1
|
Carril P, Cordeiro C, Silva MS, Ngendahimana E, Tenreiro R, Cruz C. Exploring the plant-growth promoting bacterium Herbaspirillum seropedicae as catalyst of microbiome remodeling and metabolic changes in wheat plants. PLANTA 2025; 261:36. [PMID: 39809904 DOI: 10.1007/s00425-025-04609-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
MAIN CONCLUSION Inoculation with the PGPB Herbaspirillum seropedicae shapes both the structure and putative functions of the wheat microbiome and causes changes in the levels of various plant metabolites described to be involved in plant growth and health. Plant growth promoting bacteria (PGPB) can establish metabolic imprints in their hosts, contributing to the improvement of plant health in different ways. However, while PGPB imprints on plant metabolism have been extensively characterized, much less is known regarding those affecting plant indigenous microbiomes, and hence it remains unknown whether both processes occur simultaneously. In this study, both 16S amplicon and ITS sequencing analyses were carried out to study both the structural as well as the putative functional changes in the seed-borne endophytic microbiome of wheat plants inoculated with the PGPB Herbaspirillum seropedicae strain RAM10. Concomitantly, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) analyses were used to investigate the alterations in the root metabolome of PGPB-inoculated plants. PGPB inoculation led to marked differences in the composition of the root microbiome, accompanied by the differential enrichment of microorganisms with putative roles in both plant energy and nitrogen metabolism. In addition, metabolome analyses showed that the levels of 16 metabolites belonging to the phenylpropanoid, terpenoid, and unsaturated fatty acid families were significantly altered in PGPB-inoculated plants. These findings shed light on the interplay between PGPB, the plant and its associated microbiome, indicating that PGPB can act as the driving force mediating long-lasting changes in both the plant metabolome and the plant microbiome.
Collapse
Affiliation(s)
- Pablo Carril
- Plant-Soil Ecology Laboratory, Center for Ecology, Evolution and Environmental Changes. Faculty of Sciences, University of Lisbon, Lisbon, Portugal.
- Department of Biology, Università Degli Studi Di Firenze, Via Micheli 1, 50121, Florence, Italy.
| | - Carlos Cordeiro
- Laboratório de FTICR e Espectrometria de Massa Estrutural, MARE-Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Marta Sousa Silva
- Laboratório de FTICR e Espectrometria de Massa Estrutural, MARE-Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Ephrem Ngendahimana
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Rogério Tenreiro
- Faculty of Sciences, BioISI-Biosystems and Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
| | - Cristina Cruz
- Plant-Soil Ecology Laboratory, Center for Ecology, Evolution and Environmental Changes. Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
2
|
Becker LE, Cubeta MA. The contribution of beneficial wheat seed fungal communities beyond disease-causing fungi: Advancing heritable mycobiome-based plant breeding. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70004. [PMID: 39529232 PMCID: PMC11554592 DOI: 10.1111/1758-2229.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/21/2024] [Indexed: 11/16/2024]
Abstract
Wheat (Triticum sp.) is a staple cereal crop, providing nearly a fifth of the world's protein and available calories. While fungi associated with wheat plants have been known for centuries, attention to fungi associated with wheat seeds has increased over the last hundred years. Initially, research focused on fungal taxa that cause seed-borne diseases. Seeds act as a physical link between generations and host specialized fungal communities that affect seed dormancy, germination, quality, and disease susceptibility. Interest in beneficial, non-disease-causing fungal taxa associated with seeds has grown since the discovery of Epichloë in fescue, leading to a search for beneficial fungal endophytes in cereal grains. Recent studies of the wheat seed mycobiome have shown that disease, seed development, and temporal variation significantly influence the composition and structure of these fungal communities. This research, primarily descriptive, aims to better understand the wheat seed mycobiome's function in relation to the plant host. A deeper understanding of the wheat seed mycobiome's functionality may offer potential for microbiome-assisted breeding.
Collapse
Affiliation(s)
- Lindsey E. Becker
- Department of Entomology and Plant Pathology, Center for Integrated Fungal ResearchNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Marc A. Cubeta
- Department of Entomology and Plant Pathology, Center for Integrated Fungal ResearchNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
3
|
Pantinople DJ, Conner R, Sutton-Dauber S, Broussard K, Siniscalchi CM, Engle-Wrye NJ, Jordan HR, Folk RA. Continental sampling reveals core bacterial and environmentally driven fungal leaf endophytes in Heuchera. AMERICAN JOURNAL OF BOTANY 2024; 111:e16428. [PMID: 39449649 DOI: 10.1002/ajb2.16428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 10/26/2024]
Abstract
PREMISE Endophytic plant-microbe interactions range from mutualistic relationships that confer important ecological and agricultural traits to neutral or quasi-parasitic relationships. In contrast to root-associated endophytes, the role of environmental and host-related factors in the acquisition of leaf endophyte communities at broad spatial and phylogenetic scales remains sparsely studied. We assessed endofoliar diversity to test the hypothesis that membership in these microbial communities is driven primarily by abiotic environment and host phylogeny. METHODS We used a broad geographic coverage of North America in the genus Heuchera L. (Saxifragaceae), representing 32 species and varieties across 161 populations. Bacterial and fungal communities were characterized using 16S and ITS amplicon sequencing, respectively, and standard diversity metrics were calculated. We assembled environmental predictors for microbial diversity at collection sites, including latitude, elevation, temperature, precipitation, and soil parameters. RESULTS Assembly patterns differed between bacterial and fungal endophytes. Host phylogeny was significantly associated with bacteria, while geographic distance was the best predictor of fungal community composition. Species richness and phylogenetic diversity were consistent across sites and species, with only fungi showing a response to aridity and precipitation for some metrics. Unlike what has been observed with root-associated microbial communities, in this system microbes show no relationship with pH or other soil factors. CONCLUSIONS Overall, this work improves our understanding of the large-scale patterns of diversity and community composition in leaf endophytes and highlights the relative significance of environmental and host-related factors in driving different microbial communities within the leaf microbiome.
Collapse
Affiliation(s)
- Dexcem J Pantinople
- Department of Biological Sciences, 295 Lee Boulevard, Mississippi, 39762, Mississippi State, USA
| | - Reagan Conner
- Department of Biological Sciences, 295 Lee Boulevard, Mississippi, 39762, Mississippi State, USA
| | - Stephanie Sutton-Dauber
- Department of Biological Sciences, 295 Lee Boulevard, Mississippi, 39762, Mississippi State, USA
| | - Kelli Broussard
- Department of Biological Sciences, 295 Lee Boulevard, Mississippi, 39762, Mississippi State, USA
| | - Carolina M Siniscalchi
- Department of Biological Sciences, 295 Lee Boulevard, Mississippi, 39762, Mississippi State, USA
- General Libraries, 395 Hardy Road, Mississippi, 39762, Mississippi State, USA
| | - Nicholas J Engle-Wrye
- Department of Biological Sciences, 295 Lee Boulevard, Mississippi, 39762, Mississippi State, USA
| | - Heather R Jordan
- Department of Biological Sciences, 295 Lee Boulevard, Mississippi, 39762, Mississippi State, USA
| | - Ryan A Folk
- Department of Biological Sciences, 295 Lee Boulevard, Mississippi, 39762, Mississippi State, USA
| |
Collapse
|
4
|
Saadaoui M, Faize M, Rifai A, Tayeb K, Omri Ben Youssef N, Kharrat M, Roeckel-Drevet P, Chaar H, Venisse JS. Evaluation of Tunisian wheat endophytes as plant growth promoting bacteria and biological control agents against Fusarium culmorum. PLoS One 2024; 19:e0300791. [PMID: 38758965 PMCID: PMC11101125 DOI: 10.1371/journal.pone.0300791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/05/2024] [Indexed: 05/19/2024] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) applications have emerged as an ideal substitute for synthetic chemicals by their ability to improve plant nutrition and resistance against pathogens. In this study, we isolated fourteen root endophytes from healthy wheat roots cultivated in Tunisia. The isolates were identified based from their 16S rRNA gene sequences. They belonged to Bacillota and Pseudomonadota taxa. Fourteen strains were tested for their growth-promoting and defense-eliciting potentials on durum wheat under greenhouse conditions, and for their in vitro biocontrol power against Fusarium culmorum, an ascomycete responsible for seedling blight, foot and root rot, and head blight diseases of wheat. We found that all the strains improved shoot and/or root biomass accumulation, with Bacillus mojavensis, Paenibacillus peoriae and Variovorax paradoxus showing the strongest promoting effects. These physiological effects were correlated with the plant growth-promoting traits of the bacterial endophytes, which produced indole-related compounds, ammonia, and hydrogen cyanide (HCN), and solubilized phosphate and zinc. Likewise, plant defense accumulations were modulated lastingly and systematically in roots and leaves by all the strains. Testing in vitro antagonism against F. culmorum revealed an inhibition activity exceeding 40% for five strains: Bacillus cereus, Paenibacillus peoriae, Paenibacillus polymyxa, Pantoae agglomerans, and Pseudomonas aeruginosa. These strains exhibited significant inhibitory effects on F. culmorum mycelia growth, sporulation, and/or macroconidia germination. P. peoriae performed best, with total inhibition of sporulation and macroconidia germination. These finding highlight the effectiveness of root bacterial endophytes in promoting plant growth and resistance, and in controlling phytopathogens such as F. culmorum. This is the first report identifying 14 bacterial candidates as potential agents for the control of F. culmorum, of which Paenibacillus peoriae and/or its intracellular metabolites have potential for development as biopesticides.
Collapse
Affiliation(s)
- Mouadh Saadaoui
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, France
- Université de Tunis El Manar, Campus Universitaire Farhat Hached, Tunis, Tunisia
- Field Crops Laboratory, National Institute for Agricultural Research of Tunisia, Tunisia, Tunisia
| | - Mohamed Faize
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization CNRST-URL10, Faculty of Sciences, University Chouaib Doukkali, El Jadida, Morocco
| | - Aicha Rifai
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization CNRST-URL10, Faculty of Sciences, University Chouaib Doukkali, El Jadida, Morocco
| | - Koussa Tayeb
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization CNRST-URL10, Faculty of Sciences, University Chouaib Doukkali, El Jadida, Morocco
| | - Noura Omri Ben Youssef
- Field Crops Laboratory, National Institute for Agricultural Research of Tunisia, Tunisia, Tunisia
- National Institute of Agronomy of Tunisia, Tunis, Tunisia
| | - Mohamed Kharrat
- Field Crops Laboratory, National Institute for Agricultural Research of Tunisia, Tunisia, Tunisia
| | | | - Hatem Chaar
- Field Crops Laboratory, National Institute for Agricultural Research of Tunisia, Tunisia, Tunisia
- National Institute of Agronomy of Tunisia, Tunis, Tunisia
| | | |
Collapse
|
5
|
Kumar A, Solanki MK, Wang Z, Solanki AC, Singh VK, Divvela PK. Revealing the seed microbiome: Navigating sequencing tools, microbial assembly, and functions to amplify plant fitness. Microbiol Res 2024; 279:127549. [PMID: 38056172 DOI: 10.1016/j.micres.2023.127549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 12/08/2023]
Abstract
Microbial communities within seeds play a vital role in transmitting themselves to the next generation of plants. These microorganisms significantly impact seed vigor and early seedling growth, for successful crop establishment. Previous studies reported on seed-associated microbial communities and their influence on processes like dormancy release, germination, and disease protection. Modern sequencing and conventional methods reveal microbial community structures and environmental impacts, these information helps in microbial selection and manipulation. These studies form the foundation for using seed microbiomes to enhance crop resilience and productivity. While existing research has primarily focused on characterizing microbiota in dried mature seeds, a significant gap exists in understanding how these microbial communities assemble during seed development. The review also discusses applying seed-associated microorganisms to improve crops in the context of climate change. However, limited knowledge is available about the microbial assembly pattern on seeds, and their impact on plant growth. The review provides insight into microbial composition, functions, and significance for plant health, particularly regarding growth promotion and pest control.
Collapse
Affiliation(s)
- Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
| | - Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India; Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland.
| | - Zhen Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin 537000, China
| | - Anjali Chandrol Solanki
- Department of Agriculture, Mansarover Global University, Bhopal, Madhya Pradesh 462042, India
| | - Vipin Kumar Singh
- Department of Botany, K.S. Saket P.G. College, Ayodhya 224123, Uttar Pradesh, India
| | | |
Collapse
|
6
|
Swift JF, Migicovsky Z, Trello GE, Miller AJ. Grapevine bacterial communities display compartment-specific dynamics over space and time within the Central Valley of California. ENVIRONMENTAL MICROBIOME 2023; 18:84. [PMID: 37996903 PMCID: PMC10668525 DOI: 10.1186/s40793-023-00539-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Plant organs (compartments) host distinct microbiota which shift in response to variation in both development and climate. Grapevines are woody perennial crops that are clonally propagated and cultivated across vast geographic areas, and as such, their microbial communities may also reflect site-specific influences. These site-specific influences along with microbial differences across sites compose 'terroir', the environmental influence on wine produced in a given region. Commercial grapevines are typically composed of a genetically distinct root (rootstock) grafted to a shoot system (scion) which adds an additional layer of complexity via genome-to-genome interactions. RESULTS To understand spatial and temporal patterns of bacterial diversity in grafted grapevines, we used 16S rRNA amplicon sequencing to quantify soil and compartment microbiota (berries, leaves, and roots) for grafted grapevines in commercial vineyards across three counties in the Central Valley of California over two successive growing seasons. Community composition revealed compartment-specific dynamics. Roots assembled site-specific bacterial communities that reflected rootstock genotype and environment influences, whereas bacterial communities of leaves and berries displayed associations with time. CONCLUSIONS These results provide further evidence of a microbial terroir within the grapevine root systems but also reveal that the microbiota of above-ground compartments are only weakly associated with the local soil microbiome in the Central Valley of California.
Collapse
Affiliation(s)
- Joel F Swift
- Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO, 63103, USA.
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA.
- Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS, 66045, USA.
| | - Zoë Migicovsky
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
- Department of Biology, Acadia University, Wolfville, NS, B4P 2R6, Canada
| | - Grace E Trello
- Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO, 63103, USA
| | - Allison J Miller
- Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO, 63103, USA.
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA.
| |
Collapse
|
7
|
Sinha S, Thakuria D, Chaliha C, Uzir P, Hazarika S, Dutta P, Singh AK, Laloo B. Plant growth-promoting traits of culturable seed microbiome of citrus species from Purvanchal Himalaya. FRONTIERS IN PLANT SCIENCE 2023; 14:1104927. [PMID: 37492766 PMCID: PMC10365123 DOI: 10.3389/fpls.2023.1104927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/30/2023] [Indexed: 07/27/2023]
Abstract
Despite Northeastern India being "Treasure House of Citrus Genetic Wealth," genetic erosion of citrus diversity poses severe concern with a corresponding loss in seed microbial diversity. The seed microbiome of citrus species unique to the Purvanchal Himalaya is seldom explored for their use in sustainable orchard management. Isolation and characterization of culturable seed microbiomes of eight citrus species, namely, Citrus reticulata Blanco, C. grandis (L.) Osbeck, C. latipes Tanaka, C. megaloxycarpa Lushaigton, C. jambhiri Lush, C. sinensis (L.) Osbeck, C. macroptera Montr, and C. indica Tanaka collected from NE India were carried out. The isolates were then screened for an array of plant growth-promoting (PGP) traits [indole acetic acid (IAA) production, N2 fixation, phosphate and zinc complex dissolution, siderophores, and Hydrogen Cyanide (HCN) production]. The pure culture isolates of seed microbiomes were capable of dissolving insoluble Ca3(PO4)2 (1.31-4.84 µg Pi ml-1 h-1), Zn3(PO4)2 (2.44-3.16 µg Pi ml-1 h-1), AlPO4 (1.74-3.61 µg Pi ml-1 h-1), and FePO4 (1.54-4.61µg Pi ml-1 h-1), mineralized phytate (12.17-18.00 µg Pi ml-1 h-1) and produced IAA-like substances (4.8-187.29 µg ml-1 h-1). A few isolates of the seed microbiome were also able to fix nitrogen, secrete siderophore-like compounds and HCN, and dissolve ZnSO4 and ZnO. The 16S ribosomal Ribonucleic Acid (rRNA)-based taxonomic findings revealed that Bacillus was the most dominant genus among the isolates across citrus species. Isolates CG2-1, CME6-1, CME6-4, CME6-5, CME6-9, CJ7-1, CMA10-1, CI11-3, and CI11-4 were identified as promising bioinoculants for development of microbial consortium having multifaceted PGP traits for nutritional benefits of nitrogen, phosphorus and zinc, and IAA hormonal benefits to citrus crops for better fitness in acid soils.
Collapse
Affiliation(s)
- Sakshi Sinha
- School of Natural Resource Management, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya, India
| | - Dwipendra Thakuria
- School of Natural Resource Management, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya, India
| | - Chayanika Chaliha
- School of Natural Resource Management, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya, India
| | - Panchali Uzir
- School of Natural Resource Management, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya, India
| | - Samarendra Hazarika
- Division of System Research and Engineering, Indian Council of Agricultural Research (ICAR) Research Complex for North Eastern Hill Region, Umiam, Meghalaya, India
| | - Pranab Dutta
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya, India
| | - A. K. Singh
- School of Natural Resource Management, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya, India
| | - Bingiala Laloo
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya, India
| |
Collapse
|
8
|
Sylwia S, Katarzyna M, Lidia B. Constellation of the endophytic mycobiome in spring and winter wheat cultivars grown under various conditions. Sci Rep 2023; 13:6089. [PMID: 37055465 PMCID: PMC10102161 DOI: 10.1038/s41598-023-33195-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/08/2023] [Indexed: 04/15/2023] Open
Abstract
The mycobiome is an integral component of every living organism. Among other fungi associated with plants, endophytes are an interesting and favorable group of microorganisms, but information regarding them is still largely unknown. Wheat is the most economically significant and essential crop for global food security, which is exposed to a range of abiotic and biotic stresses. Profiling plants' mycobiomes can help in sustainable, chemical-reducing wheat production. The main objective of this work is to understand the structure of endogenous fungal communities in winter and spring wheat cultivars growing under different growth conditions. Further, the study attempted to investigate the effect of host genotype, host organs and plant growth conditions on the composition and distribution of fungi in wheat plant tissues. Comprehensive, high throughput analyzes of the diversity and community structure of the wheat mycobiome were performed, complemented by the simultaneous isolation of endophytic fungi, resulting in candidate strains for future research. The findings of the study revealed that the type of plant organs and growth conditions influence the wheat mycobiome. It was also assessed that fungi representing the genera Cladosporium, Penicillium, and Sarocladium form the core mycobiome of Polish spring and winter wheat cultivars. The coexistence of both symbiotic and pathogenic species in the internal tissues of wheat was also observed. Those commonly considered beneficial for plants can be used in further research as a valuable source of potential biological control factors and/or biostimulators of wheat plant growth.
Collapse
Affiliation(s)
- Salamon Sylwia
- Department of Plant Microbiomics, Institute of Plant Genetics PAS, Poznan, Poland
| | | | - Błaszczyk Lidia
- Department of Plant Microbiomics, Institute of Plant Genetics PAS, Poznan, Poland.
| |
Collapse
|
9
|
Valenti I, Tini F, Sevarika M, Agazzi A, Beccari G, Bellezza I, Ederli L, Grottelli S, Pasquali M, Romani R, Saracchi M, Covarelli L. Impact of Enniatin and Deoxynivalenol Co-Occurrence on Plant, Microbial, Insect, Animal and Human Systems: Current Knowledge and Future Perspectives. Toxins (Basel) 2023; 15:271. [PMID: 37104209 PMCID: PMC10144843 DOI: 10.3390/toxins15040271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Fusarium mycotoxins commonly contaminate agricultural products resulting in a serious threat to both animal and human health. The co-occurrence of different mycotoxins in the same cereal field is very common, so the risks as well as the functional and ecological effects of mycotoxins cannot always be predicted by focusing only on the effect of the single contaminants. Enniatins (ENNs) are among the most frequently detected emerging mycotoxins, while deoxynivalenol (DON) is probably the most common contaminant of cereal grains worldwide. The purpose of this review is to provide an overview of the simultaneous exposure to these mycotoxins, with emphasis on the combined effects in multiple organisms. Our literature analysis shows that just a few studies on ENN-DON toxicity are available, suggesting the complexity of mycotoxin interactions, which include synergistic, antagonistic, and additive effects. Both ENNs and DON modulate drug efflux transporters, therefore this specific ability deserves to be explored to better understand their complex biological role. Additionally, future studies should investigate the interaction mechanisms of mycotoxin co-occurrence on different model organisms, using concentrations closer to real exposures.
Collapse
Affiliation(s)
- Irene Valenti
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (I.V.); (M.P.); (M.S.)
| | - Francesco Tini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.S.); (G.B.); (L.E.); (R.R.); (L.C.)
| | - Milos Sevarika
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.S.); (G.B.); (L.E.); (R.R.); (L.C.)
| | - Alessandro Agazzi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy;
| | - Giovanni Beccari
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.S.); (G.B.); (L.E.); (R.R.); (L.C.)
| | - Ilaria Bellezza
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.B.); (S.G.)
| | - Luisa Ederli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.S.); (G.B.); (L.E.); (R.R.); (L.C.)
| | - Silvia Grottelli
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.B.); (S.G.)
| | - Matias Pasquali
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (I.V.); (M.P.); (M.S.)
| | - Roberto Romani
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.S.); (G.B.); (L.E.); (R.R.); (L.C.)
| | - Marco Saracchi
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (I.V.); (M.P.); (M.S.)
| | - Lorenzo Covarelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.S.); (G.B.); (L.E.); (R.R.); (L.C.)
| |
Collapse
|
10
|
Ashrafi S, Wennrich JP, Becker Y, Maciá-Vicente JG, Brißke-Rode A, Daub M, Thünen T, Dababat AA, Finckh MR, Stadler M, Maier W. Polydomus karssenii gen. nov. sp. nov. is a dark septate endophyte with a bifunctional lifestyle parasitising eggs of plant parasitic cyst nematodes (Heterodera spp.). IMA Fungus 2023; 14:6. [PMID: 36998098 PMCID: PMC10064538 DOI: 10.1186/s43008-023-00113-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/21/2023] [Indexed: 04/01/2023] Open
Abstract
In this study fungal strains were investigated, which had been isolated from eggs of the cereal cyst nematode Heterodera filipjevi, and roots of Microthlaspi perfoliatum (Brassicaceae). The morphology, the interaction with nematodes and plants and the phylogenetic relationships of these strains originating from a broad geographic range covering Western Europe to Asia Minor were studied. Phylogenetic analyses using five genomic loci including ITSrDNA, LSUrDNA, SSUrDNA, rpb2 and tef1-α were carried out. The strains were found to represent a distinct phylogenetic lineage most closely related to Equiseticola and Ophiosphaerella, and Polydomus karssenii (Phaeosphaeriaceae, Pleosporales) is introduced here as a new species representing a monotypic genus. The pathogenicity tests against nematode eggs fulfilled Koch's postulates using in vitro nematode bioassays and showed that the fungus could parasitise its original nematode host H. filipjevi as well as the sugar beet cyst nematode H. schachtii, and colonise cysts and eggs of its hosts by forming highly melanised moniliform hyphae. Light microscopic observations on fungus-root interactions in an axenic system revealed the capacity of the same fungal strain to colonise the roots of wheat and produce melanised hyphae and microsclerotia-like structure typical for dark septate endophytes. Confocal laser scanning microscopy further demonstrated that the fungus colonised the root cells by predominant intercellular growth of hyphae, and frequent formation of appressorium-like as well as penetration peg-like structures through internal cell walls surrounded by callosic papilla-like structures. Different strains of the new fungus produced a nearly identical set of secondary metabolites with various biological activities including nematicidal effects irrespective of their origin from plants or nematodes.
Collapse
Affiliation(s)
- Samad Ashrafi
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Messeweg 11/12, 38104, Brunswick, Germany.
- Institute for Crop and Soil Science, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Bundesallee 58, 38116, Brunswick, Germany.
| | - Jan-Peer Wennrich
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Brunswick, Germany
| | - Yvonne Becker
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Messeweg 11/12, 38104, Brunswick, Germany
| | - Jose G Maciá-Vicente
- Plant Ecology and Nature Conservation, Wageningen University and Research, PO Box 47, 6700 AA, Wageningen, The Netherlands
| | - Anke Brißke-Rode
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Messeweg 11/12, 38104, Brunswick, Germany
| | - Matthias Daub
- Institute for Plant Protection in Field Crops and Grassland, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Dürener Str. 71, 50189, Elsdorf, Germany
| | - Torsten Thünen
- Institute for Crop and Soil Science, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Bundesallee 58, 38116, Brunswick, Germany
| | - Abdelfattah A Dababat
- International Maize and Wheat Improvement Centre (CIMMYT), Emek, P.O. Box 39, 06511, Ankara, Turkey
| | - Maria R Finckh
- Department of Ecological Plant Protection, University of Kassel, Witzenhausen, Germany
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Brunswick, Germany
| | - Wolfgang Maier
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Messeweg 11/12, 38104, Brunswick, Germany
| |
Collapse
|
11
|
Abstract
The genus Bacillus has been widely applied in contemporary agriculture as an environmentally-friendly biological agent. However, the real effect of commercial Bacillus-based fertilizers and pesticides varies immensely in the field. To harness Bacillus for efficient wheat production, we reviewed the diversity, functionality, and applicability of wheat-associated native Bacillus for the first time. Our main findings are: (i) Bacillus spp. inhabit the rhizosphere, root, stem, leaf, and kernel of wheat; (ii) B. subtilis and B. velezensis are the most widely endophytic species that can be isolated from both below and aboveground tissues; (iii) major functions of these representative strains are promotion of plant growth and alleviation of both abiotic and biotic stresses in wheat; (iv) stability and effectiveness are 2 major challenges during field application; (v) a STVAE pipeline that includes 5 processes, namely, Screen, Test, Validation, Application, and Evaluation, has been proposed for the capture and refinement of wheat-associated Bacillus spp. In particular, this review comprehensively addresses possible solutions, concerns, and criteria during the development of native Bacillus-based inoculants for sustainable wheat production.
Collapse
|
12
|
Uniting the Role of Endophytic Fungi against Plant Pathogens and Their Interaction. J Fungi (Basel) 2023; 9:jof9010072. [PMID: 36675893 PMCID: PMC9860820 DOI: 10.3390/jof9010072] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 01/06/2023] Open
Abstract
Endophytic fungi are used as the most common microbial biological control agents (MBCAs) against phytopathogens and are ubiquitous in all plant parts. Most of the fungal species have roles against a variety of plant pathogens. Fungal endophytes provide different services to be used as pathogen control agents, using an important aspect in the form of enhanced plant growth and induced systemic resistance, produce a variety of antifungal secondary metabolites (lipopeptides, antibiotics and enzymes) through colonization, and compete with other pathogenic microorganisms for growth factors (space and nutrients). The purpose of this review is to highlight the biological control potential of fungal species with antifungal properties against different fungal plant pathogens. We focused on the introduction, biology, isolation, identification of endophytic fungi, and their antifungal activity against fungal plant pathogens. The endosymbionts have developed specific genes that exhibited endophytic behavior and demonstrated defensive responses against pathogens such as antibiosis, parasitism, lytic enzyme and competition, siderophore production, and indirect responses by induced systemic resistance (ISR) in the host plant. Finally, different microscopic detection techniques to study microbial interactions (endophytic and pathogenic fungal interactions) in host plants are briefly discussed.
Collapse
|
13
|
Aswini K, Suman A, Sharma P, Singh PK, Gond S, Pathak D. Seed endophytic bacterial profiling from wheat varieties of contrasting heat sensitivity. FRONTIERS IN PLANT SCIENCE 2023; 14:1101818. [PMID: 37089648 PMCID: PMC10117849 DOI: 10.3389/fpls.2023.1101818] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/10/2023] [Indexed: 05/03/2023]
Abstract
Wheat yield can be limited by many biotic and abiotic factors. Heat stress at the grain filling stage is a factor that reduces wheat production tremendously. The potential role of endophytic microorganisms in mitigating plant stress through various biomolecules like enzymes and growth hormones and also by improving plant nutrition has led to a more in-depth exploration of the plant microbiome for such functions. Hence, we devised this study to investigate the abundance and diversity of wheat seed endophytic bacteria (WSEB) from heatS (heat susceptible, GW322) and heatT (heat tolerant, HD3298 and HD3271) varieties by culturable and unculturable approaches. The results evidenced that the culturable diversity was higher in the heatS variety than in the heatT variety and Bacillus was found to be dominant among the 10 different bacterial genera identified. Though the WSEB population was higher in the heatS variety, a greater number of isolates from the heatT variety showed tolerance to higher temperatures (up to 55°C) along with PGP activities such as indole acetic acid (IAA) production and nutrient acquisition. Additionally, the metagenomic analysis of seed microbiota unveiled higher bacterial diversity, with a predominance of the phyla Proteobacteria covering >50% of OTUs, followed by Firmicutes and Actinobacteria. There were considerable variations in the abundance and diversity between heat sensitivity contrasting varieties, where notably more thermophilic bacterial OTUs were observed in the heatT samples, which could be attributed to conferring tolerance against heat stress. Furthermore, exploring the functional characteristics of culturable and unculturable microbiomes would provide more comprehensive information on improving plant growth and productivity for sustainable agriculture.
Collapse
Affiliation(s)
- Krishnan Aswini
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Archna Suman
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Archna Suman,
| | - Pushpendra Sharma
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Pradeep Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shrikant Gond
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Devashish Pathak
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
14
|
Fungal Endophytes Isolated from Elymus repens, a Wild Relative of Barley, Have Potential for Biological Control of Fusarium culmorum and Pyrenophora teres in Barley. Pathogens 2022; 11:pathogens11101097. [PMID: 36297154 PMCID: PMC9612256 DOI: 10.3390/pathogens11101097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 11/17/2022] Open
Abstract
Twenty-four fungal endophytes, isolated from a wild relative of barley, Elymus repens, were screened in barley against an isolate of Fusarium culmorum and an isolate of Pyrenophora teres under controlled conditions. In all experiments, the endophytes were applied individually as seed dressings. Five endophytes could significantly reduce symptoms of Fusarium culmorum (Periconia macrospinosa E1 and E2, Epicoccum nigrum E4, Leptodontidium sp. E7 and Slopeiomyces cylindrosporus E18). In particular, treatment with Periconia macrospinosa E1 significantly reduced Fusarium symptoms on roots by 29–63% in two out of four experiments. Using, a gfp transformed isolate of P. macrospinosa E1, it was possible to show that the fungus was present on roots 14 days after sowing, coinciding with the disease scoring. To test for a potential systemic effect of the seed treatment, eight endophyte isolates were tested against the leaf pathogen Pyrenophora teres. Three isolates could significantly reduce symptoms of P. teres (Lasiosphaeriaceae sp. E10, Lindgomycetaceae sp. E13 and Leptodontidium sp. E16). Seed treatment with Lasiosphaeriaceae sp. E10 reduced net blotch leaf lesion coverage by 89%, in one out of three experiments. In conclusion, specific endophyte isolates exerted varying degrees of protection in the different experiments. Nevertheless, data suggest that endophytic strains from E. repens in a few cases are antagonistic against F. culmorum and P. teres, but otherwise remain neutral when introduced to a barley host in a controlled environment.
Collapse
|
15
|
Johnston-Monje D, Gutiérrez JP, Becerra Lopez-Lavalle LA. Stochastic Inoculum, Biotic Filtering and Species-Specific Seed Transmission Shape the Rare Microbiome of Plants. Life (Basel) 2022; 12:life12091372. [PMID: 36143410 PMCID: PMC9506401 DOI: 10.3390/life12091372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
A plant’s health and productivity is influenced by its associated microbes. Although the common/core microbiome is often thought to be the most influential, significant numbers of rare or uncommon microbes (e.g., specialized endosymbionts) may also play an important role in the health and productivity of certain plants in certain environments. To help identify rare/specialized bacteria and fungi in the most important angiosperm plants, we contrasted microbiomes of the seeds, spermospheres, shoots, roots and rhizospheres of Arabidopsis, Brachypodium, maize, wheat, sugarcane, rice, tomato, coffee, common bean, cassava, soybean, switchgrass, sunflower, Brachiaria, barley, sorghum and pea. Plants were grown inside sealed jars on sterile sand or farm soil. Seeds and spermospheres contained some uncommon bacteria and many fungi, suggesting at least some of the rare microbiome is vertically transmitted. About 95% and 86% of fungal and bacterial diversity inside plants was uncommon; however, judging by read abundance, uncommon fungal cells are about half of the mycobiome, while uncommon bacterial cells make up less than 11% of the microbiome. Uncommon-seed-transmitted microbiomes consisted mostly of Proteobacteria, Firmicutes, Bacteriodetes, Ascomycetes and Basidiomycetes, which most heavily colonized shoots, to a lesser extent roots, and least of all, rhizospheres. Soil served as a more diverse source of rare microbes than seeds, replacing or excluding the majority of the uncommon-seed-transmitted microbiome. With the rarest microbes, their colonization pattern could either be the result of stringent biotic filtering by most plants, or uneven/stochastic inoculum distribution in seeds or soil. Several strong plant–microbe associations were observed, such as seed transmission to shoots, roots and/or rhizospheres of Sarocladium zeae (maize), Penicillium (pea and Phaseolus), and Curvularia (sugarcane), while robust bacterial colonization from cassava field soil occurred with the cyanobacteria Leptolyngbya into Arabidopsis and Panicum roots, and Streptomyces into cassava roots. Some abundant microbes such as Sakaguchia in rice shoots or Vermispora in Arabidopsis roots appeared in no other samples, suggesting that they were infrequent, stochastically deposited propagules from either soil or seed (impossible to know based on the available data). Future experiments with culturing and cross-inoculation of these microbes between plants may help us better understand host preferences and their role in plant productivity, perhaps leading to their use in crop microbiome engineering and enhancement of agricultural production.
Collapse
Affiliation(s)
- David Johnston-Monje
- Max Planck Tandem Group in Plant Microbial Ecology, Universidad del Valle, Cali 76001, Colombia
- International Center for Tropical Agriculture (CIAT), Cali 763537, Colombia
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Correspondence: ; Tel.: +57-315-545-6227
| | | | | |
Collapse
|
16
|
Francioli D, Cid G, Hajirezaei MR, Kolb S. Leaf bacterial microbiota response to flooding is controlled by plant phenology in wheat (Triticum aestivum L.). Sci Rep 2022; 12:11197. [PMID: 35778470 PMCID: PMC9249782 DOI: 10.1038/s41598-022-15133-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/20/2022] [Indexed: 11/09/2022] Open
Abstract
Leaf microbiota mediates foliar functional traits, influences plant fitness, and contributes to various ecosystem functions, including nutrient and water cycling. Plant phenology and harsh environmental conditions have been described as the main determinants of leaf microbiota assembly. How climate change may modulate the leaf microbiota is unresolved and thus, we have a limited understanding on how environmental stresses associated with climate change driven weather events affect composition and functions of the microbes inhabiting the phyllosphere. Thus, we conducted a pot experiment to determine the effects of flooding stress on the wheat leaf microbiota. Since plant phenology might be an important factor in the response to hydrological stress, flooding was induced at different plant growth stages (tillering, booting and flowering). Using a metabarcoding approach, we monitored the response of leaf bacteria to flooding, while key soil and plant traits were measured to correlate physiological plant and edaphic factor changes with shifts in the bacterial leaf microbiota assembly. In our study, plant growth stage represented the main driver in leaf microbiota composition, as early and late plants showed distinct bacterial communities. Overall, flooding had a differential effect on leaf microbiota dynamics depending at which developmental stage it was induced, as a more pronounced disruption in community assembly was observed in younger plants.
Collapse
Affiliation(s)
- Davide Francioli
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Center for Agricultural Landscape Research E.V. (ZALF), Müncheberg, Germany.
| | - Geeisy Cid
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Mohammad-Reza Hajirezaei
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Steffen Kolb
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Center for Agricultural Landscape Research E.V. (ZALF), Müncheberg, Germany.,Thaer Institute, Faculty of Life Sciences, Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|
17
|
|
18
|
Minutillo SA, Ruano-Rosa D, Abdelfattah A, Schena L, Malacrinò A. The Fungal Microbiome of Wheat Flour Includes Potential Mycotoxin Producers. Foods 2022; 11:foods11050676. [PMID: 35267309 PMCID: PMC8908971 DOI: 10.3390/foods11050676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 01/27/2023] Open
Abstract
Consumers are increasingly demanding higher quality and safety standards for the products they consume, and one of this is wheat flour, the basis of a wide variety of processed products. This major component in the diet of many communities can be contaminated by microorganisms before the grain harvest, or during the grain storage right before processing. These microorganisms include several fungal species, many of which produce mycotoxins, secondary metabolites that can cause severe acute and chronic disorders. Yet, we still know little about the overall composition of fungal communities associated with wheat flour. In this study, we contribute to fill this gap by characterizing the fungal microbiome of different types of wheat flour using culture-dependent and -independent techniques. Qualitatively, these approaches suggested similar results, highlighting the presence of several fungal taxa able to produce mycotoxins. In-vitro isolation of fungal species suggest a higher frequency of Penicillium, while metabarcoding suggest a higher abundance of Alternaria. This discrepancy might reside on the targeted portion of the community (alive vs. overall) or in the specific features of each technique. Thus, this study shows that commercial wheat flour hosts a wide fungal diversity with several taxa potentially representing concerns for consumers, aspects that need more attention throughout the food production chain.
Collapse
Affiliation(s)
- Serena A. Minutillo
- CIHEAM—Centre International de Hautes Etudes Agronomiques Méditerranéennes, Mediterranean Agronomic Institute of Bari, 70010 Valenzano, Italy;
| | - David Ruano-Rosa
- Instituto Tecnológico Agrario de Castilla y León, Consejería de Agricultura y Ganadería, 47007 Valladolid, Spain;
| | - Ahmed Abdelfattah
- Leibniz-Institute for Agricultural Engineering Potsdam (ATB), University of Potsdam, 14469 Potsdam, Germany;
| | - Leonardo Schena
- Dipartimento di AGRARIA, Università Mediterranea di Reggio Calabria, 89122 Reggio Calabria, Italy;
| | - Antonino Malacrinò
- Dipartimento di AGRARIA, Università Mediterranea di Reggio Calabria, 89122 Reggio Calabria, Italy;
- Correspondence:
| |
Collapse
|
19
|
Wolfe ER, Dove R, Webster C, Ballhorn DJ. Culturable fungal endophyte communities of primary successional plants on Mount St. Helens, WA, USA. BMC Ecol Evol 2022; 22:18. [PMID: 35168544 PMCID: PMC8845407 DOI: 10.1186/s12862-022-01974-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 02/09/2022] [Indexed: 12/03/2022] Open
Abstract
Background While a considerable amount of research has explored plant community composition in primary successional systems, little is known about the microbial communities inhabiting these pioneer plant species. Fungal endophytes are ubiquitous within plants, and may play major roles in early successional ecosystems. Specifically, endophytes have been shown to affect successional processes, as well as alter host stress tolerance and litter decomposition dynamics—both of which are important components in harsh environments where soil organic matter is still scarce. Results To determine possible contributions of fungal endophytes to plant colonization patterns, we surveyed six of the most common woody species on the Pumice Plain of Mount St. Helens (WA, USA; Lawetlat'la in the Cowlitz language; created during the 1980 eruption)—a model primary successional ecosystem—and found low colonization rates (< 15%), low species richness, and low diversity. Furthermore, while endophyte community composition did differ among woody species, we found only marginal evidence of temporal changes in community composition over a single field season (July–September). Conclusions Our results indicate that even after a post-eruption period of 40 years, foliar endophyte communities still seem to be in the early stages of community development, and that the dominant pioneer riparian species Sitka alder (Alnus viridis ssp. sinuata) and Sitka willow (Salix sitchensis) may be serving as important microbial reservoirs for incoming plant colonizers. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-01974-2.
Collapse
Affiliation(s)
- Emily R Wolfe
- Department of Biology, Portland State University, PO Box 751, Portland, OR, 97201, USA.
| | - Robyn Dove
- Department of Biology, Portland State University, PO Box 751, Portland, OR, 97201, USA
| | - Cassandra Webster
- Department of Biology, Portland State University, PO Box 751, Portland, OR, 97201, USA
| | - Daniel J Ballhorn
- Department of Biology, Portland State University, PO Box 751, Portland, OR, 97201, USA
| |
Collapse
|
20
|
Chen J, Sharifi R, Khan MSS, Islam F, Bhat JA, Kui L, Majeed A. Wheat Microbiome: Structure, Dynamics, and Role in Improving Performance Under Stress Environments. Front Microbiol 2022; 12:821546. [PMID: 35095825 PMCID: PMC8793483 DOI: 10.3389/fmicb.2021.821546] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Wheat is an important cereal crop species consumed globally. The growing global population demands a rapid and sustainable growth of agricultural systems. The development of genetically efficient wheat varieties has solved the global demand for wheat to a greater extent. The use of chemical substances for pathogen control and chemical fertilizers for enhanced agronomic traits also proved advantageous but at the cost of environmental health. An efficient alternative environment-friendly strategy would be the use of beneficial microorganisms growing on plants, which have the potential of controlling plant pathogens as well as enhancing the host plant's water and mineral availability and absorption along with conferring tolerance to different stresses. Therefore, a thorough understanding of plant-microbe interaction, identification of beneficial microbes and their roles, and finally harnessing their beneficial functions to enhance sustainable agriculture without altering the environmental quality is appealing. The wheat microbiome shows prominent variations with the developmental stage, tissue type, environmental conditions, genotype, and age of the plant. A diverse array of bacterial and fungal classes, genera, and species was found to be associated with stems, leaves, roots, seeds, spikes, and rhizospheres, etc., which play a beneficial role in wheat. Harnessing the beneficial aspect of these microbes is a promising method for enhancing the performance of wheat under different environmental stresses. This review focuses on the microbiomes associated with wheat, their spatio-temporal dynamics, and their involvement in mitigating biotic and abiotic stresses.
Collapse
Affiliation(s)
- Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, China
| | - Rouhallah Sharifi
- Department of Plant Protection, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | | | - Faisal Islam
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou, China
| | | | - Ling Kui
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Aasim Majeed
- Plant Molecular Genetics Laboratory, School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
21
|
Błaszczyk L, Salamon S, Mikołajczak K. Fungi Inhabiting the Wheat Endosphere. Pathogens 2021; 10:1288. [PMID: 34684238 PMCID: PMC8539314 DOI: 10.3390/pathogens10101288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/22/2023] Open
Abstract
Wheat production is influenced by changing environmental conditions, including climatic conditions, which results in the changing composition of microorganisms interacting with this cereal. The group of these microorganisms includes not only endophytic fungi associated with the wheat endosphere, both pathogenic and symbiotic, but also those with yet unrecognized functions and consequences for wheat. This paper reviews the literature in the context of the general characteristics of endophytic fungi inhabiting the internal tissues of wheat. In addition, the importance of epigenetic regulation in wheat-fungus interactions is recognized and the current state of knowledge is demonstrated. The possibilities of using symbiotic endophytic fungi in modern agronomy and wheat cultivation are also proposed. The fact that the current understanding of fungal endophytes in wheat is based on a rather small set of experimental conditions, including wheat genotypes, plant organs, plant tissues, plant development stage, or environmental conditions, is recognized. In addition, most of the research to date has been based on culture-dependent methods that exclude biotrophic and slow-growing species and favor the detection of fast-growing fungi. Additionally, only a few reports of studies on the entire wheat microbiome using high-throughput sequencing techniques exist. Conducting comprehensive research on the mycobiome of the endosphere of wheat, mainly in the context of the possibility of using this knowledge to improve the methods of wheat management, mainly the productivity and health of this cereal, is needed.
Collapse
Affiliation(s)
- Lidia Błaszczyk
- Department of Plant Microbiomics, Institute of Plant Genetics, Polish Academy of Sciences, 34 Strzeszyńska Street, 60-479 Poznań, Poland; (S.S.); (K.M.)
| | | | | |
Collapse
|
22
|
Durán M, San Emeterio L, Múgica L, Zabalgogeazcoa I, Vázquez de Aldana BR, Canals RM. Disruption of Traditional Grazing and Fire Regimes Shape the Fungal Endophyte Assemblages of the Tall-Grass Brachypodium rupestre. Front Microbiol 2021; 12:679729. [PMID: 34177863 PMCID: PMC8226146 DOI: 10.3389/fmicb.2021.679729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/18/2021] [Indexed: 12/21/2022] Open
Abstract
The plant microbiome is likely to play a key role in the resilience of communities to the global climate change. This research analyses the culturable fungal mycobiota of Brachypodium rupestre across a sharp gradient of disturbance caused by an intense, anthropogenic fire regime. This factor has dramatic consequences for the community composition and diversity of high-altitude grasslands in the Pyrenees. Plants were sampled at six sites, and the fungal assemblages of shoots, rhizomes, and roots were characterized by culture-dependent techniques. Compared to other co-occurring grasses, B. rupestre hosted a poorer mycobiome which consisted of many rare species and a few core species that differed between aerial and belowground tissues. Recurrent burnings did not affect the diversity of the endophyte assemblages, but the percentages of infection of two core species -Omnidemptus graminis and Lachnum sp. -increased significantly. The patterns observed might be explained by (1) the capacity to survive in belowground tissues during winter and rapidly spread to the shoots when the grass starts its spring growth (O. graminis), and (2) the location in belowground tissues and its resistance to stress (Lachnum sp.). Future work should address whether the enhanced taxa have a role in the expansive success of B. rupestre in these anthropized environments.
Collapse
Affiliation(s)
- María Durán
- Grupo de Ecología y Medio Ambiente, Departamento de Agronomía, Biotecnología y Alimentación, Universidad Pública de Navarra, Pamplona, Spain
- Centro Jerónimo de Ayanz, Institute on Innovation & Sustainable Development in Food Chain, Pamplona, Spain
| | - Leticia San Emeterio
- Grupo de Ecología y Medio Ambiente, Departamento de Agronomía, Biotecnología y Alimentación, Universidad Pública de Navarra, Pamplona, Spain
- Centro Jerónimo de Ayanz, Institute on Innovation & Sustainable Development in Food Chain, Pamplona, Spain
| | - Leire Múgica
- Grupo de Ecología y Medio Ambiente, Departamento de Agronomía, Biotecnología y Alimentación, Universidad Pública de Navarra, Pamplona, Spain
- Centro Jerónimo de Ayanz, Institute on Innovation & Sustainable Development in Food Chain, Pamplona, Spain
| | - Iñigo Zabalgogeazcoa
- Instituto de Recursos Naturales y Agrobiología de Salamanca (CSIC), Salamanca, Spain
| | | | - Rosa María Canals
- Grupo de Ecología y Medio Ambiente, Departamento de Agronomía, Biotecnología y Alimentación, Universidad Pública de Navarra, Pamplona, Spain
- Centro Jerónimo de Ayanz, Institute on Innovation & Sustainable Development in Food Chain, Pamplona, Spain
| |
Collapse
|
23
|
Høyer AK, Hodkinson TR. Hidden Fungi: Combining Culture-Dependent and -Independent DNA Barcoding Reveals Inter-Plant Variation in Species Richness of Endophytic Root Fungi in Elymus repens. J Fungi (Basel) 2021; 7:jof7060466. [PMID: 34207673 PMCID: PMC8226481 DOI: 10.3390/jof7060466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 01/04/2023] Open
Abstract
The root endophyte community of the grass species Elymus repens was investigated using both a culture-dependent approach and a direct amplicon sequencing method across five sites and from individual plants. There was much heterogeneity across the five sites and among individual plants. Focusing on one site, 349 OTUs were identified by direct amplicon sequencing but only 66 OTUs were cultured. The two approaches shared ten OTUs and the majority of cultured endophytes do not overlap with the amplicon dataset. Media influenced the cultured species richness and without the inclusion of 2% MEA and full-strength MEA, approximately half of the unique OTUs would not have been isolated using only PDA. Combining both culture-dependent and -independent methods for the most accurate determination of root fungal species richness is therefore recommended. High inter-plant variation in fungal species richness was demonstrated, which highlights the need to rethink the scale at which we describe endophyte communities.
Collapse
|
24
|
Bacterial Endophytes of Spring Wheat Grains and the Potential to Acquire Fe, Cu, and Zn under Their Low Soil Bioavailability. BIOLOGY 2021; 10:biology10050409. [PMID: 34063099 PMCID: PMC8148187 DOI: 10.3390/biology10050409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 11/30/2022]
Abstract
Simple Summary Unmasking the overall endophytic bacteria communities from wheat grains may help to identify and describe the microbial colonization of bread and emmer varieties, their link to the bioactive compounds produced, and their possible role in mineral nutrition. The possibility of using microorganisms to improve the microelemental composition of grain is an important food security concern, as approximately one-third of the human population experiences latent starvation caused by Fe (anemia), Zn, or Cu deficiency. Four wheat varieties from T. aestivum L. and T. turgidum subsp. dicoccum were grown in field conditions with low bioavailability of microelements in the soil. Varietal differences in the yield, yield characteristics, and the grain micronutrient concentrations were compared with the endophytic bacteria isolated from the grains. Twelve different bacterial isolates were obtained that represented the genera Staphylococcus, Pantoea, Sphingobium, Bacillus, Kosakonia, and Micrococcus. All studied strains were able to synthesize indole-related compounds (IRCs) with phytohormonal activity. IRCs produced by the bacterial genera Pantoea spp. and Bacillus spp. isolated from high-yielding Oksamyt myronivs’kyi and Holikovs’ka grains may be considered as one of the determinants of the yield of wheat and its nutritional characteristics. Abstract Wheat grains are usually low in essential micronutrients. In resolving the problem of grain micronutritional quality, microbe-based technologies, including bacterial endophytes, seem to be promising. Thus, we aimed to (1) isolate and identify grain endophytic bacteria from selected spring wheat varieties (bread Oksamyt myronivs’kyi, Struna myronivs’ka, Dubravka, and emmer Holikovs’ka), which were all grown in field conditions with low bioavailability of microelements, and (2) evaluate the relationship between endophytes’ abilities to synthesize auxins and the concentration of Fe, Zn, and Cu in grains. The calculated biological accumulation factor (BAF) allowed for comparing the varietal ability to uptake and transport micronutrients to the grains. For the first time, bacterial endophytes were isolated from grains of emmer wheat T. turgidum subsp. dicoccum. Generally, the 12 different isolates identified in the four varieties belonged to the genera Staphylococcus, Pantoea, Sphingobium, Bacillus, Kosakonia, and Micrococcus (NCBI accession numbers: MT302194—MT302204, MT312840). All the studied strains were able to synthesize the indole-related compounds (IRCs; max: 16.57 µg∙mL−1) detected using the Salkowski reagent. The IRCs produced by the bacterial genera Pantoea spp. and Bacillus spp. isolated from high-yielding Oksamyt myronivs’kyi and Holikovs’ka grains may be considered as one of the determinants of the yield of wheat and its nutritional characteristics.
Collapse
|
25
|
Latz MAC, Kerrn MH, Sørensen H, Collinge DB, Jensen B, Brown JKM, Madsen AM, Jørgensen HJL. Succession of the fungal endophytic microbiome of wheat is dependent on tissue-specific interactions between host genotype and environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143804. [PMID: 33340856 DOI: 10.1016/j.scitotenv.2020.143804] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/12/2020] [Accepted: 10/21/2020] [Indexed: 06/12/2023]
Abstract
Fungi living inside plants affect many aspects of plant health, but little is known about how plant genotype influences the fungal endophytic microbiome. However, a deeper understanding of interactions between plant genotype and biotic and abiotic environment in shaping the plant microbiome is of significance for modern agriculture, with implications for disease management, breeding and the development of biocontrol agents. For this purpose, we analysed the fungal wheat microbiome from seed to plant to seeds and studied how different potential sources of inoculum contributed to shaping of the microbiome. We conducted a large-scale pot experiment with related wheat cultivars over one growth-season in two environments (indoors and outdoors) to disentangle the effects of host genotype, abiotic environment (temperature, humidity, precipitation) and fungi present in the seed stock, air and soil on the succession of the endophytic fungal communities in roots, flag leaves and seeds at harvest. The communities were studied with ITS1 metabarcoding and environmental climate factors were monitored during the experimental period. Host genotype, tissue type and abiotic factors influenced fungal communities significantly. The effect of host genotype was mostly limited to leaves and roots, and was location-independent. While there was a clear effect of plant genotype, the relatedness between cultivars was not reflected in the microbiome. For the phyllosphere microbiome, location-dependent weather conditions factors largely explained differences in abundance, diversity, and presence of genera containing pathogens, whereas the root communities were less affected by abiotic factors. Our findings suggest that airborne fungi are the primary inoculum source for fungal communities in aerial plant parts whereas vertical transmission is likely to be insignificant. In summary, our study demonstrates that host genotype, environment and presence of fungi in the environment shape the endophytic fungal community in wheat over a growing season.
Collapse
Affiliation(s)
- Meike A C Latz
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark.
| | - Mads Herbert Kerrn
- Data Science Lab, Department of Mathematical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Helle Sørensen
- Data Science Lab, Department of Mathematical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - David B Collinge
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark.
| | - Birgit Jensen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark.
| | - James K M Brown
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Anne Mette Madsen
- The National Research Centre for the Working Environment, 2100 Copenhagen, Denmark.
| | - Hans Jørgen Lyngs Jørgensen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark.
| |
Collapse
|
26
|
Tian B, Xie J, Fu Y, Cheng J, Li B, Chen T, Zhao Y, Gao Z, Yang P, Barbetti MJ, Tyler BM, Jiang D. A cosmopolitan fungal pathogen of dicots adopts an endophytic lifestyle on cereal crops and protects them from major fungal diseases. THE ISME JOURNAL 2020; 14:3120-3135. [PMID: 32814863 PMCID: PMC7784893 DOI: 10.1038/s41396-020-00744-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/30/2020] [Accepted: 08/07/2020] [Indexed: 11/09/2022]
Abstract
Fungal pathogens are seriously threatening food security and natural ecosystems; efficient and environmentally friendly control methods are essential to help safeguard such resources for increasing human populations on a global scale. Here, we find that Sclerotinia sclerotiorum, a widespread pathogen of dicotyledons, can grow endophytically in wheat, rice, barley, maize, and oat, providing protection against Fusarium head blight, stripe rust, and rice blast. Protection is also provided by disabled S. sclerotiorum strains harboring a hypovirulence virus. The disabled strain DT-8 promoted wheat yields by 4-18% in the field and consistently reduced Fusarium disease by 40-60% across multiple field trials. We term the host-dependent trophism of S. sclerotiorum, destructively pathogenic or mutualistically endophytic, as schizotrophism. As a biotroph, S. sclerotiorum modified the expression of wheat genes involved in disease resistance and photosynthesis and increased the level of IAA. Our study shows that a broad-spectrum pathogen of one group of plants may be employed as a biocontrol agent in a different group of plants where they can be utilized as beneficial microorganisms while avoiding the risk of in-field release of pathogens. Our study also raises provocative questions about the potential role of schizotrophic endophytes in natural ecosystems.
Collapse
Affiliation(s)
- Binnian Tian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Tao Chen
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Ying Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zhixiao Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Puyun Yang
- National Agro-Technical Extension and Service Center, Ministry of Agriculture and Rural Affairs, Beijing, China
- Research and Extension Unit, Agriculture and Consumer Protection Department, Food and Agriculture Organisation of the United Nations, Rome, Italy
| | - Martin J Barbetti
- The UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Brett M Tyler
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
27
|
Kerdraon L, Barret M, Balesdent M, Suffert F, Laval V. Impact of a resistance gene against a fungal pathogen on the plant host residue microbiome: The case of the Leptosphaeria maculans-Brassica napus pathosystem. MOLECULAR PLANT PATHOLOGY 2020; 21:1545-1558. [PMID: 32975002 PMCID: PMC7694673 DOI: 10.1111/mpp.12994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/20/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Oilseed rape residues are a crucial determinant of stem canker epidemiology as they support the sexual reproduction of the fungal pathogen Leptosphaeria maculans. The aim of this study was to characterize the impact of a resistance gene against L. maculans infection on residue microbial communities and to identify microorganisms interacting with this pathogen during residue degradation. We used near-isogenic lines to obtain healthy and infected host plants. The microbiome associated with the two types of plant residues was characterized by metabarcoding. A combination of linear discriminant analysis and ecological network analysis was used to compare the microbial communities and to identify microorganisms interacting with L. maculans. Fungal community structure differed between the two lines at harvest, but not subsequently, suggesting that the presence/absence of the resistance gene influences the microbiome at the base of the stem whilst the plant is alive, but that this does not necessarily lead to differential colonization of the residues by fungi. Direct interactions with other members of the community involved many fungal and bacterial amplicon sequence variants (ASVs). L. maculans appeared to play a minor role in networks, whereas one ASV affiliated to Plenodomus biglobosus (synonym Leptosphaeria biglobosa) from the Leptosphaeria species complex may be considered a keystone taxon in the networks at harvest. This approach could be used to identify and promote microorganisms with beneficial effects against residue-borne pathogens and, more broadly, to decipher the complex interactions between multispecies pathosystems and other microbial components in crop residues.
Collapse
Affiliation(s)
- Lydie Kerdraon
- Université Paris‐SaclayINRAE, UMR BIOGERThiverval‐GrignonFrance
| | | | | | | | - Valérie Laval
- Université Paris‐SaclayINRAE, UMR BIOGERThiverval‐GrignonFrance
| |
Collapse
|
28
|
Alfonzo A, Sicard D, Di Miceli G, Guezenec S, Settanni L. Ecology of yeasts associated with kernels of several durum wheat genotypes and their role in co-culture with Saccharomyces cerevisiae during dough leavening. Food Microbiol 2020; 94:103666. [PMID: 33279089 DOI: 10.1016/j.fm.2020.103666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 10/23/2022]
Abstract
This work was performed to investigate on the yeast ecology of durum wheat to evaluate the interaction between kernel yeasts and the commercial baker's yeast Saccharomyces cerevisiae during dough leavening. Yeast populations were studied in 39 genotypes of durum wheat cultivated in Sicily. The highest level of kernel yeasts was 2.9 Log CFU/g. A total of 413 isolates was collected and subjected to phenotypic and genotypic characterization. Twenty-three yeast species belonging to 11 genera have been identified. Filobasidium oeirense, Sporobolomyces roseus and Aureobasidium pullulans were the species most commonly found in durum wheat kernels. Doughs were co-inoculated with yeasts isolated from wheat kernels and commercial Saccharomyces cerevisiae, in order to evaluate the interactions between yeasts and the leavening performance. Yeast populations of all doughs have been monitored as well as dough volume increase and weight loss (as CO2) measured after 2 h of fermentation. The doughs whose final volume was higher than control dough (inoculated exclusively with S. cerevisiae) were those inoculated with Naganishia albida, Vishniacozyma dimennae (118 mL each), and Candida parapsilosis (102 mL). The weight losses were variable, depending on the co-culture used with S. cerevisiae and the values were in the range of 0.08-1.00 g CO2/100 g. The kernel yeasts species C. parapsilosis, N. albida, P. terrestris, R. mucilaginosa and V. dimennae deserves future attention to be co-inoculated with the commercial starter S. cerevisiae in order to improve the sensory characteristics of bread.
Collapse
Affiliation(s)
- Antonio Alfonzo
- Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128, Palermo, Italy.
| | - Delphine Sicard
- SPO, University Montpellier, INRAE, Montpellier Supagro, 34060, Montpellier, France
| | - Giuseppe Di Miceli
- Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128, Palermo, Italy
| | - Stéphane Guezenec
- SPO, University Montpellier, INRAE, Montpellier Supagro, 34060, Montpellier, France
| | - Luca Settanni
- Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128, Palermo, Italy
| |
Collapse
|
29
|
Salamon S, Mikołajczak K, Błaszczyk L, Ratajczak K, Sulewska H. Changes in root-associated fungal communities in Triticum aestivum ssp. spelta L. and Triticum aestivum ssp. vulgare L. under drought stress and in various soil processing. PLoS One 2020; 15:e0240037. [PMID: 33021992 PMCID: PMC7537893 DOI: 10.1371/journal.pone.0240037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/17/2020] [Indexed: 11/19/2022] Open
Abstract
Plant roots are inhabited by an enormous variety of microorganisms, including fungi, which can control the growth as well as regulate the health of the host plants. The mycobiome composition of the roots of wheat plants, especially spelt, under drought stress has been rarely investigated. Therefore, the aim of the present study was to examine the composition of fungal communities in the root endosphere and rhizosphere of three Triticum aestivum ssp. spelta L. cultivars and one Triticum aestivum ssp. vulgare L. cultivar, grown under drought and controlled conditions in different soil preparations. Culture-dependent fungal community profiling was performed to examine the impact of rhizocompartments (endosphere, rhizosphere), host genotype, watering status and different soil preparation on roots mycobiome structure. A total of 117 fungal strains, belonging to 22 genera, were found to colonize the internal and external parts of roots in T. aestivum ssp. spelta L. and T. aestivum ssp. vulgare L. cultivars. The results showed that the part of root and soil preparation type significantly determined the mycobiome composition of wheat roots.
Collapse
Affiliation(s)
- Sylwia Salamon
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Katarzyna Mikołajczak
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Lidia Błaszczyk
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Karolina Ratajczak
- Department of Agronomy, Poznan University of Life Sciences, Poznan, Poland
| | - Hanna Sulewska
- Department of Agronomy, Poznan University of Life Sciences, Poznan, Poland
| |
Collapse
|
30
|
Development of high-resolution melting PCR (HRM-PCR) assay to identify native fungal species associated with the wheat endosphere. J Appl Genet 2020; 61:629-635. [PMID: 32829472 PMCID: PMC7652797 DOI: 10.1007/s13353-020-00578-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/09/2020] [Accepted: 08/18/2020] [Indexed: 12/03/2022]
Abstract
Understanding the complexity and biodiversity of fungal communities associated with the wheat endosphere can facilitate the identification of novel strains that might be beneficial to the host plant. However, the differentiation and taxonomic classification of the endosphere-associated fungi with respect to various cultivars and plant organs are challenging, time-consuming, and expensive, even with the use of molecular techniques. In the present work, we describe a fast, simple, and low-cost method based on high-resolution melting PCR (HRM-PCR) for the identification and differentiation of wheat endogenous fungal isolates. Using this approach, we differentiated 28 fungal isolates, which belonged to five different genera, namely Alternaria, Penicillium, Epicoccum, Fusarium, and Trichoderma. Furthermore, the results of the study revealed that this method can allow large-scale screening of cultured samples.
Collapse
|
31
|
Adeleke BS, Babalola OO. The endosphere microbial communities, a great promise in agriculture. Int Microbiol 2020; 24:1-17. [PMID: 32737846 DOI: 10.1007/s10123-020-00140-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022]
Abstract
Agricultural food production and sustainability need intensification to address the current global food supply to meet human demand. The continuous human population increase and other anthropogenic activities threaten food security. Agrochemical inputs have long been used in conventional agricultural systems to boost crop productivity, but they are disadvantageous to a safe environment. Towards developing environmentally friendly agriculture, efforts are being directed in exploring biological resources from soil and plant microbes. The survival of the rhizosphere and endosphere microbiota is influenced by biotic and abiotic factors. Plant microbiota live interdependently with the host plants. Endophytes are regarded as colonizer microbes inhabiting and establishing microbial communities within the plant tissue. Their activities are varied and include fixing atmospheric nitrogen, solubilizing phosphate, synthesis of siderophores, secretion of metabolite-like compounds containing active biocontrol agents in the control of phytopathogens, and induced systemic resistance that stimulates plant response to withstand stress. Exploring beneficial endophyte resources in the formulation of bio-inoculants, such as biofertilizers, as an alternative to agrochemicals (fertilizers and pesticides) in developing environmentally friendly agriculture and for incorporation into crop breeding and disease control program is promising. Therefore, in this review, endosphere microbial ecology, associating environmental factors, and their roles that contribute to their effectiveness in promoting plant growth for maximum agricultural crop productivity were highlighted.
Collapse
Affiliation(s)
- Bartholomew Saanu Adeleke
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
| |
Collapse
|
32
|
Malik A, Butt TA, Naqvi STA, Yousaf S, Qureshi MK, Zafar MI, Farooq G, Nawaz I, Iqbal M. Lead tolerant endophyte Trametes hirsuta improved the growth and lead accumulation in the vegetative parts of Triticum aestivum L. Heliyon 2020; 6:e04188. [PMID: 32671237 PMCID: PMC7339007 DOI: 10.1016/j.heliyon.2020.e04188] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/19/2020] [Accepted: 06/08/2020] [Indexed: 12/27/2022] Open
Abstract
Rapid industrialization and increasing population are continuously adding contaminants to our environment. Among those, heavy metals are considered to be one of the serious threats to the ecosystem due to their persistent nature. Microbe assisted phytoremediation is an effective tool for metal remediation as microbes enhance the metal availability and uptake to the host plants or reduce it by binding them intracellularly or extracellularly. An endophytic fungus, Trametes hirsuta, was isolated from Chenopodium album L. plant growing in the lead (Pb) contaminated soil of an industrial area. This is the first study citing Trametes hirsuta, as a root endophyte of Chenopodium album L. This endophytic fungus was found to be tolerant to high concentration of Pb i.e., 1500 mg L-1, when tested in-vitro. Wheat (Triticum aestivum L.) seedlings were infected by Trametes hirsuta and Pb tolerance was observed. With the fungal inoculation plants cumulative growth and total chlorophyll content increased by 24% and 18%, respectively as compared to their respective non-inoculated controls at 1000 mg kg-1 Pb. Similary, 50% more Pb accumulation was measured in the shoots of fungal inoculated plants at 1500 mg kg-1 Pb as compared to control. Thus, the results of the present study suggest that mutualism with endophytic fungi can improve the survival of host plants in metal contaminated soils, additionally it can also assist the phytoextraction of heavy metals from polluted sites by increasing their uptake by the host plants.
Collapse
Affiliation(s)
- Amna Malik
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Tayyab Ashfaq Butt
- Department of Civil Engineering, College of Engineering, University of Hail, Hail, Saudi Arabia
| | - Syed Tatheer Alam Naqvi
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Sohail Yousaf
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Mazhar Iqbal Zafar
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ghazanfar Farooq
- Department of Computer Sciences, Faculty of Natural Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ismat Nawaz
- Department of Bio Sciences, COMSATS University Islamabad, Islamabad, 45550, Pakistan
| | - Mazhar Iqbal
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
33
|
Rojas EC, Sapkota R, Jensen B, Jørgensen HJL, Henriksson T, Jørgensen LN, Nicolaisen M, Collinge DB. Fusarium Head Blight Modifies Fungal Endophytic Communities During Infection of Wheat Spikes. MICROBIAL ECOLOGY 2020; 79:397-408. [PMID: 31448388 PMCID: PMC7033075 DOI: 10.1007/s00248-019-01426-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 08/13/2019] [Indexed: 05/29/2023]
Abstract
Fusarium head blight (FHB) is a devastating disease of wheat heads. It is caused by several species from the genus Fusarium. Several endophytic fungi also colonize wheat spikes asymptomatically. Pathogenic and commensal fungi share and compete for the same niche and thereby influence plant performance. Understanding the natural dynamics of the fungal community and how the pre-established species react to pathogen attack can provide useful information on the disease biology and the potential use of some of these endophytic organisms in disease control strategies. Fungal community composition was assessed during anthesis as well as during FHB attack in wheat spikes during 2016 and 2017 in two locations. Community metabarcoding revealed that endophyte communities are dominated by basidiomycete yeasts before anthesis and shift towards a more opportunistic ascomycete-rich community during kernel development. These dynamics are interrupted when Fusarium spp. colonize wheat spikes. The Fusarium pathogens appear to exclude other fungi from floral tissues as they are associated with a reduction in community diversity, especially in the kernel which they colonize rapidly. Similarly, the presence of several endophytes was negatively correlated with Fusarium spp. and linked with spikes that stayed healthy despite exposure to the pathogen. These endophytes belonged to the genera Cladosporium, Itersonillia and Holtermanniella. These findings support the hypothesis that some naturally occurring endophytes could outcompete or prevent FHB and represent a source of potential biological control agents in wheat.
Collapse
Affiliation(s)
- Edward C Rojas
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences & Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark.
| | - Rumakanta Sapkota
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - Birgit Jensen
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences & Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Hans J L Jørgensen
- Section for Plant and Soil Science, Department of Plant and Environmental Sciences & Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | | | - Lise Nistrup Jørgensen
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - Mogens Nicolaisen
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - David B Collinge
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences & Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| |
Collapse
|
34
|
Kobayashi K, Aoyagi H. Microbial community structure analysis in Acer palmatum bark and isolation of novel bacteria IAD-21 of the candidate division FBP. PeerJ 2019; 7:e7876. [PMID: 31681511 PMCID: PMC6824334 DOI: 10.7717/peerj.7876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 09/12/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The potential of unidentified microorganisms for academic and other applications is limitless. Plants have diverse microbial communities associated with their biomes. However, few studies have focused on the microbial community structure relevant to tree bark. METHODS In this report, the microbial community structure of bark from the broad-leaved tree Acer palmatum was analyzed. Both a culture-independent approach using polymerase chain reaction (PCR) amplification and next generation sequencing, and bacterial isolation and sequence-based identification methods were used to explore the bark sample as a source of previously uncultured microorganisms. Molecular phylogenetic analyses based on PCR-amplified 16S rDNA sequences were performed. RESULTS At the phylum level, Proteobacteria and Bacteroidetes were relatively abundant in the A. palmatum bark. In addition, microorganisms from the phyla Acidobacteria, Gemmatimonadetes, Verrucomicrobia, Armatimonadetes, and candidate division FBP, which contain many uncultured microbial species, existed in the A. palmatum bark. Of the 30 genera present at relatively high abundance in the bark, some genera belonging to the phyla mentioned were detected. A total of 70 isolates could be isolated and cultured using the low-nutrient agar media DR2A and PE03. Strains belonging to the phylum Actinobacteria were isolated most frequently. In addition, the newly identified bacterial strain IAP-33, presumed to belong to Acidobacteria, was isolated on PE03 medium. Of the isolated bacteria, 44 strains demonstrated less than 97% 16S rDNA sequence-similarity with type strains. Molecular phylogenetic analysis of IAD-21 showed the lowest similarity (79%), and analyses suggested it belongs to candidate division FBP. Culture of the strain IAD-21 was deposited in Japan Collection of Microorganisms (JCM) and Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ) as JCM 32665 and DSM 108248, respectively. DISCUSSION Our results suggest that a variety of uncultured microorganisms exist in A. palmatum bark. Microorganisms acquirable from the bark may prove valuable for academic pursuits, such as studying microbial ecology, and the bark might be a promising source of uncultured bacterial isolates.
Collapse
Affiliation(s)
- Kazuki Kobayashi
- Division of Life Sciences and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hideki Aoyagi
- Division of Life Sciences and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
35
|
Dai Y, Yang F, Zhang L, Xu Z, Fan X, Tian Y, Wang T. Wheat-associated microbiota and their correlation with stripe rust reaction. J Appl Microbiol 2019; 128:544-555. [PMID: 31606919 DOI: 10.1111/jam.14486] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/17/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022]
Abstract
AIMS This study was aimed at revealing the composition of microbiota in leaves, roots and rhizosphere soil of wheat plants that are resistant or susceptible to stripe rust, one of the most widely destructive leaf diseases in wheat production. METHODS AND RESULTS A total of 36 wheat plants that showed resistant or susceptible reactions to stripe rust were sampled. Three compartments of each plant including leaves, roots and rhizosphere soil were used for whole-genomic DNA extraction and the DNA samples were subjected to high-throughput 16S rRNA gene sequencing. A total of 2885 operational taxonomic units (OTUs) were revealed from the sequencing, and they mainly distributed in the phylum of Proteobacteria. Twenty-nine OTUs formed the core microbiota of wheat plants. The differences between above- and below-ground environments could explain most of the dissimilarity of wheat-associated microbial communities. Therefore, those microbes that were able to adapt to the above-ground (leaf) environment might be more important resources for biocontrol agents against stripe rust, and they could be from genera Hymenobacter, Flavobacterium, Chitinophage, Flavisolibacter, Niastella, Mucilaginibacter, Pedobacter, Aquincola, Massilia, Citrobacter, Cronobacter, Ewingella, Acinetobacter and Pseudomonas. No matter the microbial taxa were significantly selected by the resistant or susceptible wheat plants, they contained the members with plant growth promoting (PGP) features and could be used as potential biocontrol agents to reduce stripe rust damage. CONCLUSIONS The core microbiota associated with wheat plants and microbial taxa that were significantly correlated with reactions to stripe rust were identified in this study. SIGNIFICANCE AND IMPACT OF THE STUDY Few studies had been done on the microbiota associated with wheat so far. Our study will not only provide fundamental knowledge about the composition of wheat-associated microbiota but also reveal the microbial taxa that have the potential to be integrated into the strategy of stripe rust management.
Collapse
Affiliation(s)
- Y Dai
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Sichuan, China
| | - F Yang
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Sichuan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - L Zhang
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Sichuan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Z Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Sichuan, China
| | - X Fan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Sichuan, China
| | - Y Tian
- Laboratory of Leather Chemistry and Engineering, College of Light Industry, Textile & Food Engineering, Sichuan University, Chengdu, Sichuan, China
| | - T Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Sichuan, China
| |
Collapse
|
36
|
Bakker MG, McCormick SP. Microbial Correlates of Fusarium Load and Deoxynivalenol Content in Individual Wheat Kernels. PHYTOPATHOLOGY 2019; 109:993-1002. [PMID: 30714884 DOI: 10.1094/phyto-08-18-0310-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Characteristics or constituents of plant-associated microbiomes may assist in constraining disease development. To investigate this possibility for the wheat-Fusarium head blight pathosystem, we assessed seed weight, pathogen load, deoxynivalenol content, and microbiome profiles for individual wheat kernels collected over 2 years from a disease-conducive environment. We found that the microbiomes of individual, hulled wheat kernels consist of dozens to greater than a hundred bacterial taxa and up to several dozen fungal taxa, and that year-to-year variation in microbiome structure was large. Measures of microbial community diversity were negatively correlated with measures of disease severity, and had significant power to explain variation in pathogen load among seeds. Several operational taxonomic units belonging to the genus Sphingomonas demonstrated particularly strong negative relationships with pathogen load. This study illuminates the composition of microbiomes associated with wheat kernels under disease-conducive field conditions, and suggests relationships between microbiome characteristics and Fusarium head blight that warrant further study.
Collapse
Affiliation(s)
- Matthew G Bakker
- United States Department of Agriculture-Agricultural Research Service, Mycotoxin Prevention & Applied Microbiology, Peoria, IL 61604
| | - Susan P McCormick
- United States Department of Agriculture-Agricultural Research Service, Mycotoxin Prevention & Applied Microbiology, Peoria, IL 61604
| |
Collapse
|
37
|
Solanki MK, Abdelfattah A, Britzi M, Zakin V, Wisniewski M, Droby S, Sionov E. Shifts in the Composition of the Microbiota of Stored Wheat Grains in Response to Fumigation. Front Microbiol 2019; 10:1098. [PMID: 31156603 PMCID: PMC6533538 DOI: 10.3389/fmicb.2019.01098] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/30/2019] [Indexed: 01/21/2023] Open
Abstract
While the wheat-associated microbiome is of major agricultural importance, little is known about the alterations in wheat grain microbial community composition during storage. Characterization of the bacterial and fungal communities in stored wheat grains revealed the impact of phosphine fumigation, one of the most effective methods to eliminate insects in stored commodities, on the composition of the wheat grain microbiome. High-throughput amplicon sequencing of the bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) region was used to analyze the wheat grain microbiome at different times over as 6 months period of storage. Higher bacterial diversity was found across the samples during the first (immediately after harvest) and second (3 months later) time points, with a predominance of Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and Planctomycetes. A two-fold decrease in the number of bacterial operational taxonomic units (OTUs) was observed in wheat grains at the last time point (6 months later), following phosphine treatment. In contrast to the effect of phosphine on bacteria, it did not affect fungal diversity in stored grains. The majority of fungal sequences were assigned to Ascomycota, followed by Basidiomycota, Glomeromycota, and unidentified fungi, which were evenly distributed throughout the storage period. Alpha and beta diversity analyses were confirmed by examination of the cultured microbial taxa obtained from the stored wheat grains. Mycotoxin analysis of wheat grains collected after phosphine fumigation revealed the presence of Fusarium toxins, primarily deoxynivalenol (DON). Several mycotoxigenic Fusarium spp. were also detected in the same samples. Results of the present study indicate that microbiome of stored, whole wheat grains was strongly affected by phosphine fumigation, which changed the structure of the microbial community leading to shifts in species composition toward mycotoxigenic strains. A better understanding of the complex interactions within the microbial communities of stored grains will assist in the development of novel biocontrol strategies to overcome mycotoxin contamination.
Collapse
Affiliation(s)
- Manoj Kumar Solanki
- Institute of Postharvest and Food Sciences, Agricultural Research Organization – The Volcani Center, Rishon LeZion, Israel
| | - Ahmed Abdelfattah
- Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, Calabria, Italy
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Malka Britzi
- National Residue Control Laboratory, Kimron Veterinary Institute, Beit Dagan, Israel
| | - Varda Zakin
- Institute of Postharvest and Food Sciences, Agricultural Research Organization – The Volcani Center, Rishon LeZion, Israel
| | - Michael Wisniewski
- United States Department of Agriculture, Agricultural Research Service, Kearneysville, WV, United States
| | - Samir Droby
- Institute of Postharvest and Food Sciences, Agricultural Research Organization – The Volcani Center, Rishon LeZion, Israel
| | - Edward Sionov
- Institute of Postharvest and Food Sciences, Agricultural Research Organization – The Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
38
|
Assessment of Plant Growth Promoting and Abiotic Stress Tolerance Properties of Wheat Endophytic Fungi. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6105865. [PMID: 31032353 PMCID: PMC6457323 DOI: 10.1155/2019/6105865] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/22/2019] [Accepted: 03/06/2019] [Indexed: 12/01/2022]
Abstract
The aims of the present work were to isolate and characterize fungal endophytic communities associated with healthy wheat (Triticum aestivum L.) plants, collected from the North China. Segregated endophytes were screened for their PGP traits, abiotic stresses (heavy metals, salinity, drought, and temperature), and antibiotic sensitivity. A total of 16 endophytic fungi were isolated using the culture-dependent approach from different tissue parts of wheat plants. Based upon their internal transcribed spacer (ITS) rDNA gene sequencing, 15 out of 16 isolates were selected for further analysis. In the contemporary investigation, a number of the tested endophytes exhibited fairly good 1-aminocyclopropane-1-carboxylic acid deaminase (ACCD) (0.03±0.011 to 1.43±0.01 µmol α-KB mg−1 protein hr−1), indole acetic acid (IAA) (1.125±0.04 to36.12±0.004µgml−1), and phosphate solubilizing index (PSI) (2.08±0.03to5.16±0.36) activities. More than 30% isolates gave positive result for siderophore and ammonia tests, whereas all exhibited catalase activity but only 2 (582PDA1 and 582PDA11) produced hydrogen cyanide. Trichoderma strains showed salt, heavy metals, and drought tolerance at high levels and also exhibited resistance to all the tested antibiotics. Strain 582PDA4 was found to be the most temperature (55°C) tolerant isolate. The findings of this study indicated that the microbial endophytes isolated from wheat plants possessing a crucial function to improve plant growth could be utilized as biofertilizers or bioagents to establish a sustainable crop production system.
Collapse
|
39
|
Stevanović M, Ristić D, Živković S, Aleksić G, Stanković I, Krstić B, Bulajić A. Characterization of Gnomoniopsis idaeicola, the Causal Agent of Canker and Wilting of Blackberry in Serbia. PLANT DISEASE 2019; 103:249-258. [PMID: 30474496 DOI: 10.1094/pdis-03-18-0516-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Blackberry cane diseases with the symptoms of necrosis, canker, and wilting are caused by several fungi worldwide. Surveys conducted from 2013 to 2016 in Serbia revealed the occurrence of Gnomoniopsis idaeicola, the causal agent of cane canker and wilting, which was found to be distributed in almost half of the surveyed orchards, in three blackberry cultivars, and with disease incidence of up to 80%. Wide distribution and high disease incidence suggest that G. idaeicola has been present in Serbia for some time. Out of 427 samples, a total of 65 G. idaeicola isolates were obtained (isolation rate of 34.19%). Reference isolates, originating from different localities, were conventionally and molecularly identified and characterized. G. idaeicola was detected in single and mixed infections with fungi from genera Paraconiothyrium, Colletotrichum, Diaporthe, Botryosphaeria, Botrytis, Septoria, Neofusicoccum, and Discostroma, and no diagnostically specific symptoms could be related directly to the G. idaeicola infection. In orchards solely infected with G. idaeicola, blackberry plant mortality was up to 40%, and yield loses were estimated at 50%. G. idaeicola isolates included in this study demonstrated intraspecies diversity in morphological, biological, pathogenic, and molecular features, which indicates that population in Serbia may be of different origin. This is the first record of a massive outbreak of G. idaeicola infection, illustrating its capability of harmful influence on blackberry production. This study represents the initial step in studying G. idaeicola as a new blackberry pathogen in Serbia, aiming at developing efficient control measures.
Collapse
Affiliation(s)
- Miloš Stevanović
- Department of Plant Diseases, Institute for Plant Protection and Environment, 11000 Belgrade, Serbia
| | - Danijela Ristić
- Department of Plant Diseases, Institute for Plant Protection and Environment, 11000 Belgrade, Serbia
| | - Svetlana Živković
- Department of Plant Diseases, Institute for Plant Protection and Environment, 11000 Belgrade, Serbia
| | - Goran Aleksić
- Department of Plant Diseases, Institute for Plant Protection and Environment, 11000 Belgrade, Serbia
| | - Ivana Stanković
- Institute of Phytomedicine, Department of Phytopathology, University of Belgrade - Faculty of Agriculture, 11080 Belgrade, Serbia
| | - Branka Krstić
- Institute of Phytomedicine, Department of Phytopathology, University of Belgrade - Faculty of Agriculture, 11080 Belgrade, Serbia
| | - Aleksandra Bulajić
- Institute of Phytomedicine, Department of Phytopathology, University of Belgrade - Faculty of Agriculture, 11080 Belgrade, Serbia
| |
Collapse
|
40
|
Sapkota R, Jørgensen LN, Nicolaisen M. Spatiotemporal Variation and Networks in the Mycobiome of the Wheat Canopy. FRONTIERS IN PLANT SCIENCE 2017; 8:1357. [PMID: 28824687 PMCID: PMC5539183 DOI: 10.3389/fpls.2017.01357] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/20/2017] [Indexed: 05/24/2023]
Abstract
The phyllosphere is an important habitat for a diverse microbiome and an important entry point for many pathogens. Factors that shape the phyllosphere microbiome and also the co-existence among members and how they affect disease development are largely understudied. In this study we examined the wheat mycobiome by using metabarcoding of the fungal ITS1 region. Leaf samples were taken from four cultivars grown at two locations in Denmark. Samples were taken from the three uppermost leaves and at three growth stages to better understand spatiotemporal variation of the mycobiome. Analysis of read abundances showed that geographical location had a major effect in shaping the mycobiome in the total dataset, but also leaf position, growth stage and cultivar were important drivers of fungal communities. Cultivar was most important in explaining variation in older leaves whereas location better explained the variation in younger leaves, suggesting that communities are shaped over time by the leaf environment. Network analysis revealed negative co-existence between Zymoseptoria tritici and the yeasts Sporobolomyces, Dioszegia, and Cystofilobasidiaceae. The relative abundance of Z. tritici and the yeasts was relatively constant between individual samples, suggesting that fast growing fungi rapidly occupy empty space in the phyllosphere.
Collapse
|
41
|
Evaluation of antifungal, phosphate solubilisation, and siderophore and chitinase release activities of endophytic fungi from Pistacia vera. Mycol Prog 2017. [DOI: 10.1007/s11557-017-1315-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
42
|
Comby M, Gacoin M, Robineau M, Rabenoelina F, Ptas S, Dupont J, Profizi C, Baillieul F. Screening of wheat endophytes as biological control agents against Fusarium head blight using two different in vitro tests. Microbiol Res 2017. [PMID: 28647118 DOI: 10.1016/j.micres.2017.04.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In order to find biological control agents (BCAs) for the management of Fusarium head blight (FHB), a major disease on wheat crops worldwide, 86 microorganisms isolated from inner tissues of wheat plants were discriminated for their ability to inhibit the growth of Fusarium graminearum and Fusarium culmorum by in vitro dual culture assays. A group of 22 strains appeared very effective to inhibit F. graminearum (inhibition of 30-51%) and they were also globally effective in controlling F. culmorum (inhibition of 15-53%). Further evaluation of a subselection of strains by screening on detached spikelets in vitro confirmed three species, namely Phoma glomerata, Aureobasidium proteae and Sarocladium kiliense, that have not yet been reported for their efficacy against Fusarium spp., indicating that looking for BCAs toward FHB among wheat endophytes proved to be promising. The efficacy of some strains turned out different between both in vitro screening approaches, raising the importance of finding the most appropriate screening approach for the search of BCAs. This study pointed out the interest of the test on detached wheat spikelets that provided information about a potential pathogenicity, the growth capacity and efficacy of the endophyte strains on the targeted plant, before testing them on whole plants.
Collapse
Affiliation(s)
- Morgane Comby
- Institut de Systématique, Evolution et Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum national d'histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP39, 75005 Paris, France; Soufflet Biotechnologies, Quai Sarrail, 10400 Nogent-sur-Seine, France; Laboratoire de Stress, Défenses et Reproduction des Plantes - EA 4707, Faculté des Sciences, Moulin de la Housse, BP 1039, 51687 Reims cedex 2, France
| | - Marie Gacoin
- Soufflet Biotechnologies, Quai Sarrail, 10400 Nogent-sur-Seine, France
| | - Mathilde Robineau
- Soufflet Biotechnologies, Quai Sarrail, 10400 Nogent-sur-Seine, France
| | - Fanja Rabenoelina
- Laboratoire de Stress, Défenses et Reproduction des Plantes - EA 4707, Faculté des Sciences, Moulin de la Housse, BP 1039, 51687 Reims cedex 2, France
| | - Sébastien Ptas
- Soufflet Biotechnologies, Quai Sarrail, 10400 Nogent-sur-Seine, France
| | - Joëlle Dupont
- Institut de Systématique, Evolution et Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum national d'histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP39, 75005 Paris, France
| | - Camille Profizi
- Soufflet Biotechnologies, Quai Sarrail, 10400 Nogent-sur-Seine, France.
| | - Fabienne Baillieul
- Laboratoire de Stress, Défenses et Reproduction des Plantes - EA 4707, Faculté des Sciences, Moulin de la Housse, BP 1039, 51687 Reims cedex 2, France
| |
Collapse
|
43
|
Gan H, Churchill ACL, Wickings K. Invisible but consequential: root endophytic fungi have variable effects on belowground plant-insect interactions. Ecosphere 2017. [DOI: 10.1002/ecs2.1710] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Huijie Gan
- Department of Entomology; NY State Agricultural Experiment Station; Cornell University; Geneva New York 14456 USA
| | - Alice C. L. Churchill
- Plant Pathology and Plant-Microbe Biology Section; School of Integrative Plant Science; Cornell University; Ithaca New York 14853 USA
| | - Kyle Wickings
- Department of Entomology; NY State Agricultural Experiment Station; Cornell University; Geneva New York 14456 USA
| |
Collapse
|
44
|
Yokoya K, Postel S, Fang R, Sarasan V. Endophytic fungal diversity of Fragaria vesca, a crop wild relative of strawberry, along environmental gradients within a small geographical area. PeerJ 2017; 5:e2860. [PMID: 28168102 PMCID: PMC5289447 DOI: 10.7717/peerj.2860] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/03/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Fungal endophytes are highly diverse ubiquitous asymptomatic microorganisms, some of which appear to be symbiotic. Depending on abiotic conditions and genotype of the plant, the diversity of endophytes may confer fitness benefits to plant communities. METHODS We studied a crop wild relative (CWR) of strawberry, along environmental gradients with a view to understand the cultivable root-derived endophytic fungi that can be evaluated for promoting growth and tolerating stress in selected plant groups. The main objectives were to understand whether: (a) suboptimal soil types are drivers for fungal distribution and diversity; (b) high pH and poor nutrient availability lead to fungal-plant associations that help deliver fitness benefits; and (c) novel fungi can be identified for their use in improving plant growth, and alleviate stress in diverse crops. RESULTS The study revealed that habitats with high pH and low nutrient availability have higher fungal diversity, with more rare fungi isolated from locations with chalky soil. Plants from location G were the healthiest even though soil from this location was the poorest in nutrients. Study of environmental gradients, especially extreme habitat types, may help understand the root zone fungal diversity of different functional classes. Two small in vitro pilot studies conducted with two isolates showed that endophytic fungi from suboptimal habitats can promote plant growth and fitness benefits in selected plant groups. DISCUSSION Targeting native plants and crop wild relatives for research offers opportunities to unearth diverse functional groups of root-derived endophytic fungi that are beneficial for crops.
Collapse
Affiliation(s)
- Kazutomo Yokoya
- Natural Capital and Plant Health, Royal Botanic Gardens Kew , Richmond , Surrey , United Kingdom
| | - Sarah Postel
- Natural Capital and Plant Health, Royal Botanic Gardens Kew , Richmond , Surrey , United Kingdom
| | - Rui Fang
- Natural Capital and Plant Health, Royal Botanic Gardens Kew , Richmond , Surrey , United Kingdom
| | - Viswambharan Sarasan
- Natural Capital and Plant Health, Royal Botanic Gardens Kew , Richmond , Surrey , United Kingdom
| |
Collapse
|
45
|
Ofek-Lalzar M, Gur Y, Ben-Moshe S, Sharon O, Kosman E, Mochli E, Sharon A. Diversity of fungal endophytes in recent and ancient wheat ancestors Triticum dicoccoides and Aegilops sharonensis. FEMS Microbiol Ecol 2016; 92:fiw152. [PMID: 27402714 DOI: 10.1093/femsec/fiw152] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2016] [Indexed: 01/29/2023] Open
Abstract
Endophytes have profound impacts on plants, including beneficial effects on agriculturally important traits. We hypothesized that endophytes in wild plants include beneficial endophytes that are absent or underrepresented in domesticated crops. In this work, we studied the structure of endophyte communities in wheat-related grasses, Triticum dicoccoides and Aegilops sharonensis, and compared it to an endophyte community from wheat (T. aeastivum). Endophytes were isolated by cultivation and by cultivation-independent methods. In total, 514 intergenic spacer region sequences from single cultures were analyzed. Categorization at 97% sequence similarity resulted in 67 operational taxonomic units (OTUs) that were evenly distributed between the different plant species. A narrow core community of Alternaria spp. was found in all samples, but each plant species also contained a significant portion of unique endophytes. The cultivation-independent analysis identified a larger number of OTUs than the cultivation method, half of which were singletons or doubletons. For OTUs with a relative abundance >0.5%, similar numbers were obtained by both methods. Collectively, our data show that wild grass relatives of wheat contain a wealth of taxonomically diverse fungal endophytes that are not found in modern wheat, some of which belong to taxa with known beneficial effects.
Collapse
Affiliation(s)
- Maya Ofek-Lalzar
- Institute of Cereal Crop Improvement, Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997, Israel
| | - Yonatan Gur
- Institute of Cereal Crop Improvement, Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997, Israel
| | - Sapir Ben-Moshe
- Institute of Cereal Crop Improvement, Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997, Israel
| | - Or Sharon
- Institute of Cereal Crop Improvement, Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997, Israel
| | - Evsey Kosman
- Institute of Cereal Crop Improvement, Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997, Israel
| | - Elad Mochli
- Institute of Cereal Crop Improvement, Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997, Israel
| | - Amir Sharon
- Institute of Cereal Crop Improvement, Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997, Israel
| |
Collapse
|