes (ARGs) during the anaerobic digestion (AD) of cattle manure. The addition of nZVI effectively enhanced the methane yield, where it significantly increased by 6.56% with 80 mg/L nZVI and by 6.43% with 160 mg/L nZVI. The reductions in the abundances of ARGs and Tn916/1545 were accelerated by adding 160 mg/L nZVI after AD. Microbial community analysis showed that nZVI mainly increased the abundances of bacteria with roles in hydrolysis and acidogenesis, whereas it reduced the abundance of Acinetobacter. Redundancy analysis indicated that the changes in mobile genetic elements made the greatest contribution to the fate of ARGs. The results suggest that 160 mg/L nZVI is a suitable additive for reducing the risks due to ARGs in AD.
Collapse
Affiliation(s)
- Jiyue Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huiling Peng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qianzhi Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ranran Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianfeng Bao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
30
|
Hiller CX, Hübner U, Fajnorova S, Schwartz T, Drewes JE. Antibiotic microbial resistance (AMR) removal efficiencies by conventional and advanced wastewater treatment processes: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:596-608. [PMID: 31195321 DOI: 10.1016/j.scitotenv.2019.05.315] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 05/27/2023]
Abstract
The World Health Organization (WHO) has identified the spread of antibiotic resistance as one of the major risks to global public health. An important transfer route into the aquatic environment is the urban water cycle. In this paper the occurrence and transport of antibiotic microbial resistance in the urban water cycle are critically reviewed. The presence of antibiotic resistance in low impacted surface water is being discussed to determine background antibiotic resistance levels, which might serve as a reference for treatment targets in the absence of health-based threshold levels. Different biological, physical and disinfection/oxidation processes employed in wastewater treatment and their efficacy regarding their removal of antibiotic resistant bacteria and antibiotic resistance geness (ARGs) were evaluated. A more efficient removal of antibiotic microbial resistance abundances from wastewater effluents can be achieved by advanced treatment processes, including membrane filtration, ozonation, UV-irradiation or chlorination, to levels typically observed in urban surface water or low impacted surface water.
Collapse
Affiliation(s)
- C X Hiller
- Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany
| | - U Hübner
- Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany
| | - S Fajnorova
- Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany; Department of Water Technology and Environmental Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Praha, Czech Republic
| | - T Schwartz
- Karlsruhe Institute of Technology (KIT) - Campus North, Institute of Functional Interfaces (IFG), Microbiology at Natural and Technical Interfaces Department, 76021 Karlsruhe, Germany
| | - J E Drewes
- Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany.
| |
Collapse
|
31
|
Zhu J, Guo X, Shi J, Gao H. Dilution characteristics of riverine input contaminants in the Seto Inland Sea. MARINE POLLUTION BULLETIN 2019; 141:91-103. [PMID: 30955786 DOI: 10.1016/j.marpolbul.2019.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
Riverine input is an important source of contaminants in the marine environments. Based on a hydrodynamic model, the dilution characteristics of riverine contaminants in the Seto Inland Sea and their controlling factors were studied. Results showed that contaminant concentration was high in summer and low in winter. Contaminant concentration decreased with the reduction of its half-life period, and the relationship between them followed power functions. Sensitivity experiments suggested that the horizontal current and vertical stratification associated with air-sea heat flux controlled the seasonal cycle of contaminant concentration in the water column; however, surface wind velocity was the dominant factor affecting the surface contaminant concentration. In addition, contaminant concentration in a sub-region was likely controlled by the variations in river discharges close to the sub-region. These results are helpful for predicting contaminant concentrations in the sea and are expected to contribute to assessing the potential ecological risks to aquatic organisms.
Collapse
Affiliation(s)
- Junying Zhu
- Key laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, 238 Songling Road, Qingdao 266100, China; Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-Cho, Matsuyama 790-8577, Japan; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xinyu Guo
- Key laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, 238 Songling Road, Qingdao 266100, China; Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-Cho, Matsuyama 790-8577, Japan.
| | - Jie Shi
- Key laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, 238 Songling Road, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Huiwang Gao
- Key laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, 238 Songling Road, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
32
|
Jiang R, Wu D, Lu G, Yan Z, Liu J, Zhou R, Nkoom M. Fabrication of Fe3O4 quantum dots modified BiOCl/BiVO4 p-n heterojunction to enhance photocatalytic activity for removing broad-spectrum antibiotics under visible light. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.01.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Affiliation(s)
- Treasure M McGuire
- Mater Health Services, Brisbane.,School of Pharmacy, University of Queensland, Brisbane.,Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland
| |
Collapse
|
34
|
Evolution of high-level resistance during low-level antibiotic exposure. Nat Commun 2018; 9:1599. [PMID: 29686259 PMCID: PMC5913237 DOI: 10.1038/s41467-018-04059-1] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/29/2018] [Indexed: 12/13/2022] Open
Abstract
It has become increasingly clear that low levels of antibiotics present in many environments can select for resistant bacteria, yet the evolutionary pathways for resistance development during exposure to low amounts of antibiotics remain poorly defined. Here we show that Salmonella enterica exposed to sub-MIC levels of streptomycin evolved high-level resistance via novel mechanisms that are different from those observed during lethal selections. During lethal selection only rpsL mutations are found, whereas at sub-MIC selection resistance is generated by several small-effect resistance mutations that combined confer high-level resistance via three different mechanisms: (i) alteration of the ribosomal RNA target (gidB mutations), (ii) reduction in aminoglycoside uptake (cyoB, nuoG, and trkH mutations), and (iii) induction of the aminoglycoside-modifying enzyme AadA (znuA mutations). These results demonstrate how the strength of the selective pressure influences evolutionary trajectories and that even weak selective pressures can cause evolution of high-level resistance.
Collapse
|
35
|
Wistrand-Yuen E, Knopp M, Hjort K, Koskiniemi S, Berg OG, Andersson DI. Evolution of high-level resistance during low-level antibiotic exposure. Nat Commun 2018; 9:1599. [PMID: 29686259 PMCID: PMC5913237 DOI: 10.1038/s41467-018-04059-1|] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023] Open
Abstract
It has become increasingly clear that low levels of antibiotics present in many environments can select for resistant bacteria, yet the evolutionary pathways for resistance development during exposure to low amounts of antibiotics remain poorly defined. Here we show that Salmonella enterica exposed to sub-MIC levels of streptomycin evolved high-level resistance via novel mechanisms that are different from those observed during lethal selections. During lethal selection only rpsL mutations are found, whereas at sub-MIC selection resistance is generated by several small-effect resistance mutations that combined confer high-level resistance via three different mechanisms: (i) alteration of the ribosomal RNA target (gidB mutations), (ii) reduction in aminoglycoside uptake (cyoB, nuoG, and trkH mutations), and (iii) induction of the aminoglycoside-modifying enzyme AadA (znuA mutations). These results demonstrate how the strength of the selective pressure influences evolutionary trajectories and that even weak selective pressures can cause evolution of high-level resistance.
Collapse
Affiliation(s)
- Erik Wistrand-Yuen
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75237, Uppsala, Sweden
| | - Michael Knopp
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75237, Uppsala, Sweden
| | - Karin Hjort
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75237, Uppsala, Sweden
| | - Sanna Koskiniemi
- Department of Cell and Molecular Biology, Uppsala University, 75237, Uppsala, Sweden
| | - Otto G Berg
- Department of Cell and Molecular Biology, Uppsala University, 75237, Uppsala, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75237, Uppsala, Sweden.
| |
Collapse
|
36
|
Zhu YG, Gillings M, Simonet P, Stekel D, Banwart S, Penuelas J. Human dissemination of genes and microorganisms in Earth's Critical Zone. GLOBAL CHANGE BIOLOGY 2018; 24:1488-1499. [PMID: 29266645 DOI: 10.1111/gcb.14003] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
Earth's Critical Zone sustains terrestrial life and consists of the thin planetary surface layer between unaltered rock and the atmospheric boundary. Within this zone, flows of energy and materials are mediated by physical processes and by the actions of diverse organisms. Human activities significantly influence these physical and biological processes, affecting the atmosphere, shallow lithosphere, hydrosphere, and biosphere. The role of organisms includes an additional class of biogeochemical cycling, this being the flow and transformation of genetic information. This is particularly the case for the microorganisms that govern carbon and nitrogen cycling. These biological processes are mediated by the expression of functional genes and their translation into enzymes that catalyze geochemical reactions. Understanding human effects on microbial activity, fitness and distribution is an important component of Critical Zone science, but is highly challenging to investigate across the enormous physical scales of impact ranging from individual organisms to the planet. One arena where this might be tractable is by studying the dynamics and dissemination of genes for antibiotic resistance and the organisms that carry such genes. Here we explore the transport and transformation of microbial genes and cells through Earth's Critical Zone. We do so by examining the origins and rise of antibiotic resistance genes, their subsequent dissemination, and the ongoing colonization of diverse ecosystems by resistant organisms.
Collapse
Affiliation(s)
- Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Michael Gillings
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Pascal Simonet
- Environmental Microbial Genomics Group, Université de Lyon, Lyon, France
| | - Dov Stekel
- School of Biosciences, University of Nottingham, Nottingham, UK
| | - Steven Banwart
- Department of Geography, The University of Sheffield, Sheffield, UK
| | - Josep Penuelas
- CSIC, Global Ecology Unit, CREAF- CSIC-UAB, Barcelona, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Barcelona, Catalonia, Spain
| |
Collapse
|
37
|
Jutkina J, Marathe NP, Flach CF, Larsson DGJ. Antibiotics and common antibacterial biocides stimulate horizontal transfer of resistance at low concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:172-178. [PMID: 29112840 DOI: 10.1016/j.scitotenv.2017.10.312] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/28/2017] [Accepted: 10/30/2017] [Indexed: 05/08/2023]
Abstract
There is a rising concern that antibiotics, and possibly other antimicrobial agents, can promote horizontal transfer of antibiotic resistance genes. For most types of antimicrobials their ability to induce conjugation below minimal inhibitory concentrations (MICs) is still unknown. Our aim was therefore to explore the potential of commonly used antibiotics and antibacterial biocides to induce horizontal transfer of antibiotic resistance. Effects of a wide range of sub-MIC concentrations of the antibiotics cefotaxime, ciprofloxacin, gentamicin, erythromycin, sulfamethoxazole, trimethoprim and the antibacterial biocides chlorhexidine digluconate, hexadecyltrimethylammoniumchloride and triclosan were investigated using a previously optimized culture-based assay with a complex bacterial community as a donor of mobile resistance elements and a traceable Escherichia coli strain as a recipient. Chlorhexidine (24.4μg/L), triclosan (0.1mg/L), gentamicin (0.1mg/L) and sulfamethoxazole (1mg/L) significantly increased the frequencies of transfer of antibiotic resistance whereas similar effects were not observed for any other tested antimicrobial compounds. This corresponds to 200 times below the MIC of the recipient for chlorhexidine, 1/20 of the MIC for triclosan, 1/16 of the MIC for sulfamethoxazole and right below the MIC for gentamicin. To our best knowledge, this is the first study showing that triclosan and chlorhexidine could stimulate the horizontal transfer of antibiotic resistance. Together with recent research showing that tetracycline is a potent inducer of conjugation, our results indicate that several antimicrobials including both common antibiotics and antibacterial biocides at low concentrations could contribute to antibiotic resistance development by facilitating the spread of antibiotic resistance between bacteria.
Collapse
Affiliation(s)
- J Jutkina
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Sweden
| | - N P Marathe
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Sweden
| | - C-F Flach
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Sweden
| | - D G J Larsson
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Sweden.
| |
Collapse
|
38
|
Michael CA, Franks AE, Labbate M. The antimicrobial resistance crisis: management through gene monitoring. Open Biol 2017; 6:rsob.160236. [PMID: 27831476 PMCID: PMC5133444 DOI: 10.1098/rsob.160236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/14/2016] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial resistance (AMR) is an acknowledged crisis for humanity. Its genetic origins and dire potential outcomes are increasingly well understood. However, diagnostic techniques for monitoring the crisis are currently largely limited to enumerating the increasing incidence of resistant pathogens. Being the end-stage of the evolutionary process that produces antimicrobial resistant pathogens, these measurements, while diagnostic, are not prognostic, and so are not optimal in managing this crisis. A better test is required. Here, using insights from an understanding of evolutionary processes ruling the changing abundance of genes under selective pressure, we suggest a predictive framework for the AMR crisis. We then discuss the likely progression of resistance for both existing and prospective antimicrobial therapies. Finally, we suggest that by the environmental monitoring of resistance gene frequency, resistance may be detected and tracked presumptively, and how this tool may be used to guide decision-making in the local and global use of antimicrobials.
Collapse
Affiliation(s)
- Carolyn A Michael
- School of Life Sciences, University of Technology Sydney, Sydney 2007, Australia
| | - Ashley E Franks
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Maurizio Labbate
- School of Life Sciences, University of Technology Sydney, Sydney 2007, Australia.,ithree institute, University of Technology Sydney, Sydney 2007, Australia
| |
Collapse
|
39
|
Subirats J, Triadó-Margarit X, Mandaric L, Acuña V, Balcázar JL, Sabater S, Borrego CM. Wastewater pollution differently affects the antibiotic resistance gene pool and biofilm bacterial communities across streambed compartments. Mol Ecol 2017; 26:5567-5581. [DOI: 10.1111/mec.14288] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/19/2017] [Accepted: 06/28/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Jèssica Subirats
- Catalan Institute for Water Research (ICRA); Scientific and Technological Park of the University of Girona; Girona Spain
| | - Xavier Triadó-Margarit
- Integrative Freshwater Ecology Group; Centre d'Estudis Avançats de Blanes; CEAB-CSIC; Blanes Girona Spain
- Group of Molecular Microbial Ecology; Institute of Aquatic Ecology; University of Girona; Girona Spain
| | - Ladislav Mandaric
- Catalan Institute for Water Research (ICRA); Scientific and Technological Park of the University of Girona; Girona Spain
| | - Vicenç Acuña
- Catalan Institute for Water Research (ICRA); Scientific and Technological Park of the University of Girona; Girona Spain
| | - José Luis Balcázar
- Catalan Institute for Water Research (ICRA); Scientific and Technological Park of the University of Girona; Girona Spain
| | - Sergi Sabater
- Catalan Institute for Water Research (ICRA); Scientific and Technological Park of the University of Girona; Girona Spain
- GRECO; Institute of Aquatic Ecology; University of Girona; Girona Spain
| | - Carles M. Borrego
- Catalan Institute for Water Research (ICRA); Scientific and Technological Park of the University of Girona; Girona Spain
- Group of Molecular Microbial Ecology; Institute of Aquatic Ecology; University of Girona; Girona Spain
| |
Collapse
|
40
|
Use of Single-Frequency Impedance Spectroscopy to Characterize the Growth Dynamics of Biofilm Formation in Pseudomonas aeruginosa. Sci Rep 2017; 7:5223. [PMID: 28701712 PMCID: PMC5507860 DOI: 10.1038/s41598-017-05273-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 05/26/2017] [Indexed: 02/08/2023] Open
Abstract
Impedance spectroscopy has been applied in prokaryotic and eukaryotic cytometry as a label-free method for the investigation of adherent cells. In this paper, its use for characterizing the growth dynamics of P. aeruginosa biofilms is described and compared to crystal violet staining and confocal microscopy. The method allows monitoring the growth of biofilm-forming P. aeruginosa in a continuous and label-free manner over a period of 72 h in a 96 well plate format. Impedance curves obtained for P. aeruginosa PA14 wild type and mutant strains with a transposon insertion in pqsA and pelA genes exhibited distinct phases. We propose that the slope of the declining curve following a maximum at ca. 35–40 h is a measure of biofilm formation. Transplant experiments with P. aeruginosa biofilms and paraffin suggest that the impedance also reflects pellicle formation at the liquid-air interface, a barely considered contributor to impedance. Finally, the impairment of biofilm formation upon treatment of cultures with L-arginine and with ciprofloxacin, tobramycin and meropenem was studied by single frequency impedance spectroscopy. We suggest that these findings qualify impedance spectroscopy as an additional technique to characterize biofilm formation and its modulation by small molecule drugs.
Collapse
|
41
|
Khan S, Beattie TK, Knapp CW. The use of minimum selectable concentrations (MSCs) for determining the selection of antimicrobial resistant bacteria. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:283-292. [PMID: 28155034 PMCID: PMC5318476 DOI: 10.1007/s10646-017-1762-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/11/2017] [Indexed: 05/25/2023]
Abstract
The use of antimicrobial compounds is indispensable in many industries, especially drinking water production, to eradicate microorganisms. However, bacterial growth is not unusual in the presence of disinfectant concentrations that would be typically lethal, as bacterial populations can develop resistance. The common metric of population resistance has been based on the Minimum Inhibitory Concentration (MIC), which is based on bacteria lethality. However, sub-lethal concentrations may also select for resistant bacteria due to the differences in bacterial growth rates. This study determined the Minimal Selective Concentrations (MSCs) of bacterial populations exposed to free chlorine and monochloramine, representing a metric that possibly better reflects the selective pressures occurring at lower disinfectant levels than MIC. Pairs of phylogenetically similar bacteria were challenged to a range of concentrations of disinfectants. The MSCs of free chlorine and monochloramine were found to range between 0.021 and 0.39 mg L-1, which were concentrations 1/250 to 1/5 than the MICs of susceptible bacteria (MIC susc ). This study indicates that sub-lethal concentrations of disinfectants could result in the selection of resistant bacterial populations, and MSCs would be a more sensitive indicator of selective pressure, especially in environmental systems.
Collapse
Affiliation(s)
- Sadia Khan
- Department of Civil and Environmental Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow, Scotland, G1 1XJ, UK.
- Department of Environmental Engineering, NED University of Engineering and Technology, University Road, Karachi, 75270, Pakistan.
| | - Tara K Beattie
- Department of Civil and Environmental Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow, Scotland, G1 1XJ, UK
| | - Charles W Knapp
- Department of Civil and Environmental Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow, Scotland, G1 1XJ, UK
| |
Collapse
|
42
|
Morris L, Colombo V, Hassell K, Kellar C, Leahy P, Long SM, Myers JH, Pettigrove V. Municipal wastewater effluent licensing: A global perspective and recommendations for best practice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 580:1327-1339. [PMID: 28017416 DOI: 10.1016/j.scitotenv.2016.12.096] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 06/06/2023]
Abstract
Advances in wastewater treatment have greatly improved the quality of municipal wastewater effluents in many parts of the world, but despite this, treated wastewaters can still pose a risk to the environment. Licensing plays a crucial role in the regulation of municipal wastewater effluents by setting standards or limits designed to protect the economic, environmental and societal values of waterbodies. Traditionally these standards have focused on physical and chemical water quality parameters within the discharge itself, however these approaches do not adequately account for emerging contaminants, potential effects of chemical mixtures, or variations in the sensitivity and resilience of receiving environments. In this review we focus on a number of industrialised countries and their approach to licensing. We consider how we can ensure licensing is effective, particularly when considering the rapid changes in our understanding of the impacts of discharges, the technical advances in our ability to detect chemicals at low concentrations and the progress in wastewater treatment technology. In order to meet the challenges required to protect the values of our waterways, licensing of effluents will need to ensure that there is no disconnect between the core values to be protected and the monitoring system designed to scrutinise performance of the WWTP. In many cases this may mean an expansion in the monitoring approaches used for both the effluent itself and the receiving waterbody.
Collapse
Affiliation(s)
- Liz Morris
- Centre for Aquatic Pollution Identification and Management CAPIM, Building 147 (BioSciences 4), Faculty of Science, University of Melbourne, Victoria 3010, Australia.
| | - Valentina Colombo
- Centre for Aquatic Pollution Identification and Management CAPIM, Building 147 (BioSciences 4), Faculty of Science, University of Melbourne, Victoria 3010, Australia
| | - Kathryn Hassell
- Centre for Aquatic Pollution Identification and Management CAPIM, Building 147 (BioSciences 4), Faculty of Science, University of Melbourne, Victoria 3010, Australia
| | - Claudette Kellar
- Centre for Aquatic Pollution Identification and Management CAPIM, Building 147 (BioSciences 4), Faculty of Science, University of Melbourne, Victoria 3010, Australia
| | - Paul Leahy
- Environment Protection Authority EPA Victoria, Centre for Applied Sciences, Ernest Jones Drive Macleod, Victoria 3085, Australia
| | - Sara M Long
- Centre for Aquatic Pollution Identification and Management CAPIM, Building 147 (BioSciences 4), Faculty of Science, University of Melbourne, Victoria 3010, Australia
| | - Jackie H Myers
- Centre for Aquatic Pollution Identification and Management CAPIM, Building 147 (BioSciences 4), Faculty of Science, University of Melbourne, Victoria 3010, Australia
| | - Vincent Pettigrove
- Centre for Aquatic Pollution Identification and Management CAPIM, Building 147 (BioSciences 4), Faculty of Science, University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
43
|
Westhoff S, van Leeuwe TM, Qachach O, Zhang Z, van Wezel GP, Rozen DE. The evolution of no-cost resistance at sub-MIC concentrations of streptomycin in Streptomyces coelicolor. ISME JOURNAL 2017; 11:1168-1178. [PMID: 28094796 DOI: 10.1038/ismej.2016.194] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/07/2016] [Accepted: 11/16/2016] [Indexed: 11/09/2022]
Abstract
At the high concentrations used in medicine, antibiotics exert strong selection on bacterial populations for the evolution of resistance. However, these lethal concentrations may not be representative of the concentrations bacteria face in soil, a recognition that has led to questions of the role of antibiotics in soil environments as well as the dynamics of resistance evolution during sublethal challenge. Here we examine the evolution of resistance to sub-minimal inhibitory concentrations (sub-MIC) of streptomycin in the filamentous soil bacterium Streptomyces coelicolor. First, we show that spontaneous resistance to streptomycin causes an average fitness deficit of ~21% in the absence of drugs; however, these costs are eliminated at concentrations as low as 1/10 the MIC of susceptible strains. Using experimental evolution, we next show that resistance to >MIC levels of streptomycin readily evolves when bacteria are exposed to sub-MIC doses for 500 generations. Furthermore, the resistant clones that evolved at sub-MIC streptomycin concentrations carry no fitness cost. Whole-genome analyses reveal that evolved resistant clones fixed some of the same mutations as those isolated at high drug concentrations; however, all evolved clones carry additional mutations and some fixed mutations that either compensate for costly resistance or have no associated fitness costs. Our results broaden the conditions under which resistance can evolve in nature and suggest that rather than low-concentration antibiotics acting as signals, resistance evolves in response to antibiotics used as weapons.
Collapse
Affiliation(s)
- Sanne Westhoff
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | | | - Omar Qachach
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Zheren Zhang
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Gilles Philippus van Wezel
- Institute of Biology, Leiden University, Leiden, The Netherlands.,Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | | |
Collapse
|
44
|
Zanotto C, Bissa M, Illiano E, Mezzanotte V, Marazzi F, Turolla A, Antonelli M, De Giuli Morghen C, Radaelli A. Identification of antibiotic-resistant Escherichia coli isolated from a municipal wastewater treatment plant. CHEMOSPHERE 2016; 164:627-633. [PMID: 27635645 DOI: 10.1016/j.chemosphere.2016.08.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 06/06/2023]
Abstract
The emergence and diffusion of antibiotic-resistant bacteria has been a major public health problem for many years now. In this study, antibiotic-resistance of coliforms and Escherichia coli were investigated after their isolation from samples collected in a municipal wastewater treatment plant in the Milan area (Italy) along different points of the treatment sequence: inflow to biological treatment; outflow from biological treatment following rapid sand filtration; and outflow from peracetic acid disinfection. The presence of E. coli that showed resistance to ampicillin (AMP) and chloramphenicol (CAF), used as representative antibiotics for the efficacy against Gram-positive and Gram-negative bacteria, was evaluated. After determining E. coli survival using increasing AMP and CAF concentrations, specific single-resistant (AMPR or CAFR) and double-resistant (AMPR/CAFR) strains were identified among E. coli colonies, through amplification of the β-lactamase Tem-1 (bla) and acetyl-transferase catA1 (cat) gene sequences. While a limited number of CAFR bacteria was observed, most AMPR colonies showed the specific resistance genes to both antibiotics, which was mainly due to the presence of the bla gene sequence. The peracetic acid, used as disinfection agent, showed to be very effective in reducing bacteria at the negligible levels of less than 10 CFU/100 mL, compatible with those admitted for the irrigation use of treated waters.
Collapse
Affiliation(s)
- Carlo Zanotto
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Via Vanvitelli, 32, 20129, Milan, Italy.
| | - Massimiliano Bissa
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti, 9, 20133, Milan, Italy.
| | - Elena Illiano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti, 9, 20133, Milan, Italy.
| | - Valeria Mezzanotte
- Department of Earth and Environmental Sciences (DISAT), University of Milan Bicocca, Piazza della Scienza 1, 20126, Milan, Italy.
| | - Francesca Marazzi
- Department of Earth and Environmental Sciences (DISAT), University of Milan Bicocca, Piazza della Scienza 1, 20126, Milan, Italy.
| | - Andrea Turolla
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), Environmental Section, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| | - Manuela Antonelli
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), Environmental Section, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| | | | - Antonia Radaelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti, 9, 20133, Milan, Italy; Cellular and Molecular Pharmacology Section, National Research Council (CNR) Institute of Neurosciences, University of Milan, Via Vanvitelli, 32, 20129, Milan, Italy.
| |
Collapse
|
45
|
Bengtsson-Palme J, Hammarén R, Pal C, Östman M, Björlenius B, Flach CF, Fick J, Kristiansson E, Tysklind M, Larsson DGJ. Elucidating selection processes for antibiotic resistance in sewage treatment plants using metagenomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 572:697-712. [PMID: 27542633 DOI: 10.1016/j.scitotenv.2016.06.228] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 05/20/2023]
Abstract
Sewage treatment plants (STPs) have repeatedly been suggested as "hotspots" for the emergence and dissemination of antibiotic-resistant bacteria. A critical question still unanswered is if selection pressures within STPs, caused by residual antibiotics or other co-selective agents, are sufficient to specifically promote resistance. To address this, we employed shotgun metagenomic sequencing of samples from different steps of the treatment process in three Swedish STPs. In parallel, concentrations of selected antibiotics, biocides and metals were analyzed. We found that concentrations of tetracycline and ciprofloxacin in the influent were above predicted concentrations for resistance selection, however, there was no consistent enrichment of resistance genes to any particular class of antibiotics in the STPs, neither for biocide and metal resistance genes. The most substantial change of the bacterial communities compared to human feces occurred already in the sewage pipes, manifested by a strong shift from obligate to facultative anaerobes. Through the treatment process, resistance genes against antibiotics, biocides and metals were not reduced to the same extent as fecal bacteria. The OXA-48 gene was consistently enriched in surplus and digested sludge. We find this worrying as OXA-48, still rare in Swedish clinical isolates, provides resistance to carbapenems, one of our most critically important classes of antibiotics. Taken together, metagenomics analyses did not provide clear support for specific antibiotic resistance selection. However, stronger selective forces affecting gross taxonomic composition, and with that resistance gene abundances, limit interpretability. Comprehensive analyses of resistant/non-resistant strains within relevant species are therefore warranted.
Collapse
Affiliation(s)
- Johan Bengtsson-Palme
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-413 46 Gothenburg, Sweden; Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| | - Rickard Hammarén
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-413 46 Gothenburg, Sweden
| | - Chandan Pal
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-413 46 Gothenburg, Sweden; Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| | - Marcus Östman
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Berndt Björlenius
- Division of Industrial Biotechnology, School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| | - Carl-Fredrik Flach
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-413 46 Gothenburg, Sweden; Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| | - Jerker Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden; Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| | - Mats Tysklind
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - D G Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-413 46 Gothenburg, Sweden; Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
46
|
Czekalski N, Imminger S, Salhi E, Veljkovic M, Kleffel K, Drissner D, Hammes F, Bürgmann H, von Gunten U. Inactivation of Antibiotic Resistant Bacteria and Resistance Genes by Ozone: From Laboratory Experiments to Full-Scale Wastewater Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11862-11871. [PMID: 27775322 DOI: 10.1021/acs.est.6b02640] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ozone, a strong oxidant and disinfectant, seems ideal to cope with future challenges of water treatment, such as micropollutants, multiresistant bacteria (MRB) and even intracellular antibiotic resistance genes (ARG), but information on the latter is scarce. In ozonation experiments we simultaneously determined kinetics and dose-dependent inactivation of Escherichia coli and its plasmid-encoded sulfonamide resistance gene sul1 in different water matrixes. Effects in E. coli were compared to an autochthonous wastewater community. Furthermore, resistance elimination by ozonation and post-treatment were studied in full-scale at a wastewater treatment plant (WWTP). Bacterial inactivation (cultivability, membrane damage) and degradation of sul1 were investigated using plate counts, flow cytometry and quantitative real-time PCR. In experiments with E. coli and the more ozone tolerant wastewater community disruption of intracellular genes was observed at specific ozone doses feasible for full-scale application, but flocs seemed to interfere with this effect. At the WWTP, regrowth during postozonation treatment partly compensated inactivation of MRB, and intracellular sul1 seemed unaffected by ozonation. Our findings indicate that ozone doses relevant for micropollutant abatement from wastewater do not eliminate intracellular ARG.
Collapse
Affiliation(s)
- Nadine Czekalski
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , Ueberlandstrasse 133, CH-8600 Duebendorf or Seestrasse 79, CH-6047 Kastanienbaum, Switzerland
| | - Stefanie Imminger
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , Ueberlandstrasse 133, CH-8600 Duebendorf or Seestrasse 79, CH-6047 Kastanienbaum, Switzerland
| | - Elisabeth Salhi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , Ueberlandstrasse 133, CH-8600 Duebendorf or Seestrasse 79, CH-6047 Kastanienbaum, Switzerland
| | - Marjan Veljkovic
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , Ueberlandstrasse 133, CH-8600 Duebendorf or Seestrasse 79, CH-6047 Kastanienbaum, Switzerland
| | - Karolin Kleffel
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , Ueberlandstrasse 133, CH-8600 Duebendorf or Seestrasse 79, CH-6047 Kastanienbaum, Switzerland
| | - David Drissner
- Agroscope, Institute for Food Sciences , CH-8820 Wädenswil, Switzerland
| | - Frederik Hammes
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , Ueberlandstrasse 133, CH-8600 Duebendorf or Seestrasse 79, CH-6047 Kastanienbaum, Switzerland
| | - Helmut Bürgmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , Ueberlandstrasse 133, CH-8600 Duebendorf or Seestrasse 79, CH-6047 Kastanienbaum, Switzerland
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , Ueberlandstrasse 133, CH-8600 Duebendorf or Seestrasse 79, CH-6047 Kastanienbaum, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich , CH-8092 Zurich, Switzerland
- School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015, Lausanne, Switzerland
| |
Collapse
|
47
|
Koczura R, Mokracka J, Taraszewska A, Łopacinska N. Abundance of Class 1 Integron-Integrase and Sulfonamide Resistance Genes in River Water and Sediment Is Affected by Anthropogenic Pressure and Environmental Factors. MICROBIAL ECOLOGY 2016; 72:909-916. [PMID: 27599709 PMCID: PMC5080314 DOI: 10.1007/s00248-016-0843-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/17/2016] [Indexed: 05/22/2023]
Abstract
In this study, we determined the presence of class 1 integron-integrase gene in culturable heterotrophic bacteria isolated from river water and sediment sampled upstream and downstream of a wastewater treatment plant effluent discharge. Moreover, we quantified intI1 and sulfonamide resistance genes (sul1 and sul2) in the water and sediment using qPCR. There was no correlation between the results from water and sediment samples, which suggests integron-containing bacteria are differentially retained in these two environmental compartments. The discharge of treated wastewater significantly increased the frequency of intI1 among culturable bacteria and the gene copy number in river water, and increased the number of sul1 genes in the sediment. We also observed seasonal differences in the frequency of the class 1 integron-integrase gene among culturable heterotrophs as well as intI1 copy number in water, but not in sediment. The results suggest that the abundance of class 1 integrons in aquatic habitat depends on anthropogenic pressure and environmental factors.
Collapse
Affiliation(s)
- Ryszard Koczura
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Umultowska 89, 61-614, Poznań, Poland.
| | - Joanna Mokracka
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Umultowska 89, 61-614, Poznań, Poland
| | - Agata Taraszewska
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Umultowska 89, 61-614, Poznań, Poland
| | - Natalia Łopacinska
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Umultowska 89, 61-614, Poznań, Poland
| |
Collapse
|
48
|
Gillings MR, Paulsen IT, Tetu SG. Genomics and the evolution of antibiotic resistance. Ann N Y Acad Sci 2016; 1388:92-107. [DOI: 10.1111/nyas.13268] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/06/2016] [Indexed: 12/21/2022]
Affiliation(s)
| | - Ian T. Paulsen
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney Australia
| | - Sasha G. Tetu
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney Australia
| |
Collapse
|
49
|
Gillings MR. Lateral gene transfer, bacterial genome evolution, and the Anthropocene. Ann N Y Acad Sci 2016; 1389:20-36. [DOI: 10.1111/nyas.13213] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/20/2016] [Accepted: 07/28/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Michael R. Gillings
- Genes to Geoscience Research Centre, Department of Biological Sciences Macquarie University Sydney New South Wales Australia
| |
Collapse
|
50
|
Proia L, von Schiller D, Sànchez-Melsió A, Sabater S, Borrego CM, Rodríguez-Mozaz S, Balcázar JL. Occurrence and persistence of antibiotic resistance genes in river biofilms after wastewater inputs in small rivers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 210:121-8. [PMID: 26708766 DOI: 10.1016/j.envpol.2015.11.035] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/10/2015] [Accepted: 11/20/2015] [Indexed: 05/28/2023]
Abstract
The extensive use of antibiotics in human and veterinary medicine and their subsequent release into the environment may have direct consequences for autochthonous bacterial communities, especially in freshwater ecosystems. In small streams and rivers, local inputs of wastewater treatment plants (WWTPs) may become important sources of organic matter, nutrients and emerging pollutants, such as antibiotic resistance genes (ARGs). In this study, we evaluated the effect of WWTP effluents as a source of ARGs in river biofilms. The prevalence of genes conferring resistance to main antibiotic families, such as beta-lactams (blaCTX-M), fluoroquinolones (qnrS), sulfonamides (sul I), and macrolides (ermB), was determined using quantitative PCR (qPCR) in biofilm samples collected upstream and downstream WWTPs discharge points in four low-order streams. Our results showed that the WWTP effluents strongly modified the hydrology, physico-chemistry and biological characteristics of the receiving streams and favoured the persistence and spread of antibiotic resistance in microbial benthic communities. It was also shown that the magnitude of effects depended on the relative contribution of each WWTP to the receiving system. Specifically, low concentrations of ARGs were detected at sites located upstream of the WWTPs, while a significant increase of their concentrations was observed in biofilms collected downstream of the WWTP discharge points (particularly ermB and sul I genes). These findings suggest that WWTP discharges may favour the increase and spread of antibiotic resistance among streambed biofilms. The present study also showed that the presence of ARGs in biofilms was noticeable far downstream of the WWTP discharge (up to 1 km). It is therefore reasonable to assume that biofilms may represent an ideal setting for the acquisition and spread of antibiotic resistance determinants and thus be considered suitable biological indicators of anthropogenic pollution by active pharmaceutical compounds.
Collapse
Affiliation(s)
- Lorenzo Proia
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain; Institute of Aquatic Ecology, GRECO, University of Girona, Girona, Spain.
| | - Daniel von Schiller
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, Bilbao, Spain
| | - Alexandre Sànchez-Melsió
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Sergi Sabater
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain; Institute of Aquatic Ecology, GRECO, University of Girona, Girona, Spain
| | - Carles M Borrego
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain; Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Girona, Spain
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - José Luis Balcázar
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| |
Collapse
|