1
|
Khalaf HS, Abdel-Aziz MS, Radwan MAA, Sediek AA. Synthesis, Biological Evaluation, and Molecular Docking Studies of Indole-Based Heterocyclic Scaffolds as Potential Antibacterial Agents. Chem Biodivers 2025; 22:e202402325. [PMID: 39433506 DOI: 10.1002/cbdv.202402325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
Indole-based heterocyclic scaffolds have become increasingly important in medicinal chemistry due to their notable pharmacological and biological properties. Their role in the discovery and development of innovative drugs for treating various diseases highlights their value. This study aimed to synthesize C3-indole derivatives linked to various heterocyclic scaffolds, including thiophenes, thiazolidine-4-ones, and 1,3,4-thiadiazoles, via the reaction of ethylthioacetanilide 2 with different α-haloketones.The structures of the target compounds were established using 1H and 13C nuclear magnetic resonance spectroscopy, mass spectrometry, infrared spectroscopy, and elemental analysis. The synthesized compounds were tested for antimicrobial activity against different microbes: S. aureus ATCC 6538 (Gram-positive bacteria), E. coli ATCC 25933 (Gram-negative bacteria), C. albicans ATCC 10231 (yeast), and fungi (A. niger NRRL-A326). Thiophene 6a, thiazolidine-4-one 8, and compound 10d exhibited the highest antimicrobial activities. The molecular docking study showed that compounds 2, 4, 6a, and 6c had good binding energy and favorable binding modes of interactions with the DNA gyrase B enzymes (PDB: 3 U2D) and (PDB: 1S14). The results showed that the NH group of the indole in compounds 2 and 4, together with the nitrile group (CN), played an important role in inhibiting DNA gyrase B of S. aureus, PDB: 3 U2D. Furthermore, the NH of the indole ring, together with the ethylamino group of compound 2, was crucial in inhibiting DNA gyrase B of E. coli, PDB: 1S14. These findings may encourage researchers to develop more effective C3-indole derivatives in their search for antimicrobial drugs.
Collapse
Affiliation(s)
- Hemat S Khalaf
- Department of Photochemistry, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Mohamed S Abdel-Aziz
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Mohamed A A Radwan
- Applied Organic Chemistry Department, National Research Centre, Dokki, 12622, Egypt
| | - Ashraf A Sediek
- Chemical Industries Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| |
Collapse
|
2
|
da Cunha IV, da Silva Oliveira DD, Calefi GG, Silva NBS, Martins CHG, Rezende Júnior CDO, Tsubone TM. Photosensitizer associated with efflux pump inhibitors as a strategy for photodynamic therapy against bacterial resistance. Eur J Med Chem 2025; 284:117197. [PMID: 39731789 DOI: 10.1016/j.ejmech.2024.117197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/01/2024] [Accepted: 12/08/2024] [Indexed: 12/30/2024]
Abstract
Antimicrobial resistance is currently one of the biggest challenges in controlling infectious diseases and was listed among the top 10 threats to global health by the World Health Organization (WHO) in 2023. The antibiotics misuse has led to the widespread emergence of antimicrobial resistance, marking the beginning of the alarming increase in antibiotic resistance. In this context, Antimicrobial Photodynamic Therapy (aPDT) has garnered significant attention from the scientific community due to its potential to effectively eliminate multidrug-resistant pathogenic bacteria and its low propensity to induce drug resistance, which bacteria can quickly develop against traditional antibiotic treatments. However, some efflux pumps can expel diverse substrates from inside the cell, including photosensitizers used in aPDT, contributing to multidrug-resistance mechanisms. Efflux Pump Inhibitors are potential solutions to combat resistance mediated by these pumps and can play a crucial role in enhancing aPDT's effectiveness against multidrug-resistant bacteria. Therefore, combining efflux pumps inhibitors with photosensitizers can possible to eliminate the pathogen more efficiently. This review summarizes the mechanisms in which bacteria resist conventional antibiotic treatment, with a particular emphasis on efflux pump-mediated resistance, and present aPDT as a promising strategy to combat antibiotic resistance. Additionally, we highlighted several molecules of photosensitizer associated with efflux pump inhibitors as potential strategies to optimize aPDT, aiming to offer a perspective on future research directions on aPDT for overcoming the limitations of antibiotic resistance.
Collapse
Affiliation(s)
- Ieda Vieira da Cunha
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | - Gabriel Guimarães Calefi
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | | | | | - Tayana Mazin Tsubone
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Sharma V, Das R, Mehta DK, Sharma D, Aman S, Khan MU. Quinolone scaffolds as potential drug candidates against infectious microbes: a review. Mol Divers 2025; 29:711-737. [PMID: 38683488 DOI: 10.1007/s11030-024-10862-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024]
Abstract
Prevalence of microbial infections and new rising pathogens are signified as causative agent for variety of serious and lethal health crisis in past years. Despite medical advances, bacterial and fungal infections continue to be a rising problem in the health care system. As more bacteria develop resistance to antibiotics used in therapy, and as more invasive microbial species develop resistance to conventional antimicrobial drugs. Relevant published publications from the last two decades, up to 2024, were systematically retrieved from the MEDLINE/PubMed, SCOPUS, EMBASE, and WOS databases using keywords such as quinolones, anti-infective, antibacterial, antimicrobial resistance and patents on quinolone derivatives. With an approach of considerable interest towards novel heterocyclic derivatives as novel anti-infective agents, researchers have explored these as essential tools in vistas of drug design and development. Among heterocycles, quinolones have been regarded extremely essential for the development of novel derivatives, even able to tackle the associated resistance issues. The quinolone scaffold with its bicyclic structure and specific functional groups such as the carbonyl and acidic groups, is indeed considered a valuable functionalities for further lead generation and optimization in drug discovery. Besides, the substitution at N-1, C-3 and C-7 positions also subjected to be having a significant role in anti-infective potential. In this article, we intend to highlight recent quinolone derivatives based on the SAR approach and anti-infective potential such as antibacterial, antifungal, antimalarial, antitubercular, antitrypanosomal and antiviral activities. Moreover, some recent patents granted on quinolone-containing derivatives as anti-infective agents have also been highlighted in tabular form. Due consideration of this, future research in this scaffold is expected to be useful for aspiring scientists to get pharmacologically significant leads.
Collapse
Affiliation(s)
- Vishal Sharma
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Rina Das
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Dinesh Kumar Mehta
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India.
| | - Diksha Sharma
- Swami Devidyal College of Pharmacy, Barwala, 134118, India
| | - Shahbaz Aman
- Department of Microbiology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - M U Khan
- Department of pharmaceutical Chemistry & Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Uniazah, Al Qassim, Saudi Arabia
| |
Collapse
|
4
|
Nagaiah HP, Samsudeen MB, Augustus AR, Shunmugiah KP. In vitro evaluation of silver-zinc oxide-eugenol nanocomposite for enhanced antimicrobial and wound healing applications in diabetic conditions. DISCOVER NANO 2025; 20:14. [PMID: 39847138 PMCID: PMC11757845 DOI: 10.1186/s11671-025-04183-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/08/2025] [Indexed: 01/24/2025]
Abstract
Diabetic wounds with chronic infections present a significant challenge, exacerbated by the growing issue of antimicrobial resistance, which often leads to delayed healing and increased morbidity. This study introduces a novel silver-zinc oxide-eugenol (Ag+ZnO+EU) nanocomposite, specifically designed to enhance antimicrobial activity and promote wound healing. The nanocomposite was thoroughly characterized using advanced analytical techniques, confirming its nanoscale structure, stability and chemical composition. The Ag+ZnO+EU nanocomposite demonstrated potent antimicrobial efficacy against a range of wound associated pathogens, including standard and clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. Minimum inhibitory concentrations of Ag+ZnO+EU for standard and clinical isolates were significantly lower than those of the individual components, highlighting the synergistic effect of the nanocomposite. Time-kill assays revealed rapid microbial eradication, achieving complete sterility within 240-min. Importantly, the nanocomposite effectively eliminated persister-like cells, which are typically resistant to conventional treatments, suggesting a potential solution for persistent infections. In vitro scratch assays using human keratinocyte cells demonstrated that the Ag+ZnO+EU nanocomposite significantly accelerated wound closure, with near-complete healing observed within 24-h, indicating enhanced cell migration and tissue regeneration. Additionally, the nanocomposite showed potential antidiabetic effects by increasing glucose uptake up to 97.21% in an in vitro assay using 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose, a fluorescent glucose analog, suggesting potential applications beyond wound healing. These findings highlight the Ag+ZnO+EU nanocomposite as a promising candidate for addressing both antimicrobial resistance and impaired wound healing in diabetic contexts.
Collapse
|
5
|
Ruan W, Xie Z, Wang Y, Xia L, Guo Y, Qiao D. An Overview of Naphthylimide as Specific Scaffold for New Drug Discovery. Molecules 2024; 29:4529. [PMID: 39407459 PMCID: PMC11478049 DOI: 10.3390/molecules29194529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Naphthylimides play a pivotal role as aromatic heterocyclic compounds, serving as the foundational structures for numerous pharmacologically significant drugs. These drugs encompass antibacterial, antifungal, anticancer, antimalarial, antiviral, anti-inflammatory, antithrombotic, and antiprotozoal agents. The planar and heteroaromatic characteristics of naphthylimides grant them a strong ability to intercalate into DNA. This intercalation property renders naphthylimide derivatives highly valuable for various biological activities. The advantageous pharmacological activity and ease of synthesis associated with naphthylimides and their derivatives provide significant benefits in the design and development of new compounds within this class. Currently, only a few such molecules are undergoing preclinical and clinical evaluations. In this paper, we have compiled the literature on naphthylimides reported by researchers from 2006 to 2024. Our focus lies on exploring the pharmacological activities of their analogues from a drug development and discovery perspective, while examining their structure-activity relationship and mechanisms of action.
Collapse
Affiliation(s)
| | | | | | | | - Yuping Guo
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (W.R.); (Z.X.); (Y.W.); (L.X.)
| | - Dan Qiao
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (W.R.); (Z.X.); (Y.W.); (L.X.)
| |
Collapse
|
6
|
Avci FG. Unraveling bacterial stress responses: implications for next-generation antimicrobial solutions. World J Microbiol Biotechnol 2024; 40:285. [PMID: 39073503 PMCID: PMC11286680 DOI: 10.1007/s11274-024-04090-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
The accelerated spread of antimicrobial-resistant bacteria has caused a serious health problem and rendered antimicrobial treatments ineffective. Innovative approaches are crucial to overcome the health threat posed by resistant pathogens and prevent the emergence of untreatable infections. Triggering stress responses in bacteria can diminish susceptibility to various antimicrobials by inducing resistance mechanisms. Therefore, a thorough understanding of stress response control, especially in relation to antimicrobial resistance, offers valuable perspectives for innovative and efficient therapeutic approaches to combat antimicrobial resistance. The aim of this study was to evaluate the stress responses of 8 different bacteria by analyzing reporter metabolites, around which significant alterations were observed, using a pathway-driven computational approach. For this purpose, the transcriptomic data that the bacterial pathogens were grown under 11 different stress conditions mimicking the human host environments were integrated with the genome-scale metabolic models of 8 pathogenic species (Enterococcus faecalis OG1R, Escherichia coli EPEC O127:H6 E2348/69, Escherichia coli ETEC H10407, Escherichia coli UPEC 536, Klebsiella pneumoniae MGH 78578, Pseudomonas aeruginosa PAO1, Staphylococcus aureus MRSA252, and Staphylococcus aureus MSSA476). The resulting reporter metabolites were enriched in multiple metabolic pathways, with cofactor biosynthesis being the most important. The results of this study will serve as a guide for the development of antimicrobial agents as they provide a first insight into potential drug targets.
Collapse
Affiliation(s)
- Fatma Gizem Avci
- Department of Bioengineering, Faculty of Engineering and Natural Sciences, Üsküdar University, Istanbul, Türkiye.
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
7
|
Wang Y, Gu M, Cheng J, Wan Y, Zhu L, Gao Z, Jiang L. Antibiotic Alternatives: Multifunctional Ultra-Small Metal Nanoclusters for Bacterial Infectious Therapy Application. Molecules 2024; 29:3117. [PMID: 38999069 PMCID: PMC11243084 DOI: 10.3390/molecules29133117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
The prevalence of major bacterial infections has emerged as a significant menace to human health and life. Conventional treatment methods primarily rely on antibiotic therapy, but the overuse of these drugs has led to a decline in their efficacy. Moreover, bacteria have developed resistance towards antibiotics, giving rise to the emergence of superbugs. Consequently, there is an urgent need for novel antibacterial agents or alternative strategies to combat bacterial infections. Nanoantibiotics encompass a class of nano-antibacterial materials that possess inherent antimicrobial activity or can serve as carriers to enhance drug delivery efficiency and safety. In recent years, metal nanoclusters (M NCs) have gained prominence in the field of nanoantibiotics due to their ultra-small size (less than 3 nm) and distinctive electronic and optical properties, as well as their biosafety features. In this review, we discuss the recent progress of M NCs as a new generation of antibacterial agents. First, the main synthesis methods and characteristics of M NCs are presented. Then, we focus on reviewing various strategies for detecting and treating pathogenic bacterial infections using M NCs, summarizing the antibacterial effects of these nanoantibiotics on wound infections, biofilms, and oral infections. Finally, we propose a perspective on the remaining challenges and future developments of M NCs for bacterial infectious therapy.
Collapse
Affiliation(s)
- Yuxian Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Meng Gu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiangyang Cheng
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yusong Wan
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Liying Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhen Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ling Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
8
|
Novello E, Scalzo G, D’Agata G, Raucci MG, Ambrosio L, Soriente A, Tomasello B, Restuccia C, Parafati L, Consoli GML, Ferreri L, Rescifina A, Zagni C, Zampino DC. Synthesis, Characterisation, and In Vitro Evaluation of Biocompatibility, Antibacterial and Antitumor Activity of Imidazolium Ionic Liquids. Pharmaceutics 2024; 16:642. [PMID: 38794304 PMCID: PMC11125126 DOI: 10.3390/pharmaceutics16050642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
In recent decades, ionic liquids (ILs) have garnered research interest for their noteworthy properties, such as thermal stability, low or no flammability, and negligible vapour pressure. Moreover, their tunability offers limitless opportunities to design ILs with properties suitable for applications in many industrial fields. This study aims to synthetise two series of methylimidazolium ILs bearing long alkyl chain in their cations (C9, C10, C12, C14, C16, C18, C20) and with tetrafluoroborate (BF4) and the 1,3-dimethyl-5-sulfoisophthalate (DMSIP) as counter ions. The ILs were characterised using 1H-NMR and MALDI-TOF, and their thermal behaviour was investigated through DSC and TGA. Additionally, the antimicrobial, anticancer, and cytotoxic activities of the ILs were analysed. Moreover, the most promising ILs were incorporated at different concentrations (0.5, 1, 5 wt%) into polyvinyl chloride (PVC) by solvent casting to obtain antimicrobial blend films. The thermal properties and stability of the resulting PVC/IL films, along with their hydrophobicity/hydrophilicity, IL surface distribution, and release, were studied using DSC and TGA, contact angle (CA), SEM, and UV-vis spectrometry, respectively. Furthermore, the antimicrobial and cytotoxic properties of blends were analysed. The in vitro results demonstrated that the antimicrobial and antitumor activities of pure ILs against t Listeria monocytogenes, Escherichia coli, Pseudomonas fluorescens strains, and the breast cancer cell line (MCF7), respectively, were mainly dependent on their structure. These activities were higher in the series containing the BF4 anion and increased with the increase in the methylimidazolium cation alkyl chain length. However, the elongation of the alkyl chain beyond C16 induced a decrease in antimicrobial activity, indicating a cut-off effect. A similar trend was also observed in terms of in vitro biocompatibility. The loading of both the series of ILs into the PVC matrix did not affect the thermal stability of PVC blend films. However, their Tonset decreased with increased IL concentration and alkyl chain length. Similarly, both the series of PVC/IL films became more hydrophilic with increasing IL concentration and alkyl chain. The loading of ILs at 5% concentration led to considerable IL accumulation on the blend film surfaces (as observed in SEM images) and, subsequently, their higher release. The biocompatibility assessment with healthy human dermal fibroblast (HDF) cells and the investigation of antitumoral properties unveiled promising pharmacological characteristics. These findings provide strong support for the potential utilisation of ILs in biomedical applications, especially in the context of cancer therapy and as antibacterial agents to address the challenge of antibiotic resistance. Furthermore, the unique properties of the PVC/IL films make them versatile materials for advancing healthcare technologies, from drug delivery to tissue engineering and antimicrobial coatings to diagnostic devices.
Collapse
Affiliation(s)
- Elisabetta Novello
- Institute of Polymers, Composites and Biomaterials (IPCB)—CNR, Section of Catania, Via Paolo Gaifami, 18, 95126 Catania, Italy; (E.N.); (G.S.); (G.D.); (D.C.Z.)
| | - Giuseppina Scalzo
- Institute of Polymers, Composites and Biomaterials (IPCB)—CNR, Section of Catania, Via Paolo Gaifami, 18, 95126 Catania, Italy; (E.N.); (G.S.); (G.D.); (D.C.Z.)
| | - Giovanni D’Agata
- Institute of Polymers, Composites and Biomaterials (IPCB)—CNR, Section of Catania, Via Paolo Gaifami, 18, 95126 Catania, Italy; (E.N.); (G.S.); (G.D.); (D.C.Z.)
| | - Maria G. Raucci
- Institute of Polymers, Composites and Biomaterials (IPCB)—CNR, Section of Napoli, Viale J.F. Kennedy n.54, Pad.20, 80125 Napoli, Italy; (L.A.); (A.S.)
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials (IPCB)—CNR, Section of Napoli, Viale J.F. Kennedy n.54, Pad.20, 80125 Napoli, Italy; (L.A.); (A.S.)
| | - Alessandra Soriente
- Institute of Polymers, Composites and Biomaterials (IPCB)—CNR, Section of Napoli, Viale J.F. Kennedy n.54, Pad.20, 80125 Napoli, Italy; (L.A.); (A.S.)
| | - Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (B.T.); (A.R.)
| | - Cristina Restuccia
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; (C.R.); (L.P.)
| | - Lucia Parafati
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; (C.R.); (L.P.)
| | - Grazia M. L. Consoli
- Institute of Biomolecular Chemistry (ICB)-CNR, via Paolo Gaifami 18, 95126 Catania, Italy; (G.M.L.C.); (L.F.)
| | - Loredana Ferreri
- Institute of Biomolecular Chemistry (ICB)-CNR, via Paolo Gaifami 18, 95126 Catania, Italy; (G.M.L.C.); (L.F.)
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (B.T.); (A.R.)
| | - Chiara Zagni
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (B.T.); (A.R.)
| | - Daniela C. Zampino
- Institute of Polymers, Composites and Biomaterials (IPCB)—CNR, Section of Catania, Via Paolo Gaifami, 18, 95126 Catania, Italy; (E.N.); (G.S.); (G.D.); (D.C.Z.)
| |
Collapse
|
9
|
Bekele TM, Alamnie GA, Girma A, Mebratie GB. Nanoparticle therapy for antibiotic-resistant bacteria: current methods and prospects. BIOINSPIRED, BIOMIMETIC AND NANOBIOMATERIALS 2023; 12:153-162. [DOI: 10.1680/jbibn.22.00056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Emerging diseases due to antibiotic-resistant bacteria cause severe health concerns while increasing their negative effects on human health. The overuse or misuse of antimicrobial agents has contributed to the evolution of bacterial resistance to current medications. Bacteria can develop resistance by altering drugs, changing their target sites, forming biofilms and spending more time in the intracellular environment. Due to this, efforts are being made to create novel, alternative nanoantibiotics as a promising strategy to treat bacteria that cause disease and have developed resistance to a variety of drugs. Utilizing their biocidal properties, nanoparticles can be directed for medication delivery to particular tissues and employed as antibacterial agents against a range of illnesses. Targeted medication delivery-related toxicity problems may be solved with the aid of nanoencapsulation technology. This review paper generally provides a conceptual foundation for understanding the complexity of the problem of the development of antibiotic-resistant bacteria, particularly for brand-new synthetic antibiotics. This information will allow researchers to explore the use of nanoparticles in the treatment of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Tigabu M Bekele
- Department of Chemistry, College of Natural and Computational Sciences, Mekdela Amba University, Tulu Awuliya, Ethiopia
| | - Getachew A Alamnie
- Department of Biology, College of Natural and Computational Sciences, Mekdela Amba University, Tulu Awuliya, Ethiopia
| | - Abayneh Girma
- Department of Biology, College of Natural and Computational Sciences, Mekdela Amba University, Tulu Awuliya, Ethiopia
| | - Gedefaw B Mebratie
- Department of Physics, College of Natural and Computational Sciences, Mekdela Amba University, Tulu Awuliya, Ethiopia
| |
Collapse
|
10
|
Gupta S, Paul K. Membrane-active substituted triazines as antibacterial agents against Staphylococcus aureus with potential for low drug resistance and broad activity. Eur J Med Chem 2023; 258:115551. [PMID: 37348297 DOI: 10.1016/j.ejmech.2023.115551] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
A library of new naphthalimide-triazine analogues was synthesized as broad-spectrum antibacterial agents to overcome drug resistance. Bioactivity assay reveals that derivative 8e, with benzylamine in its structure, exhibits strong antibacterial properties against multi-drug resistance Staphylococcus aureus at a concentration of 1.56 μg/ml. It was also found to be better than chloromycin and amoxicillin. The active compound 8e efficiently inhibits the development of drug resistance within 11 passages. In addition, compound 8e inhibits the formation of biofilms in S. aureus and acts rapidly in bactericidal efficacy. Furthermore, mechanistic studies reveal that compound 8e effectively destroys the cytoplasmic membrane of bacteria, leading to leakage of intercellular protein content and loss in metabolic activity. Compound 8e binds to HSA readily with a binding constant of 1.32 × 105 M-1, indicating that the compound could be delivered to the target site effectively. Compound 8e can also form a supramolecular complex with DNA to obstruct DNA replications. These results suggest that analogue 8e could be further developed as a potential antibacterial agent. Furthermore, the cytotoxicity of all the synthesized compounds was evaluated against 60 human cancer cell lines to test their potential for anticancer agents.
Collapse
Affiliation(s)
- Saurabh Gupta
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147001, India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147001, India.
| |
Collapse
|
11
|
de Souza ZN, de Moura DF, de Almeida Campos LA, Córdula CR, Cavalcanti IMF. Antibiotic resistance profiles on pathogenic bacteria in the Brazilian environments. Arch Microbiol 2023; 205:185. [PMID: 37043091 DOI: 10.1007/s00203-023-03524-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/18/2023] [Accepted: 03/28/2023] [Indexed: 04/13/2023]
Abstract
The present study aimed to elaborate a review of multidrug-resistant (MDR) bacteria in soil, food, aquatic environments, cattle, poultry, and swine farms in Brazil. Initially, the literature database for published papers from 2012 to 2023 was Scientific Electronic Library Online (SciELO), U.S. National Library of Medicine (PubMed), and Google Scholar, through the descriptors: antimicrobial resistance, resistance profile, multidrug resistance, environmental bacteria, and pathogenic bacteria. The studies demonstrated the prevalence of pathogenic and resistant bacteria in environments that favor their rapid dissemination. Bacteria of medical importance, such as Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Listeria monocytogenes, Salmonella spp., Shigella spp., Vibrio spp., were present in samples from animal farms and foods, including cheese and milk, urban aquatic environments, hospital effluents, and shrimp farms. Studies suggested that important bacteria have been disseminated through different niches with easy contact with humans, animals, and food, demonstrating the danger of the emergence of increasingly difficult conditions for treating and controlling these infections. Thus, better understanding and characterizing the resistance profiles of bacteria in these regions, mainly referring to MDR bacteria, can help develop solutions to prevent the progression of this public health problem.
Collapse
Affiliation(s)
- Zion Nascimento de Souza
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Danielle Feijó de Moura
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Rua do Alto do Reservatório s/n, Bela Vista, Vitória de Santo Antão, Pernambuco, 55608-680, Brazil
| | - Luís André de Almeida Campos
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Carolina Ribeiro Córdula
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Isabella Macário Ferro Cavalcanti
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil.
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Rua do Alto do Reservatório s/n, Bela Vista, Vitória de Santo Antão, Pernambuco, 55608-680, Brazil.
| |
Collapse
|
12
|
Acar Çevik U, Celik I, İnce U, Maryam Z, Ahmad I, Patel H, Özkay Y, Asım Kaplancıklı Z. Synthesis, Biological Evaluation, and Molecular Modeling Studies of New 1,3,4-Thiadiazole Derivatives as Potent Antimicrobial Agents. Chem Biodivers 2023; 20:e202201146. [PMID: 36764924 DOI: 10.1002/cbdv.202201146] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/14/2023] [Accepted: 02/10/2023] [Indexed: 02/12/2023]
Abstract
In this work, the synthesis, characterization, and biological activities of a new series of 1,3,4-thiadiazole derivatives were investigated. The structures of final compounds were identified using 1 H-NMR, 13 C-NMR, elemental analysis, and HRMS. All the new synthesized compounds were then screened for their antimicrobial activity against four types of pathogenic bacteria and one fungal strain, by application of the MIC assays, using Ampicilin, Gentamycin, Vancomycin, and Fluconazole as standards. Among the compounds, the MIC values of 4 and 8 μg/mL of the compounds 3f and 3g, respectively, are remarkable and indicate that these compounds are good candidates for antifungal activity. The docking experiments were used to identify the binding forms of produced ligands with sterol 14-demethylase to acquire insight into relevant proteins. The MD performed about 100 ns simulations to validate selected compounds' theoretical studies. Finally, using density functional theory (DFT) to predict reactivity, the chemical characteristics and quantum factors of synthesized compounds were computed. These results were then correlated with the experimental data. Furthermore, computational estimation was performed to predict the ADME properties of the most active compound 3f.
Collapse
Affiliation(s)
- Ulviye Acar Çevik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, 26470, Turkey
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey
| | - Ufuk İnce
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey
| | - Zahra Maryam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, 26470, Turkey
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, 26470, Turkey
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, 26470, Turkey
| |
Collapse
|
13
|
Zampino DC, Samperi F, Mancuso M, Ferreri T, Ferreri L, Dattilo S, Mirabella EF, Carbone DC, Recca G, Scamporrino AA, Novello E, Puglisi C. Polymer Blends Based on 1-Hexadecyl-3-methyl Imidazolium 1,3-Dimethyl 5-Sulfoisophthalate Ionic Liquid: Thermo-Mechanical, Surface Morphology and Antibacterial Properties. Polymers (Basel) 2023; 15:polym15040970. [PMID: 36850254 PMCID: PMC9965557 DOI: 10.3390/polym15040970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
In this study, antibacterial polymer blends based on Polyvinyl Chloride (PVC) and Polystyrene-Ethylene-Butylene-Styrene (SEBS), loaded with the ionic liquid (IL) 1-hexadecyl-3-methyl imidazolium 1,3-dimethyl 5-sulfoisophthalate (HdmimDMSIP) at three different concentrations (1%, 5%, and 10%), were produced. The IL/blends were characterized by their thermo-mechanical properties, surface morphology, and wettability. IL release from the blends was also evaluated. The agar diffusion method was used to test the antibacterial activity of the blends against Staphylococcus epidermidis and Escherichia coli. Results from thermal analyses showed compatibility between the IL and the PVC matrix, while phase separation in the SEBS/IL blends was observed. These results were confirmed using PY-GC MS data. SEM analyses highlighted abundant IL deposition on PVC blend film surfaces containing the IL at 5-10% concentrations, whereas the SEBS blend film surfaces showed irregular structures similar to islands of different sizes. Data on water contact angle proved that the loading of the IL into both polymer matrices induced higher wettability of the blends' surfaces, mostly in the SEBS films. The mechanical analyses evidenced a lowering of Young's Modulus, Tensile Stress, and Strain at Break in the SEBS blends, according to IL concentration. The PVC/IL blends showed a similar trend, but with an increase in the Strain at Break as IL concentration in the blends increased. Both PVC/IL and SEBS/IL blends displayed the best performance against Staphylococcus epidermidis, being active at low concentration (1%), whereas the antimicrobial activity against Escherichia coli was lower than that of S. epidermidis. Release data highlighted an IL dose-dependent release. These results are promising for a versatile use of these antimicrobial polymers in a variety of fields.
Collapse
Affiliation(s)
- Daniela C. Zampino
- Institute of Polymers, Composites and Biomaterials (IPCB)-CNR, Section of Catania, Via Paolo Gaifami, 18, 95126 Catania, Italy
- Correspondence: (D.C.Z.); (F.S.)
| | - Filippo Samperi
- Institute of Polymers, Composites and Biomaterials (IPCB)-CNR, Section of Catania, Via Paolo Gaifami, 18, 95126 Catania, Italy
- Correspondence: (D.C.Z.); (F.S.)
| | - Monique Mancuso
- Institute for Biological Resources and Marine Biotechnology (IRBIM)-CNR, Section of Messina, Spianata San Raineri, 86, 98122 Messina, Italy
- Department of Integrative Marine Ecology, Stazione Zoologica “Anton Dohrn”, Sicily Marine Centre, Contrada Porticatello, 29, 98167 Messina, Italy
| | - Tiziana Ferreri
- Institute of Biomolecular Chemistry (ICB)-CNR, Section of Catania, Via Paolo Gaifami, 18, 95126 Catania, Italy
| | - Loredana Ferreri
- Institute of Biomolecular Chemistry (ICB)-CNR, Section of Catania, Via Paolo Gaifami, 18, 95126 Catania, Italy
| | - Sandro Dattilo
- Institute of Polymers, Composites and Biomaterials (IPCB)-CNR, Section of Catania, Via Paolo Gaifami, 18, 95126 Catania, Italy
| | - Emanuele F. Mirabella
- Institute of Polymers, Composites and Biomaterials (IPCB)-CNR, Section of Catania, Via Paolo Gaifami, 18, 95126 Catania, Italy
| | - Domenico C. Carbone
- Institute of Polymers, Composites and Biomaterials (IPCB)-CNR, Section of Catania, Via Paolo Gaifami, 18, 95126 Catania, Italy
| | - Giuseppe Recca
- Institute of Polymers, Composites and Biomaterials (IPCB)-CNR, Section of Catania, Via Paolo Gaifami, 18, 95126 Catania, Italy
| | - Andrea A. Scamporrino
- Institute of Polymers, Composites and Biomaterials (IPCB)-CNR, Section of Catania, Via Paolo Gaifami, 18, 95126 Catania, Italy
| | - Elisabetta Novello
- Institute of Polymers, Composites and Biomaterials (IPCB)-CNR, Section of Catania, Via Paolo Gaifami, 18, 95126 Catania, Italy
| | - Concetto Puglisi
- Institute of Polymers, Composites and Biomaterials (IPCB)-CNR, Section of Catania, Via Paolo Gaifami, 18, 95126 Catania, Italy
| |
Collapse
|
14
|
da Silva FEF, Ávila FDN, Pereira NMO, de Freitas MD, Pessoa ODL, da Fonseca AM, da Costa JGM, Santiago GMP. Semisynthesis, in silico study and in vitro antibacterial evaluation of fucosterol derivatives. Steroids 2023; 189:109137. [PMID: 36375680 DOI: 10.1016/j.steroids.2022.109137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Thirteen fucosterol derivatives were prepared by structural modification at the hydroxyl group in C-3 and catalytic hydrogenation at the carbon-carbon double bond in C-5(6) and C-24(28). The structures of all compounds were established based on their spectral data (IR, MS, and NMR). Fucosterol (1) and its derivatives (2-12, and a mixture of 13a and 13b) were evaluated for their in vitro antibacterial activity against Klebsiella pneumoniae (ATCC 10031), Escherichia coli (ATCC 10536), Pseudomonas aeruginosa (ATCC 15442), Streptococcus mutans (ATCC 0046) and Staphylococcus aureus using the microdilution method. Among them, 1, 8, 9, 10, and a mixture of 13a and 13b exhibited the best antibacterial activity. The derivative 7 was inactive against all bacterial strains evaluated (MIC ≥ 2.327 mM). In addition, the investigation of binding interactions of more active compounds (1, 8, 9, 10, and mixture of 13a and 13b) to appropriate proteins was performed using molecular docking. This paper registers for the first time the in silico studies on the antibacterial activity of compounds 1, 8, 9, 10, and mixture of 13a/13b, and the spectral data of compounds 4, 6, and 7.
Collapse
Affiliation(s)
- Francisco E F da Silva
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, 60021-940 Fortaleza, Ceará, Brazil
| | - Fábio do N Ávila
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, 60021-940 Fortaleza, Ceará, Brazil
| | - Nicaely M O Pereira
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, 60021-940 Fortaleza, Ceará, Brazil
| | - Maria D de Freitas
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, 60021-940 Fortaleza, Ceará, Brazil
| | - Otília D L Pessoa
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, 60021-940 Fortaleza, Ceará, Brazil
| | - Aluísio M da Fonseca
- Instituto de Ciências Exatas e da Natureza, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, 62785-000 Acarape, Ceará, Brazil
| | - José G M da Costa
- Departamento de Química Biológica, Universidade Regional do Cariri, 63105-010 Crato, Ceará, Brazil
| | - Gilvandete M P Santiago
- Departamento de Farmácia, Universidade Federal do Ceará, Campus do Porangabussu, 60430-370 Fortaleza, Ceará, Brazil.
| |
Collapse
|
15
|
Ruparel FJ, Shah SK, Patel JH, Thakkar NR, Gajera GN, Kothari VO. Network analysis for identifying potential anti-virulence targets from whole transcriptome of Pseudomonas aeruginosa and Staphylococcus aureus exposed to certain anti-pathogenic polyherbal formulations. Drug Target Insights 2023; 17:58-69. [PMID: 37275512 PMCID: PMC10238913 DOI: 10.33393/dti.2022.2595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Antimicrobial resistance (AMR) is a serious global threat. Identification of novel antibacterial targets is urgently warranted to help antimicrobial drug discovery programs. This study attempted identification of potential targets in two important pathogens Pseudomonas aeruginosa and Staphylococcus aureus. Methods Transcriptomes of P. aeruginosa and S. aureus exposed to two different quorum-modulatory polyherbal formulations were subjected to network analysis to identify the most highly networked differentially expressed genes (hubs) as potential anti-virulence targets. Results Genes associated with denitrification and sulfur metabolism emerged as the most important targets in P. aeruginosa. Increased buildup of nitrite (NO2) in P. aeruginosa culture exposed to the polyherbal formulation Panchvalkal was confirmed through in vitro assay too. Generation of nitrosative stress and inducing sulfur starvation seemed to be effective anti-pathogenic strategies against this notorious gram-negative pathogen. Important targets identified in S. aureus were the transcriptional regulator sarA, immunoglobulin-binding protein Sbi, serine protease SplA, the saeR/S response regulator system, and gamma-hemolysin components hlgB and hlgC. Conclusion Further validation of the potential targets identified in this study is warranted through appropriate in vitro and in vivo assays in model hosts. Such validated targets can prove vital to many antibacterial drug discovery programs globally.
Collapse
Affiliation(s)
- Feny J Ruparel
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| | - Siddhi K Shah
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| | - Jhanvi H Patel
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| | - Nidhi R Thakkar
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| | - Gemini N Gajera
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| | - Vijay O Kothari
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| |
Collapse
|
16
|
Ruparel FJ, Shah SK, Patel JH, Thakkar NR, Gajera GN, Kothari VO. Network analysis for identifying potential anti-virulence targets from whole transcriptome of Pseudomonas aeruginosa and Staphylococcus aureus exposed to certain anti-pathogenic polyherbal formulations. Drug Target Insights 2023; 17:58-69. [PMID: 37275512 PMCID: PMC10238913 DOI: 10.33393/dti.2023.2595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 03/07/2024] Open
Abstract
Introduction Antimicrobial resistance (AMR) is a serious global threat. Identification of novel antibacterial targets is urgently warranted to help antimicrobial drug discovery programs. This study attempted identification of potential targets in two important pathogens Pseudomonas aeruginosa and Staphylococcus aureus. Methods Transcriptomes of P. aeruginosa and S. aureus exposed to two different quorum-modulatory polyherbal formulations were subjected to network analysis to identify the most highly networked differentially expressed genes (hubs) as potential anti-virulence targets. Results Genes associated with denitrification and sulfur metabolism emerged as the most important targets in P. aeruginosa. Increased buildup of nitrite (NO2) in P. aeruginosa culture exposed to the polyherbal formulation Panchvalkal was confirmed through in vitro assay too. Generation of nitrosative stress and inducing sulfur starvation seemed to be effective anti-pathogenic strategies against this notorious gram-negative pathogen. Important targets identified in S. aureus were the transcriptional regulator sarA, immunoglobulin-binding protein Sbi, serine protease SplA, the saeR/S response regulator system, and gamma-hemolysin components hlgB and hlgC. Conclusion Further validation of the potential targets identified in this study is warranted through appropriate in vitro and in vivo assays in model hosts. Such validated targets can prove vital to many antibacterial drug discovery programs globally.
Collapse
Affiliation(s)
- Feny J Ruparel
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| | - Siddhi K Shah
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| | - Jhanvi H Patel
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| | - Nidhi R Thakkar
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| | - Gemini N Gajera
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| | - Vijay O Kothari
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| |
Collapse
|
17
|
Obanda BA, Cook EAJ, Fèvre EM, Bebora L, Ogara W, Wang SH, Gebreyes W, Ngetich R, Wandede D, Muyodi J, Blane B, Coll F, Harrison EM, Peacock SJ, Gitao GC. Characteristics of Staphylococcus aureus Isolated from Patients in Busia County Referral Hospital, Kenya. Pathogens 2022; 11:1504. [PMID: 36558838 PMCID: PMC9781741 DOI: 10.3390/pathogens11121504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022] Open
Abstract
Staphylococcus aureus is an important pathogen associated with hospital, community, and livestock-acquired infections, with the ability to develop resistance to antibiotics. Nasal carriage by hospital inpatients is a risk for opportunistic infections. Antibiotic susceptibility patterns, virulence genes and genetic population structure of S. aureus nasal isolates, from inpatients at Busia County Referral Hospital (BCRH) were analyzed. A total of 263 inpatients were randomly sampled, from May to July 2015. The majority of inpatients (85.9%) were treated empirically with antimicrobials, including ceftriaxone (65.8%) and metronidazole (49.8%). Thirty S. aureus isolates were cultured from 29 inpatients with a prevalence of 11% (10.3% methicillin-susceptible S. aureus (MSSA), 0.8% methicillin resistant S. aureus (MRSA)). Phenotypic and genotypic resistance was highest to penicillin-G (96.8%), trimethoprim (73.3%), and tetracycline (13.3%) with 20% of isolates classified as multidrug resistant. Virulence genes, Panton-Valentine leukocidin (pvl), toxic shock syndrome toxin-1 (tsst-1), and sasX gene were detected in 16.7%, 23.3% and 3.3% of isolates. Phylogenetic analysis showed 4 predominant clonal complexes CC152, CC8, CC80, and CC508. This study has identified that inpatients of BCRH were carriers of S. aureus harbouring virulence genes and resistance to a range of antibiotics. This may indicate a public health risk to other patients and the community.
Collapse
Affiliation(s)
- Benear Apollo Obanda
- Department of Veterinary Pathology, Microbiology and Parasitology, University of Nairobi, Nairobi P.O. Box 29053-00625, Kenya
- Global One Health Initiative, Office of International Affairs, The Ohio State University, Columbus, OH 43210, USA
- Centre for Microbiology Research Nairobi, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya
| | | | - Eric M. Fèvre
- International Livestock Research Institute, Nairobi P.O. Box 30709-00100, Kenya
- Institute of Infection, Veterinary & Ecological Sciences, Leahurst Campus, University of Liverpool, Chester High Road, Neston CH64 7TE, UK
| | - Lilly Bebora
- Department of Veterinary Pathology, Microbiology and Parasitology, University of Nairobi, Nairobi P.O. Box 29053-00625, Kenya
| | - William Ogara
- Department of Public Health, Pharmacology and Toxicology, University of Nairobi, Nairobi P.O. Box 29053-00625, Kenya
| | - Shu-Hua Wang
- Global One Health Initiative, Office of International Affairs, The Ohio State University, Columbus, OH 43210, USA
- Division of Infectious Disease, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Wondwossen Gebreyes
- Global One Health Initiative, Office of International Affairs, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Ronald Ngetich
- Centre for Microbiology Research Nairobi, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya
| | - Dolphine Wandede
- Centre for Microbiology Research Nairobi, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya
| | - Johnstone Muyodi
- The Centre for Infectious and Parasitic Diseases Control Research, Busia P.O. Box 3-50400, Kenya
| | - Beth Blane
- Department of Medicine, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Francesc Coll
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, University of London, London WC1E 7HT, UK
| | - Ewan M. Harrison
- Department of Medicine, University of Cambridge, Cambridge CB2 2QQ, UK
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
- Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Sharon J. Peacock
- Department of Medicine, University of Cambridge, Cambridge CB2 2QQ, UK
| | - George C. Gitao
- Department of Veterinary Pathology, Microbiology and Parasitology, University of Nairobi, Nairobi P.O. Box 29053-00625, Kenya
| |
Collapse
|
18
|
Antibacterial Properties of Crotoxin from Crotalus durissus terrificus-Insight into the Mechanism of Action. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227726. [PMID: 36431827 PMCID: PMC9696005 DOI: 10.3390/molecules27227726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/30/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022]
Abstract
The growing problem of antibiotic resistance among bacteria requires searching for new therapeutic agents with bacteriostatic and/or bactericidal properties. Crotoxin is a β-neurotoxin from the venom of the Crotalus durissus terrificus. It is composed of two subunits: CA (non-active) and CB (with phospholipase A2 activity). It has already been shown that the isolated CB, but not the CA, subunit of crotoxin exhibits an antibacterial activity towards a variety of Gram-positive and Gram-negative bacterial species. However, no studies on the whole crotoxin complex have been carried out so far. We tested the antibacterial properties of crotoxin, as well as its isolated CB subunit, towards Staphylococcus aureus ATCC 25923, Staphylococcus aureus ATCC 6535, Micrococcus luteus ATCC 10240, Escherichia coli ATCC 25922, Escherichia coli ATCC 8739, and Pseudomonas aeruginosa ATCC 10145. Both toxins exhibited antibacterial properties only against Micrococcus luteus ATCC 10240. Crotoxin showed only bacteriostatic activity with a MIC of 46 µM, while the CB subunit acted as both a bacteriostatic and bactericidal agent with a MIC = MBC = 0.21 μM. The bacteriostatic effect of the toxins was independent of the enzymatic activity of the CB subunit. Bactericidal properties, however, require phospholipase A2 activity. Both toxins reduced bacteria viability at the MIC by 72% and 85% for crotoxin- and CB-treated bacteria, respectively. The membrane permeability increased approximately three times within the first hour of incubation with toxins; afterwards, either no significant changes or a decrease of membrane permeability, compared to the control cells, were observed. We isolated a single, approximately 30 kDa bacterial wall protein which belongs to the NlpC/P60 family that interacts with crotoxin leading to the inhibition of bacterial growth. Neither crotoxin nor the CB subunit showed any cytotoxic properties to human fibroblasts at the MIC during the three-day incubation.
Collapse
|
19
|
Mota J, Bravo C, Santos C, Alves PC, Rijo P, Antunes AM, Grenho L, Helena Fernandes M, Alves MM, André V. Eco-friendly fabricated multibioactive Ca(II)-antibiotic coordination framework coating on zinc towards improved bone tissue regeneration. Colloids Surf B Biointerfaces 2022; 221:113008. [DOI: 10.1016/j.colsurfb.2022.113008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
|
20
|
Rütten A, Kirchner T, Musiol-Kroll EM. Overview on Strategies and Assays for Antibiotic Discovery. Pharmaceuticals (Basel) 2022; 15:1302. [PMID: 36297414 PMCID: PMC9607151 DOI: 10.3390/ph15101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
The increase in antibiotic resistance poses a major threat to global health. Actinomycetes, the Gram-positive bacteria of the order Actinomycetales, are fertile producers of bioactive secondary metabolites, including antibiotics. Nearly two-thirds of antibiotics that are used for the treatment of bacterial infections were originally isolated from actinomycetes strains belonging to the genus Streptomyces. This emphasizes the importance of actinomycetes in antibiotic discovery. However, the identification of a new antimicrobial compound and the exploration of its mode of action are very challenging tasks. Therefore, different approaches that enable the "detection" of an antibiotic and the characterization of the mechanisms leading to the biological activity are indispensable. Beyond bioinformatics tools facilitating the identification of biosynthetic gene clusters (BGCs), whole cell-screenings-in which cells are exposed to actinomycete-derived compounds-are a common strategy applied at the very early stage in antibiotic drug development. More recently, target-based approaches have been established. In this case, the drug candidates were tested for interactions with usually validated targets. This review focuses on the bioactivity-based screening methods and provides the readers with an overview on the most relevant assays for the identification of antibiotic activity and investigation of mechanisms of action. Moreover, the article includes examples of the successful application of these methods and suggestions for improvement.
Collapse
Affiliation(s)
- Anika Rütten
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Teresa Kirchner
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Ewa Maria Musiol-Kroll
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
21
|
Sharma NK, Vishwakarma J, Rai S, Alomar TS, AlMasoud N, Bhattarai A. Green Route Synthesis and Characterization Techniques of Silver Nanoparticles and Their Biological Adeptness. ACS OMEGA 2022; 7:27004-27020. [PMID: 35967040 PMCID: PMC9366950 DOI: 10.1021/acsomega.2c01400] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/13/2022] [Indexed: 05/13/2023]
Abstract
The development of the most reliable and green techniques for nanoparticle synthesis is an emerging step in the area of green nanotechnology. Many conventional approaches used for nanoparticle (NP) synthesis are expensive, deadly, and nonenvironmental. In this new era of nanotechnology, to overcome such concerns, natural sources which work as capping and reducing agents, including bacteria, fungi, biopolymers, and plants, are suitable candidates for synthesizing AgNPs. The surface morphology and applications of AgNPs are significantly pretentious to the experimental conditions by which they are synthesized. Available scattered information on the synthesis of AgNPs comprises the influence of altered constraints and characterization methods such as FTIR, UV-vis, DLS, SEM, TEM, XRD, EDX, etc. and their properties and applications. This review focuses on all the above-mentioned natural sources that have been used for AgNP synthesis recently. The green routes to synthesize AgNPs have established effective applications in various areas, including biosensors, magnetic resonance imaging (MRI), cancer treatment, surface-enhanced Raman spectroscopy (SERS), antimicrobial agents, drug delivery, gene therapy, DNA analysis, etc. The existing boundaries and prospects for metal nanoparticle synthesis by the green route are also discussed herein.
Collapse
Affiliation(s)
- Nitin Kumar Sharma
- Department
of Chemical Engineering, Indian Institute
of Technology, Kanpur 208016, India
- Shri
Maneklal M. Patel Institute of Sciences and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382023, India
| | - Jyotsna Vishwakarma
- K. B.
Pharmacy Institute of Education and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382023, India
| | - Summi Rai
- Department
of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar 56613, Nepal
| | - Taghrid S. Alomar
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Najla AlMasoud
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Ajaya Bhattarai
- Department
of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar 56613, Nepal
- or
| |
Collapse
|
22
|
Yang P, Luo JB, Wang ZZ, Zhang LL, Xie XB, Shi QS, Zhang XG. Synthesis and in vitro antibacterial activity of N-acylarylhydrazone-ciprofloxacin hybrids as novel fluoroquinolone derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Pajares-Chamorro N, Hammer ND, Chatzistavrou X. Materials for restoring lost Activity: Old drugs for new bugs. Adv Drug Deliv Rev 2022; 186:114302. [PMID: 35461913 DOI: 10.1016/j.addr.2022.114302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 11/01/2022]
Abstract
The escalation of bacterial resistance to conventional medical antibiotics is a serious concern worldwide. Improvements to current therapies are urgently needed to address this problem. The synergistic combination of antibiotics with other agents is a strategic solution to combat multi-drug-resistant bacteria. Although these combinations decrease the required high dosages and therefore, reduce the toxicity of both agents without compromising the bactericidal effect, they cannot stop the development of further resistance. Recent studies have shown certain elements restore the ability of antibiotics to destroy bacteria that have acquired resistance to them. Due to these synergistic activities, organic and inorganic molecules have been investigated with the goal of restoring antibiotics in new approaches that mitigate the risk of expanding resistance. Herein, we summarize recent studies that restore antibiotics once thought to be ineffective, but have returned to our armamentarium through innovative, combinatorial efforts. A special focus is placed on the mechanisms that allow the synergistic combinations to combat bacteria. The promising data that demonstrated restoration of antimicrobials, supports the notion to find more combinations that can combat antibiotic-resistant bacteria.
Collapse
|
24
|
Ansari A, Tauro S, Asirvatham S. A Systematic Review on Synthetic and Antimicrobial Bioactivity of the Multifaceted Hydrazide Derivatives. MINI-REV ORG CHEM 2022. [DOI: 10.2174/1570193x18666210920141351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
To overcome the upsurge of antimicrobial resistance that has emerged in recent years,
there is a need for the development of newer hits having satisfying anti-infective activity. Hydrazides
incorporated with an azomethine hydrogen account for a cardinal class of molecules for the
development of newer derivatives. Hydrazide derivatives have gained considerable interest of medicinal
chemists owing to their diverse bioactivity. In the present review, we have attempted to
compile the recent trends in the synthesis of hydrazides and their substituted derivatives. The structural
features that lead to the desired antimicrobial activity are highlighted, which will lead the way
for synthetic and medicinal chemists to focus on newer designs in this arena.
Collapse
Affiliation(s)
- Afrin Ansari
- Department of Pharmaceutical Chemistry and Quality Assurance, St. John Institute of Pharmacy and Research,
Palghar, Maharashtra, India
| | - Savita Tauro
- Department of Pharmaceutical Chemistry and Quality Assurance, St. John Institute of Pharmacy and Research,
Palghar, Maharashtra, India
| | - Sahaya Asirvatham
- Department of Pharmaceutical Chemistry and Quality Assurance, St. John Institute of Pharmacy and Research,
Palghar, Maharashtra, India
| |
Collapse
|
25
|
Jesus A, Durães F, Szemerédi N, Freitas-Silva J, da Costa PM, Pinto E, Pinto M, Spengler G, Sousa E, Cidade H. BDDE-Inspired Chalcone Derivatives to Fight Bacterial and Fungal Infections. Mar Drugs 2022; 20:md20050315. [PMID: 35621966 PMCID: PMC9147945 DOI: 10.3390/md20050315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022] Open
Abstract
The growing number of infectious diseases around the world threatens the effective response of antibiotics, contributing to the increase in antibiotic resistance seen as a global health problem. Currently, one of the main challenges in antimicrobial drug discovery is the search for new compounds that not only exhibit antimicrobial activity, but can also potentiate the antimicrobial activity and revert antibiotics’ resistance, through the interference with several mechanisms, including the inhibition of efflux pumps (EPs) and biofilm formation. Inspired by macroalgae brominated bromophenol BDDE with antimicrobial activity, a series of 18 chalcone derivatives, including seven chalcones (9–15), six dihydrochalcones (16–18, and 22–24) and five diarylpropanes (19–21, and 25 and 26), was prepared and evaluated for its antimicrobial activity and potential to fight antibiotic resistance. Among them, chalcones 13 and 14 showed promising antifungal activity against the dermatophyte clinical strain of Trichophyton rubrum, and all compounds reversed the resistance to vancomycin in Enterococcus faecalis B3/101, with 9, 14, and 24 able to cause a four-fold decrease in the MIC of vancomycin against this strain. Compounds 17–24 displayed inhibition of EPs and the formation of biofilm by S. aureus 272123, suggesting that these compounds are inhibiting the EPs responsible for the extrusion of molecules involved in biofilm-related mechanisms. Interestingly, compounds 17–24 did not show cytotoxicity in mouse embryonic fibroblast cell lines (NIH/3T3). Overall, the results obtained suggest the potential of dihydrochalcones 16–18 and 22–24, and diarylpropanes 19–21, 25 and 26, as hits for bacterial EPs inhibition, as they are effective in the inhibition of EPs, but present other features that are important in this matter, such as the lack of antibacterial activity and cytotoxicity.
Collapse
Affiliation(s)
- Ana Jesus
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (A.J.); (F.D.); (M.P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; (J.F.-S.); (P.M.d.C.); (E.P.)
| | - Fernando Durães
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (A.J.); (F.D.); (M.P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; (J.F.-S.); (P.M.d.C.); (E.P.)
| | - Nikoletta Szemerédi
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6, 6725 Szeged, Hungary; (N.S.); (G.S.)
| | - Joana Freitas-Silva
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; (J.F.-S.); (P.M.d.C.); (E.P.)
- ICBAS—Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Paulo Martins da Costa
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; (J.F.-S.); (P.M.d.C.); (E.P.)
- ICBAS—Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Eugénia Pinto
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; (J.F.-S.); (P.M.d.C.); (E.P.)
- Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (A.J.); (F.D.); (M.P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; (J.F.-S.); (P.M.d.C.); (E.P.)
| | - Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6, 6725 Szeged, Hungary; (N.S.); (G.S.)
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (A.J.); (F.D.); (M.P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; (J.F.-S.); (P.M.d.C.); (E.P.)
- Correspondence: (E.S.); (H.C.)
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (A.J.); (F.D.); (M.P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; (J.F.-S.); (P.M.d.C.); (E.P.)
- Correspondence: (E.S.); (H.C.)
| |
Collapse
|
26
|
Foster-Nyarko E, Pallen MJ. The microbial ecology of Escherichia coli in the vertebrate gut. FEMS Microbiol Rev 2022; 46:fuac008. [PMID: 35134909 PMCID: PMC9075585 DOI: 10.1093/femsre/fuac008] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli has a rich history as biology's 'rock star', driving advances across many fields. In the wild, E. coli resides innocuously in the gut of humans and animals but is also a versatile pathogen commonly associated with intestinal and extraintestinal infections and antimicrobial resistance-including large foodborne outbreaks such as the one that swept across Europe in 2011, killing 54 individuals and causing approximately 4000 infections and 900 cases of haemolytic uraemic syndrome. Given that most E. coli are harmless gut colonizers, an important ecological question plaguing microbiologists is what makes E. coli an occasionally devastating pathogen? To address this question requires an enhanced understanding of the ecology of the organism as a commensal. Here, we review how our knowledge of the ecology and within-host diversity of this organism in the vertebrate gut has progressed in the 137 years since E. coli was first described. We also review current approaches to the study of within-host bacterial diversity. In closing, we discuss some of the outstanding questions yet to be addressed and prospects for future research.
Collapse
Affiliation(s)
- Ebenezer Foster-Nyarko
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Mark J Pallen
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7AL, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, United Kingdom
| |
Collapse
|
27
|
Ali W, Elsahn A, Ting DSJ, Dua HS, Mohammed I. Host Defence Peptides: A Potent Alternative to Combat Antimicrobial Resistance in the Era of the COVID-19 Pandemic. Antibiotics (Basel) 2022; 11:475. [PMID: 35453226 PMCID: PMC9032040 DOI: 10.3390/antibiotics11040475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/07/2022] Open
Abstract
One of the greatest challenges facing the medical community today is the ever-increasing trajectory of antimicrobial resistance (AMR), which is being compounded by the decrease in our antimicrobial armamentarium. From their initial discovery to the current day, antibiotics have seen an exponential increase in their usage, from medical to agricultural use. Benefits aside, this has led to an exponential increase in AMR, with the fear that over 10 million lives are predicted to be lost by 2050, according to the World Health Organisation (WHO). As such, medical researchers are turning their focus to discovering novel alternatives to antimicrobials, one being Host Defence Peptides (HDPs). These small cationic peptides have shown great efficacy in being used as an antimicrobial therapy for currently resistant microbial variants. With the sudden emergence of the SARS-CoV-2 variant and the subsequent global pandemic, the great versatility and potential use of HDPs as an alternative to conventional antibiotics in treating as well as preventing the spread of COVID-19 has been reviewed. Thus, to allow the reader to have a full understanding of the multifaceted therapeutic use of HDPs, this literature review shall cover the association between COVID-19 and AMR whilst discussing and evaluating the use of HDPs as an answer to antimicrobial resistance (AMR).
Collapse
Affiliation(s)
| | | | | | | | - Imran Mohammed
- Section of Ophthalmology, Larry A. Donoso Laboratory for Eye Research, Academic Unit of Mental Health and Clinical Neuroscience, School of Medicine, University of Nottingham, Queens Medical Centre, Eye and ENT Building, Nottingham NG7 2UH, UK; (W.A.); (A.E.); (D.S.J.T.); (H.S.D.)
| |
Collapse
|
28
|
Biogenic Synthesis of Antibacterial, Hemocompatible, and Antiplatelets Lysozyme Functionalized Silver Nanoparticles through the One-Step Process for Therapeutic Applications. Processes (Basel) 2022. [DOI: 10.3390/pr10040623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To evaluate silver nanoparticles’ (AgNPs) therapeutic and clinical potentials, antibacterial action, blood compatibility, and antiplatelet activities are the main concerns for toxicity profiling. Heat-denatured lysozyme-mediated formulation stabilized the AgNPs, thereby providing more bactericidal activity and blood compatibility. The study of the synthesis of AgNPs suggests the rapid and cost-effective formulation of AgNPs by one-step reaction using a 10:1 ratio of silver nitrate and lysozyme by incubating at 60 °C for two hours. Characterization of AgNPs was analyzed by UV–Visible spectroscopy, DLS, TEM, EDX, XRD, AFM, and FTIR, followed by antibacterial, hemocompatibility, and platelet aggregation testing. The average size of synthesized AgNPs was found to be 94.10 nm with 0.45 mV zeta potential and 0.293 polydispersity index by DLS. The TEM and EXD results indicated homogeneously 28.08 nm spherical-shaped pure formations of AgNPs. The XRD peaks showed the synthesis of small AgNPs with a crystallite size of 22.88 nm, while the AFM confirmed the homogeneity and smoothness of the monodispersed AgNPs. The FTIR spectra specified the coating of the lysozyme-derived amide group on the AgNPs surface, which provides stability and functionality of nanoparticles. The antibacterial activity of AgNPs was remarkable against six pathogenic bacteria and three multidrug resistance (MDR) strains (i.e., Escherichia coli, Klebsiella aerogenes, and Pseudomonas aeruginosa), which exhibited inhibition zones with diameters ranging between 13.5 ± 0.2 mm to 19.0 ± 0.3 mm. The non-hemolytic nature of the AgNPs was calculated by percentage hemolysis with four concentrations. The negative result of platelet aggregation using platelet-rich plasma suggests the antiplatelet effect of AgNPs. Only minor hemolysis of 6.17% in human erythrocytes and mild platelet aggregation of 1.98% were induced, respectively, by the use of 1000 µL of 1 mM AgNPs, which contains approximately 107.8 μg silver. The results indicated that the antiplatelet potency and non-hemolytic nature with the antibacterial action of the lysozyme functionalized AgNPs have a good chance to be used to solve in-stent restenosis and thrombosis issues of the coronary stent and may also have a possibility to use in vaccination to resolve the blood clotting problem. So, the optimized biogenic formulation of AgNPs offers promising opportunities to be used as a therapeutic agent.
Collapse
|
29
|
Mech D, Kurowska A, Trotsko N. The Bioactivity of Thiazolidin-4-Ones: A Short Review of the Most Recent Studies. Int J Mol Sci 2021; 22:11533. [PMID: 34768964 PMCID: PMC8584074 DOI: 10.3390/ijms222111533] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 01/28/2023] Open
Abstract
Thiazolidin-4-ones is an important heterocyclic ring system of a pharmacophore and a privileged scaffold in medicinal chemistry. This review is focused on the latest scientific reports regarding biological activities of thiazolidin-4-ones published in 2020 and 2021. The review covers recent information about antioxidant, anticancer, anti-inflammatory, analgesic, anticonvulsant, antidiabetic, antiparasitic, antimicrobial, antitubercular and antiviral properties of thiazolidin-4-ones. Additionally, the influence of different substituents in molecules on their biological activity was discussed in this paper. Thus, this study may help to optimize the structure of thiazolidin-4-one derivatives as more efficient drug agents. Presented information may be used as a practical hint for rational design of new small molecules with biological activity, especially among thiazolidin-4-ones.
Collapse
Affiliation(s)
| | | | - Nazar Trotsko
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (D.M.); (A.K.)
| |
Collapse
|
30
|
Nuha D, Evren AE, Yılmaz Cankılıç M, Yurttaş L. Design and synthesis of novel 2,4,5-thiazole derivatives as 6-APA mimics and antimicrobial activity evaluation. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1946537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Demokrat Nuha
- Department of Chemistry, Faculty of Science, Eskisehir Technical University, Eskişehir, Turkey
| | - Asaf Evrim Evren
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Vocational School of Health Services, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Meral Yılmaz Cankılıç
- Department of Biology, Faculty of Science, Eskisehir Technical University, Eskişehir, Turkey
| | - Leyla Yurttaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
31
|
Microwave prompted solvent-free synthesis of new series of heterocyclic tagged 7-arylidene indanone hybrids and their computational, antifungal, antioxidant, and cytotoxicity study. Bioorg Chem 2021; 115:105259. [PMID: 34426144 DOI: 10.1016/j.bioorg.2021.105259] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 07/25/2021] [Accepted: 08/06/2021] [Indexed: 12/23/2022]
Abstract
In this study, we report the expeditious synthesis of ten new antifungal and antioxidant agents containing heterocyclic linked 7-arylidene indanone moiety. The solvent-free microwave technique, ample substrate scope, superfast synthesis, and very simple operation are noteworthy features of this protocol. Antifungal activities of the newly synthesized compounds were evaluated against four fungal strains namely Rhizophus oryzae, Mucor mucido, Aspergillus niger, and Candida albicans. Most of the compounds were shown strong inhibition of the investigated fungal agents. In vitro, antioxidant potential against DPPH and OH radicals affirmed that the synthesized compounds are good to excellent radicals scavenging agents. The cytotoxicity data of the synthesized compounds towards HL-60 cells uncovered that the synthesized compounds display very low to negligible cytotoxicity. The structural and quantum chemical parameters of the synthesized compounds were explored by employing density functional theory (DFT) at B3LYP functional using 6-311G(d,p) basis set. The compound 3a is discussed in detail for the theoretical and experimental correlation. Time-dependent density functional theory (TD-DFT) at CAM-B3LYP functional with 6-311G(d,p) basis set was used for the electronic absorption study in the gas phase and indichloromethane and benzene solvents. The UV-Visible absorption peaks and fundamental vibrational wavenumbers were computed and a good agreement between observed and theoretical results has been achieved. From the DFT and antifungal activity correlation, it has been found that the 7-heteroarylidene indanones with more stabilized LUMO energy levels display good antifungal potential.
Collapse
|
32
|
Bhatwalkar SB, Mondal R, Krishna SBN, Adam JK, Govender P, Anupam R. Antibacterial Properties of Organosulfur Compounds of Garlic ( Allium sativum). Front Microbiol 2021; 12:613077. [PMID: 34394014 PMCID: PMC8362743 DOI: 10.3389/fmicb.2021.613077] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Garlic (Allium sativum), a popular food spice and flavoring agent, has also been used traditionally to treat various ailments especially bacterial infections for centuries in various cultures around the world. The principal phytochemicals that exhibit antibacterial activity are oil-soluble organosulfur compounds that include allicin, ajoenes, and allyl sulfides. The organosulfur compounds of garlic exhibit a range of antibacterial properties such as bactericidal, antibiofilm, antitoxin, and anti-quorum sensing activity against a wide range of bacteria including multi-drug resistant (MDR) strains. The reactive organosulfur compounds form disulfide bonds with free sulfhydryl groups of enzymes and compromise the integrity of the bacterial membrane. The World Health Organization (WHO) has recognized the development of antibiotic resistance as a global health concern and emphasizes antibiotic stewardship along with the urgent need to develop novel antibiotics. Multiple antibacterial effects of organosulfur compounds provide an excellent framework to develop them into novel antibiotics. The review provides a focused and comprehensive portrait of the status of garlic and its compounds as antibacterial agents. In addition, the emerging role of new technologies to harness the potential of garlic as a novel antibacterial agent is discussed.
Collapse
Affiliation(s)
- Sushma Bagde Bhatwalkar
- Department of Biotechnology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| | - Rajesh Mondal
- Indian Council of Medical Research, Bhopal Memorial Hospital & Research Centre, Bhopal, India
| | - Suresh Babu Naidu Krishna
- Department of Biomedical and Clinical Technology, Durban University of Technology, Durban, South Africa
| | - Jamila Khatoon Adam
- Department of Biomedical and Clinical Technology, Durban University of Technology, Durban, South Africa
| | - Patrick Govender
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Rajaneesh Anupam
- Department of Biotechnology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| |
Collapse
|
33
|
Bruna T, Maldonado-Bravo F, Jara P, Caro N. Silver Nanoparticles and Their Antibacterial Applications. Int J Mol Sci 2021; 22:7202. [PMID: 34281254 PMCID: PMC8268496 DOI: 10.3390/ijms22137202] [Citation(s) in RCA: 522] [Impact Index Per Article: 130.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 12/22/2022] Open
Abstract
Silver nanoparticles (AgNPs) have been imposed as an excellent antimicrobial agent being able to combat bacteria in vitro and in vivo causing infections. The antibacterial capacity of AgNPs covers Gram-negative and Gram-positive bacteria, including multidrug resistant strains. AgNPs exhibit multiple and simultaneous mechanisms of action and in combination with antibacterial agents as organic compounds or antibiotics it has shown synergistic effect against pathogens bacteria such as Escherichia coli and Staphylococcus aureus. The characteristics of silver nanoparticles make them suitable for their application in medical and healthcare products where they may treat infections or prevent them efficiently. With the urgent need for new efficient antibacterial agents, this review aims to establish factors affecting antibacterial and cytotoxic effects of silver nanoparticles, as well as to expose the advantages of using AgNPs as new antibacterial agents in combination with antibiotic, which will reduce the dosage needed and prevent secondary effects associated to both.
Collapse
Affiliation(s)
- Tamara Bruna
- Centro de Investigación Austral Biotech, Facultad de Ciencias, Universidad Santo Tomás, Avenida Ejército 146, Santiago 8320000, Chile;
| | - Francisca Maldonado-Bravo
- Centro de Investigación Austral Biotech, Facultad de Ciencias, Universidad Santo Tomás, Avenida Ejército 146, Santiago 8320000, Chile;
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile;
| | - Paul Jara
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile;
| | - Nelson Caro
- Centro de Investigación Austral Biotech, Facultad de Ciencias, Universidad Santo Tomás, Avenida Ejército 146, Santiago 8320000, Chile;
| |
Collapse
|
34
|
Durães F, Resende DISP, Palmeira A, Szemerédi N, Pinto MMM, Spengler G, Sousa E. Xanthones Active against Multidrug Resistance and Virulence Mechanisms of Bacteria. Antibiotics (Basel) 2021; 10:600. [PMID: 34069329 PMCID: PMC8158687 DOI: 10.3390/antibiotics10050600] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/28/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
The emergence of multidrug and extensively drug-resistant pathogenic bacteria able to resist to the action of a wide range of antibiotics is becoming a growing problem for public health. The search for new compounds with the potential to help in the reversion of bacterial resistance plays an important role in current medicinal chemistry research. Under this scope, bacterial efflux pumps are responsible for the efflux of antimicrobials, and their inhibition could reverse resistance. In this study, the multidrug resistance reversing activity of a series of xanthones was investigated. Firstly, docking studies were performed in the AcrAB-TolC efflux pump and in a homology model of the NorA pump. Then, the effects of twenty xanthone derivatives on bacterial growth were evaluated in Staphylococcus aureus 272123 and in the acrA gene-inactivated mutant Salmonella enterica serovar Typhimurium SL1344 (SE03). Their efflux pump inhibitory properties were assessed using real-time fluorimetry. Assays concerning the activity of these compounds towards the inhibition of biofilm formation and quorum sensing have also been performed. Results showed that a halogenated phenylmethanamine xanthone derivative displayed an interesting profile, as far as efflux pump inhibition and biofilm formation were concerned. To the best of our knowledge, this is the first report of xanthones as potential efflux pump inhibitors.
Collapse
Affiliation(s)
- Fernando Durães
- Laboratory of Organic and Pharmaceutical Chemistry (LQOF), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.D.); (D.I.S.P.R.); (A.P.); (M.M.M.P.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Diana I. S. P. Resende
- Laboratory of Organic and Pharmaceutical Chemistry (LQOF), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.D.); (D.I.S.P.R.); (A.P.); (M.M.M.P.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Andreia Palmeira
- Laboratory of Organic and Pharmaceutical Chemistry (LQOF), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.D.); (D.I.S.P.R.); (A.P.); (M.M.M.P.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Nikoletta Szemerédi
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Faculty of Medicine, University of Szeged, Semmelweis utca 6, 6725 Szeged, Hungary;
| | - Madalena M. M. Pinto
- Laboratory of Organic and Pharmaceutical Chemistry (LQOF), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.D.); (D.I.S.P.R.); (A.P.); (M.M.M.P.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Faculty of Medicine, University of Szeged, Semmelweis utca 6, 6725 Szeged, Hungary;
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry (LQOF), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.D.); (D.I.S.P.R.); (A.P.); (M.M.M.P.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
35
|
Flynn J, Ryan A, Hudson SP. Pre-formulation and delivery strategies for the development of bacteriocins as next generation antibiotics. Eur J Pharm Biopharm 2021; 165:149-163. [PMID: 34020021 DOI: 10.1016/j.ejpb.2021.05.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Bacteriocins, a class of antimicrobial peptide produced by bacteria, may offer a potential alternative to traditional antibiotics, an important step towards mitigating the ever-increasing antimicrobial resistance crisis. They are active against a range of clinically relevant Gram-positive and Gram-negative bacteria. Bacteriocins have been discussed in the literature for over a century. Although they are used as preservatives in food, no medicine based on their antimicrobial activity exists on the market today. In order to formulate them into clinical antibiotics, pre-formulation studies on their biophysical and physicochemical properties that will influence their activity in vivo and their stability during manufacture must be elucidated. Thermal, pH and enzymatic stability of bacteriocins are commonly studied and regularly reported in the literature. Solubility, permeability and aggregation properties on the other hand are less frequently reported for many bacteriocins, which may contribute to their poor clinical progression. Promising cytotoxicity studies report that bacteriocins exhibit few cytotoxic effects on a variety of mammalian cell lines, at active concentrations. This review highlights the lack of quantitative data and in many cases even qualitative data, on bacteriocins' solubility, stability, aggregation, permeability and cytotoxicity. The formulation strategies that have been explored to date, proposed routes of administration, trends in in vitro/in vivo behaviour and efforts in clinical development are discussed. The future promise of bacteriocins as a new generation of antibiotics may require tailored local delivery strategies to fulfil their potential as a force to combat antimicrobial-resistant bacterial infections.
Collapse
Affiliation(s)
- James Flynn
- Department of Chemical Sciences, SSPC, the SFI Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Ireland
| | - Aoibhín Ryan
- Department of Chemical Sciences, SSPC, the SFI Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Ireland
| | - Sarah P Hudson
- Department of Chemical Sciences, SSPC, the SFI Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Ireland.
| |
Collapse
|
36
|
Sang S, Guo G, Yu J, Zhang X. Antibacterial application of gentamicin-silk protein coating with smart release function on titanium, polyethylene, and Al 2O 3 materials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112069. [PMID: 33947562 DOI: 10.1016/j.msec.2021.112069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 01/12/2023]
Abstract
Peri-implant infection after hip and knee arthroplasty is a common and serious complication. Titanium (Ti), polyethylene (PE), and Al2O3 materials used as joint prosthesis materials have good biocompatibility and mechanical strength but no antibacterial effect. This study aimed to provide a theoretical basis for the design and manufacture of joint prosthesis materials with antibacterial effect. We applied a coating of gentamicin-silk protein (GS-Silk) on the surface of these materials. We characterized the Ti, PE, and Al2O3 materials coated with GS-Silk (experimental group) and performed in vivo and in vitro experiments to test antibacterial activity. Scanning electron microscopy confirmed successful GS-Silk coating, and infrared spectroscopy confirmed successful loading of gentamicin onto the three materials. Nanoscratch test proved that the GS-Silk coating is relatively reliable on the surface of these three materials. The antibacterial effect of the coating in vitro and in vivo was verified by performing bacteriostatic ring test in vitro, bacterial adhesion test, and subendothelial implant infection test. We demonstrated that GS-Silk coating can effectively load gentamicin onto Ti, PE, and Al2O3 materials and change the gentamicin release rate with a change in the solution pH to achieve intelligent release. The GS-Silk coating is relatively reliable on the surface of these three materials. Ti, PE, and Al2O3 materials coated with GS-Silk have good antibacterial ability, both in vivo and in vitro.
Collapse
Affiliation(s)
- Shang Sang
- Department of Orthopaedics, Shanghai Jiao Tong University, Affiliated Sixth People's Hospital, Shanghai, China
| | - Geyong Guo
- Department of Orthopaedics, Shanghai Jiao Tong University, Affiliated Sixth People's Hospital, Shanghai, China
| | - Jinlong Yu
- Department of Orthopaedics, Shanghai Jiao Tong University, Affiliated Sixth People's Hospital, Shanghai, China
| | - Xianlong Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University, Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
37
|
Li H, Liu J, Liu CF, Li H, Luo J, Fang S, Chen Y, Zhong R, Liu S, Lin S. Design, Synthesis, and Biological Evaluation of Membrane-Active Bakuchiol Derivatives as Effective Broad-Spectrum Antibacterial Agents. J Med Chem 2021; 64:5603-5619. [PMID: 33909443 DOI: 10.1021/acs.jmedchem.0c02059] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Infections caused by drug-resistant bacteria seriously endanger human health and global public health. Therefore, it is urgent to discover and develop novel antimicrobial agents to combat multidrug-resistant bacteria. In this study, we designed and synthesized a series of new membrane-active bakuchiol derivatives by biomimicking the structure and function of cationic antibacterial peptides. The most promising compound 28 displayed potent antibacterial activity against both Gram-positive bacteria (minimum inhibitory concentration, MIC = 1.56-3.125 μg/mL) and Gram-negative bacteria (MIC = 3.125 μg/mL), very weak hemolytic activity, and low cytotoxicity. Compound 28 had rapid bactericidal properties and avoided bacterial resistance. More importantly, compound 28 showed strong in vivo antibacterial efficacy against Staphylococcus aureus and Pseudomonas aeruginosa in murine corneal infection models. This design strategy is expected to provide an effective solution to the antibiotic crisis.
Collapse
Affiliation(s)
- Hongxia Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Jiayong Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Chuan-Fa Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Haizhou Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Jiachun Luo
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Shanfang Fang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Yongzhi Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Rongcui Zhong
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Shouping Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Shuimu Lin
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| |
Collapse
|
38
|
Spirescu VA, Chircov C, Grumezescu AM, Andronescu E. Polymeric Nanoparticles for Antimicrobial Therapies: An Up-To-Date Overview. Polymers (Basel) 2021; 13:724. [PMID: 33673451 PMCID: PMC7956825 DOI: 10.3390/polym13050724] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
Despite the many advancements in the pharmaceutical and medical fields and the development of numerous antimicrobial drugs aimed to suppress and destroy pathogenic microorganisms, infectious diseases still represent a major health threat affecting millions of lives daily. In addition to the limitations of antimicrobial drugs associated with low transportation rate, water solubility, oral bioavailability and stability, inefficient drug targeting, considerable toxicity, and limited patient compliance, the major cause for their inefficiency is the antimicrobial resistance of microorganisms. In this context, the risk of a pre-antibiotic era is a real possibility. For this reason, the research focus has shifted toward the discovery and development of novel and alternative antimicrobial agents that could overcome the challenges associated with conventional drugs. Nanotechnology is a possible alternative, as there is significant evidence of the broad-spectrum antimicrobial activity of nanomaterials and nanoparticles in particular. Moreover, owing to their considerable advantages regarding their efficient cargo dissolving, entrapment, encapsulation, or surface attachment, the possibility of forming antimicrobial groups for specific targeting and destruction, biocompatibility and biodegradability, low toxicity, and synergistic therapy, polymeric nanoparticles have received considerable attention as potential antimicrobial drug delivery agents. In this context, the aim of this paper is to provide an up-to-date overview of the most recent studies investigating polymeric nanoparticles designed for antimicrobial therapies, describing both their targeting strategies and their effects.
Collapse
Affiliation(s)
- Vera Alexandra Spirescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (E.A.)
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (E.A.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (E.A.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (E.A.)
| |
Collapse
|
39
|
Lingpeng P, Jingzhu S, Wei L, Enqi W, Yaqin L. Effect of water extracts from Cynanchum thesioides (Freyn) K. Schum. on visceral hypersensitivity and gut microbiota profile in maternally separated rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113352. [PMID: 32891821 DOI: 10.1016/j.jep.2020.113352] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Irritable bowel syndrome (IBS) is a chronic, stress-related, functional gastrointestinal disorder characterized by abdominal discomfort and altered bowel habits; the manipulation of the microbiota is emerging as a promising therapeutic option for IBS. Cynanchum thesioides (CT) is an herb of traditional Mongolian medicine that has been employed in treating abdominal pain and diarrhea for hundreds of years. Phytochemical studies of this plant showed the presence of various flavonoids with antibacterial and anti-inflammatory activities. We hypothesized that Cynanchum thesioides manipulates the gut mycobiome and reverses visceral hypersensitivity in IBS rat model. PURPOSE OF THE STUDY The aims of this study were to prove the in vivo efficacy of Cynanchum thesioides on improving visceral hypersensitivity in IBS rat model and to examine its effect on gut bacterial communities, focusing on the potential interrelationships among microbiota and visceral hypersensitivity. MATERIALS AND METHODS We induced visceral hypersensitivity rat models by maternal separation (MS) of Sprague-Dawley rats, and administered CT water extracts to MS rats for 10 consecutive days. The abdominal withdrawal reflex score and threshold of colorectal distention were employed to assess visceral sensitivity. We then used the Illumina HiSeq platform to analyze bacterial 16S rRNA gene. RESULTS Treatment with CT improved visceral hypersensitivity in MS rats, and this was accompanied by alterations in the structure and composition of the gut microbiota. The extent of the stability of the gut microbiota was improved after treatment with CT. The genera Pseudomonas, Lachnospiracea_incertae_sedis, and Clostridium XlVa (which were more prevalent in MS rats) were significantly decreased, whereas the abundance of some genera were less prevalent in MS rats-for example, Clostridium IV, Elusimicrobium, Clostridium_sensu_stricto, and Acetatifactor were significantly enriched after treatment with CT. CONCLUSION Water-extracted CT was beneficial against visceral hypersensitivity in IBS and favorably affected the structure, composition, and functionality of gut microbiota. CT is therefore a promising agent in therapy of IBS.
Collapse
Affiliation(s)
- Pei Lingpeng
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China.
| | - Song Jingzhu
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China.
| | - Liu Wei
- College of Laboratory Medicine, Jilin Medical University, Jilin, 132013, China.
| | - Wu Enqi
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China.
| | - Ling Yaqin
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China.
| |
Collapse
|
40
|
Mosselhy DA, Assad M, Sironen T, Elbahri M. Nanotheranostics: A Possible Solution for Drug-Resistant Staphylococcus aureus and their Biofilms? NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E82. [PMID: 33401760 PMCID: PMC7824312 DOI: 10.3390/nano11010082] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022]
Abstract
Staphylococcus aureus is a notorious pathogen that colonizes implants (orthopedic and breast implants) and wounds with a vicious resistance to antibiotic therapy. Methicillin-resistant S. aureus (MRSA) is a catastrophe mainly restricted to hospitals and emerged to community reservoirs, acquiring resistance and forming biofilms. Treating biofilms is problematic except via implant removal or wound debridement. Nanoparticles (NPs) and nanofibers could combat superbugs and biofilms and rapidly diagnose MRSA. Nanotheranostics combine diagnostics and therapeutics into a single agent. This comprehensive review is interpretative, utilizing mainly recent literature (since 2016) besides the older remarkable studies sourced via Google Scholar and PubMed. We unravel the molecular S. aureus resistance and complex biofilm. The diagnostic properties and detailed antibacterial and antibiofilm NP mechanisms are elucidated in exciting stories. We highlight the challenges of bacterial infections nanotheranostics. Finally, we discuss the literature and provide "three action appraisals". (i) The first appraisal consists of preventive actions (two wings), avoiding unnecessary hospital visits, hand hygiene, and legislations against over-the-counter antibiotics as the general preventive wing. Our second recommended preventive wing includes preventing the adverse side effects of the NPs from resistance and toxicity by establishing standard testing procedures. These standard procedures should provide breakpoints of bacteria's susceptibility to NPs and a thorough toxicological examination of every single batch of synthesized NPs. (ii) The second appraisal includes theranostic actions, using nanotheranostics to diagnose and treat MRSA, such as what we call "multifunctional theranostic nanofibers. (iii) The third action appraisal consists of collaborative actions.
Collapse
Affiliation(s)
- Dina A. Mosselhy
- Nanochemistry and Nanoengineering, Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland;
- Microbiological Unit, Fish Diseases Department, Animal Health Research Institute, Dokki, Giza 12618, Egypt
- Department of Virology, Faculty of Medicine, University of Helsinki, P.O. Box 21, 00014 Helsinki, Finland;
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
| | - Mhd Assad
- Nanochemistry and Nanoengineering, Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland;
| | - Tarja Sironen
- Department of Virology, Faculty of Medicine, University of Helsinki, P.O. Box 21, 00014 Helsinki, Finland;
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
| | - Mady Elbahri
- Nanochemistry and Nanoengineering, Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland;
- Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
- Center for Nanotechnology, Zewail City of Science and Technology, Sheikh Zayed District, Giza 12588, Egypt
| |
Collapse
|
41
|
Lei Z, Karim A. The challenges and applications of nanotechnology against bacterial resistance. J Vet Pharmacol Ther 2020; 44:281-297. [PMID: 33277732 DOI: 10.1111/jvp.12936] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
Bacterial resistance to the antibiotics develops rapidly and is increasingly serious health concern in the world. It is an insoluble topic due to the multiple resistant mechanisms. The overexpression of relative activities of the efflux pump has proven to be a frequent and important source of bacterial resistance. Efflux transporters in the membrane from the resistant bacteria could play a key role to inhibit the intracellular drug intake and impede the drug activities. However, nanoparticles (NPs), one of the most frequently used encapsulation materials, could increase the intracellular accumulation of the drug and inhibit the transporter activity effectively. The rational and successful application of nanotechnology is a key factor in overcoming bacterial resistance. Furthermore, nanoparticles such as metallic, carbon nanotubes and so on, may prevent the development of drug resistance and be associated with antibiotic agents, inhibiting biofilm formation or increasing the access into the target cell and exterminating the bacteria eventually. In the current study, the mechanisms of bacterial resistance are discussed and summarized. Additionally, the opportunities and challenges in the use of nanoparticles against bacterial resistance are also illuminated. At the same time, the use of nanoparticles to combat multidrug-resistant bacteria is also investigated by coupling natural antimicrobials or other alternatives. In short, we have provided a new perspective for the application of nanoparticles against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Zhiqun Lei
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Aman Karim
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| |
Collapse
|
42
|
Production, characterization and bioactivities of biosurfactants from newly isolated strictly halophilic bacteria. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Almeida MC, Resende DISP, da Costa PM, Pinto MMM, Sousa E. Tryptophan derived natural marine alkaloids and synthetic derivatives as promising antimicrobial agents. Eur J Med Chem 2020; 209:112945. [PMID: 33153766 DOI: 10.1016/j.ejmech.2020.112945] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/01/2020] [Accepted: 10/13/2020] [Indexed: 02/03/2023]
Abstract
Antimicrobial resistance has become a major threat to public health worldwide, as pathogenic microorganisms are finding ways to evade all known antimicrobials. Therefore, the demand for new and effective antimicrobial agents is also increasing. Natural products have always played an important role in drug discovery, either by themselves or as inspiration for synthetic compounds. The marine environment is a rich source of bioactive metabolites, and among them, tryptophan-derived alkaloids stand out for their abundance and by displaying a variety of biological activities, with antimicrobial properties being among the most significant. This review aims to reveal the potential of marine alkaloids derived from tryptophan as antimicrobial agents. Relevant examples of these compounds and their synthetic analogues reported in the last decades are presented and discussed in detail, with their mechanism of action and synthetic approaches whenever relevant. Several tryptophan-derived marine alkaloids have shown potent and promising antimicrobial activities, whether against bacteria, fungi, or virus. Synthetic approaches to many of the compounds have been developed and recent methodologies are proving to be efficient. Even though most of the studies regarding the antimicrobial activity are still preliminary, this class of compounds has proven to be worth of further investigation and may provide useful lead compounds for the development of antimicrobial agents. Overall, marine alkaloids derived from tryptophan are revealed as a valuable class of antimicrobials and molecular modifications in order to reduce the toxicity of these compounds and additional studies regarding their mechanism of action are interesting topics to explore in the future.
Collapse
Affiliation(s)
- Mariana C Almeida
- Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal
| | - Diana I S P Resende
- Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal.
| | - Paulo M da Costa
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Madalena M M Pinto
- Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal
| | - Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal
| |
Collapse
|
44
|
Dos Santos-Silva CA, Zupin L, Oliveira-Lima M, Vilela LMB, Bezerra-Neto JP, Ferreira-Neto JR, Ferreira JDC, de Oliveira-Silva RL, Pires CDJ, Aburjaile FF, de Oliveira MF, Kido EA, Crovella S, Benko-Iseppon AM. Plant Antimicrobial Peptides: State of the Art, In Silico Prediction and Perspectives in the Omics Era. Bioinform Biol Insights 2020; 14:1177932220952739. [PMID: 32952397 PMCID: PMC7476358 DOI: 10.1177/1177932220952739] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
Even before the perception or interaction with pathogens, plants rely on constitutively guardian molecules, often specific to tissue or stage, with further expression after contact with the pathogen. These guardians include small molecules as antimicrobial peptides (AMPs), generally cysteine-rich, functioning to prevent pathogen establishment. Some of these AMPs are shared among eukaryotes (eg, defensins and cyclotides), others are plant specific (eg, snakins), while some are specific to certain plant families (such as heveins). When compared with other organisms, plants tend to present a higher amount of AMP isoforms due to gene duplications or polyploidy, an occurrence possibly also associated with the sessile habit of plants, which prevents them from evading biotic and environmental stresses. Therefore, plants arise as a rich resource for new AMPs. As these molecules are difficult to retrieve from databases using simple sequence alignments, a description of their characteristics and in silico (bioinformatics) approaches used to retrieve them is provided, considering resources and databases available. The possibilities and applications based on tools versus database approaches are considerable and have been so far underestimated.
Collapse
Affiliation(s)
| | - Luisa Zupin
- Genetic Immunology laboratory, Institute for Maternal and Child Health-IRCCS, Burlo Garofolo, Trieste, Italy
| | - Marx Oliveira-Lima
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, Brazil
| | | | | | | | - José Diogo Cavalcanti Ferreira
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, Brazil.,Departamento de Genética, Instituto Federal de Pernambuco, Pesqueira, Brazil
| | | | | | | | | | - Ederson Akio Kido
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, Brazil
| | - Sergio Crovella
- Genetic Immunology laboratory, Institute for Maternal and Child Health-IRCCS, Burlo Garofolo, Trieste, Italy.,Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | | |
Collapse
|
45
|
Smerkova K, Dolezelikova K, Bozdechova L, Heger Z, Zurek L, Adam V. Nanomaterials with active targeting as advanced antimicrobials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1636. [PMID: 32363802 DOI: 10.1002/wnan.1636] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022]
Abstract
With a growing health threat of bacterial resistance to antibiotics, the nanomaterials have been extensively studied as an alternative. It is assumed that antimicrobial nanomaterials can affect bacteria by several mechanisms simultaneously and thereby overcome antibiotic resistance. Another promising potential use is employing nanomaterials as nanocarriers for antibiotics in order to overcome bacterial defense mechanisms. The passive targeting of nanomaterials is the often used strategy for bacterial treatment, including intracellular infections of macrophages. Furthermore, the specific targeting enhances the efficacy of antimicrobials and reduces side effects. This review aims to discuss advantages, disadvantages, and challenges of nanomaterials in the context of the targeting strategies for antimicrobials as advanced tools for treatments of bacterial infections. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Kristyna Smerkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Kristyna Dolezelikova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Lucie Bozdechova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Ludek Zurek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Center for Zoonoses, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
46
|
Mohamed MSM, Mostafa HM, Mohamed SH, Abd El-Moez SI, Kamel Z. Combination of Silver Nanoparticles and Vancomycin to Overcome Antibiotic Resistance in Planktonic/Biofilm Cell from Clinical and Animal Source. Microb Drug Resist 2020; 26:1410-1420. [PMID: 32354252 DOI: 10.1089/mdr.2020.0089] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This study aims to evaluate the prevalence of multidrug-resistant (MDR) and biofilm-forming pathogens from animal source compared to clinical ones. In addition, to assess the antibacterial and antibiofilm activity of silver nanoparticles (AgNPs) alone and/or mixed with vancomycin. Out of 62 bacterial isolates from animal respiratory tract infection (RTI), 50.00% were defined as MDR, while among human ones, 44.00% were MDR. The bacteria Staphylococcus aureus, Pseudomonas aeruginosa, and Streptococcus pneumoniae were the predominant isolated bacteria from both animal and human origin with frequency percentage of 50.00, 22.32, and 18.75, respectively. Among Staph. aureus strains, mecA gene was detected in 60.00% and 61.54% of animal and human isolates, respectively, while mecALGA251 (mecC) gene was detected in 13.33% and 15.38% of animal and human isolates, respectively. Biofilm formation ability among animal isolates was 83.87%, while among human ones was 86.00%. AgNPs were effective in inhibiting planktonic cells with minimal inhibitory concentration (MIC) values (0.625-10 μg/mL), as well as eradicating biofilm with minimal biofilm eradication concentration values (1.25-10 μg/mL). Noticeable low MIC of AgNPs was required for the isolates from animal source (0.625-5 μg/mL) compared to clinical ones (0.625-10 μg/mL). Remarkable reduction in AgNP effective concentration was observed after combination with 1/4 MIC of vancomycin with minimum recorded concentration of 0.08 μg/mL. In conclusion, the prevalence of MDR among RT pathogens was recorded with high ability to produce biofilm and virulence factors from both animal and human pathogens. AgNPs showed strong antibacterial and antibiofilm activity alone and mixed with vancomycin, with up to fourfold reduction of AgNP inhibitory dose.
Collapse
Affiliation(s)
- Mahmoud S M Mohamed
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| | - Heba M Mostafa
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| | - Sara H Mohamed
- Department of Microbiology, National Organization for Drug Control and Research, Giza, Egypt
| | - Sherein I Abd El-Moez
- Department of Microbiology and Immunology, Veterinary Research Division, National Research Center, Dokki, Giza, Egypt
| | - Zeinat Kamel
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
47
|
Alves FCB, Albano M, Andrade BFMT, Chechi JL, Pereira AFM, Furlanetto A, Rall VLM, Fernandes AAH, dos Santos LD, Barbosa LN, Fernandes Junior A. Comparative Proteomics of Methicillin-Resistant Staphylococcus aureus Subjected to Synergistic Effects of the Lantibiotic Nisin and Oxacillin. Microb Drug Resist 2020; 26:179-189. [DOI: 10.1089/mdr.2019.0038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Fernanda Cristina Bergamo Alves
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu, Brazil
| | - Mariana Albano
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu, Brazil
| | | | - Jéssica Luana Chechi
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu, Brazil
| | - Ana Flávia Marques Pereira
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu, Brazil
| | - Alessandra Furlanetto
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu, Brazil
| | - Vera Lúcia Mores Rall
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu, Brazil
| | - Ana Angélica Henrique Fernandes
- Department of Chemistry and Biochemistry, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu, Brazil
| | - Lucilene Delazari dos Santos
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
- Center for the Study of Venom and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Lidiane Nunes Barbosa
- Graduate Program in Animal Sciences with Emphasis on Bioactive Products, Universidade Paranaense (UNIPAR), Umuarama, Brazil
| | - Ary Fernandes Junior
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu, Brazil
- Electronic Microscopy Center, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
48
|
Mukherjee S, Barman S, Mukherjee R, Haldar J. Amphiphilic Cationic Macromolecules Highly Effective Against Multi-Drug Resistant Gram-Positive Bacteria and Fungi With No Detectable Resistance. Front Bioeng Biotechnol 2020; 8:55. [PMID: 32117934 PMCID: PMC7033416 DOI: 10.3389/fbioe.2020.00055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/22/2020] [Indexed: 12/15/2022] Open
Abstract
The ever increasing threats of Gram-positive superbugs such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Staphylococcus aureus (VRSA), and vancomycin-resistant Enterococccus faecium (VRE) are serious matter of concern worldwide toward public health. Such pathogens cause repeated recurrence of infections through the formation of biofilms which consist of metabolically inactive or slow growing dormant bacterial population in vast majority. Concurrently, dispersal of biofilms originates even more virulent dispersed cells responsible for pathogenesis. Along with this, fungal infections most commonly associated with Candida albicans also created a major complicacy in human healthcare. Moreover, concomitant survival of C. albicans and MRSA in a multispecies biofilms created extremely complicated polymicrobial infections. Surprisingly, infections associated with single species biofilm as well as multiple species biofilm (co-existence of MRSA and C. albicans) are almost untreatable with conventional antibiotics. Therefore, the situation demands an urgent development of antimicrobial agent which would tackle persistent infections associated with bacteria, fungi and their biofilms. Toward this goal, herein we developed a new class of branched polyethyleneimine based amphiphilic cationic macromolecules (ACMs) bearing normal alkyl, alkyl ester and alkyl amide moieties. An optimized compound with dual activity against drug-resistant bacteria (MIC = 2-4 μg/mL) and fungi (MIC = 4-8 μg/mL) was identified with minimal toxicity toward human erythrocytes (HC50 = 270 μg/mL). The lead compound, ACM-AHex (12) displayed rapid bactericidal and fungicidal kinetics (>5 log CFU/mL reduction within 1-4 h). It also killed metabolically dormant stationary (MRSA and VRE) and persister (S. aureus) cells. Moreover, this compound was able to disrupt the preformed biofilm of MRSA and reduced the bacterial burden related to the dispersed cells. It showed significant proficiencies to eliminate polymicrobial biofilms of MRSA and C. albicans. Bacteria also could not develop any resistant against this class of membrane active molecules even after 15 days of successive passages. Taken together this class of macromolecule can be developed further as a dual therapeutic agent to combat infections associated with bacterial and fungal co-existence.
Collapse
Affiliation(s)
- Sudip Mukherjee
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Swagatam Barman
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Riya Mukherjee
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| |
Collapse
|
49
|
Rattanapanadda P, Kuo HC, Vickroy TW, Sung CH, Rairat T, Lin TL, Yeh SY, Chou CC. In vitro and in vivo Synergistic Effects of Florfenicol and Thiamphenicol in Combination Against Swine Actinobacillus pleuropneumoniae and Pasteurella multocida. Front Microbiol 2019; 10:2430. [PMID: 31749775 PMCID: PMC6842999 DOI: 10.3389/fmicb.2019.02430] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022] Open
Abstract
Potential synergism between florfenicol (FF) and thiamphenicol (TAP) was investigated for in vitro efficacy against Actinobacillus pleuropneumoniae and/or Pasteurella multocida as well as in vivo efficacy in swine. Among isolates of A. pleuropneumoniae (n = 58) and P. multocida (n = 79) from pigs in Taiwan that were tested, high percentages showed resistance to FF (52 and 53%, respectively) and TAP (57 and 53%, respectively). Checkerboard microdilution assay indicated that synergism [fractional inhibitory concentration index (FICI) ≤ 0.5] was detected in 17% of A. pleuropneumoniae (all serovar 1) and 24% of P. multocida isolates. After reconfirming the strains showing FICI ≤ 0.625 with time kill assay, the synergism increased to around 32% against both bacteria and the number could further increase to 40% against resistant A. pleuropneumoniae and 65% against susceptible P. multocida isolates. A challenge-treatment trial in pigs with P. multocida showed that the FF + TAP dosage at ratios correspondent to their MIC deduction was equally effective to the recommended dosages. Further on the combination, the resistant mutation frequency is very low when A. pleuropneumoniae is grown with FF + TAP and similar to the exposure to sub-inhibitory concentration of FF or TAP alone. The degree of minimum inhibitory concentration (MIC) reduction in FF could reach 75% (1/4 MIC) or more (up to 1/8 MIC for P. multocida, 1/16 for A. pleuropneumoniae) when combined with 1/4 MIC of TAP (or 1/8 for A. pleuropneumoniae). The synergism or FICI ≤ 0.625 of FF with oxytetracycline (47%), doxycycline (69%), and erythromycin (56%) was also evident, and worth further investigation for FF as a central modulator facilitating synergistic effects with these antimicrobials. Taken together, synergistic FF + TAP combination was effective against swine pulmonary isolates of A. pleuropneumoniae and P. multocida both in vitro and in vivo. Thus, this study may offer a potential alternative for the treatment of A. pleuropneumoniae and P. multocida infections and has the potential to greatly reduce drug residues and withdrawal time.
Collapse
Affiliation(s)
- Porjai Rattanapanadda
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hung-Chih Kuo
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chiayi University, Chiayi, Taiwan
| | - Thomas W. Vickroy
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Chi-Hsuan Sung
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Tirawat Rairat
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Tsai-Lu Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Sze-Yu Yeh
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chi-Chung Chou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
50
|
Cheng G, Ning J, Ahmed S, Huang J, Ullah R, An B, Hao H, Dai M, Huang L, Wang X, Yuan Z. Selection and dissemination of antimicrobial resistance in Agri-food production. Antimicrob Resist Infect Control 2019; 8:158. [PMID: 31649815 PMCID: PMC6805589 DOI: 10.1186/s13756-019-0623-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022] Open
Abstract
Public unrest about the use of antimicrobial agents in farming practice is the leading cause of increasing and the emergences of Multi-drug Resistant Bacteria that have placed pressure on the agri-food industry to act. The usage of antimicrobials in food and agriculture have direct or indirect effects on the development of Antimicrobial resistance (AMR) by bacteria associated with animals and plants which may enter the food chain through consumption of meat, fish, vegetables or some other food sources. In addition to antimicrobials, recent reports have shown that AMR is associated with tolerance to heavy metals existing naturally or used in agri-food production. Besides, biocides including disinfectants, antiseptics and preservatives which are widely used in farms and slaughter houses may also contribute in the development of AMR. Though the direct transmission of AMR from food-animals and related environment to human is still vague and debatable, the risk should not be neglected. Therefore, combined global efforts are necessary for the proper use of antimicrobials, heavy metals and biocides in agri-food production to control the development of AMR. These collective measures will preserve the effectiveness of existing antimicrobials for future generations.
Collapse
Affiliation(s)
- Guyue Cheng
- 1MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jianan Ning
- 1MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070 China
| | - Saeed Ahmed
- 1MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070 China
| | - Junhong Huang
- 1MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070 China
| | - Rizwan Ullah
- 3State key laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 China
| | - Boyu An
- 1MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070 China
| | - Haihong Hao
- 1MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070 China
| | - Menghong Dai
- 1MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070 China
| | - Lingli Huang
- 2National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xu Wang
- 1MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zonghui Yuan
- 1MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070 China.,2National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|