1
|
Cao J, Wang S, Ding R, Liu Y, Yuan B. Comparative analyses of the gut microbiome of two sympatric rodent species, Myodes rufocanus and Apodemus peninsulae, in northeast China based on metagenome sequencing. PeerJ 2025; 13:e19260. [PMID: 40226542 PMCID: PMC11988107 DOI: 10.7717/peerj.19260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 03/13/2025] [Indexed: 04/15/2025] Open
Abstract
The gut microbiota is integral to an animal's physiology, influencing nutritional metabolism, immune function, and environmental adaptation. Despite the significance of gut microbiota in wild rodents, the Korean field mouse (Apodemus peninsulae) and the gray red-backed vole (Myodes rufocanus) remain understudied. To address this, a metagenomic sequencing analysis of the gut microbiome of these sympatric rodents in northeast China's temperate forests was conducted. Intestinal contents were collected from A. peninsulae and M. rufocanus within the Mudanfeng National Nature Reserve. High-throughput sequencing elucidated the gut microbiome's composition, diversity, and functional pathways. Firmicutes, Bacteroidetes, and Proteobacteria were identified as the dominant phyla, with M. rufocanus showing greater microbiome diversity. Key findings indicated distinct gut bacterial communities between the species, with M. rufocanus having a higher abundance of Proteobacteria. The gut microbiota of A. peninsulae and M. rufocanus differed marginally in functional profiles, specifically in the breakdown of complex carbohydrates, which might reflect their distinct food preferences albeit both being herbivores with a substantial dietary overlap. The investigation further elucidated gut microbiota's contributions to energy metabolism and environmental adaptation mechanisms. This study aligns with information on rodent gut microbiota in literature and highlights the two understudied rodent species, providing comparative data for future studies investigating the role of gut microbiota in wildlife health and ecosystem functioning.
Collapse
Affiliation(s)
- Jing Cao
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan, China
| | - Shengze Wang
- School of Life Science, Liaocheng University, Liaocheng, Shandong, China
| | - Ruobing Ding
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan, China
| | - Yijia Liu
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan, China
| | - Baodong Yuan
- School of Life Science, Liaocheng University, Liaocheng, Shandong, China
| |
Collapse
|
2
|
Chu D, Zhang H, Shang Z, Liu N, Fu H, Yuan S. Gut Microecology of Four Sympatric Desert Rodents Varies by Diet. Ecol Evol 2025; 15:e70992. [PMID: 40027415 PMCID: PMC11868701 DOI: 10.1002/ece3.70992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/12/2025] [Accepted: 01/31/2025] [Indexed: 03/05/2025] Open
Abstract
The gut microbiome can be one pathway by which a host rapidly acclimates and adapts to its ecological environment. Exploring how the microbiome has evolved to differ between hosts with different diets provides insights into the profound interactions between hosts and microbes within these systems. In this study, we used DNA metabarcoding techniques and macrogenomic prediction techniques to study the gut microbes of four desert rodent species with different feeding strategies in the same habitat. One species is herbivorous (Spermophilus alashanicu)s, one is granivorous (Phodopus roborovskii), another is omnivorous (Dipus sagitta), and the last (Orientallactaga sibirica) has a diet with a relatively high proportion of insects. Diets rich in plants and insects can be challenging to digest due to the abundance of indigestible fiber and stable chitin, respectively. Out of the species studied, the herbivorous Spermophilus alashanicus has the highest density of UCG-005 genes and the highest predicted abundance of genes related to digestive complexity. The composition of Phodopus roborovskii's microbiome has the highest variation between individuals, yet Phodopus roborovskii has the highest predicted abundance of genes associated with simple sugars-reflecting this species' potential adaptability to the starch within plant seeds and its constraints brought about by its smaller body size. The most insectivorous species, Orientallactaga sibirica, exhibits the highest predicted abundance of genes related to chitin degradation. This study has enhanced our understanding of the gut microbiota in the intestines of rodents as they adapt to various dietary strategies.
Collapse
Affiliation(s)
- Dongyang Chu
- College of Grassland, Resources and EnvironmentInner Mongolia Agricultural UniversityHohhotChina
- Key Laboratory of Grassland Rodent Ecology and Rodent Pest Control at Universities of Inner Mongolia AutonomousHohhotChina
- Key Laboratory of Grassland Resources of the Ministry of EducationHohhotChina
| | - Haoting Zhang
- College of Grassland, Resources and EnvironmentInner Mongolia Agricultural UniversityHohhotChina
- Key Laboratory of Grassland Rodent Ecology and Rodent Pest Control at Universities of Inner Mongolia AutonomousHohhotChina
- Key Laboratory of Grassland Resources of the Ministry of EducationHohhotChina
| | - Zhenghaoni Shang
- College of Grassland, Resources and EnvironmentInner Mongolia Agricultural UniversityHohhotChina
- Key Laboratory of Grassland Rodent Ecology and Rodent Pest Control at Universities of Inner Mongolia AutonomousHohhotChina
- Key Laboratory of Grassland Resources of the Ministry of EducationHohhotChina
| | - Nan Liu
- College of Grassland, Resources and EnvironmentInner Mongolia Agricultural UniversityHohhotChina
- Key Laboratory of Grassland Rodent Ecology and Rodent Pest Control at Universities of Inner Mongolia AutonomousHohhotChina
- Key Laboratory of Grassland Resources of the Ministry of EducationHohhotChina
| | - Heping Fu
- College of Grassland, Resources and EnvironmentInner Mongolia Agricultural UniversityHohhotChina
- Key Laboratory of Grassland Rodent Ecology and Rodent Pest Control at Universities of Inner Mongolia AutonomousHohhotChina
- Key Laboratory of Grassland Resources of the Ministry of EducationHohhotChina
| | - Shuai Yuan
- College of Grassland, Resources and EnvironmentInner Mongolia Agricultural UniversityHohhotChina
- Key Laboratory of Grassland Rodent Ecology and Rodent Pest Control at Universities of Inner Mongolia AutonomousHohhotChina
- Key Laboratory of Grassland Resources of the Ministry of EducationHohhotChina
| |
Collapse
|
3
|
Lipowska MM, Sadowska ET, Kohl KD, Koteja P. Experimental Evolution of a Mammalian Holobiont? Genetic and Maternal Effects on the Cecal Microbiome in Bank Voles Selectively Bred for Herbivorous Capability. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2024; 97:274-291. [PMID: 39680902 DOI: 10.1086/732781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
AbstractMammalian herbivory represents a complex adaptation requiring evolutionary changes across all levels of biological organization, from molecules to morphology to behavior. Explaining the evolution of such complex traits represents a major challenge in biology, as it is simultaneously muddled and enlightened by a growing awareness of the crucial role of symbiotic associations in shaping organismal adaptations. The concept of hologenomic evolution includes the partnered unit of the holobiont, the host with its microbiome, as a selection unit that may undergo adaptation. Here, we test some of the assumptions underlying the concept of hologenomic evolution using a unique experimental evolution model: lines of the bank vole (Myodes [=Clethrionomys] glareolus) selected for increased ability to cope with a low-quality herbivorous diet and unselected control lines. Results from a complex nature-nurture design, in which we combined cross-fostering between the selected and control lines with dietary treatment, showed that the herbivorous voles harbored a cecal microbiome with altered membership and structure and changed abundances of several phyla and genera regardless of the origin of their foster mothers. Although the differences were small, they were statistically significant and partially robust to changes in diet and housing conditions. Microbial characteristics also correlated with selection-related traits at the level of individual variation. Thus, the results support the hypothesis that selection on a host performance trait leads to genetic changes in the host that promote the maintenance of a beneficial microbiome. Such a result is consistent with some of the assumptions underlying the concept of hologenomic evolution.
Collapse
|
4
|
McNamara MP, Venable EM, Cadney MD, Castro AA, Schmill MP, Kazzazi L, Carmody RN, Garland T. Weanling gut microbiota composition of a mouse model selectively bred for high voluntary wheel-running behavior. J Exp Biol 2023; 226:287120. [PMID: 36728594 DOI: 10.1242/jeb.245081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023]
Abstract
We compared the fecal microbial community composition and diversity of four replicate lines of mice selectively bred for high wheel-running activity over 81 generations (HR lines) and four non-selected control lines. We performed 16S rRNA gene sequencing on fecal samples taken 24 h after weaning, identifying a total of 2074 bacterial operational taxonomic units. HR and control mice did not significantly differ for measures of alpha diversity, but HR mice had a higher relative abundance of the family Clostridiaceae. These results differ from a study of rats, where a line bred for high forced-treadmill endurance and that also ran more on wheels had lower relative abundance of Clostridiaceae, as compared with a line bred for low endurance that ran less on wheels. Within the HR and control groups, replicate lines had unique microbiomes based on unweighted UniFrac beta diversity, indicating random genetic drift and/or multiple adaptive responses to selection.
Collapse
Affiliation(s)
- Monica P McNamara
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 91521, USA
| | - Emily M Venable
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Marcell D Cadney
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - Alberto A Castro
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 91521, USA
| | - Margaret P Schmill
- Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA.,Medpace, 717th St, Suite 500, Denver, CO 80202, USA
| | - Lawrence Kazzazi
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 91521, USA
| | - Rachel N Carmody
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 91521, USA
| |
Collapse
|
5
|
Hanhimäki E, Watts PC, Koskela E, Koteja P, Mappes T, Hämäläinen AM. Evolved high aerobic capacity has context-specific effects on gut microbiota. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.934164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gut microbiota is expected to coevolve with the host's physiology and may play a role in adjusting the host's energy metabolism to suit the host's environment. To evaluate the effects of both evolved host metabolism and the environmental context in shaping the gut microbiota, we used a unique combination of (1) experimental evolution to create selection lines for a fast metabolism and (2) a laboratory-to-field translocation study. Mature bank voles Myodes glareolus from lines selected for high aerobic capacity (A lines) and from unselected control (C lines) were released into large (0.2 ha) outdoor enclosures for longitudinal monitoring. To examine whether the natural environment elicited a similar or more pronounced impact on the gut microbiota of the next generation, we also sampled the field-reared offspring. The gut microbiota were characterized using 16S rRNA amplicon sequencing of fecal samples. The artificial selection for fast metabolism had minimal impact on the gut microbiota in laboratory conditions but in field conditions, there were differences between the selection lines (A lines vs. C lines) in the diversity, community, and resilience of the gut microbiota. Notably, the selection lines differed in the less abundant bacteria throughout the experiment. The lab-to-field transition resulted in an increase in alpha diversity and an altered community composition in the gut microbiota, characterized by a significant increase in the relative abundance of Actinobacteria and a decrease of Patescibacteria. Also, the selection lines showed different temporal patterns in changes in microbiota composition, as the average gut microbiota alpha diversity of the C lines, but not A lines, was temporarily reduced during the initial transition to the field. In surviving young voles, the alpha diversity of gut microbiota was significantly higher in A-line than C-line voles. These results indicate that the association of host metabolism and gut microbiota is context-specific, likely mediated by behavioral or physiological modifications in response to the environment.
Collapse
|
6
|
Galván I, Schwartz TS, Garland T. Evolutionary physiology at 30+: Has the promise been fulfilled?: Advances in Evolutionary Physiology: Advances in Evolutionary Physiology. Bioessays 2021; 44:e2100167. [PMID: 34802161 DOI: 10.1002/bies.202100167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/19/2022]
Abstract
Three decades ago, interactions between evolutionary biology and physiology gave rise to evolutionary physiology. This caused comparative physiologists to improve their research methods by incorporating evolutionary thinking. Simultaneously, evolutionary biologists began focusing more on physiological mechanisms that may help to explain constraints on and trade-offs during microevolutionary processes, as well as macroevolutionary patterns in physiological diversity. Here we argue that evolutionary physiology has yet to reach its full potential, and propose new avenues that may lead to unexpected advances. Viewing physiological adaptations in wild animals as potential solutions to human diseases offers enormous possibilities for biomedicine. New evidence of epigenetic modifications as mechanisms of phenotypic plasticity that regulate physiological traits may also arise in coming years, which may also represent an overlooked enhancer of adaptation via natural selection to explain physiological evolution. Synergistic interactions at these intersections and other areas will lead to a novel understanding of organismal biology.
Collapse
Affiliation(s)
- Ismael Galván
- Department of Evolutionary Ecology, National Museum of Natural Sciences, CSIC, Madrid, Spain
| | - Tonia S Schwartz
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| |
Collapse
|
7
|
Seal S, Dharmarajan G, Khan I. Evolution of pathogen tolerance and emerging infections: A missing experimental paradigm. eLife 2021; 10:e68874. [PMID: 34544548 PMCID: PMC8455132 DOI: 10.7554/elife.68874] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022] Open
Abstract
Researchers worldwide are repeatedly warning us against future zoonotic diseases resulting from humankind's insurgence into natural ecosystems. The same zoonotic pathogens that cause severe infections in a human host frequently fail to produce any disease outcome in their natural hosts. What precise features of the immune system enable natural reservoirs to carry these pathogens so efficiently? To understand these effects, we highlight the importance of tracing the evolutionary basis of pathogen tolerance in reservoir hosts, while drawing implications from their diverse physiological and life-history traits, and ecological contexts of host-pathogen interactions. Long-term co-evolution might allow reservoir hosts to modulate immunity and evolve tolerance to zoonotic pathogens, increasing their circulation and infectious period. Such processes can also create a genetically diverse pathogen pool by allowing more mutations and genetic exchanges between circulating strains, thereby harboring rare alive-on-arrival variants with extended infectivity to new hosts (i.e., spillover). Finally, we end by underscoring the indispensability of a large multidisciplinary empirical framework to explore the proposed link between evolved tolerance, pathogen prevalence, and spillover in the wild.
Collapse
Affiliation(s)
| | - Guha Dharmarajan
- Savannah River Ecology Laboratory, University of GeorgiaAikenUnited States
| | | |
Collapse
|
8
|
Sawaswong V, Praianantathavorn K, Chanchaem P, Khamwut A, Kemthong T, Hamada Y, Malaivijitnond S, Payungporn S. Comparative analysis of oral-gut microbiota between captive and wild long-tailed macaque in Thailand. Sci Rep 2021; 11:14280. [PMID: 34253790 PMCID: PMC8275770 DOI: 10.1038/s41598-021-93779-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Long-tailed macaques (Macaca fascicularis), distributed in Southeast Asia, are generally used in biomedical research. At present, the expansion of human communities overlapping of macaques’ natural habitat causes human-macaque conflicts. To mitigate this problem in Thailand, the National Primate Research Center of Thailand, Chulalongkorn University (NPRCT-CU), was granted the permit to catch the surplus wild-born macaques and transfer them to the center. Based on the fact that the diets provided and the captive environments were different, their oral-gut microbiota should be altered. Thus, we investigated and compared the oral and fecal microbiome between wild-born macaques that lived in the natural habitats and those transferred to and reared in the NPRCT-CU for 1 year. The results from 16S rRNA high-throughput sequencing showed that the captive macaques had distinct oral-gut microbiota profiles and lower bacterial richness compared to those in wild macaques. The gut of wild macaques was dominated by Firmicutes which is probably associated with lipid absorption and storage. These results implicated the effects of captivity conditions on the microbiome that might contribute to crucial metabolic functions. Our study should be applied to the animal health care program, with respect to microbial functions, for non-human primates.
Collapse
Affiliation(s)
- Vorthon Sawaswong
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand.,Research Unit of Systems Microbiology, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Prangwalai Chanchaem
- Research Unit of Systems Microbiology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ariya Khamwut
- Research Unit of Systems Microbiology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Taratorn Kemthong
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi, 18110, Thailand
| | - Yuzuru Hamada
- Evolutionary Morphology Section, Primate Research Institute, Kyoto University, Aichi, Japan
| | - Suchinda Malaivijitnond
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi, 18110, Thailand. .,Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Sunchai Payungporn
- Research Unit of Systems Microbiology, Chulalongkorn University, Bangkok, 10330, Thailand. .,Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
9
|
Mallott EK, Amato KR. Host specificity of the gut microbiome. Nat Rev Microbiol 2021; 19:639-653. [PMID: 34045709 DOI: 10.1038/s41579-021-00562-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 02/07/2023]
Abstract
Developing general principles of host-microorganism interactions necessitates a robust understanding of the eco-evolutionary processes that structure microbiota. Phylosymbiosis, or patterns of microbiome composition that can be predicted by host phylogeny, is a unique framework for interrogating these processes. Identifying the contexts in which phylosymbiosis does and does not occur facilitates an evaluation of the relative importance of different ecological processes in shaping the microbial community. In this Review, we summarize the prevalence of phylosymbiosis across the animal kingdom on the basis of the current literature and explore the microbial community assembly processes and related host traits that contribute to phylosymbiosis. We find that phylosymbiosis is less prevalent in taxonomically richer microbiomes and hypothesize that this pattern is a result of increased stochasticity in the assembly of complex microbial communities. We also note that despite hosting rich microbiomes, mammals commonly exhibit phylosymbiosis. We hypothesize that this pattern is a result of a unique combination of mammalian traits, including viviparous birth, lactation and the co-evolution of haemochorial placentas and the eutherian immune system, which compound to ensure deterministic microbial community assembly. Examining both the individual and the combined importance of these traits in driving phylosymbiosis provides a new framework for research in this area moving forward.
Collapse
Affiliation(s)
- Elizabeth K Mallott
- Department of Anthropology, Northwestern University, Evanston, IL, USA.,Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
10
|
McNamara MP, Singleton JM, Cadney MD, Ruegger PM, Borneman J, Garland T. Early-life effects of juvenile Western diet and exercise on adult gut microbiome composition in mice. J Exp Biol 2021; 224:jeb239699. [PMID: 33431595 PMCID: PMC7929929 DOI: 10.1242/jeb.239699] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023]
Abstract
Alterations to the gut microbiome caused by changes in diet, consumption of antibiotics, etc., can affect host function. Moreover, perturbation of the microbiome during critical developmental periods potentially has long-lasting impacts on hosts. Using four selectively bred high runner and four non-selected control lines of mice, we examined the effects of early-life diet and exercise manipulations on the adult microbiome by sequencing the hypervariable internal transcribed spacer region of the bacterial gut community. Mice from high runner lines run ∼3-fold more on wheels than do controls, and have several other phenotypic differences (e.g. higher food consumption and body temperature) that could alter the microbiome, either acutely or in terms of coevolution. Males from generation 76 were given wheels and/or a Western diet from weaning until sexual maturity at 6 weeks of age, then housed individually without wheels on standard diet until 14 weeks of age, when fecal samples were taken. Juvenile Western diet reduced bacterial richness and diversity after the 8-week washout period (equivalent to ∼6 human years). We also found interactive effects of genetic line type, juvenile diet and/or juvenile exercise on microbiome composition and diversity. Microbial community structure clustered significantly in relation to both line type and diet. Western diet also reduced the relative abundance of Muribaculum intestinale These results constitute one of the first reports of juvenile diet having long-lasting effects on the adult microbiome after a substantial washout period. Moreover, we found interactive effects of diet with early-life exercise exposure, and a dependence of these effects on genetic background.
Collapse
Affiliation(s)
- Monica P McNamara
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 91521, USA
| | - Jennifer M Singleton
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 91521, USA
| | - Marcell D Cadney
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 91521, USA
| | - Paul M Ruegger
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 91521, USA
| | - James Borneman
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 91521, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 91521, USA
| |
Collapse
|
11
|
Two hundred and fifty-four metagenome-assembled bacterial genomes from the bank vole gut microbiota. Sci Data 2020; 7:312. [PMID: 32968071 PMCID: PMC7511399 DOI: 10.1038/s41597-020-00656-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022] Open
Abstract
Vertebrate gut microbiota provide many essential services to their host. To better understand the diversity of such services provided by gut microbiota in wild rodents, we assembled metagenome shotgun sequence data from a small mammal, the bank vole Myodes glareolus (Rodentia, Cricetidae). We were able to identify 254 metagenome assembled genomes (MAGs) that were at least 50% (n = 133 MAGs), 80% (n = 77 MAGs) or 95% (n = 44 MAGs) complete. As typical for a rodent gut microbiota, these MAGs are dominated by taxa assigned to the phyla Bacteroidetes (n = 132 MAGs) and Firmicutes (n = 80), with some Spirochaetes (n = 15) and Proteobacteria (n = 11). Based on coverage over contigs, Bacteroidetes were estimated to be most abundant group, followed by Firmicutes, Spirochaetes and Proteobacteria. These draft bacterial genomes can be used freely to determine the likely functions of gut microbiota community composition in wild rodents. Measurement(s) | genome • DNA • gut microbiome measurement • metagenomic data | Technology Type(s) | DNA sequencing | Sample Characteristic - Organism | Bacteroidetes • Firmicutes • Spirochaetes • Proteobacteria • Myodes glareolus |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.12936797
Collapse
|
12
|
Lipowska MM, Sadowska ET, Bauchinger U, Goymann W, Bober-Sowa B, Koteja P. Does selection for behavioral and physiological performance traits alter glucocorticoid responsiveness in bank voles? J Exp Biol 2020; 223:jeb219865. [PMID: 32561625 DOI: 10.1242/jeb.219865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/16/2020] [Indexed: 11/20/2022]
Abstract
One of the key elements of an animal's Darwinian fitness is its ability to adequately respond to and cope with challenging situations. Glucocorticoid hormones, such as corticosterone, affect an organism's ability to overcome such challenges. We hypothesized that changes in the glucocorticoid response curve contribute to the evolution of increased performance during challenging conditions, and tested it on bank voles (Myodes glareolus) from a multidirectional artificial selection experiment, which involves lines selected for high aerobic exercise metabolism achieved during swimming (A - Aerobic), predatory behavior towards a cricket (P - Predatory) and ability to maintain body mass on a low-quality herbivorous diet (H - Herbivorous), as well as unselected control lines (C - Control). We elicited a glucocorticoid response either by restraining the animal or by maximum pharmacological stimulation, and measured plasma corticosterone levels at baseline, during the response and during the recovery phase. Response-level corticosterone was higher in females, and recovery from maximal level was faster than that of males. Selection did not affect baseline or stress-induced corticosterone levels, but it decreased the maximum corticosterone level in Aerobic and Predatory lines, reducing the difference between stress-induced and maximum levels. Recovery from restraint-induced corticosterone level tended to be slower in the Herbivorous than in the other lines, an effect that was stronger in females than in males. In conclusion, successful selection for increased performance in challenging conditions was not associated with changes in absolute values of the glucocorticoid response to stress, but can affect other characteristics of the glucocorticoid response curve.
Collapse
Affiliation(s)
| | - Edyta T Sadowska
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Kraków, Poland
| | - Ulf Bauchinger
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Kraków, Poland
- Nencki Institute of Experimental Biology PAS, 02-093 Warszawa, Poland
| | - Wolfgang Goymann
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany
| | - Barbara Bober-Sowa
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Kraków, Poland
| | - Paweł Koteja
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
13
|
Fontaine SS, Kohl KD. Optimal integration between host physiology and functions of the gut microbiome. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190594. [PMID: 32772673 DOI: 10.1098/rstb.2019.0594] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Host-associated microbial communities have profound impacts on animal physiological function, especially nutrition and metabolism. The hypothesis of 'symmorphosis', which posits that the physiological systems of animals are regulated precisely to meet, but not exceed, their imposed functional demands, has been used to understand the integration of physiological systems across levels of biological organization. Although this idea has been criticized, it is recognized as having important heuristic value, even as a null hypothesis, and may, therefore, be a useful tool in understanding how hosts evolve in response to the function of their microbiota. Here, through a hologenomic lens, we discuss how the idea of symmorphosis may be applied to host-microbe interactions. Specifically, we consider scenarios in which host physiology may have evolved to collaborate with the microbiota to perform important functions, and, on the other hand, situations in which services have been completely outsourced to the microbiota, resulting in relaxed selection on host pathways. Following this theoretical discussion, we finally suggest strategies by which these currently speculative ideas may be explicitly tested to further our understanding of host evolution in response to their associated microbial communities. This article is part of the theme issue 'The role of the microbiome in host evolution'.
Collapse
Affiliation(s)
- Samantha S Fontaine
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Kevin D Kohl
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
14
|
Zhou J, Zhao YT, Dai YY, Jiang YJ, Lin LH, Li H, Li P, Qu YF, Ji X. Captivity affects diversity, abundance, and functional pathways of gut microbiota in the northern grass lizard Takydromus septentrionalis. Microbiologyopen 2020; 9:e1095. [PMID: 32666685 PMCID: PMC7520994 DOI: 10.1002/mbo3.1095] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/15/2020] [Accepted: 05/30/2020] [Indexed: 12/14/2022] Open
Abstract
Animals in captivity undergo a range of environmental changes from wild animals. An increasing number of studies show that captivity significantly affects the abundance and community structure of gut microbiota. The northern grass lizard (Takydromus septentrionalis) is an extensively studied lacertid lizard and has a distributional range covering the central and southeastern parts of China. Nonetheless, little is known about the gut microbiota of this species, which may play a certain role in nutrient and energy metabolism as well as immune homeostasis. Here, we examined the differences in the gut microbiota between two groups (wild and captive) of lizards through 16S rRNA sequencing using the Illumina HiSeq platform. The results demonstrated that the dominant microbial components in both groups consisted of Proteobacteria, Firmicutes, and Tenericutes. The two groups did not differ in the abundance of these three phyla. Citrobacter was the most dominant genus in wild lizards, while Morganella was the most dominant genus in captive lizards. Moreover, gene function predictions showed that genes at the KEGG pathway levels2 were more abundant in wild lizards than in captive lizards but, at the KEGG pathway levels1, the differences in gene abundances between wild and captive lizards were not significant. In summary, captivity exerted a significant impact on the gut microbial community structure and diversity in T. septentrionalis, and future work could usefully investigate the causes of these changes using a comparative approach.
Collapse
Affiliation(s)
- Jin Zhou
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yu-Tian Zhao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ying-Yu Dai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yi-Jin Jiang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Long-Hui Lin
- Hangzhou Key Laboratory for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Hong Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Peng Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yan-Fu Qu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiang Ji
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
15
|
Kohl KD. Ecological and evolutionary mechanisms underlying patterns of phylosymbiosis in host-associated microbial communities. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190251. [PMID: 32200746 PMCID: PMC7133527 DOI: 10.1098/rstb.2019.0251] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
Phylosymbiosis, where similarities in host-associated microbial communities recapitulate the phylogeny of their hosts, is a newly recognized yet pervasive pattern in the field of host-microbe interactions. While phylosymbiosis has been documented across many systems, we still have a poor understanding of the mechanisms that underlie this emergent pattern. Host selection of the microbiome is a widely cited mechanism, yet other basic ecological and evolutionary processes (dispersal, drift and diversification) may also be at play. This paper discusses the roles that each of these processes and their interactions may play in yielding phylosymbiotic signals across hosts. Finally, this paper will identify open questions and methods that are required to better understand the relative contributions of these basic processes to phylosymbiosis. Given that phylosymbiosis has been shown to relate to functional components of host fitness, understanding the processes that contribute to these patterns will be important for our understanding of the ecology and evolution of host-microbe interactions. This article is part of the theme issue 'Conceptual challenges in microbial community ecology'.
Collapse
Affiliation(s)
- Kevin D. Kohl
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
16
|
Amato KR, Jeyakumar T, Poinar H, Gros P. Shifting Climates, Foods, and Diseases: The Human Microbiome through Evolution. Bioessays 2019; 41:e1900034. [PMID: 31524305 DOI: 10.1002/bies.201900034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 07/29/2019] [Indexed: 12/26/2022]
Abstract
Human evolution has been punctuated by climate anomalies, structuring environments, deadly infections, and altering landscapes. How well humans adapted to these new circumstances had direct effects on fitness and survival. Here, how the gut microbiome could have contributed to human evolutionary success through contributions to host nutritional buffering and infectious disease resistance is reviewed. How changes in human genetics, diet, disease exposure, and social environments almost certainly altered microbial community composition is also explored. Emerging research points to the microbiome as a key player in host responses to environmental change. Therefore, the reciprocal interactions between humans and their microbes are likely to have shaped human patterns of local adaptation throughout our shared evolutionary history. Recent alterations in human lifestyle, however, are altering human microbiomes in unprecedented ways. The consequences of interrupted host-microbe relationships for human adaptive potential in the future are unknown.
Collapse
Affiliation(s)
- Katherine R Amato
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Thiviya Jeyakumar
- McGill Center for the Study of Complex Traits, Department of Human Genetics, Department of Biochemistry, McGill University, 3649 Sir William Osler Promenade, Montreal, QC, H3G 0B1, Canada
| | - Hendrik Poinar
- Department of Anthropology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4M4, Canada
| | - Philippe Gros
- Department of Biochemistry, McGill University, 3649 Sir William Osler Promenade, Montreal, QC, H3G 0B1, Canada
| |
Collapse
|
17
|
Affiliation(s)
- Thomas E Tomasi
- Department of Biology, Missouri State University, Springfield, MO, USA
| | - Briana N Anderson
- Department of Biology, Missouri State University, Springfield, MO, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California – Riverside, Riverside, CA, USA
| |
Collapse
|
18
|
Robinson CD, Klein HS, Murphy KD, Parthasarathy R, Guillemin K, Bohannan BJM. Experimental bacterial adaptation to the zebrafish gut reveals a primary role for immigration. PLoS Biol 2018; 16:e2006893. [PMID: 30532251 PMCID: PMC6301714 DOI: 10.1371/journal.pbio.2006893] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 12/20/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023] Open
Abstract
All animals live in intimate association with microorganisms that profoundly influence their health and development, yet the traits that allow microorganisms to establish and maintain host associations are not well understood. To date, most investigations aimed at identifying traits required for host association have focused on intrahost niches. Consequently, little is known about the relative contribution of extrahost factors such as environmental growth and survival and immigration into hosts from the external environment, as promoters of host association. To address this, we developed a tractable experimental evolution system that investigates both intra- and extrahost factors contributing to bacterial adaptation to the vertebrate gut. We passaged replicate lines of a zebrafish bacterial isolate, Aeromonas veronii, through populations of germ-free larval zebrafish (Danio rerio), each time using gut-associated Aeromonas populations to inoculate the aquatic environment of the next zebrafish population. We observed rapid increased adaptation to the host in all replicate lines. The initial adaptations present in early-evolved isolates did not increase intrahost fitness but rather enhanced both immigration from the environment and interhost transmission. Only in later-evolved isolates did we find evidence for intrahost-specific adaptations, as demonstrated by comparing their competitive fitness in the host genotype to which they evolved to that in a different genotype. Our results show how selection for bacterial transmission between hosts and their environment can shape bacterial-host association. This work illuminates the nature of selective forces present in host-microbe systems and reveals specific mechanisms of increased host association. Furthermore, our findings demonstrate that the entire host-microbe-environment system must be considered when identifying microbial traits that contribute to host adaptation.
Collapse
Affiliation(s)
- Catherine D. Robinson
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Helena S. Klein
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Kyleah D. Murphy
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon, United States of America
| | - Raghuveer Parthasarathy
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon, United States of America
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Brendan J. M. Bohannan
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
19
|
Allan N, Knotts TA, Pesapane R, Ramsey JJ, Castle S, Clifford D, Foley J. Conservation Implications of Shifting Gut Microbiomes in Captive-Reared Endangered Voles Intended for Reintroduction into the Wild. Microorganisms 2018; 6:microorganisms6030094. [PMID: 30213049 PMCID: PMC6165168 DOI: 10.3390/microorganisms6030094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/05/2018] [Accepted: 09/11/2018] [Indexed: 12/16/2022] Open
Abstract
The Amargosa vole is a highly endangered rodent endemic to a small stretch of the Amargosa River basin in Inyo County, California. It specializes on a single, nutritionally marginal food source in nature. As part of a conservation effort to preserve the species, a captive breeding population was established to serve as an insurance colony and a source of individuals to release into the wild as restored habitat becomes available. The colony has successfully been maintained on commercial diets for multiple generations, but there are concerns that colony animals could lose gut microbes necessary to digest a wild diet. We analyzed feces from colony-reared and recently captured wild-born voles on various diets, and foregut contents from colony and wild voles. Unexpectedly, fecal microbial composition did not greatly differ despite drastically different diets and differences observed were mostly in low-abundance microbes. In contrast, colony vole foregut microbiomes were dominated by Allobaculum sp. while wild foreguts were dominated by Lactobacillus sp. If these bacterial community differences result in beneficial functional differences in digestion, then captive-reared Amargosa voles should be prepared prior to release into the wild to minimize or eliminate those differences to maximize their chance of success.
Collapse
Affiliation(s)
- Nora Allan
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
- Wildlife Investigations Lab, California Department of Fish and Wildlife, 1701 Nimbus Road, Rancho Cordova, CA 95670, USA.
| | - Trina A Knotts
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA.
| | - Risa Pesapane
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | - Jon J Ramsey
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA.
| | - Stephanie Castle
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
- Wildlife Investigations Lab, California Department of Fish and Wildlife, 1701 Nimbus Road, Rancho Cordova, CA 95670, USA.
| | - Deana Clifford
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
- Wildlife Investigations Lab, California Department of Fish and Wildlife, 1701 Nimbus Road, Rancho Cordova, CA 95670, USA.
| | - Janet Foley
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
20
|
Maiti U, Sadowska ET, ChrzĄścik KM, Koteja P. Experimental evolution of personality traits: open-field exploration in bank voles from a multidirectional selection experiment. Curr Zool 2018; 65:375-384. [PMID: 31413710 PMCID: PMC6688576 DOI: 10.1093/cz/zoy068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/21/2017] [Accepted: 08/31/2018] [Indexed: 01/10/2023] Open
Abstract
Evolution of complex physiological adaptations could be driven by natural selection acting on behavioral traits. Consequently, animal personality traits and their correlation with physiological traits have become an engaging research area. Here, we applied a unique experimental evolution model-lines of bank voles selected for (A) high exercise-induced aerobic metabolism, (H) ability to cope with low-quality herbivorous diet, and (P) intensity of predatory behavior, that is, traits shaping evolutionary path and diversity of mammals-and asked how the selection affected the voles' personality traits, assessed in an open field test. The A- and P-line voles were more active, whereas the H-line voles were less active, compared those from unselected control lines (C). H-line voles moved slower but on more meandering trajectories, which indicated a more thorough exploration, whereas the A- and P-line voles moved faster and on straighter trajectories. A-line voles showed also an increased escape propensity, whereas P-line voles tended to be bolder. The remarkable correlated responses to the selection indicate a common genetic underlying mechanism of behavioral and physiological traits, and support the paradigm of evolutionary physiology built around the concept of correlated evolution of behavior and physiology.
Collapse
Affiliation(s)
- Uttaran Maiti
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa, Kraków, Poland
| | - Edyta T Sadowska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa, Kraków, Poland
| | - Katarzyna M ChrzĄścik
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa, Kraków, Poland
| | - Paweł Koteja
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa, Kraków, Poland
| |
Collapse
|
21
|
Abstract
The gut microbiota can have important, wide-ranging effects on its host. To date, laboratory animals, particularly mice, have been the major study system for microbiota research. It is now becoming increasingly clear that laboratory animals often poorly model aspects of the biology of wild animals, and this concern extends to the study of the gut microbiota. Here, the relatively few studies of the microbiota of wild rodents are reviewed, including a critical assessment of how the gut microbiota differs between laboratory and wild rodents. Finally, the many potential advantages and opportunities of wild-animal systems for research into the gut microbiota are considered.
Collapse
|
22
|
Curtis JT, Assefa S, Francis A, Köhler GA. Fecal microbiota in the female prairie vole (Microtus ochrogaster). PLoS One 2018; 13:e0190648. [PMID: 29579049 PMCID: PMC5868765 DOI: 10.1371/journal.pone.0190648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 12/18/2017] [Indexed: 12/15/2022] Open
Abstract
We examined the fecal microbiota of female prairie voles. This species is socially and, likely, sexually monogamous, and thus serves as a valuable model in which to examine the interaction between the microbiota-gut-brain axis and social behavior. At present, little is known about the gastrointestinal microbiota of prairie voles; therefore, we performed a first characterization of the fecal microbiota using 16S rRNA gene amplicon sequencing. Semiconductor sequencing technology on an Ion Torrent PGM platform was used to assess the composition of fecal microbiotas from twelve female prairie voles. Following quality filtering, 1,017,756 sequencing reads were classified from phylum to genus level. At the phylum level, Firmicutes, Bacteroidetes, and Saccharibacteria were the predominant taxa, while the Bacteriodales, Erysipelotrichaceae, Ruminococcaceae, and Lachnospiraceae contributed the most dominant microbial groups and genera. Microbial community membership was most similar between vole sibling pairs, but consideration of taxon abundances weakened these associations. The interdependence of host factors such as genetics and behavior with the gastrointestinal microbiota is likely to be particularly pronounced in prairie voles. Our pilot characterization of the prairie vole intestinal microbiota revealed a microbial community composition remarkably consistent with the monogastric alimentary system of these rodents and their diet rich in complex plant carbohydrates. The highly social nature of these animals poses specific challenges to microbiome analyses that nonetheless are valuable for advancing research on the microbiota-gut-brain-behavior axis. Our study provides an important basis for future microbiome research in this emerging model organism for studying social behavior.
Collapse
Affiliation(s)
- J. Thomas Curtis
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, United States of America
| | - Senait Assefa
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, United States of America
| | - Amie Francis
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, United States of America
| | - Gerwald A. Köhler
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
23
|
A Microbial Perspective on the Grand Challenges in Comparative Animal Physiology. mSystems 2018; 3:mSystems00146-17. [PMID: 29556549 PMCID: PMC5853186 DOI: 10.1128/msystems.00146-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/13/2017] [Indexed: 01/23/2023] Open
Abstract
Interactions with microbial communities can have profound influences on animal physiology, thereby impacting animal performance and fitness. Therefore, it is important to understand the diversity and nature of host-microbe interactions in various animal groups (invertebrates, fish, amphibians, reptiles, birds, and mammals). Interactions with microbial communities can have profound influences on animal physiology, thereby impacting animal performance and fitness. Therefore, it is important to understand the diversity and nature of host-microbe interactions in various animal groups (invertebrates, fish, amphibians, reptiles, birds, and mammals). In this perspective, I discuss how the field of host-microbe interactions can be used to address topics that have been identified as grand challenges in comparative animal physiology: (i) horizontal integration of physiological processes across organisms, (ii) vertical integration of physiological processes across organizational levels within organisms, and (iii) temporal integration of physiological processes during evolutionary change. Addressing these challenges will require the use of a variety of animal models and the development of systems approaches that can integrate large, multiomic data sets from both microbial communities and animal hosts. Integrating host-microbe interactions into the established field of comparative physiology represents an exciting frontier for both fields.
Collapse
|
24
|
Voss JD, Goodson MS, Leon JC. Phenotype diffusion and one health: A proposed framework for investigating the plurality of obesity epidemics across many species. Zoonoses Public Health 2018; 65:279-290. [PMID: 29430857 DOI: 10.1111/zph.12445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Indexed: 01/07/2023]
Abstract
We propose the idea of "phenotype diffusion," which is a rapid convergence of an observed trait in some human and animal populations. The words phenotype and diffusion both imply observations independent of mechanism as phenotypes are observed traits with multiple possible genetic mechanisms and diffusion is an observed state of being widely distributed. Recognizing shared changes in phenotype in multiple species does not by itself reveal a particular mechanism such as a shared exposure, shared adaptive need, particular stochastic process or a transmission pathway. Instead, identifying phenotype diffusion suggests the mechanism should be explored to help illuminate the ways human and animal health are connected and new opportunities for optimizing these links. Using the plurality of obesity epidemics across multiple species as a prototype for shared changes in phenotype, the goal of this review was to explore eco-evolutionary theories that could inform further investigation. First, evolutionary changes described by hologenome evolution, pawnobe evolution, transposable element (TE) thrust and the drifty gene hypothesis will be discussed within the context of the selection asymmetries among human and animal populations. Secondly, the ecology of common source exposures (bovine milk, xenohormesis and "obesogens"), niche evolution and the hygiene hypothesis will be summarized. Finally, we synthesize these considerations. For example, many agricultural breeds have been aggressively selected for weight gain, microbiota (e.g., adenovirus 36, toxoplasmosis) associated with (or infecting) these breeds cause experimental weight gain in other animals, and these same microbes are associated with human obesity. We propose applications of phenotype diffusion could include zoonotic biosurveillance, biocontainment, antibiotic stewardship and environmental priorities. The One Health field is focused on the connections between the health of humans, animals and the environment, and so identification of phenotype diffusion is highly relevant for practitioners (public health officials, physicians and veterinarians) in this field.
Collapse
Affiliation(s)
- J D Voss
- Epidemiology Consult Service Division, United States Air Force School of Aerospace Medicine, Wright-Patterson AFB, OH, USA
| | - M S Goodson
- 711th Human Performance Wing, Human Effectiveness Directorate, Wright-Patterson AFB, OH, USA.,UES Inc., Dayton, OH, USA
| | - J C Leon
- Epidemiology Consult Service Division, United States Air Force School of Aerospace Medicine, Wright-Patterson AFB, OH, USA
| |
Collapse
|
25
|
Shapiro JA. Living Organisms Author Their Read-Write Genomes in Evolution. BIOLOGY 2017; 6:E42. [PMID: 29211049 PMCID: PMC5745447 DOI: 10.3390/biology6040042] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
Evolutionary variations generating phenotypic adaptations and novel taxa resulted from complex cellular activities altering genome content and expression: (i) Symbiogenetic cell mergers producing the mitochondrion-bearing ancestor of eukaryotes and chloroplast-bearing ancestors of photosynthetic eukaryotes; (ii) interspecific hybridizations and genome doublings generating new species and adaptive radiations of higher plants and animals; and, (iii) interspecific horizontal DNA transfer encoding virtually all of the cellular functions between organisms and their viruses in all domains of life. Consequently, assuming that evolutionary processes occur in isolated genomes of individual species has become an unrealistic abstraction. Adaptive variations also involved natural genetic engineering of mobile DNA elements to rewire regulatory networks. In the most highly evolved organisms, biological complexity scales with "non-coding" DNA content more closely than with protein-coding capacity. Coincidentally, we have learned how so-called "non-coding" RNAs that are rich in repetitive mobile DNA sequences are key regulators of complex phenotypes. Both biotic and abiotic ecological challenges serve as triggers for episodes of elevated genome change. The intersections of cell activities, biosphere interactions, horizontal DNA transfers, and non-random Read-Write genome modifications by natural genetic engineering provide a rich molecular and biological foundation for understanding how ecological disruptions can stimulate productive, often abrupt, evolutionary transformations.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago GCIS W123B, 979 E. 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
26
|
|
27
|
Macke E, Tasiemski A, Massol F, Callens M, Decaestecker E. Life history and eco-evolutionary dynamics in light of the gut microbiota. OIKOS 2017. [DOI: 10.1111/oik.03900] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Emilie Macke
- Laboratory Aquatic Biology, KU Leuven (Kulak), Dept of Biology; E. Sabbelaan 53, BE-8500 Kortrijk Belgium
| | | | - François Massol
- Univ. Lille; CNRS UMR 8198 Evo-Eco-Paleo SPICI group Lille France
| | - Martijn Callens
- Laboratory Aquatic Biology, KU Leuven (Kulak), Dept of Biology; E. Sabbelaan 53, BE-8500 Kortrijk Belgium
| | - Ellen Decaestecker
- Laboratory Aquatic Biology, KU Leuven (Kulak), Dept of Biology; E. Sabbelaan 53, BE-8500 Kortrijk Belgium
| |
Collapse
|
28
|
Hoang KL, Morran LT, Gerardo NM. Experimental Evolution as an Underutilized Tool for Studying Beneficial Animal-Microbe Interactions. Front Microbiol 2016; 7:1444. [PMID: 27679620 PMCID: PMC5020044 DOI: 10.3389/fmicb.2016.01444] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 08/30/2016] [Indexed: 11/29/2022] Open
Abstract
Microorganisms play a significant role in the evolution and functioning of the eukaryotes with which they interact. Much of our understanding of beneficial host–microbe interactions stems from studying already established associations; we often infer the genotypic and environmental conditions that led to the existing host–microbe relationships. However, several outstanding questions remain, including understanding how host and microbial (internal) traits, and ecological and evolutionary (external) processes, influence the origin of beneficial host–microbe associations. Experimental evolution has helped address a range of evolutionary and ecological questions across different model systems; however, it has been greatly underutilized as a tool to study beneficial host–microbe associations. In this review, we suggest ways in which experimental evolution can further our understanding of the proximate and ultimate mechanisms shaping mutualistic interactions between eukaryotic hosts and microbes. By tracking beneficial interactions under defined conditions or evolving novel associations among hosts and microbes with little prior evolutionary interaction, we can link specific genotypes to phenotypes that can be directly measured. Moreover, this approach will help address existing puzzles in beneficial symbiosis research: how symbioses evolve, how symbioses are maintained, and how both host and microbe influence their partner’s evolutionary trajectories. By bridging theoretical predictions and empirical tests, experimental evolution provides us with another approach to test hypotheses regarding the evolution of beneficial host–microbe associations.
Collapse
Affiliation(s)
- Kim L Hoang
- Department of Biology, O. Wayne Rollins Research Center, Emory University Atlanta, GA, USA
| | - Levi T Morran
- Department of Biology, O. Wayne Rollins Research Center, Emory University Atlanta, GA, USA
| | - Nicole M Gerardo
- Department of Biology, O. Wayne Rollins Research Center, Emory University Atlanta, GA, USA
| |
Collapse
|