1
|
Sampson T. Microbial amyloids in neurodegenerative amyloid diseases. FEBS J 2025; 292:1265-1281. [PMID: 38041542 PMCID: PMC11144261 DOI: 10.1111/febs.17023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/13/2023] [Accepted: 11/30/2023] [Indexed: 12/03/2023]
Abstract
Human-disease associated amyloidogenic proteins are not unique in their ability to form amyloid fibrillar structures. Numerous microbes produce amyloidogenic proteins that have distinct functions for their physiology in their amyloid form, rather than solely detrimental. Emerging data indicate associations between various microbial organisms, including those which produce functional amyloids, with neurodegenerative diseases. Here, we review some of the evidence suggesting that microbial amyloids impact amyloid disease in host organisms. Experimental data are building a foundation for continued lines of enquiry and suggest that that direct or indirect interactions between microbial and host amyloids may be a contributor to amyloid pathologies. Inhibiting microbial amyloids or their interactions with the host may therefore represent a tangible target to limit various amyloid pathologies.
Collapse
Affiliation(s)
- Timothy Sampson
- Department of Cell BiologyEmory University School of MedicineAtlantaGAUSA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
| |
Collapse
|
2
|
Fayoud H, Belousov MV, Antonets KS, Nizhnikov AA. Pathogenesis-Associated Bacterial Amyloids: The Network of Interactions. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:2107-2132. [PMID: 39865026 DOI: 10.1134/s0006297924120022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 01/28/2025]
Abstract
Amyloids are protein fibrils with a characteristic cross-β structure that is responsible for the unusual resistance of amyloids to various physical and chemical factors, as well as numerous pathogenic and functional consequences of amyloidogenesis. The greatest diversity of functional amyloids was identified in bacteria. The majority of bacterial amyloids are involved in virulence and pathogenesis either via facilitating formation of biofilms and adaptation of bacteria to colonization of a host organism or through direct regulation of toxicity. Recent studies have shown that, beside their commonly known activity, amyloids may be involved in the spatial regulation of proteome by modulating aggregation of other amyloidogenic proteins with multiple functional or pathological effects. Although the studies on the role of microbiome-produced amyloids in the development of amyloidoses in humans and animals have only been started, it is clear that humans as holobionts contain amyloids encoded not only by the host genome, but also by microorganisms that constitute the microbiome. Amyloids acquired from external sources (e.g., food) can interact with holobiont amyloids and modulate the effects of bacterial and host amyloids, thus adding another level of complexity to the holobiont-associated amyloid network. In this review, we described bacterial amyloids directly or indirectly involved in disease pathogenesis in humans and discussed the significance of bacterial amyloids in the three-component network of holobiont-associated amyloids.
Collapse
Affiliation(s)
- Haidar Fayoud
- Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, 196608, Russia
| | - Mikhail V Belousov
- Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, 196608, Russia
| | - Kirill S Antonets
- Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, 196608, Russia
| | - Anton A Nizhnikov
- Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia. ARRAY(0x5ae2b7af6df8)
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, 196608, Russia
| |
Collapse
|
3
|
Moreira S, Chyou TY, Wade J, Brown C. Diversification of the Rho transcription termination factor in bacteria. Nucleic Acids Res 2024; 52:8979-8997. [PMID: 38966992 PMCID: PMC11347177 DOI: 10.1093/nar/gkae582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
Correct termination of transcription is essential for gene expression. In bacteria, factor-dependent termination relies on the Rho factor, that classically has three conserved domains. Some bacteria also have a functional insertion region. However, the variation in Rho structure among bacteria has not been analyzed in detail. This study determines the distribution, sequence conservation, and predicted features of Rho factors with diverse domain architectures by analyzing 2730 bacterial genomes. About half (49.8%) of the species analyzed have the typical Escherichia coli like Rho while most of the other species (39.8%) have diverse, atypical forms of Rho. Besides conservation of the main domains, we describe a duplicated RNA-binding domain present in specific species and novel variations in the bicyclomycin binding pocket. The additional regions observed in Rho proteins exhibit remarkable diversity. Commonly, however, they have exceptional amino acid compositions and are predicted to be intrinsically disordered, to undergo phase separation, or have prion-like behavior. Phase separation has recently been shown to play roles in Rho function and bacterial fitness during harsh conditions in one species and this study suggests a more widespread role. In conclusion, diverse atypical Rho factors are broadly distributed among bacteria, suggesting additional cellular roles.
Collapse
Affiliation(s)
- Sofia M Moreira
- Department of Biochemistry, University of Otago, Dunedin, Otago 9054, New Zealand
| | - Te-yuan Chyou
- Department of Biochemistry, University of Otago, Dunedin, Otago 9054, New Zealand
| | - Joseph T Wade
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY 12222, USA
| | - Chris M Brown
- Department of Biochemistry, University of Otago, Dunedin, Otago 9054, New Zealand
- Genetics Otago, University of Otago, Dunedin, Otago 9054, New Zealand
| |
Collapse
|
4
|
Giraldo R. The emergence of bacterial prions. PLoS Pathog 2024; 20:e1012253. [PMID: 38870093 PMCID: PMC11175392 DOI: 10.1371/journal.ppat.1012253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Affiliation(s)
- Rafael Giraldo
- Department of Microbial Biotechnology, National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| |
Collapse
|
5
|
Warren Norris MAH, Plaskon DM, Tamayo R. Phase Variation of Flagella and Toxins in Clostridioides difficile is Mediated by Selective Rho-dependent Termination. J Mol Biol 2024; 436:168456. [PMID: 38278436 PMCID: PMC10942720 DOI: 10.1016/j.jmb.2024.168456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024]
Abstract
Clostridioides difficile is an intestinal pathogen that exhibits phase variation of flagella and toxins through inversion of the flagellar (flg) switch controlling flagellar and toxin gene expression. The transcription termination factor Rho preferentially inhibits swimming motility of bacteria with the 'flg-OFF' switch sequence. How C. difficile Rho mediates this selectivity was unknown. C. difficile Rho contains an N-terminal insertion domain (NID) which is found in a subset of Rho orthologues and confers diverse functions. Here we determined how Rho distinguishes between flg-ON and -OFF mRNAs and the roles of the NID and other domains of C. difficile Rho. Using in vitro ATPase assays, we determined that Rho specifically binds a region containing the left inverted repeat of the flg switch, but only of flg-OFF mRNA, indicating that differential termination is mediated by selective Rho binding. Using a suite of in vivo and in vitro assays in C. difficile, we determined that the NID is essential for Rho termination of flg-OFF mRNA, likely by influencing the ability to form stable hexamers, and the RNA binding domain is critical for flg-OFF specific termination. This work gives insight into the novel mechanism by which Rho interacts with flg mRNA to mediate phase variation of flagella and toxins in C. difficile and broadens our understanding of Rho-mediated termination in an organism with an AT-rich genome.
Collapse
Affiliation(s)
- Mercedes A H Warren Norris
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Dylan M Plaskon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
6
|
The Way forward for the Origin of Life: Prions and Prion-Like Molecules First Hypothesis. Life (Basel) 2021; 11:life11090872. [PMID: 34575021 PMCID: PMC8467930 DOI: 10.3390/life11090872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/11/2021] [Accepted: 08/22/2021] [Indexed: 11/18/2022] Open
Abstract
In this paper the hypothesis that prions and prion-like molecules could have initiated the chemical evolutionary process which led to the eventual emergence of life is reappraised. The prions first hypothesis is a specific application of the protein-first hypothesis which asserts that protein-based chemical evolution preceded the evolution of genetic encoding processes. This genetics-first hypothesis asserts that an “RNA-world era” came before protein-based chemical evolution and rests on a singular premise that molecules such as RNA, acetyl-CoA, and NAD are relics of a long line of chemical evolutionary processes preceding the Last Universal Common Ancestor (LUCA). Nevertheless, we assert that prions and prion-like molecules may also be relics of chemical evolutionary processes preceding LUCA. To support this assertion is the observation that prions and prion-like molecules are involved in a plethora of activities in contemporary biology in both complex (eukaryotes) and primitive life forms. Furthermore, a literature survey reveals that small RNA virus genomes harbor information about prions (and amyloids). If, as has been presumed by proponents of the genetics-first hypotheses, small viruses were present during an RNA world era and were involved in some of the earliest evolutionary processes, this places prions and prion-like molecules potentially at the heart of the chemical evolutionary process whose eventual outcome was life. We deliberate on the case for prions and prion-like molecules as the frontier molecules at the dawn of evolution of living systems.
Collapse
|
7
|
Kosolapova AO, Antonets KS, Belousov MV, Nizhnikov AA. Biological Functions of Prokaryotic Amyloids in Interspecies Interactions: Facts and Assumptions. Int J Mol Sci 2020; 21:E7240. [PMID: 33008049 PMCID: PMC7582709 DOI: 10.3390/ijms21197240] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Amyloids are fibrillar protein aggregates with an ordered spatial structure called "cross-β". While some amyloids are associated with development of approximately 50 incurable diseases of humans and animals, the others perform various crucial physiological functions. The greatest diversity of amyloids functions is identified within prokaryotic species where they, being the components of the biofilm matrix, function as adhesins, regulate the activity of toxins and virulence factors, and compose extracellular protein layers. Amyloid state is widely used by different pathogenic bacterial species in their interactions with eukaryotic organisms. These amyloids, being functional for bacteria that produce them, are associated with various bacterial infections in humans and animals. Thus, the repertoire of the disease-associated amyloids includes not only dozens of pathological amyloids of mammalian origin but also numerous microbial amyloids. Although the ability of symbiotic microorganisms to produce amyloids has recently been demonstrated, functional roles of prokaryotic amyloids in host-symbiont interactions as well as in the interspecies interactions within the prokaryotic communities remain poorly studied. Here, we summarize the current findings in the field of prokaryotic amyloids, classify different interspecies interactions where these amyloids are involved, and hypothesize about their real occurrence in nature as well as their roles in pathogenesis and symbiosis.
Collapse
Affiliation(s)
- Anastasiia O. Kosolapova
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia (K.S.A.); (M.V.B.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia (K.S.A.); (M.V.B.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Mikhail V. Belousov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia (K.S.A.); (M.V.B.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia (K.S.A.); (M.V.B.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| |
Collapse
|
8
|
Abstract
Amyloids are protein polymers that were initially linked to human diseases. Across the whole Tree of Life, many disease-unrelated proteins are now emerging for which amyloids represent distinct functional states. Most bacterial amyloids described are extracellular, contributing to biofilm formation. However, only a few have been found in the bacterial cytosol. This paper reviews from the perspective of synthetic biology (SynBio) our understanding of the subtle line that separates functional from pathogenic and transmissible amyloids (prions). Amyloids are protein polymers that were initially linked to human diseases. Across the whole Tree of Life, many disease-unrelated proteins are now emerging for which amyloids represent distinct functional states. Most bacterial amyloids described are extracellular, contributing to biofilm formation. However, only a few have been found in the bacterial cytosol. This paper reviews from the perspective of synthetic biology (SynBio) our understanding of the subtle line that separates functional from pathogenic and transmissible amyloids (prions). In particular, it is focused on RepA-WH1, a functional albeit unconventional natural amyloidogenic protein domain that participates in controlling DNA replication of bacterial plasmids. SynBio approaches, including protein engineering and the design of allosteric effectors such as diverse ligands and an optogenetic module, have enabled the generation in RepA-WH1 of an intracellular cytotoxic prion-like agent in bacteria. The synthetic RepA-WH1 prion has the potential to develop into novel antimicrobials.
Collapse
|
9
|
Dixson JD, Azad RK. Prions: Roles in Development and Adaptive Evolution. J Mol Evol 2020; 88:427-434. [PMID: 32388713 DOI: 10.1007/s00239-020-09944-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/28/2020] [Indexed: 12/14/2022]
Abstract
Prions are often considered as anomalous proteins associated primarily with disease rather than as a fundamental source of diversity within biological proteomes. Whereas this longstanding viewpoint has its genesis in the discovery of the original namesake prions as causative agents of several complex diseases, the underlying assumption of a strict disease basis for prions could not be further from the truth. Prions and the spectrum of functions they comprise, likely represent one of the largest paradigm shifts concerning molecular-encoded phenotypic diversity since identification of DNA as the principle molecule of heredity. The ability of prions to recruit similar proteins to alternate conformations may engender a reservoir of diversity supplementing the genetic diversity resulting from stochastic mutations of DNA and subsequent natural selection. Here we present several currently known prions and how many of their functions as well as modes of transmission are intricately linked to adaptation from an evolutionary perspective. Further, the stability of some prion conformations across generations indicates that heritable prion-based adaptation is a reality.
Collapse
Affiliation(s)
- Jamie D Dixson
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA
| | - Rajeev K Azad
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA.
- Department of Mathematics, University of North Texas, Denton, TX, 76203, USA.
| |
Collapse
|
10
|
Iglesias V, Paladin L, Juan-Blanco T, Pallarès I, Aloy P, Tosatto SCE, Ventura S. In silico Characterization of Human Prion-Like Proteins: Beyond Neurological Diseases. Front Physiol 2019; 10:314. [PMID: 30971948 PMCID: PMC6445884 DOI: 10.3389/fphys.2019.00314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/07/2019] [Indexed: 12/18/2022] Open
Abstract
Prion-like behavior has been in the spotlight since it was first associated with the onset of mammalian neurodegenerative diseases. However, a growing body of evidence suggests that this mechanism could be behind the regulation of processes such as transcription and translation in multiple species. Here, we perform a stringent computational survey to identify prion-like proteins in the human proteome. We detected 242 candidate polypeptides and computationally assessed their function, protein–protein interaction networks, tissular expression, and their link to disease. Human prion-like proteins constitute a subset of modular polypeptides broadly expressed across different cell types and tissues, significantly associated with disease, embedded in highly connected interaction networks, and involved in the flow of genetic information in the cell. Our analysis suggests that these proteins might play a relevant role not only in neurological disorders, but also in different types of cancer and viral infections.
Collapse
Affiliation(s)
- Valentin Iglesias
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lisanna Paladin
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Teresa Juan-Blanco
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Irantzu Pallarès
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Patrick Aloy
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Silvio C E Tosatto
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,CNR Institute of Neuroscience, Padua, Italy
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Iglesias V, Conchillo-Sole O, Batlle C, Ventura S. AMYCO: evaluation of mutational impact on prion-like proteins aggregation propensity. BMC Bioinformatics 2019; 20:24. [PMID: 30642249 PMCID: PMC6332698 DOI: 10.1186/s12859-019-2601-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/03/2019] [Indexed: 02/06/2023] Open
Abstract
Background Around 1% of human proteins are predicted to contain a disordered and low complexity prion-like domain (PrLD). Mutations in PrLDs have been shown promote a transition towards an aggregation-prone state in several diseases. Results Recently, we have shown that an algorithm that considers the effects of mutations on PrLDs composition, as well as on localized amyloid propensity can predict the impact of these amino acid changes on protein intracellular aggregation. In this application note, we implement this concept into the AMYCO web server, a refined algorithm that forecasts the influence of amino acid changes in prion-like proteins aggregation propensity better than state-of-the-art predictors. Conclusions The AMYCO web server allows for a fast and automated evaluation of the effect of mutations on the aggregation properties of prion-like proteins. This might uncover novel disease-linked amino acid changes in the sequences of human prion-like proteins. Additionally, it can find application in the in silico design of synthetic prion-like proteins with tuned aggregation propensities for different purposes. AMYCO does not require previous registration and is freely available to all users at: http://bioinf.uab.cat/amyco/. Electronic supplementary material The online version of this article (10.1186/s12859-019-2601-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Valentin Iglesias
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Oscar Conchillo-Sole
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Cristina Batlle
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain. .,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain.
| |
Collapse
|
12
|
Kaur G, Kapoor S, Thakur KG. Bacillus subtilis HelD, an RNA Polymerase Interacting Helicase, Forms Amyloid-Like Fibrils. Front Microbiol 2018; 9:1934. [PMID: 30186259 PMCID: PMC6111841 DOI: 10.3389/fmicb.2018.01934] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/30/2018] [Indexed: 12/26/2022] Open
Abstract
HelD, an RNA polymerase binding protein from Bacillus subtilis, stimulates transcription and helps in timely adaptation of cells under diverse environmental conditions. At present, no structural information is available for HelD. In the current study, we performed size exclusion chromatography coupled to small angle X-ray scattering (SEC-SAXS) which suggests that HelD is predominantly monomeric and globular in solution. Using combination of size exclusion chromatography and analytical ultracentrifugation, we also show that HelD has a tendency to form higher order oligomers in solution. CD experiments suggest that HelD has both α-helical (∼35%) and β sheet (∼26%) secondary structural elements. Thermal melting experiments suggest that even at 90°C, there is only about 30% loss in secondary structural contents with Tm of 44°C. However, with the increase in temperature, there was a gain in the β-sheet content and significant irreversible loss of α-helical content. Using a combination of X-ray fiber diffraction analysis, and dye based assays including Thioflavin-T based fluorescence and Congo red binding assays, we discovered that HelD forms amyloid-like fibrils at physiologically relevant conditions in vitro. Using confocal imaging, we further show that HelD forms amyloid inclusions in Escherichia coli. Bioinformatics-based sequence analysis performed using three independent web-based servers suggests that HelD has more than 20 hot-spots spread across the sequence that may aid the formation of amyloid-like fibrils. This discovery adds one more member to the growing list of amyloid or amyloid-like fibril forming cytosolic proteins in bacteria. Future studies aimed at resolving the function of amyloid-like fibrils or amyloid inclusions may help better understand their role, if any, in the bacterial physiology.
Collapse
Affiliation(s)
- Gundeep Kaur
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Srajan Kapoor
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Krishan G Thakur
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
13
|
Pallarès I, de Groot NS, Iglesias V, Sant'Anna R, Biosca A, Fernàndez-Busquets X, Ventura S. Discovering Putative Prion-Like Proteins in Plasmodium falciparum: A Computational and Experimental Analysis. Front Microbiol 2018; 9:1737. [PMID: 30131778 PMCID: PMC6090025 DOI: 10.3389/fmicb.2018.01737] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2022] Open
Abstract
Prions are a singular subset of proteins able to switch between a soluble conformation and a self-perpetuating amyloid state. Traditionally associated with neurodegenerative diseases, increasing evidence indicates that organisms exploit prion-like mechanisms for beneficial purposes. The ability to transit between conformations is encoded in the so-called prion domains, long disordered regions usually enriched in glutamine/asparagine residues. Interestingly, Plasmodium falciparum, the parasite that causes the most virulent form of malaria, is exceptionally rich in proteins bearing long Q/N-rich sequence stretches, accounting for roughly 30% of the proteome. This biased composition suggests that these protein regions might correspond to prion-like domains (PrLDs) and potentially form amyloid assemblies. To investigate this possibility, we performed a stringent computational survey for Q/N-rich PrLDs on P. falciparum. Our data indicate that ∼10% of P. falciparum protein sequences have prionic signatures, and that this subproteome is enriched in regulatory proteins, such as transcription factors and RNA-binding proteins. Furthermore, we experimentally demonstrate for several of the identified PrLDs that, despite their disordered nature, they contain inner short sequences able to spontaneously self-assemble into amyloid-like structures. Although the ability of these sequences to nucleate the conformational conversion of the respective full-length proteins should still be demonstrated, our analysis suggests that, as previously described for other organisms, prion-like proteins might also play a functional role in P. falciparum.
Collapse
Affiliation(s)
- Irantzu Pallarès
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Natalia S de Groot
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Valentín Iglesias
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ricardo Sant'Anna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Arnau Biosca
- Nanomalaria Group, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Barcelona Institute for Global Health, Barcelona Centre for International Health Research (Hospital Clínic - Universitat de Barcelona), Barcelona, Spain.,Institute of Nanoscience and Nanotechnology, University of Barcelona, Barcelona, Spain
| | - Xavier Fernàndez-Busquets
- Nanomalaria Group, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Barcelona Institute for Global Health, Barcelona Centre for International Health Research (Hospital Clínic - Universitat de Barcelona), Barcelona, Spain.,Institute of Nanoscience and Nanotechnology, University of Barcelona, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Cereghetti G, Saad S, Dechant R, Peter M. Reversible, functional amyloids: towards an understanding of their regulation in yeast and humans. Cell Cycle 2018; 17:1545-1558. [PMID: 29963943 DOI: 10.1080/15384101.2018.1480220] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Protein aggregates, and in particular amyloids, are generally considered to be inherently irreversible aberrant clumps, and are often associated with pathologies, such as Alzheimer's disease, Parkinson's disease, or systemic amyloidosis. However, recent evidence demonstrates that some aggregates are not only fully reversible, but also perform essential physiological functions. Despite these new findings, very little is known about how these functional protein aggregates are regulated in a physiological context. Here, we take the yeast pyruvate kinase Cdc19 as an example of a protein forming functional, reversible, solid, amyloid-like aggregates in response to stress conditions. Cdc19 aggregation is regulated via an aggregation-prone low complexity region (LCR). In favorable growth conditions, this LCR is prevented from aggregating by phosphorylation or oligomerization, while upon glucose starvation it becomes exposed and allows aggregation. We suggest that LCR phosphorylation, oligomerization or partner-binding may be general and widespread mechanisms regulating LCR-mediated reversible protein aggregation. Moreover, we show that, as predicted by computational tools, Cdc19 forms amyloid-like aggregates in vitro. Interestingly, we also observe striking similarities between Cdc19 and its mammalian counterpart, PKM2. Indeed, also PKM2 harbors a LCR and contains several peptides with high amyloidogenic propensity, which coincide with known phosphorylation sites. Thus, we speculate that the formation of reversible, amyloid-like aggregates may be a general physiological mechanism for cells to adapt to stress conditions, and that the underlying regulatory mechanisms may be conserved from yeast to humans.
Collapse
Affiliation(s)
- Gea Cereghetti
- a Institute of Biochemistry, Department of Biology , ETH Zürich , Zürich , Switzerland.,b Life Science Zürich , Molecular Life Sciences , Zürich , Switzerland
| | - Shady Saad
- c Department of Chemical and Systems Biology , Stanford University , Stanford, CA , USA
| | - Reinhard Dechant
- a Institute of Biochemistry, Department of Biology , ETH Zürich , Zürich , Switzerland
| | - Matthias Peter
- a Institute of Biochemistry, Department of Biology , ETH Zürich , Zürich , Switzerland
| |
Collapse
|
15
|
Mycobacterium tuberculosis CarD, an essential global transcriptional regulator forms amyloid-like fibrils. Sci Rep 2018; 8:10124. [PMID: 29973616 PMCID: PMC6031611 DOI: 10.1038/s41598-018-28290-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 06/21/2018] [Indexed: 02/06/2023] Open
Abstract
CarD is an essential global transcription regulator from Mycobacterium tuberculosis (Mtb) that binds RNA polymerase and activates transcription by stabilizing the transcription initiation complex. Available crystal structures have captured two distinct, monomeric and domain-swapped homodimeric, oligomeric states of CarD. However, the actual oligomeric state of CarD in solution and its biological relevance has remained unclear. Here, we confirm the presence of the homodimeric state of CarD in solution by using synchrotron-based small-angle X-ray scattering. Furthermore, by using biochemical and biophysical experiments, in addition to mass-spectrometry, transmission electron microscopy, and confocal imaging, we show that CarD is the first soluble cytosolic protein in Mtb which displays the tendency to form amyloid-like fibrils both in vitro as well as in vivo. We demonstrate that the deletion of the fourteen N-terminal residues involved in domain-swapping hampers amyloid formation, thus, suggesting that domain-swapping is crucial in amyloidogenesis. The discovery of the amyloidogenic property of an essential cytosolic global transcription regulator, CarD, in a pathogenic bacteria will further open up new frontiers in research.
Collapse
|
16
|
Pujols J, Santos J, Pallarès I, Ventura S. The Disordered C-Terminus of Yeast Hsf1 Contains a Cryptic Low-Complexity Amyloidogenic Region. Int J Mol Sci 2018; 19:ijms19051384. [PMID: 29734798 PMCID: PMC5983738 DOI: 10.3390/ijms19051384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 02/08/2023] Open
Abstract
Response mechanisms to external stress rely on networks of proteins able to activate specific signaling pathways to ensure the maintenance of cell proteostasis. Many of the proteins mediating this kind of response contain intrinsically disordered regions, which lack a defined structure, but still are able to interact with a wide range of clients that modulate the protein function. Some of these interactions are mediated by specific short sequences embedded in the longer disordered regions. Because the physicochemical properties that promote functional and abnormal interactions are similar, it has been shown that, in globular proteins, aggregation-prone and binding regions tend to overlap. It could be that the same principle applies for disordered protein regions. In this context, we show here that a predicted low-complexity interacting region in the disordered C-terminus of the stress response master regulator heat shock factor 1 (Hsf1) protein corresponds to a cryptic amyloid region able to self-assemble into fibrillary structures resembling those found in neurodegenerative disorders.
Collapse
Affiliation(s)
- Jordi Pujols
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain.
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain.
| | - Jaime Santos
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain.
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain.
| | - Irantzu Pallarès
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain.
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain.
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain.
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain.
| |
Collapse
|
17
|
Molina-García L, Gasset-Rosa F, Álamo MMD, de la Espina SMD, Giraldo R. Addressing Intracellular Amyloidosis in Bacteria with RepA-WH1, a Prion-Like Protein. Methods Mol Biol 2018; 1779:289-312. [PMID: 29886540 DOI: 10.1007/978-1-4939-7816-8_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bacteria are the simplest cellular model in which amyloidosis has been addressed. It is well documented that bacterial consortia (biofilms) assemble their extracellular matrix on an amyloid scaffold, yet very few intracellular amyloids are known in bacteria. Here, we describe the methods we have resorted to characterize in Escherichia coli cells the amyloidogenesis, propagation, and dynamics of the RepA-WH1 prionoid. This prion-like protein, a manifold domain from the plasmid replication protein RepA, itself capable of assembling a functional amyloid, causes when expressed in E. coli a synthetic amyloid proteinopathy, the first model for an amyloid disease with a purely bacterial origin. These protocols are useful to study other intracellular amyloids in bacteria.
Collapse
Affiliation(s)
- Laura Molina-García
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Fátima Gasset-Rosa
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- Department of Neurosciences, Ludwig Institute for Cancer Research, University of California in San Diego, La Jolla, CA, USA
| | - María Moreno-Del Álamo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- Department of Microbial Biotechnology, National Centre for Biotechnology (CSIC), Madrid, Spain
| | | | - Rafael Giraldo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain.
| |
Collapse
|
18
|
Bidnenko E, Bidnenko V. Transcription termination factor Rho and microbial phenotypic heterogeneity. Curr Genet 2017; 64:541-546. [PMID: 29094196 DOI: 10.1007/s00294-017-0775-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 12/21/2022]
Abstract
Populations of genetically identical microorganisms exhibit high degree of cell-to-cell phenotypic diversity even when grown in uniform environmental conditions. Heterogeneity is a genetically determined trait, which ensures bacterial adaptation and survival in the ever changing environmental conditions. Fluctuations in gene expression (noise) at the level of transcription initiation largely contribute to cell-to-cell variability within population. Not surprisingly, the analyses of the mechanisms driving phenotypic heterogeneity are mainly focused on the activity of promoters and transcriptional factors. Less attention is currently given to a role of intrinsic and factor-dependent transcription terminators. Here, we discuss recent advances in understanding the regulatory role of the multi-functional transcription termination factor Rho, the major inhibitor of pervasive transcription in bacteria and the emerging global regulator of gene expression. We propose that termination activity of Rho might be among the mechanisms by which cells manage the intensity of transcriptional noise, thus affecting population heterogeneity.
Collapse
Affiliation(s)
- Elena Bidnenko
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| | - Vladimir Bidnenko
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| |
Collapse
|
19
|
Yuan AH, Hochschild A. A bacterial global regulator forms a prion. Science 2017; 355:198-201. [PMID: 28082594 DOI: 10.1126/science.aai7776] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/02/2016] [Accepted: 12/13/2016] [Indexed: 02/02/2023]
Abstract
Prions are self-propagating protein aggregates that act as protein-based elements of inheritance in fungi. Although prevalent in eukaryotes, prions have not been identified in bacteria. Here we found that a bacterial protein, transcription terminator Rho of Clostridium botulinum (Cb-Rho), could form a prion. We identified a candidate prion-forming domain (cPrD) in Cb-Rho and showed that it conferred amyloidogenicity on Cb-Rho and could functionally replace the PrD of a yeast prion-forming protein. Furthermore, its cPrD enabled Cb-Rho to access alternative conformations in Escherichia coli-a soluble form that terminated transcription efficiently and an aggregated, self-propagating prion form that was functionally compromised. The prion form caused genome-wide changes in the transcriptome. Thus, Cb-Rho functions as a protein-based element of inheritance in bacteria, suggesting that the emergence of prions predates the evolutionary split between eukaryotes and bacteria.
Collapse
Affiliation(s)
- Andy H Yuan
- Department of Microbiology and Immunobiology, Harvard Medical School, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Ann Hochschild
- Department of Microbiology and Immunobiology, Harvard Medical School, 4 Blackfan Circle, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Batlle C, de Groot NS, Iglesias V, Navarro S, Ventura S. Characterization of Soft Amyloid Cores in Human Prion-Like Proteins. Sci Rep 2017; 7:12134. [PMID: 28935930 PMCID: PMC5608858 DOI: 10.1038/s41598-017-09714-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/28/2017] [Indexed: 12/12/2022] Open
Abstract
Prion-like behaviour is attracting much attention due to the growing evidences that amyloid-like self-assembly may reach beyond neurodegeneration and be a conserved functional mechanism. The best characterized functional prions correspond to a subset of yeast proteins involved in translation or transcription. Their conformational promiscuity is encoded in Prion Forming Domains (PFDs), usually long and intrinsically disordered protein segments of low complexity. The compositional bias of these regions seems to be important for the transition between soluble and amyloid-like states. We have proposed that the presence of cryptic soft amyloid cores embedded in yeast PFDs can also be important for their assembly and demonstrated their existence and self-propagating abilities. Here, we used an orthogonal approach in the search of human domains that share yeast PFDs compositional bias and exhibit a predicted nucleating core, identifying 535 prion-like candidates. We selected seven proteins involved in transcriptional or translational regulation and associated to disease to characterize the properties of their amyloid cores. All of them self-assemble spontaneously into amyloid-like structures able to propagate their polymeric state. This provides support for the presence of short sequences able to trigger conformational conversion in prion-like human proteins, potentially regulating their functionality.
Collapse
Affiliation(s)
- Cristina Batlle
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, 08193, Spain
| | - Natalia Sanchez de Groot
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Valentin Iglesias
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, 08193, Spain
| | - Susanna Navarro
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, 08193, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, 08193, Spain.
| |
Collapse
|
21
|
Batlle C, Fernández MR, Iglesias V, Ventura S. Perfecting prediction of mutational impact on the aggregation propensity of the ALS-associated hnRNPA2 prion-like protein. FEBS Lett 2017; 591:1966-1971. [PMID: 28542905 DOI: 10.1002/1873-3468.12698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/07/2017] [Accepted: 05/21/2017] [Indexed: 12/23/2022]
Abstract
An increasing number of human proteins are being found to bear a prion-like domain (PrLD) driving the formation of membraneless compartments through liquid-liquid phase separation. Point mutations in these PrLDs promote the transition to an amyloid-like state. There has been much debate on whether this aberrant aggregation is caused by compositional or sequential changes. A recent extensive mutational study of the ALS-associated prion-like hnRNPA2 protein provides a framework to discriminate the molecular determinants behind pathogenic PrLDs aggregation. The effect of mutations on the aggregation propensity of hnRNPA2 is best predicted by combining their impact on PrLD amino acid composition and sequence-based amyloid propensity. This opens an avenue for the prediction of disease causing mutations in other human prion-like proteins.
Collapse
Affiliation(s)
- Cristina Batlle
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autonoma de Barcelona, Bellaterra (Barcelona), Spain
| | - María Rosario Fernández
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autonoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Valentin Iglesias
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autonoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autonoma de Barcelona, Bellaterra (Barcelona), Spain
| |
Collapse
|
22
|
Pallarès I, Ventura S. The Transcription Terminator Rho: A First Bacterial Prion. Trends Microbiol 2017; 25:434-437. [DOI: 10.1016/j.tim.2017.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 10/19/2022]
|
23
|
Gill A. The Importance of Bacterial Culture to Food Microbiology in the Age of Genomics. Front Microbiol 2017; 8:777. [PMID: 28507541 PMCID: PMC5410609 DOI: 10.3389/fmicb.2017.00777] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022] Open
Abstract
Culture-based and genomics methods provide different insights into the nature and behavior of bacteria. Maximizing the usefulness of both approaches requires recognizing their limitations and employing them appropriately. Genomic analysis excels at identifying bacteria and establishing the relatedness of isolates. Culture-based methods remain necessary for detection and enumeration, to determine viability, and to validate phenotype predictions made on the bias of genomic analysis. The purpose of this short paper is to discuss the application of culture-based analysis and genomics to the questions food microbiologists routinely need to ask regarding bacteria to ensure the safety of food and its economic production and distribution. To address these issues appropriate tools are required for the detection and enumeration of specific bacterial populations and the characterization of isolates for, identification, phylogenetics, and phenotype prediction.
Collapse
Affiliation(s)
- Alexander Gill
- Health Canada, Bureau of Microbial Hazards, OttawaON, Canada
| |
Collapse
|
24
|
Afsar Minhas FUA, Ross ED, Ben-Hur A. Amino acid composition predicts prion activity. PLoS Comput Biol 2017; 13:e1005465. [PMID: 28394888 PMCID: PMC5402983 DOI: 10.1371/journal.pcbi.1005465] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 04/24/2017] [Accepted: 03/17/2017] [Indexed: 11/19/2022] Open
Abstract
Many prion-forming proteins contain glutamine/asparagine (Q/N) rich domains, and there are conflicting opinions as to the role of primary sequence in their conversion to the prion form: is this phenomenon driven primarily by amino acid composition, or, as a recent computational analysis suggested, dependent on the presence of short sequence elements with high amyloid-forming potential. The argument for the importance of short sequence elements hinged on the relatively-high accuracy obtained using a method that utilizes a collection of length-six sequence elements with known amyloid-forming potential. We weigh in on this question and demonstrate that when those sequence elements are permuted, even higher accuracy is obtained; we also propose a novel multiple-instance machine learning method that uses sequence composition alone, and achieves better accuracy than all existing prion prediction approaches. While we expect there to be elements of primary sequence that affect the process, our experiments suggest that sequence composition alone is sufficient for predicting protein sequences that are likely to form prions. A web-server for the proposed method is available at http://faculty.pieas.edu.pk/fayyaz/prank.html, and the code for reproducing our experiments is available at http://doi.org/10.5281/zenodo.167136. The determinants of prion formation in proteins that are rich in glutamine and asparagine are still under debate: is the process driven by primary sequence or by amino acid composition? In 2015 Sabate et al. published a paper suggesting that the process is triggered by short amyloid-prone sequences. Their argument was based on the success of their pWALTZ classifier, which uses a database of short peptides with known amyloid forming propensities. To explore the validity of their argument we compared their original scoring matrices with shuffled scoring matrices, and found no decrease in accuracy, suggesting that the success of pWALTZ is the result of the ability of the scoring matrices to capture amino acid composition. Furthermore, we propose a novel machine learning approach with accuracy that is superior to all published prion prediction methods that are currently available, and uses sequence composition alone.
Collapse
Affiliation(s)
- Fayyaz ul Amir Afsar Minhas
- Department of Computer and Information Sciences, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
- * E-mail: (FuAAM); (ABH)
| | - Eric D. Ross
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Asa Ben-Hur
- Department of Computer Science, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail: (FuAAM); (ABH)
| |
Collapse
|
25
|
Molina-García L, Moreno-Del Álamo M, Botias P, Martín-Moldes Z, Fernández M, Sánchez-Gorostiaga A, Alonso-Del Valle A, Nogales J, García-Cantalejo J, Giraldo R. Outlining Core Pathways of Amyloid Toxicity in Bacteria with the RepA-WH1 Prionoid. Front Microbiol 2017; 8:539. [PMID: 28421043 PMCID: PMC5378768 DOI: 10.3389/fmicb.2017.00539] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/14/2017] [Indexed: 12/14/2022] Open
Abstract
The synthetic bacterial prionoid RepA-WH1 causes a vertically transmissible amyloid proteinopathy in Escherichia coli that inhibits growth and eventually kills the cells. Recent in vitro studies show that RepA-WH1 builds pores through model lipid membranes, suggesting a possible mechanism for bacterial cell death. By comparing acutely (A31V) and mildly (ΔN37) cytotoxic mutant variants of the protein, we report here that RepA-WH1(A31V) expression decreases the intracellular osmotic pressure and compromise bacterial viability under either aerobic or anaerobic conditions. Both are effects expected from threatening membrane integrity and are in agreement with findings on the impairment by RepA-WH1(A31V) of the proton motive force (PMF)-dependent transport of ions (Fe3+) and ATP synthesis. Systems approaches reveal that, in aerobiosis, the PMF-independent respiratory dehydrogenase NdhII is induced in response to the reduction in intracellular levels of iron. While NdhII is known to generate H2O2 as a by-product of the autoxidation of its FAD cofactor, key proteins in the defense against oxidative stress (OxyR, KatE), together with other stress-resistance factors, are sequestered by co-aggregation with the RepA-WH1(A31V) amyloid. Our findings suggest a route for RepA-WH1 toxicity in bacteria: a primary hit of damage to the membrane, compromising bionergetics, triggers a stroke of oxidative stress, which is exacerbated due to the aggregation-dependent inactivation of enzymes and transcription factors that enable the cellular response to such injury. The proteinopathy caused by the prion-like protein RepA-WH1 in bacteria recapitulates some of the core hallmarks of human amyloid diseases.
Collapse
Affiliation(s)
- Laura Molina-García
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - María Moreno-Del Álamo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Pedro Botias
- Genomics Unit, Complutense UniversityMadrid, Spain
| | - Zaira Martín-Moldes
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - María Fernández
- Proteomics Facility, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Alicia Sánchez-Gorostiaga
- Department of Microbial Biotechnology, National Centre for Biotechnology, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Aída Alonso-Del Valle
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Juan Nogales
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | | | - Rafael Giraldo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| |
Collapse
|
26
|
Batlle C, Iglesias V, Navarro S, Ventura S. Prion-like proteins and their computational identification in proteomes. Expert Rev Proteomics 2017; 14:335-350. [DOI: 10.1080/14789450.2017.1304214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Cristina Batlle
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Valentin Iglesias
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Susanna Navarro
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|