1
|
Akpodiete NO, Carlos B, Voges K, Nunes BT, Souza-Neto JA, Noulin F, Tonge D, Zuharah WF, Tripet F. Improvement of water quality for mass anopheline rearing: dynamics of larval tray bacterial communities under different water treatments revealed by 16S ribosomal RNA amplicon sequencing. J Appl Microbiol 2025; 136:lxaf110. [PMID: 40328455 DOI: 10.1093/jambio/lxaf110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 04/25/2025] [Accepted: 05/02/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Immature anophelines inhabit aquatic environments with diverse physicochemical properties and microorganisms. In insectary settings, ammonia accumulation in larval rearing trays can lead to high larval mortality. Bacterial communities in these trays may influence ammonia levels through nitrification and denitrification. While symbiotic bacteria are known to be crucial for nutrition, digestion, reproduction, and immune responses in anophelines, the microbial communities specifically associated with Anopheles coluzzii larvae have not been characterised. METHODS AND RESULTS Building on a study examining ammonia-capturing zeolite and water changes for rearing Anopheles coluzzii, this research characterised the bacterial communities using 16S rRNA gene sequencing to identify species linked to larval survival and phenotypic quality. Functional filters were applied to identify bacteria related to ammonia nitrification and their impact on larval development. qPCR was used to validate the sequencing data for the 10 most significant bacteria. Water changes significantly reduced bacterial diversity and abundance, improving adult mosquito development and quality. In contrast, untreated trays showed a higher abundance of potentially harmful bacteria, adversely affecting development. Applying zeolite increased nitrifying bacteria presence, benefiting mosquito growth while lowering toxic bacteria levels-trends confirmed by qPCR. CONCLUSIONS This study offers insights into the bacterial communities in mosquito larval-rearing water, highlighting species that could enhance ammonia nitrification and overall rearing success.
Collapse
Affiliation(s)
| | - Bianca Carlos
- São Paulo State University/Universidade Estadual Paulista (UNESP), Botucatu, São Paulo 18610-307, Brazil
| | - Kamila Voges
- Universidade Federal do Rio de Janeiro, Departamento de Genética, Instituto de Biologia, Rio de Janeiro 21941-853, Brazil
| | | | - Jayme Augustus Souza-Neto
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States
- College of Veterinary Medicine, Kansas State University, Kansas State Veterinary Diagnostic Laboratory, Manhattan, KS 66506, United States
| | - Florian Noulin
- PoloGGB, Via Mazzieri SNC, 05100 Terni, Italy
- Keele University, School of Life Sciences, Newcastle under Lyme, ST5 5BG, United Kingdom
| | - Daniel Tonge
- Keele University, School of Life Sciences, Newcastle under Lyme, ST5 5BG, United Kingdom
| | - Wan Fatma Zuharah
- Universiti Sains Malaysia, School of Biological Sciences, 11800 Minden, Penang, Malaysia
| | - Frédéric Tripet
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| |
Collapse
|
2
|
Enciso JS, Corretto E, Borruso L, Schuler H. Limited Variation in Bacterial Communities of Scaphoideus titanus (Hemiptera: Cicadellidae) Across European Populations and Different Life Stages. INSECTS 2024; 15:830. [PMID: 39590429 PMCID: PMC11595099 DOI: 10.3390/insects15110830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024]
Abstract
The Nearctic leafhopper Scaphoideus titanus (Hemiptera: Cicadellidae) is the primary vector of 'Candidatus Phytoplasma vitis', the causative agent of Flavescence doreé in Europe. Although microorganisms play an important role in the ecology and behavior of insects, knowledge about the interaction between S. titanus and microbes is limited. In this study, we employed an amplicon metabarcoding approach for profiling the V4 region of the 16S rRNA gene to characterize the bacterial communities of S. titanus across several populations from four European localities. Additionally, we investigated changes in bacterial communities between nymphal and adult stages. In total, we identified 7,472 amplicon sequence variants (ASVs) in adults from the European populations. At the genus level, 'Candidatus Karelsulcia' and 'Candidatus Cardinium' were the most abundant genera, with both being present in every individual. While we found significant changes in the microbial composition of S. titanus across different European populations, no significant differences were observed between nymphal and adult stages. Our study reveals new insights into the microbial composition of S. titanus and highlights the role of geography in influencing its bacterial community.
Collapse
Affiliation(s)
- Juan Sebastian Enciso
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy; (J.S.E.); (L.B.)
| | - Erika Corretto
- Competence Center for Plant Health, Free University of Bozen-Bolzano, 39100 Bolzano, Italy;
| | - Luigimaria Borruso
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy; (J.S.E.); (L.B.)
| | - Hannes Schuler
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy; (J.S.E.); (L.B.)
- Competence Center for Plant Health, Free University of Bozen-Bolzano, 39100 Bolzano, Italy;
| |
Collapse
|
3
|
Fourie JCJ, Van Wyk D, Bezuidenhout CC, Mienie C, Adeleke R. The effects of irrigation on the survival of Clostridium sporogenes in the phyllosphere and soil environments of lettuce. 3 Biotech 2024; 14:239. [PMID: 39310030 PMCID: PMC11415320 DOI: 10.1007/s13205-024-04069-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
This study aimed to address the gap in knowledge regarding the fate of foodborne pathogens within agro-ecosystems. It specifically focused on the surrogate microorganism Clostridium sporogenes, which was introduced into lettuce-producing environments via surface and spray irrigation methods, respectively. The concentration of C. sporogenes in the rhizosphere, phyllosphere, and non-rhizosphere soil was quantified by quantitative polymerase chain reaction (qPCR) over a 42-day trial. The surface irrigation method exhibited a more noticeable contamination effect on the soil environments, compared to the phyllosphere. The results indicated a noticeable increase in C. sporogenes concentrations during the initial 22 days, with a 10.4-fold rise (0.39-4.05 log copy numbers/g soil) in the rhizosphere and 1.9-fold increase (2.97-5.59 log copy numbers/g soil) in the non-rhizosphere. However, concentrations in both soil environments subsequently decreased, falling below the initial inoculum concentration by the end of the trial. In contrast, the spray irrigation method resulted in most of the contamination being localised on the lettuce phyllosphere, with a high C. sporogenes concentration of 9.09 log copy numbers/g leaves on day 0. This concentration exponentially decreased to a minimal 0.019 log copy numbers/g leaves by day 32. Although concentrations in both soil environments decreased over time, trace concentrations of C. sporogenes were detectable at the end of the trial, posing a potential hazard to the microbiological safety of postharvest produce. These findings shed light on the dynamics of C. sporogenes in agro-ecosystems and underscore the importance of irrigation practices that ensure the safety of those who consume fresh produce. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04069-5.
Collapse
Affiliation(s)
| | - Deidre Van Wyk
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | | | - Charlotte Mienie
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Rasheed Adeleke
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
4
|
Joseph B, Babu S. Effect of Organic and Chemical Fertilizer on the Diversity of Rhizosphere and Leaf Microbial Composition in Sunflower Plant. Curr Microbiol 2024; 81:331. [PMID: 39198293 DOI: 10.1007/s00284-024-03856-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Applying organic manure to crops positively impacts the soil microbial community which is negatively impacted when chemical fertilizers are used. Organic manures also add new microbes to the soil in addition to influencing the growth of native ones. Metagenomic analysis of different organic manures, soil, and pot culture experiments conducted under various fertilizer conditions constitute the primary methodologies employed in this study. We compared the effect of two organic manure combinations and an inorganic fertilizer combination on microbial community of rhizosphere soil and leaves of sunflower plants. Metagenomic sequencing data analysis revealed that the diversity of bacteria and fungi is higher in organic manure than in chemical fertilizers. Each organic manure combination selectively increased population of some specific microbes and supported new microbes. Application of chemical fertilizer hurts many plant beneficial fungi and bacteria. In summary, our study points out the superiority of organic manure combinations in enhancing microbial diversity and supporting beneficial microbes. These findings enhance the profound influence of fertilizer types on sunflower microbial communities, shedding light on the intricate dynamics within the rhizosphere and leaf microbiome. Bacterial genera such as Bacillus, Serratia, Sphingomonas, Pseudomonas, Methylobacterium, Acinetobacter, Stenotrophomonas, and fungal genera such as Wallemia, Aspergillus, Cladosporium, and Penicillium constitute the key microbes of sunflower plants.
Collapse
Affiliation(s)
- Babitha Joseph
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Subramanian Babu
- VIT School of Agricultural Innovations and Advanced Learning (VAIAL), Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
5
|
Karačić S, Palmer B, Gee CT, Bierbaum G. Oxygen-dependent biofilm dynamics in leaf decay: an in vitro analysis. Sci Rep 2024; 14:6728. [PMID: 38509138 PMCID: PMC10955112 DOI: 10.1038/s41598-024-57223-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
Biofilms are important in the natural process of plant tissue degradation. However, fundamental knowledge of biofilm community structure and succession on decaying leaves under different oxygen conditions is limited. Here, we used 16S rRNA and ITS gene amplicon sequencing to investigate the composition, temporal dynamics, and community assembly processes of bacterial and fungal biofilms on decaying leaves in vitro. Leaves harvested from three plant species were immersed in lake water under aerobic and anaerobic conditions in vitro for three weeks. Biofilm-covered leaf samples were collected weekly and investigated by scanning electron microscopy. The results showed that community composition differed significantly between biofilm samples under aerobic and anaerobic conditions, though not among plant species. Over three weeks, a clear compositional shift of the bacterial and fungal biofilm communities was observed. The alpha diversity of prokaryotes increased over time in aerobic assays and decreased under anaerobic conditions. Oxygen availability and incubation time were found to be primary factors influencing the microbial diversity of biofilms on different decaying plant species in vitro. Null models suggest that stochastic processes governed the assembly of biofilm communities of decaying leaves in vitro in the early stages of biofilm formation and were further shaped by niche-associated factors.
Collapse
Affiliation(s)
- Sabina Karačić
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Brianne Palmer
- Bonn Institute of Organismic Biology, Division of Paleontology, University of Bonn, 53115, Bonn, Germany
| | - Carole T Gee
- Bonn Institute of Organismic Biology, Division of Paleontology, University of Bonn, 53115, Bonn, Germany
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| |
Collapse
|
6
|
Jung SH, Riu M, Lee S, Kim JS, Jeon JS, Ryu CM. An anaerobic rhizobacterium primes rice immunity. THE NEW PHYTOLOGIST 2023; 238:1755-1761. [PMID: 36823752 DOI: 10.1111/nph.18834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 02/10/2023] [Indexed: 05/04/2023]
Affiliation(s)
- Sung-Hee Jung
- Biosystems and Bioengineering Program, University of Science and Technology, Daejeon, 34141, South Korea
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
| | - Myoungjoo Riu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
- Department of Applied Biology, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, 34134, South Korea
| | - Soohyun Lee
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
| | - Jun-Seob Kim
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
| | - Je-Seung Jeon
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
| | - Choong-Min Ryu
- Biosystems and Bioengineering Program, University of Science and Technology, Daejeon, 34141, South Korea
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
| |
Collapse
|
7
|
Li CJ, Zhang Z, Zhan PC, Lv AP, Li PP, Liu L, Li WJ, Yang LL, Zhi XY. Comparative genomic analysis and proposal of Clostridium yunnanense sp. nov., Clostridium rhizosphaerae sp. nov., and Clostridium paridis sp. nov., three novel Clostridium sensu stricto endophytes with diverse capabilities of acetic acid and ethanol production. Anaerobe 2023; 79:102686. [PMID: 36535584 DOI: 10.1016/j.anaerobe.2022.102686] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Genus Clostridium sensu stricto is generally regarded as the true Clostridium genus, which includes important human and animal pathogens and industrially relevant microorganisms. Besides, it is also a prominent member of plant-associated endophytes. However, our knowledge of endophytic Clostridium is limited. METHODS In this study, the endophytes were isolated under anaerobic condition from the roots of Paris polyphylla Smith var. yunnanensis. Subsequently, a polyphasic taxonomic approach was used to clarify their taxonomic positions. The fermentation products were measured in the isolates with HPLC analysis. Comparative genomics was performed on these new strains and other relatives. RESULTS In total, nine endophytic strains belonging to the genus Clostridium sensu stricto were isolated, and three of them were identified as new species. Seven of nine strains could produce acetate, propionate, and butyrate. Only two strains could produce ethanol, although genomics analysis suggested that only two of them were without genes for solventogenesis. Different from the endophytic strains, the phylogenetically closely related non-endophytic strains showed significant enrichment effects on some metabolic pathways involving environmental information processing, carbohydrate, and amino acid metabolisms, etc. It suggests that the genomes of these endophytic strains had undergone subtle changes associated with environmental adaptations. CONCLUSION Consequently, strains YIM B02505T, YIM B02515T, and YIM B02565T are proposed to represent a new species of the genus Clostridium sensu stricto, for which the names Clostridium yunnanense sp. nov., Clostridium rhizosphaerae sp. nov., and Clostridium paridis sp. nov. are suggested.
Collapse
Affiliation(s)
- Cong-Jian Li
- Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Zhen Zhang
- Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Peng-Chao Zhan
- Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Ai-Ping Lv
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Pan-Pan Li
- Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Lan Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Ling-Ling Yang
- Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China.
| | - Xiao-Yang Zhi
- Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China.
| |
Collapse
|
8
|
Mahapatra DM, Satapathy KC, Panda B. Biofertilizers and nanofertilizers for sustainable agriculture: Phycoprospects and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149990. [PMID: 34492488 DOI: 10.1016/j.scitotenv.2021.149990] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 05/21/2023]
Abstract
Increased food demands and ceasing nutrient deposits have resulted in a great shortfall between the food supply and demand and would be worse in the years to come. Higher inputs of synthetic fertilizers on lands have resulted in environmental pollution, persistent changes in the soil ecology, and physicochemical conditions. This has greatly decreased the natural soil fertility thereby hindering agricultural productivity, human health, and hygiene. Bio-based resilient nutrient sources as wastewater-derived algae are promising as a complete nutrient for agriculture and have the potential to be used in soilless cultivations. Innovations in nano-fortification and nano-sizing of minerals and algae have the potential to facilitate nutrients bioavailability and efficacy for a multifold increase in productivity. In this context, various options on minerals nanofertilizer application in agricultural food production besides efficient biofertilizer have been investigated. Algal biofertilizer with the nanoscale application has huge prospects for further agriculture productivities and fosters suitable development.
Collapse
Affiliation(s)
- Durga Madhab Mahapatra
- Center of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India; Biological and Ecological Engineering Department, Oregon State University, Corvallis, OR, USA.
| | - Kanhu Charan Satapathy
- Center of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India; Post Graduate Department of Anthropology, Utkal University, Bhubaneswar 751004, Odisha, India.
| | - Bhabatarini Panda
- Center of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India; Post Graduate Department of Botany, Utkal University, Bhubaneswar 751004, Odisha, India.
| |
Collapse
|
9
|
Kodilinye-Sims H, Daniel Parker C. Managing botulism outbreaks associated with poultry litter: balancing perceived animal welfare with disease prevention. Vet Rec 2021; 187:229-232. [PMID: 32948720 DOI: 10.1136/vr.m3601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Henrietta Kodilinye-Sims
- Surrey Poultry Vet, Guildford, UKandSchool of Veterinary Medicine, University of Surrey, Guildford, UK
| | | |
Collapse
|
10
|
Tenzin J, Hirunpunth R, Satjarak A, Peerakietkhajorn S. Bacteria Associated with Echinodorus cordifolius and Lepironia articulata Enhance Nitrogen and Phosphorus Removal from Wastewater. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:377-384. [PMID: 33258052 DOI: 10.1007/s00128-020-03059-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Phytoremediation and bioremediation are eco-friendly methods of wastewater treatment that are widely used throughout the world to reduce anthropogenic water contamination. This study was conducted to assess the effectiveness of symbiotic bacteria in phytoremediation using two aquatic plants, Echinodorus cordifolius and Lepironia articulata, that were tested in sterilized and unsterilized groups. The results showed that unsterilized plants removed more phosphate, ammonium, nitrate and nitrite than the sterilized plants. In untreated and unsterilized E. cordifolius groups, the dominant bacterium was Calothrix (46.90 and 49.69%, respectively), which was higher than in the sterilized E. cordifolius group (38.88%). In untreated and unsterilized groups of L. articulata, Clostridium was a dominant bacterium. The proportion of Clostridium was much lower in the sterilized L. articulata group (1.31%) than in the untreated (13.71%) and unsterilized (49.02%) groups. Our results suggested that root-associated bacteria in E. cordifolius and L. articulata were effective in the removal of phosphorus and nitrogen from domestic wastewater.
Collapse
Affiliation(s)
- Jamyang Tenzin
- Department of Biology, Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Ratana Hirunpunth
- Department of Biology, Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Anchittha Satjarak
- Plants of Thailand Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Saranya Peerakietkhajorn
- Department of Biology, Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, 90110, Thailand.
- Gut Biology and Microbiota Research Unit, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
11
|
Fatima F, Hashim A, Anees S. Efficacy of nanoparticles as nanofertilizer production: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:1292-1303. [PMID: 33070292 DOI: 10.1007/s11356-020-11218-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/11/2020] [Indexed: 05/21/2023]
Abstract
Owing to the ever-increasing demand for food, the growing global population has forced farmers to increase fertilizer use. The overall use of fertilizers increased by 13 times between 1950 and 2020, from 15 to 194 million tons. Due to the resource shortages of chemical fertilizers on the market, agricultural costs are rising drastically every day because they cause an adverse impact on the environment by releasing chemical particulates and run-off agriculture. Biofertilizers have thus become a safer supplement to increase crop production without doing any harm to the environment, as they are produced industrially from a selected community of microorganisms that either develop a mutually beneficial relationship with plants or are part of their rhizosphere. They still have some drawbacks, which led to the development of a new avenue for the application of nanotechnology-mediated nanofertilizers. Nanotechnology recommends significant prospects for tailoring nanofertilizer production. They are typically coated with desired chemical composition having controlled release and targeted delivery of effective nanoscale ingredients, ability to improve plant productivity and to minimize environmental pollutants. The present review focuses primarily on the usefulness of nanofertilizers, as well as its environmental and safety concerns. The research would also include useful knowledge related to the introduction of different forms of nanoparticles within the agricultural field, contributing to the opening of a new route to nanorevolution.
Collapse
Affiliation(s)
- Faria Fatima
- Integral Institute of Agricultural Science and Technology, Integral University, Lucknow, 226026, India.
| | - Arshya Hashim
- Department of Biotechnology, Abeda Inamdar Sr. College of Arts, Science and Commerce, Pune, Maharashtra, 411001, India
| | - Sumaiya Anees
- Department of Biosciences Integral University, Lucknow, 226026, India
| |
Collapse
|
12
|
Souillard R, LE Marechal C, Balaine L, Rouxel S, Poezevara T, Ballan V, Chemaly M, LE Bouquin S. Manure contamination with Clostridium botulinum after avian botulism outbreaks: management and potential risk of dissemination. Vet Rec 2020; 187:233. [PMID: 32586970 DOI: 10.1136/vr.105898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/04/2020] [Accepted: 05/28/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Persistence of Clostridium botulinum in the environment is well known. Getting rid of it after animal botulism outbreaks is so tricky, especially as far as manure concerns. This study aimed at 1. describing manure management on 10 poultry farms affected by botulism and 2. assessing the persistence of C botulinum in poultry manure after the outbreak. METHODS Each farm was visited twice at two different manure storage times (two weeks after manure removal and two months later). Fifteen samples of manure were collected on each visit and C botulinum was detected using real-time PCR. RESULTS Management of manure varied among poultry farms (classical storage, addition of quicklime, bacterial flora or incineration). C botulinum was detected in the manure of all 10 farms, 56.5per cent of samples being positive. C botulinum was detected significantly more frequently at the second visit (65.8per cent vs 49.7per cent, P<0.01) and on the surface of the pile (63.1per cent vs 50per cent, P=0.025). CONCLUSION This study shows the persistence of C botulinum in poultry manure over time after a botulism outbreak and highlights manure management as a key health issue in preventing spore dissemination in the environment and recurrence of the disease.
Collapse
Affiliation(s)
- Rozenn Souillard
- Epidemiology, Health and Welfare Unit, ANSES, French Agency for Food, Environmental and Occupational Health Safety, Ploufragan, France
| | - Caroline LE Marechal
- Hygiene and Quality of Poultry and Pig Products Unit, ANSES, French Agency for Food, Environmental and Occupational Health Safety, Ploufragan, France
| | - Loic Balaine
- Epidemiology, Health and Welfare Unit, ANSES, French Agency for Food, Environmental and Occupational Health Safety, Ploufragan, France
| | - Sandra Rouxel
- Hygiene and Quality of Poultry and Pig Products Unit, ANSES, French Agency for Food, Environmental and Occupational Health Safety, Ploufragan, France
| | - Typhaine Poezevara
- Hygiene and Quality of Poultry and Pig Products Unit, ANSES, French Agency for Food, Environmental and Occupational Health Safety, Ploufragan, France
| | - Valentine Ballan
- Hygiene and Quality of Poultry and Pig Products Unit, ANSES, French Agency for Food, Environmental and Occupational Health Safety, Ploufragan, France
| | - Marianne Chemaly
- Hygiene and Quality of Poultry and Pig Products Unit, ANSES, French Agency for Food, Environmental and Occupational Health Safety, Ploufragan, France
| | - Sophie LE Bouquin
- Epidemiology, Health and Welfare Unit, ANSES, French Agency for Food, Environmental and Occupational Health Safety, Ploufragan, France
| |
Collapse
|
13
|
Yadav AN, Singh J, Rastegari AA, Yadav N. Phyllospheric Microbiomes: Diversity, Ecological Significance, and Biotechnological Applications. ACTA ACUST UNITED AC 2020. [PMCID: PMC7123684 DOI: 10.1007/978-3-030-38453-1_5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The phyllosphere referred to the total aerial plant surfaces (above-ground portions), as habitat for microorganisms. Microorganisms establish compositionally complex communities on the leaf surface. The microbiome of phyllosphere is rich in diversity of bacteria, fungi, actinomycetes, cyanobacteria, and viruses. The diversity, dispersal, and community development on the leaf surface are based on the physiochemistry, environment, and also the immunity of the host plant. A colonization process is an important event where both the microbe and the host plant have been benefited. Microbes commonly established either epiphytic or endophytic mode of life cycle on phyllosphere environment, which helps the host plant and functional communication with the surrounding environment. To the scientific advancement, several molecular techniques like metagenomics and metaproteomics have been used to study and understand the physiology and functional relationship of microbes to the host and its environment. Based on the available information, this chapter describes the basic understanding of microbiome in leaf structure and physiology, microbial interactions, especially bacteria, fungi, and actinomycetes, and their adaptation in the phyllosphere environment. Further, the detailed information related to the importance of the microbiome in phyllosphere to the host plant and their environment has been analyzed. Besides, biopotentials of the phyllosphere microbiome have been reviewed.
Collapse
Affiliation(s)
- Ajar Nath Yadav
- Department of Biotechnology, Eternal University, Baru Sahib, Himachal Pradesh India
| | - Joginder Singh
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab India
| | | | - Neelam Yadav
- Gopi Nath PG College, Veer Bahadur Singh Purvanchal University, Ghazipur, Uttar Pradesh India
| |
Collapse
|
14
|
Rodriguez PA, Rothballer M, Chowdhury SP, Nussbaumer T, Gutjahr C, Falter-Braun P. Systems Biology of Plant-Microbiome Interactions. MOLECULAR PLANT 2019; 12:804-821. [PMID: 31128275 DOI: 10.1016/j.molp.2019.05.006] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/07/2019] [Accepted: 05/15/2019] [Indexed: 05/02/2023]
Abstract
In natural environments, plants are exposed to diverse microbiota that they interact with in complex ways. While plant-pathogen interactions have been intensely studied to understand defense mechanisms in plants, many microbes and microbial communities can have substantial beneficial effects on their plant host. Such beneficial effects include improved acquisition of nutrients, accelerated growth, resilience against pathogens, and improved resistance against abiotic stress conditions such as heat, drought, and salinity. However, the beneficial effects of bacterial strains or consortia on their host are often cultivar and species specific, posing an obstacle to their general application. Remarkably, many of the signals that trigger plant immune responses are molecularly highly similar and often identical in pathogenic and beneficial microbes. Thus, it is unclear what determines the outcome of a particular microbe-host interaction and which factors enable plants to distinguish beneficials from pathogens. To unravel the complex network of genetic, microbial, and metabolic interactions, including the signaling events mediating microbe-host interactions, comprehensive quantitative systems biology approaches will be needed.
Collapse
Affiliation(s)
- Patricia A Rodriguez
- Institute of Network Biology (INET), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Michael Rothballer
- Institute of Network Biology (INET), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Soumitra Paul Chowdhury
- Institute of Network Biology (INET), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Thomas Nussbaumer
- Institute of Network Biology (INET), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Institute of Environmental Medicine (IEM), UNIKA-T, Technical University of Munich, Augsburg, Germany
| | - Caroline Gutjahr
- Plant Genetics, TUM School of Life Science Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Pascal Falter-Braun
- Institute of Network Biology (INET), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany.
| |
Collapse
|
15
|
Genome mining for ribosomally synthesised and post-translationally modified peptides (RiPPs) reveals undiscovered bioactive potentials of actinobacteria. Antonie van Leeuwenhoek 2019; 112:1477-1499. [DOI: 10.1007/s10482-019-01276-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/14/2019] [Indexed: 01/22/2023]
|
16
|
Ek-Ramos MJ, Gomez-Flores R, Orozco-Flores AA, Rodríguez-Padilla C, González-Ochoa G, Tamez-Guerra P. Bioactive Products From Plant-Endophytic Gram-Positive Bacteria. Front Microbiol 2019; 10:463. [PMID: 30984118 PMCID: PMC6449470 DOI: 10.3389/fmicb.2019.00463] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/21/2019] [Indexed: 11/13/2022] Open
Abstract
Endophytes constitute plant-colonizing microorganisms in a mutualistic symbiosis relationship. They are found in most ecosystems reducing plant crops' biotic and abiotic stressors by stimulating immune responses, excluding plant pathogens by niche competition, and participating in antioxidant activities and phenylpropanoid metabolism, whose activation produces plant defense, structural support, and survival molecules. In fact, metabolomic studies have demonstrated that endophyte genes associated to specific metabolites are involved in plant growth promotion (PGP) by stimulating plant hormones production such as auxins and gibberellins or as plant protective agents against microbial pathogens, cancer, and insect pests, but eco-friendly and eco-safe. A number of metabolites of Gram-positive endophytes isolated from agriculture, forest, mangrove, and medicinal plants, mainly related to the Firmicutes phyla, possess distinctive biocontrol and plant growth-promoting activities. In general, Actinobacteria and Bacillus endophytes produce aromatic compounds, lipopeptides, plant hormones, polysaccharides, and several enzymes linked to phenylpropanoid metabolism, thus representing high potential for PGP and crop management strategies. Furthermore, Actinobacteria have been shown to produce metabolites with antimicrobial and antitumor activities, useful in agriculture, medicine, and veterinary areas. The great endophytes diversity, their metabolites production, and their adaptation to stress conditions make them a suitable and unlimited source of novel metabolites, whose application could reduce agrochemicals usage in food and drugs production.
Collapse
Affiliation(s)
- María J. Ek-Ramos
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Ricardo Gomez-Flores
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Alonso A. Orozco-Flores
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Cristina Rodríguez-Padilla
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Guadalupe González-Ochoa
- Departamento de Ciencias Químico Biológicas, División de Ciencias e Ingeniería, Universidad de Sonora, Navojoa, Mexico
| | - Patricia Tamez-Guerra
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| |
Collapse
|
17
|
McKernan K, Spangler J, Helbert Y, Lynch RC, Devitt-Lee A, Zhang L, Orphe W, Warner J, Foss T, Hudalla CJ, Silva M, Smith DR. Metagenomic analysis of medicinal Cannabis samples; pathogenic bacteria, toxigenic fungi, and beneficial microbes grow in culture-based yeast and mold tests. F1000Res 2016; 5:2471. [PMID: 27853518 PMCID: PMC5089129 DOI: 10.12688/f1000research.9662.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2016] [Indexed: 12/26/2022] Open
Abstract
Background: The presence of bacteria and fungi in medicinal or recreational
Cannabis poses a potential threat to consumers if those microbes include pathogenic or toxigenic species. This study evaluated two widely used culture-based platforms for total yeast and mold (TYM) testing marketed by 3M Corporation and Biomérieux, in comparison with a quantitative PCR (qPCR) approach marketed by Medicinal Genomics Corporation. Methods: A set of 15 medicinal
Cannabis samples were analyzed using 3M and Biomérieux culture-based platforms and by qPCR to quantify microbial DNA. All samples were then subjected to next-generation sequencing and metagenomics analysis to enumerate the bacteria and fungi present before and after growth on culture-based media. Results: Several pathogenic or toxigenic bacterial and fungal species were identified in proportions of >5% of classified reads on the samples, including
Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, Ralstonia pickettii, Salmonella enterica, Stenotrophomonas maltophilia, Aspergillus ostianus, Aspergillus sydowii, Penicillium citrinum and
Penicillium steckii. Samples subjected to culture showed substantial shifts in the number and diversity of species present, including the failure of
Aspergillus species to grow well on either platform. Substantial growth of
Clostridium botulinum and other bacteria were frequently observed on one or both of the culture-based TYM platforms. The presence of plant growth promoting (beneficial) fungal species further influenced the differential growth of species in the microbiome of each sample. Conclusions: These findings have important implications for the
Cannabis and food safety testing industries.
Collapse
Affiliation(s)
| | | | | | - Ryan C Lynch
- Medicinal Genomics Corporation, Woburn, MA, 01801, USA
| | | | - Lei Zhang
- Medicinal Genomics Corporation, Woburn, MA, 01801, USA
| | - Wendell Orphe
- Medicinal Genomics Corporation, Woburn, MA, 01801, USA
| | - Jason Warner
- Medicinal Genomics Corporation, Woburn, MA, 01801, USA
| | - Theodore Foss
- Medicinal Genomics Corporation, Woburn, MA, 01801, USA
| | | | | | | |
Collapse
|