1
|
Tu Z, Choi D, Chen Y, Yu JH, Huynh TN. The food fermentation fungus Aspergillus oryzae is a source of natural antimicrobials against Listeria monocytogenes. J Dairy Sci 2025; 108:3444-3454. [PMID: 39947601 DOI: 10.3168/jds.2024-25719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/13/2025] [Indexed: 04/20/2025]
Abstract
Listeria monocytogenes is a highly adaptable foodborne pathogen that causes multiple foodborne illness outbreaks annually despite stringent food safety measures. The ubiquitous presence of L. monocytogenes in agricultural production environments provides easy routes of contamination to the human food production chain. The remarkable resilience of L. monocytogenes in harsh food processing and preservation conditions presents further challenges to controlling this pathogen in food and food processing plants. Furthermore, there is an increasing consumer demand for natural antimicrobials in food. Aspergillus oryzae is a food fermentation fungus with a generally recognized as safe status and is a workhorse in biotechnology applications. In this study, we examined the antimicrobial activity of Aspergillus oryzae fermentates and extracts toward L. monocytogenes, both in laboratory cultures and contaminated milk. Aspergillus oryzae-derived antimicrobials can be obtained in 2 culture conditions, which we term natural products 1 and 2 (NP1 and NP2). Laboratory cultures of L. monocytogenes were effectively and rapidly killed by both NP1 and NP2 extracts. In contaminated milk, the NP1 extract was bactericidal, whereas the NP2 extract was bacteriostatic. Nevertheless, the NP2 extract was heat stable, retaining antimicrobial activity even after boiling. Profiling L. monocytogenes transcriptional response to a subinhibitory level of NP2 fermentate, we observed significant shifts in amino acid metabolism and iron uptake, suggesting that these pathways can be tackled to increase the efficacy of NP2. Taken together, A. oryzae fermentates and extracts are promising candidates for natural antimicrobial treatments in food and food processing environments.
Collapse
Affiliation(s)
- Zepeng Tu
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706
| | - Dasol Choi
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
| | - Yuxing Chen
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
| | - TuAnh N Huynh
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706.
| |
Collapse
|
2
|
Gmeiner A, Ivanova M, Njage PMK, Hansen LT, Chindelevitch L, Leekitcharoenphon P. Quantitative prediction of disinfectant tolerance in Listeria monocytogenes using whole genome sequencing and machine learning. Sci Rep 2025; 15:10382. [PMID: 40140458 PMCID: PMC11947258 DOI: 10.1038/s41598-025-94321-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Listeria monocytogenes is a potentially severe disease-causing bacteria mainly transmitted through food. This pathogen is of great concern for public health and the food industry in particular. Many countries have implemented thorough regulations, and some have even set 'zero-tolerance' thresholds for particular food products to minimise the risk of L. monocytogenes outbreaks. This emphasises that proper sanitation of food processing plants is of utmost importance. Consequently, in recent years, there has been an increased interest in L. monocytogenes tolerance to disinfectants used in the food industry. Even though many studies are focusing on laboratory quantification of L. monocytogenes tolerance, the possibility of predictive models remains poorly studied. Within this study, we explore the prediction of tolerance and minimum inhibitory concentrations (MIC) using whole genome sequencing (WGS) and machine learning (ML). We used WGS data and MIC values to quaternary ammonium compound (QAC) disinfectants from 1649 L. monocytogenes isolates to train different ML predictors. Our study shows promising results for predicting tolerance to QAC disinfectants using WGS and machine learning. We were able to train high-performing ML classifiers to predict tolerance with balanced accuracy scores up to 0.97 ± 0.02. For the prediction of MIC values, we were able to train ML regressors with mean squared error as low as 0.07 ± 0.02. We also identified several new genes related to cell wall anchor domains, plasmids, and phages, putatively associated with disinfectant tolerance in L. monocytogenes. The findings of this study are a first step towards prediction of L. monocytogenes tolerance to QAC disinfectants used in the food industry. In the future, predictive models might be used to monitor disinfectant tolerance in food production and might support the conceptualisation of more nuanced sanitation programs.
Collapse
Affiliation(s)
- Alexander Gmeiner
- National Food Institute, Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs. Lyngby, Denmark.
| | - Mirena Ivanova
- National Food Institute, Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Patrick Murigu Kamau Njage
- National Food Institute, Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lisbeth Truelstrup Hansen
- National Food Institute, Research Group for Food Microbiology and Hygiene, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Leonid Chindelevitch
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - Pimlapas Leekitcharoenphon
- National Food Institute, Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
3
|
Dhaliwal HK, Sonkar S, V P, Puente L, Roopesh MS. Process Technologies for Disinfection of Food-Contact Surfaces in the Dry Food Industry: A Review. Microorganisms 2025; 13:648. [PMID: 40142540 PMCID: PMC11945173 DOI: 10.3390/microorganisms13030648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/23/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
The survival characteristics of bacterial pathogens, including Salmonella spp., Listeria monocytogenes, Staphylococcus aureus, and Escherichia coli, in foods with a low water activity (aw) have been extensively examined and reported. Microbial attachment on the food-contact surfaces can result in cross-contamination and compromise the safety of low-aw foods. The bactericidal potential of various conventional and novel disinfection technologies has been explored in the dry food industry. However, the attachment behavior of bacterial pathogens to food-contact surfaces in low-aw conditions and their subsequent response to the cleaning and disinfection practices requires further elucidation. The review summarizes the elements that influence disinfection, such as the presence of organic residues, persistent strains, and the possibility of microbial biotransfer. This review explores in detail the selected dry disinfection technologies, including superheated steam, fumigation, alcohol-based disinfectants, UV radiation, and cold plasma, that can be used in the dry food industry. The review also highlights the use of several wet disinfection technologies employing chemical antimicrobial agents against surface-dried microorganisms on food-contact surfaces. In addition, the disinfection efficacy of conventional and novel technologies against surface-dried microorganisms on food-contact surfaces, as well as their advantages and disadvantages and underlying mechanisms, are discussed. Dry food processing facilities should implement stringent disinfection procedures to ensure food safety. Environmental monitoring procedures and management techniques are essential to prevent adhesion and allow the subsequent inactivation of microorganisms.
Collapse
Affiliation(s)
- Harleen Kaur Dhaliwal
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (H.K.D.); (P.V.)
| | - Shivani Sonkar
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (H.K.D.); (P.V.)
| | - Prithviraj V
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (H.K.D.); (P.V.)
| | - Luis Puente
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (H.K.D.); (P.V.)
- Departamento de Ciencias de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Av. Dr. Carlos Lorca Tobar 964, Independencia, Santiago 8380494, Chile
| | - M. S. Roopesh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (H.K.D.); (P.V.)
| |
Collapse
|
4
|
Maćkiw E, Kowalska J, Korsak D, Postupolski J. Analysis of Genetic Determinants Encoding Resistance to Heavy Metals and Disinfectants in Listeria monocytogenes. Foods 2024; 13:3936. [PMID: 39683009 DOI: 10.3390/foods13233936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/19/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Listeria monocytogenes is an important foodborne pathogen causing listeriosis. L. monocytogenes, existing in the natural environment, can also contaminate food products, which poses a serious threat to human health and life, especially for high-risk groups: pregnant women, newborn babies, and the elderly. Environmental adaptation of L. monocytogenes refers to the various strategies and mechanisms used by this bacterium to survive and thrive in diverse and often hostile environments that include, among others, toxic heavy metals and disinfectants. The aim of this study was to analyze WGS (whole-genome sequencing) data of 45 L. monocytogenes strains isolated from food to compare the prevalence and types of genetic determinants encoding resistance to toxic metals, such as arsenic and cadmium, as well as quaternary ammonium compounds, like benzalkonium chloride. In L. monocytogenes strains, resistance genes were detected for disinfectants, such as benzalkonium chloride (4.4%), as well as for toxic heavy metals, like cadmium (28.9%) and arsenic (24.4%). The bcrABC cassette was found together with the cadA2C2 genes in two strains: 3855-D (IIc, ST9, CC9) and 4315 (IVb, ST6, CC6). The arsenic cassette, encoded by the genes arsR1D2R2A2B1B2, was co-selected with the cadA4C4 genes. The arsenic cassette was prevalent in nine strains of clonal complex CC2 (82%), one strain of CC3 (9%), and one strain of CC11 (9%). In contrast, the benzalkonium chloride cassette was detected in one strain of CC6 and one strain of CC9. The results of the present study demonstrate the need for further research into the characteristics of L. monocytogenes isolated from other sources in order to understand their spread throughout the food chain.
Collapse
Affiliation(s)
- Elżbieta Maćkiw
- Department of Food Safety, National Institute of Public Health NIH-National Research Institute, 24 Chocimska str, 00-791 Warsaw, Poland
| | - Joanna Kowalska
- Department of Food Safety, National Institute of Public Health NIH-National Research Institute, 24 Chocimska str, 00-791 Warsaw, Poland
| | - Dorota Korsak
- Department of Food Safety, National Institute of Public Health NIH-National Research Institute, 24 Chocimska str, 00-791 Warsaw, Poland
| | - Jacek Postupolski
- Department of Food Safety, National Institute of Public Health NIH-National Research Institute, 24 Chocimska str, 00-791 Warsaw, Poland
| |
Collapse
|
5
|
Avila-Novoa MG, Solis-Velazquez OA, Guerrero-Medina PJ, Martínez-Chávez L, Martínez-Gonzáles NE, Gutiérrez-Lomelí M. Listeria monocytogenes in Fruits and Vegetables: Antimicrobial Resistance, Biofilm, and Genomic Insights. Antibiotics (Basel) 2024; 13:1039. [PMID: 39596734 PMCID: PMC11591142 DOI: 10.3390/antibiotics13111039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/26/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Listeria monocytogenes is a foodborne pathogen that can infect both humans and animals and cause noninvasive gastrointestinal listeriosis or invasive listeriosis. The objectives of this study were to determine the genetic diversity of L. monocytogenes; the genes associated with its resistance to antibiotics, benzalkonium chloride (BC), and cadmium chloride (CdCl2); and its biofilm formation. METHODS A total of 132 fresh fruits (44 samples) and vegetables (88 samples) were selected for this study. The genetic diversity of the isolates and the genes associated with their antibiotic resistance were determined using PCR amplification; meanwhile, their levels of susceptibility to antibiotics were determined using the agar diffusion method. Their levels of resistance to BC and CdCl2 were determined using the minimum inhibitory concentration method, and their capacity for biofilm formation was evaluated using the crystal violet staining method. RESULTS A total of 17 L. monocytogenes strains were collected: 12.8% (17/132) from fresh fruits and vegetables in this study. The isolates of L. monocytogenes belonged to phylogenetic groups I.1 (29.4% (5/17); serotype 1/2a) and II.2 (70.5% (12/17); serotype 1/2b); strains containing Listeria pathogenicity islands (LIPIs) were also identified at prevalence rates of 100% for LIPI-1 and LIPI-2 (17/17), 29.4% for LIPI-3 (5/17), and 11.7% for LIPI-4 (2/17). The antibiotic susceptibility tests showed that the L. monocytogenes isolates exhibited six different multiresistant patterns, with multiple antibiotic resistance (MAR) index of ≥0.46 (70.5%; 12/17); additionally, the genes Ide, tetM, and msrA, associated with efflux pump Lde, tetracycline, and ciprofloxacin resistance, were detected at 52.9% (9/17), 29.4% (5/17), and 17.6% (3/17), respectively. The phenotypic tests showed that 58.8% (10/17) of cadmium-resistant L. monocytogenes isolates had a co-resistance of 23.5% (4/17) to BC. Finally, all strains of L. monocytogenes exhibited moderate biofilm production. CONCLUSIONS The results of this study contribute to our understanding of the persistence and genetic diversity of L. monocytogenes strains isolated from fresh fruits and vegetables; in addition, their resistance to CdCl2, which is correlated with co-resistance to BC disinfectant, is helpful for the food industry.
Collapse
Affiliation(s)
- María Guadalupe Avila-Novoa
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, División de Desarrollo Biotecnológico, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Lindavista, Ocotlán 47820, Jalisco, Mexico; (M.G.A.-N.); (O.A.S.-V.); (P.J.G.-M.)
| | - Oscar Alberto Solis-Velazquez
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, División de Desarrollo Biotecnológico, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Lindavista, Ocotlán 47820, Jalisco, Mexico; (M.G.A.-N.); (O.A.S.-V.); (P.J.G.-M.)
| | - Pedro Javier Guerrero-Medina
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, División de Desarrollo Biotecnológico, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Lindavista, Ocotlán 47820, Jalisco, Mexico; (M.G.A.-N.); (O.A.S.-V.); (P.J.G.-M.)
| | - Liliana Martínez-Chávez
- Departamentos de Farmacobiología y Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán 1451, Col. Olímpica, Guadalajara 44430, Jalisco, Mexico; (L.M.-C.); (N.E.M.-G.)
| | - Nanci Edid Martínez-Gonzáles
- Departamentos de Farmacobiología y Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán 1451, Col. Olímpica, Guadalajara 44430, Jalisco, Mexico; (L.M.-C.); (N.E.M.-G.)
| | - Melesio Gutiérrez-Lomelí
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, División de Desarrollo Biotecnológico, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Lindavista, Ocotlán 47820, Jalisco, Mexico; (M.G.A.-N.); (O.A.S.-V.); (P.J.G.-M.)
| |
Collapse
|
6
|
Lima LS, Müller TN, Ansiliero R, Schuster MB, Silva BL, Jaskulski IB, da Silva WP, Moroni LS. Biofilm formation by Listeria monocytogenes from the meat processing industry environment and the use of different combinations of detergents, sanitizers, and UV-A radiation to control this microorganism in planktonic and sessile forms. Braz J Microbiol 2024; 55:2483-2499. [PMID: 38767749 PMCID: PMC11405597 DOI: 10.1007/s42770-024-01361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
This study aimed to evaluate the ability of biofilm formation by L. monocytogenes from the meat processing industry environment, as well as the use of different combinations of detergents, sanitizers, and UV-A radiation in the control of this microorganism in the planktonic and sessile forms. Four L. monocytogenes isolates were evaluated and showed moderate ability to form biofilm, as well as carried genes related to biofilm production (agrB, agrD, prfA, actA, cheA, cheY, flaA, sigB), and genes related to tolerance to sanitizers (lde and qacH). The biofilm-forming isolates of L. monocytogenes were susceptible to quaternary ammonium compound (QAC) and peracetic acid (PA) in planktonic form, with minimum inhibitory concentrations of 125 and 75 ppm, respectively, for contact times of 10 and 5 min. These concentrations are lower than those recommended by the manufacturers, which are at least 200 and 300 ppm for QAC and PA, respectively. Biofilms of L. monocytogenes formed from a pool of isolates on stainless steel and polyurethane coupons were subjected to 14 treatments involving acid and enzymatic detergents, QAC and PA sanitizers, and UV-A radiation at varying concentrations and contact times. All treatments reduced L. monocytogenes counts in the biofilm, indicating that the tested detergents, sanitizers, and UV-A radiation exhibited antimicrobial activity against biofilms on both surface types. Notably, the biofilm formed on polyurethane showed greater tolerance to the evaluated compounds than the biofilm on stainless steel, likely due to the material's surface facilitating faster microbial colonization and the development of a more complex structure, as observed by scanning electron microscopy. Listeria monocytogenes isolates from the meat processing industry carry genes associated with biofilm production and can form biofilms on both stainless steel and polyurethane surfaces, which may contribute to their persistence within meat processing lines. Despite carrying sanitizer tolerance genes, QAC and PA effectively controlled these microorganisms in their planktonic form. However, combinations of detergent (AC and ENZ) with sanitizers (QAC and PA) at minimum concentrations of 125 ppm and 300 ppm, respectively, were the most effective.
Collapse
Affiliation(s)
- Larissa Siqueira Lima
- Departamento de Engenharia de Alimentos e Engenharia Química, Universidade do Estado de Santa Catarina, Pinhalzinho, SC, 89870-000, Brazil
| | - Taís Nunzio Müller
- Departamento de Engenharia de Alimentos e Engenharia Química, Universidade do Estado de Santa Catarina, Pinhalzinho, SC, 89870-000, Brazil
| | - Rafaela Ansiliero
- Departamento de Engenharia de Alimentos e Engenharia Química, Universidade do Estado de Santa Catarina, Pinhalzinho, SC, 89870-000, Brazil
| | - Marcia Bär Schuster
- Departamento de Engenharia de Alimentos e Engenharia Química, Universidade do Estado de Santa Catarina, Pinhalzinho, SC, 89870-000, Brazil
| | - Bruna Louise Silva
- Centro Multiusuário, Centro de Ciências Tecnológicas, Universidade do Estado de Santa Catarina, Joinville, SC, 89219-710, Brazil
| | - Itiane Barcellos Jaskulski
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia, Universidade Federal de Pelotas, Capão do Leão, RS, 96001-970, Brazil
- Centro de Desenvolvimento Tecnológico, Departamento de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 960110-610, Brazil
| | - Wladimir Padilha da Silva
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia, Universidade Federal de Pelotas, Capão do Leão, RS, 96001-970, Brazil
- Centro de Desenvolvimento Tecnológico, Departamento de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 960110-610, Brazil
| | - Liziane Schittler Moroni
- Departamento de Engenharia de Alimentos e Engenharia Química, Universidade do Estado de Santa Catarina, Pinhalzinho, SC, 89870-000, Brazil.
| |
Collapse
|
7
|
Reis JO, Teixeira LAC, Cunha-Neto A, Castro VS, Figueiredo EES. Listeria monocytogenes in beef: a hidden risk. Res Microbiol 2024; 175:104215. [PMID: 38830563 DOI: 10.1016/j.resmic.2024.104215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
Listeria monocytogenes in beef receives less attention compared to other pathogens such as Salmonella and Escherichia coli. To address this gap, we conducted a literature review focusing on the presence of L. monocytogenes in beef. This review encompasses the pathogenic mechanisms, routes of contamination, prevalence rates, and the laws and regulations employed in various countries. Our findings reveal a prevalence of L. monocytogenes in beef and beef products ranging from 2.5% to 59.4%. Notably, serotype 4b was most frequently isolated in cases of beef contamination during food processing, with the skinning and evisceration stages identified as critical points of contamination.
Collapse
Affiliation(s)
- Jaqueline Oliveira Reis
- Department of Zootechny and Agronomy, Universidade Federal de Mato Grosso, Cuiabá 78060-900, Brazil
| | | | - Adelino Cunha-Neto
- Faculty of Nutrition, Universidade Federal de Mato Grosso, Cuiabá 78060-900, Brazil
| | - Vinicius Silva Castro
- Department of Zootechny and Agronomy, Universidade Federal de Mato Grosso, Cuiabá 78060-900, Brazil; Faculty of Nutrition, Universidade Federal de Mato Grosso, Cuiabá 78060-900, Brazil
| | - Eduardo E S Figueiredo
- Department of Zootechny and Agronomy, Universidade Federal de Mato Grosso, Cuiabá 78060-900, Brazil; Faculty of Nutrition, Universidade Federal de Mato Grosso, Cuiabá 78060-900, Brazil.
| |
Collapse
|
8
|
Bombelli A, Araya-Cloutier C, Abee T, den Besten HMW. Disinfectant efficacy of glabridin against dried and biofilm cells of Listeria monocytogenes and the impact of residual organic matter. Food Res Int 2024; 191:114613. [PMID: 39059895 DOI: 10.1016/j.foodres.2024.114613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/28/2024]
Abstract
Glabridin is an antimicrobial compound which can be extracted from plants, such as liquorice (Glycyrrhiza glabra) roots. Although its activity against foodborne pathogens and spoilage microorganisms has already been reported, the investigation of potential applications as a surface disinfectant is still largely unexplored. Hence, this study evaluated the disinfectant efficacy of glabridin against Listeria monocytogenes. The activity of glabridin was first tested in vitro in a nutrient-rich medium against eight strains of L. monocytogenes, including food isolates and the model strain EGDe. The tested strains showed similar susceptibility with minimal inhibitory and bactericidal concentrations of 12.5 µg/mL and 25 µg/mL, respectively. Subsequently, L. monocytogenes L6, FBR17 and EGDe were selected to assess the efficacy of glabridin against dried cells (according to the European standard EN 13697:2015 + A1:2019) and biofilm cells on stainless steel surfaces. Moreover, the impact of food residual organic matter was investigated using skim milk, cantaloupe and smoked salmon solution as soiling components. Our results showed that applying 200 µg/mL of glabridin resulted in a substantial reduction (>3 log10) of dried and biofilm cells of L. monocytogenes in standard conditions (i.e. low level of residual organic matter). Cantaloupe soiling components slightly reduced the activity of glabridin, while the efficacy of glabridin when tested with salmon and skim milk residuals was substantially affected. Comparative analysis using standardized protein contents provided evidence that the type of food matrices and type of proteins may impact the activity of glabridin as a disinfectant. Overall, this study showed low strain variability for the activity of glabridin against L. monocytogenes and shed light on the possible application of this natural antimicrobial compound as a surface disinfectant.
Collapse
Affiliation(s)
- Alberto Bombelli
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands; Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | | | - Tjakko Abee
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Heidy M W den Besten
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
9
|
Krewing M, Mönch E, Bolten A, Niesalla H. Resistance or tolerance? Highlighting the need for precise terminology in the field of disinfection. J Hosp Infect 2024; 150:51-60. [PMID: 38782058 DOI: 10.1016/j.jhin.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/24/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
The terms 'resistance' and 'tolerance' are well defined in the context of antibiotic research. However, in the field of disinfection, these terms are often used synonymously, which creates ambiguity and can lead to misunderstandings and misconceptions. In addition, this inconsistency in terminology makes it difficult to assess the risk of a disinfectant resistance. This general review aims to discuss existing definitions of the terms 'adaptation', 'susceptibility', 'tolerance', 'persistence' and 'resistance' in the light of disinfectants. The most ambiguity is found between tolerance and resistance. Whereas the former describes the not necessarily heritable survival of transient exposure to usually lethal concentrations, resistance is the strictly heritable ability to survive otherwise lethal concentrations of an antimicrobial agent, regardless of exposure time. A simple transfer of experience from antibiotic research is not recommended when assessing the risk of resistance to disinfectants, as there are important differences between antibiotics and disinfectants, although both are antimicrobials: (i) disinfectants are usually applied at concentrations that exceed the minimum inhibitory concentration by orders of magnitude, (ii) the exposure times of disinfectants are in the range of seconds, minutes, or a few hours, (iii) the mode of action of disinfectants is less specific, and (iv) disinfectants often contain more than one active agent with additive or synergistic effects. It is important to recognize that disinfectants, like other antimicrobial agents such as antibiotics, have a dualistic nature and should be used correctly and with caution.
Collapse
Affiliation(s)
- M Krewing
- Hartmann Science Center, BODE Chemie GmbH - a Company of the Hartmann Group, Hamburg, Germany.
| | - E Mönch
- BODE Chemie GmbH - a Company of the Hartmann Group, Hamburg, Germany
| | - A Bolten
- BODE Chemie GmbH - a Company of the Hartmann Group, Hamburg, Germany
| | - H Niesalla
- Hartmann Science Center, BODE Chemie GmbH - a Company of the Hartmann Group, Hamburg, Germany
| |
Collapse
|
10
|
Jiménez-Edeza M, Galván-Gordillo SV, Pacheco-Arjona R, Castañeda-Ruelas GM. Genomic Approach of Listeria monocytogenes Strains Isolated from Deli-Meats in Mexico. Curr Microbiol 2024; 81:145. [PMID: 38632127 DOI: 10.1007/s00284-024-03680-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/28/2024] [Indexed: 04/19/2024]
Abstract
Listeria monocytogenes is a foodborne pathogen that causes listeriosis worldwide. In México, L. monocytogenes has been identified as a hazard of deli-meats. However, the genomic analysis that supports the transmission of L. monocytogenes strains via deli-meats and its role as a source for virulence and resistance genes is lacking. Here, we present four high-quality genome drafts of L. monocytogenes strains isolated from deli-meats in Mexico. In silico typing was used to determine the serotype, lineage, clonal complexes (CC), and multilocus sequence (ST). Also, comparative genomics were performed to explore the diversity, virulence, mobile elements, antimicrobial resistant and stress survival traits. The genome sequence size of these strains measured 3.05 ± 0.07 Mb with a mean value of 37.9%G+C. All strains belonged to linage I, which was divided into two groups: 4b, CC2, ST1 (n = 3) and 1/2b, CC5, ST5 (n = 1). The pangenome and core genome contained 3493 and 2625 genes, respectively. The strains harbor the L. monocytogenes pathogenicity island-1 (LIPI-1) and the same multidrug resistance pattern (fosX, norB, mprF, lin) via in silico analysis. Comparative analysis delineated the genomes as essentially syntenic, whose genomic differences were due to phage insertion. These results expand what is known about the biology of the L. monocytogenes strains isolated from deli-meats in Mexico and warns of the risk that these strains belong to epidemic linage and harbor virulence genes linked to human disease.
Collapse
Affiliation(s)
- Maribel Jiménez-Edeza
- Laboratorio de Investigación y Diagnóstico Microbiológico, Facultad de Ciencias Químico Biológicas, Programa Regional de Posgrado en Biotecnología, Universidad Autónoma de Sinaloa, 80013, Sinaloa, Mexico
| | | | - Ramón Pacheco-Arjona
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, 97315, Yucatan, Mexico
| | - Gloria Marisol Castañeda-Ruelas
- Laboratorio de Investigación y Diagnóstico Microbiológico, Facultad de Ciencias Químico Biológicas, Programa Regional de Posgrado en Biotecnología, Universidad Autónoma de Sinaloa, 80013, Sinaloa, Mexico.
| |
Collapse
|
11
|
Chen Z, Yang Y, Li G, Huang Y, Luo Y, Le S. Effective elimination of bacteria on hard surfaces by the combined use of bacteriophages and chemical disinfectants. Microbiol Spectr 2024; 12:e0379723. [PMID: 38483478 PMCID: PMC10986474 DOI: 10.1128/spectrum.03797-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/27/2024] [Indexed: 04/06/2024] Open
Abstract
Hospital-acquired infections (HAIs) represent one of the significant causes of morbidity and mortality worldwide, and controlling pathogens in the hospital environment is of great importance. Currently, the standard disinfection method in the hospital environment is chemical disinfection. However, disinfectants are usually not used strictly according to the label, making them less effective in disinfection. Therefore, there is an emergent need to find a better approach that can be used in hospitals to control pathogenic bacteria in the clinical environment. Bacteriophages (phages) are effective in killing bacteria and have been applied in the treatment of bacterial infections but have not received enough attention regarding the control of contamination in the clinical environment. In this study, we found that various phages remain active in the presence of chemical disinfectants. Moreover, the combined use of specific phages and chemical disinfectants is more effective in removing bacterial biofilms and eliminating bacteria on hard surfaces. Thus, this proof-of-concept study indicates that adding phages directly to chemical disinfectants might be an effective and economical approach to enhance clinical environment disinfection. IMPORTANCE In this study, we investigated whether the combination of bacteriophages and chemical disinfectants can enhance the efficacy of reducing bacterial contamination on hard surfaces in the clinical setting. We found that specific phages are active in chemical disinfectants and that the combined use of phages and chemical disinfectants was highly effective in reducing bacterial presence on hard surfaces. As a proof-of-concept, we demonstrated that adding specific phages directly to chemical disinfectants is an effective and cost-efficient strategy for clinical environment disinfection.
Collapse
Affiliation(s)
- Zongyue Chen
- School of Nursing, Army Medical University, Chongqing, China
| | - Yuhui Yang
- School of Nursing, Army Medical University, Chongqing, China
| | - Gaoming Li
- Disease Surveillance Division, Center for Disease Control and Prevention of Central Theater Command, Shijingshan, Beijing, China
| | - Youying Huang
- Biomedical Analysis Center, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Yu Luo
- School of Nursing, Army Medical University, Chongqing, China
| | - Shuai Le
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, China
| |
Collapse
|
12
|
Koutsoumanis K, Allende A, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Fox E, Gosling R(B, Gil BM, Møretrø T, Stessl B, da Silva Felício MT, Messens W, Simon AC, Alvarez‐Ordóñez A. Persistence of microbiological hazards in food and feed production and processing environments. EFSA J 2024; 22:e8521. [PMID: 38250499 PMCID: PMC10797485 DOI: 10.2903/j.efsa.2024.8521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
Listeria monocytogenes (in the meat, fish and seafood, dairy and fruit and vegetable sectors), Salmonella enterica (in the feed, meat, egg and low moisture food sectors) and Cronobacter sakazakii (in the low moisture food sector) were identified as the bacterial food safety hazards most relevant to public health that are associated with persistence in the food and feed processing environment (FFPE). There is a wide range of subtypes of these hazards involved in persistence in the FFPE. While some specific subtypes are more commonly reported as persistent, it is currently not possible to identify universal markers (i.e. genetic determinants) for this trait. Common risk factors for persistence in the FFPE are inadequate zoning and hygiene barriers; lack of hygienic design of equipment and machines; and inadequate cleaning and disinfection. A well-designed environmental sampling and testing programme is the most effective strategy to identify contamination sources and detect potentially persistent hazards. The establishment of hygienic barriers and measures within the food safety management system, during implementation of hazard analysis and critical control points, is key to prevent and/or control bacterial persistence in the FFPE. Once persistence is suspected in a plant, a 'seek-and-destroy' approach is frequently recommended, including intensified monitoring, the introduction of control measures and the continuation of the intensified monitoring. Successful actions triggered by persistence of L. monocytogenes are described, as well as interventions with direct bactericidal activity. These interventions could be efficient if properly validated, correctly applied and verified under industrial conditions. Perspectives are provided for performing a risk assessment for relevant combinations of hazard and food sector to assess the relative public health risk that can be associated with persistence, based on bottom-up and top-down approaches. Knowledge gaps related to bacterial food safety hazards associated with persistence in the FFPE and priorities for future research are provided.
Collapse
|
13
|
Cheng Y, Mousavi ZE, Pennone V, Hurley D, Butler F. Association between the Presence of Resistance Genes and Sanitiser Resistance of Listeria monocytogenes Isolates Recovered from Different Food-Processing Facilities. Microorganisms 2023; 11:2989. [PMID: 38138133 PMCID: PMC10746039 DOI: 10.3390/microorganisms11122989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Sanitisers are widely used in cleaning food-processing facilities, but their continued use may cause an increased resistance of pathogenic bacteria. Several genes have been attributed to the increased sanitiser resistance ability of L. monocytogenes. This study determined the presence of sanitiser resistance genes in Irish-sourced L. monocytogenes isolates and explored the association with phenotypic sanitiser resistance. The presence of three genes associated with sanitiser resistance and a three-gene cassette (mdrL, qacH, emrE, bcrABC) were determined in 150 L. monocytogenes isolates collected from Irish food-processing facilities. A total of 23 isolates contained bcrABC, 42 isolates contained qacH, one isolate contained emrE, and all isolates contained mdrL. Additionally, 47 isolates were selected and grouped according to the number and type of resistance genes, and the minimal inhibitory concentration (MIC) of these isolates for benzalkonium chloride (BAC) was determined experimentally using the broth microdilution method. The BAC resistance of the strain carrying the bcrABC gene cassette was significantly higher than that of strains lacking the gene cassette, and the BAC resistance of the strain carrying the qacH gene was significantly higher than that of strains lacking the qacH gene (p < 0.05). Isolates harbouring both the qacH and bcrABC genes did not show higher BAC resistance. With respect to environmental factors, there was no significant difference in MIC values for isolates recovered from different processing facilities. In summary, this investigation highlights the prevalence of specific sanitiser resistance genes in L. monocytogenes isolates from Irish food-processing settings. While certain genes correlated with increased resistance to benzalkonium chloride, the combination of multiple genes did not necessarily amplify this resistance.
Collapse
Affiliation(s)
- Yue Cheng
- UCD School of Biosystems and Food Engineering, University College Dublin, D04 C1P1 Dublin, Ireland; (Y.C.); (Z.E.M.)
| | - Zeinabossadat Ebrahimzadeh Mousavi
- UCD School of Biosystems and Food Engineering, University College Dublin, D04 C1P1 Dublin, Ireland; (Y.C.); (Z.E.M.)
- Department of Food Science and Engineering, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran
| | - Vincenzo Pennone
- Teagasc Food Research Centre Moorepark, Fermoy, P61 C996 Cork, Ireland;
| | - Daniel Hurley
- UCD School of Agriculture and Food Science, University College Dublin, D04 C1P1 Dublin, Ireland;
| | - Francis Butler
- UCD School of Biosystems and Food Engineering, University College Dublin, D04 C1P1 Dublin, Ireland; (Y.C.); (Z.E.M.)
| |
Collapse
|
14
|
Jordá J, Lorenzo-Rebenaque L, Montoro-Dasi L, Marco-Fuertes A, Vega S, Marin C. Phage-Based Biosanitation Strategies for Minimizing Persistent Salmonella and Campylobacter Bacteria in Poultry. Animals (Basel) 2023; 13:3826. [PMID: 38136863 PMCID: PMC10740442 DOI: 10.3390/ani13243826] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Control strategies to minimize pathogenic bacteria in food animal production are one of the key components in ensuring safer food for consumers. The most significant challenges confronting the food industry, particularly in the major poultry and swine sectors, are antibiotic resistance and resistance to cleaning and disinfection in zoonotic bacteria. In this context, bacteriophages have emerged as a promising tool for zoonotic bacteria control in the food industry, from animals and farm facilities to the final product. Phages are viruses that infect bacteria, with several advantages as a biocontrol agent such as high specificity, self-replication, self-limitation, continuous adaptation, low inherent toxicity and easy isolation. Their development as a biocontrol agent is of particular interest, as it would allow the application of a promising and even necessary "green" technology to combat pathogenic bacteria in the environment. However, bacteriophage applications have limitations, including selecting appropriate phages, legal restrictions, purification, dosage determination and bacterial resistance. Overcoming these limitations is crucial to enhance phage therapy's effectiveness against zoonotic bacteria in poultry. Thus, this review aims to provide a comprehensive view of the phage-biosanitation strategies for minimizing persistent Salmonella and Campylobacter bacteria in poultry.
Collapse
Affiliation(s)
- Jaume Jordá
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 46115 Alfara del Patriarca, Spain; (J.J.); (L.M.-D.); (A.M.-F.); (S.V.)
| | - Laura Lorenzo-Rebenaque
- Institute of Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Laura Montoro-Dasi
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 46115 Alfara del Patriarca, Spain; (J.J.); (L.M.-D.); (A.M.-F.); (S.V.)
| | - Ana Marco-Fuertes
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 46115 Alfara del Patriarca, Spain; (J.J.); (L.M.-D.); (A.M.-F.); (S.V.)
| | - Santiago Vega
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 46115 Alfara del Patriarca, Spain; (J.J.); (L.M.-D.); (A.M.-F.); (S.V.)
| | - Clara Marin
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 46115 Alfara del Patriarca, Spain; (J.J.); (L.M.-D.); (A.M.-F.); (S.V.)
| |
Collapse
|
15
|
Pereira AP, Antunes P, Bierge P, Willems RJL, Corander J, Coque TM, Pich OQ, Peixe L, Freitas AR, Novais C. Unraveling Enterococcus susceptibility to quaternary ammonium compounds: genes, phenotypes, and the impact of environmental conditions. Microbiol Spectr 2023; 11:e0232423. [PMID: 37737589 PMCID: PMC10581157 DOI: 10.1128/spectrum.02324-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/24/2023] [Indexed: 09/23/2023] Open
Abstract
Quaternary ammonium compounds (QACs) have been extensively used in the community, healthcare facilities, and food chain, in concentrations between 20 and 30,000 mg/L. Enterococcus faecalis and Enterococcus faecium are ubiquitous in these settings and are recognized as nosocomial pathogens worldwide, but QACs' activity against strains from diverse epidemiological and genomic backgrounds remained largely unexplored. We evaluated the role of Enterococcus isolates from different sources, years, and clonal lineages as hosts of QACs tolerance genes and their susceptibility to QACs in optimal, single-stress and cross-stress growth conditions. Only 1% of the Enterococcus isolates included in this study and 0.5% of publicly available Enterococcus genomes carried qacA/B, qacC, qacG, qacJ, qacZ, qrg, bcrABC or oqxAB genes, shared with >60 species of Bacillota, Pseudomonadota, Actinomycetota, or Spirochaetota. These genes were generally found within close proximity of antibiotics and/or metals resistance genes. The minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) of benzalkonium chloride (BC) and didecyldimethylammonium chloride ranged between 0.5 and 4 mg/L (microdilution: 37°C/20 h/pH = 7/aerobiosis) for 210 E. faecalis and E. faecium isolates (two isolates carrying qacZ). Modified growth conditions (e.g., 22°C/pH = 5) increased MICBC/MBCBC (maximum of eightfold and MBCBC = 16 mg/L) and changed bacterial growth kinetics under BC toward later stationary phases in both species, including in isolates without QACs tolerance genes. In conclusion, Enterococcus are susceptible to in-use QACs concentrations and rarely carry QACs tolerance genes. However, their potential gene exchange with different microbiota, the decreased susceptibility to QACs under specific environmental conditions, and the presence of subinhibitory QACs concentrations in various settings may contribute to the selection of particular strains and, thus, require a One Health strategy to maintain QACs effectiveness. IMPORTANCE Despite the increasing use of quaternary ammonium compounds (QACs), the susceptibility of pathogens to these antimicrobials remains largely unknown. Enterococcus faecium and Enterococcus faecalis are susceptible to in-use QACs concentrations and are not main hosts of QACs tolerance genes but participate in gene transfer pathways with diverse bacterial taxa exposed to these biocides. Moreover, QACs tolerance genes often share the same genetic contexts with antibiotics and/or metals resistance genes, raising concerns about potential co-selection events. E. faecium and E. faecalis showed increased tolerance to benzalkonium chloride under specific environmental conditions (22°C, pH = 5), suggesting that strains might be selected in settings where they occur along with subinhibitory QACs concentrations. Transcriptomic studies investigating the cellular mechanisms of Enterococcus adaptation to QACs tolerance, along with longitudinal metadata analysis of tolerant populations dynamics under the influence of diverse environmental factors, are essential and should be prioritized within a One Health strategy.
Collapse
Affiliation(s)
- Ana P. Pereira
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Patrícia Antunes
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| | - Paula Bierge
- Laboratori de Recerca en Microbiologia i Malalties Infeccioses, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Rob J. L. Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jukka Corander
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
- Department of Mathematics and Statistics, Helsinki Institute of Information Technology, University of Helsinki, Helsinki, Finland
| | - Teresa M. Coque
- Servicio de Microbiologia, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Centro de Investigación Biomédica en Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Oscar Q. Pich
- Laboratori de Recerca en Microbiologia i Malalties Infeccioses, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Luisa Peixe
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ana R. Freitas
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- 1H-TOXRUN, One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL., Gandra, Portugal
| | - Carla Novais
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - from the ESCMID Study Group on Food- and Water-borne Infections (EFWISG)
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
- Laboratori de Recerca en Microbiologia i Malalties Infeccioses, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
- Department of Mathematics and Statistics, Helsinki Institute of Information Technology, University of Helsinki, Helsinki, Finland
- Servicio de Microbiologia, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Centro de Investigación Biomédica en Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- 1H-TOXRUN, One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL., Gandra, Portugal
| |
Collapse
|
16
|
Schulz LM, Dreier F, de Sousa Miranda LM, Rismondo J. Adaptation mechanisms of Listeria monocytogenes to quaternary ammonium compounds. Microbiol Spectr 2023; 11:e0144123. [PMID: 37695041 PMCID: PMC10580936 DOI: 10.1128/spectrum.01441-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/13/2023] [Indexed: 09/12/2023] Open
Abstract
Listeria monocytogenes is ubiquitously found in nature and can easily enter food-processing facilities due to contaminations of raw materials. Several countermeasures are used to combat contamination of food products, for instance, the use of disinfectants that contain quaternary ammonium compounds, such as benzalkonium chloride (BAC) and cetyltrimethylammonium bromide (CTAB). In this study, we assessed the potential of the commonly used wild-type strain EGD-e to adapt to BAC and CTAB under laboratory growth conditions. All BAC-tolerant suppressors exclusively carried mutations in fepR, encoding a TetR-like transcriptional regulator, or its promoter region, likely resulting in the overproduction of the efflux pump FepA. In contrast, CTAB tolerance was associated with mutations in sugR, which regulates the expression of the efflux pumps SugE1 and SugE2. L. monocytogenes strains lacking either FepA or SugE1/2 could still acquire tolerance toward BAC and CTAB. Genomic analysis revealed that the overproduction of the remaining efflux system could compensate for the deleted one, and even in the absence of both efflux systems, tolerant strains could be isolated, which all carried mutations in the diacylglycerol kinase-encoding gene lmo1753 (dgkB). DgkB converts diacylglycerol to phosphatidic acid, which is subsequently reused for the synthesis of phospholipids, suggesting that alterations in membrane composition could be the third adaptation mechanism. IMPORTANCE Survival and proliferation of Listeria monocytogenes in the food industry are ongoing concerns, and while there are various countermeasures to combat contamination of food products, the pathogen still successfully manages to withstand the harsh conditions present in food-processing facilities, resulting in reoccurring outbreaks, subsequent infection, and disease. To counteract the spread of L. monocytogenes, it is crucial to understand and elucidate the underlying mechanism that permits their successful evasion. We present various adaptation mechanisms of L. monocytogenes to withstand two important quaternary ammonium compounds.
Collapse
Affiliation(s)
- Lisa Maria Schulz
- Department of General Microbiology, Institute of Microbiology and Genetics, GZMB, Georg-August University Göttingen, Göttingen, Germany
| | - Fabienne Dreier
- Department of General Microbiology, Institute of Microbiology and Genetics, GZMB, Georg-August University Göttingen, Göttingen, Germany
| | - Lisa Marie de Sousa Miranda
- Department of General Microbiology, Institute of Microbiology and Genetics, GZMB, Georg-August University Göttingen, Göttingen, Germany
| | - Jeanine Rismondo
- Department of General Microbiology, Institute of Microbiology and Genetics, GZMB, Georg-August University Göttingen, Göttingen, Germany
| |
Collapse
|
17
|
Tuytschaever T, Raes K, Sampers I. Listeria monocytogenes in food businesses: From persistence strategies to intervention/prevention strategies-A review. Compr Rev Food Sci Food Saf 2023; 22:3910-3950. [PMID: 37548605 DOI: 10.1111/1541-4337.13219] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/22/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023]
Abstract
In 2023, Listeria monocytogenes persistence remains a problem in the food business. A profound understanding of how this pathogen persists may lead to better aimed intervention/prevention strategies. The lack of a uniform definition of persistence makes the comparison between studies complex. Harborage sites offer protection against adverse environmental conditions and form the ideal habitat for the formation of biofilms, one of the major persistence strategies. A retarded growth rate, disinfectant resistance/tolerance, desiccation resistance/tolerance, and protozoan protection complete the list of persistence strategies for Listeria monocytogenes and can occur on themselves or in combination with biofilms. Based on the discussed persistence strategies, intervention strategies are proposed. By enhancing the focus on four precaution principles (cleaning and disinfection, infrastructure/hygienic design, technical maintenance, and work methodology) as mentioned in Regulation (EC) No. 852/2004, the risk of persistence can be decreased. All of the intervention strategies result in obtaining and maintaining a good general hygiene status throughout the establishment at all levels ranging from separate equipment to the entire building.
Collapse
Affiliation(s)
- Tessa Tuytschaever
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Kortrijk, Belgium
| | - Katleen Raes
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Kortrijk, Belgium
| | - Imca Sampers
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Kortrijk, Belgium
| |
Collapse
|
18
|
Nogueira R, Cabo ML, García-Sanmartín L, Sánchez-Ruiloba L, Rodríguez-Herrera JJ. Risk factor-based clustering of Listeria monocytogenes in food processing environments using principal component analysis. Food Res Int 2023; 170:112989. [PMID: 37316020 DOI: 10.1016/j.foodres.2023.112989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023]
Abstract
Listeria monocytogenes has a range of strategies that allow it to persist as biofilms in food processing environments (FPE), making it a pathogen of concern to the food industry. The properties of these biofilms are highly variable among strains, and this significantly affects the risk of food contamination. The present study therefore aims to conduct a proof-of-concept study to cluster strains of L. monocytogenes by risk potential using principal component analysis, a multivariate approach. A set of 22 strains, isolated from food processing environments, were typed by serogrouping and pulsed-field gel electrophoresis, showing a relatively high diversity. They were characterized in terms of several biofilm properties that might pose a potential risk of food contamination. The properties studied were tolerance to benzalkonium chloride (BAC), the structural parameters of biofilms (biomass, surface area, maximum and average thickness, surface to biovolume ratio and roughness coefficient) measured by confocal laser scanning microscopy and (3) transfer of biofilm cells to smoked salmon. The PCA correlation circle revealed that the tolerance of biofilms to BAC was positively correlated with roughness, but negatively with biomass parameters. On the contrary, cell transfers were not related to three-dimensional structural parameters, which suggests the role of other variables yet unexplored. Additionally, hierarchical clustering grouped strains into three different clusters. One of them included the strains with high tolerance to BAC and roughness. Another one consisted of strains with enhanced transfer ability, whereas the third cluster contained those that stood out for the thickness of biofilms. The present study represents a novel and effective way to classify L. monocytogenes strains according to biofilm properties that condition the potential risk of reaching the consumer through food contamination. It would thus allow the selection of strains representative of different worst-case scenarios for future studies in support of QMRA and decision-making analysis.
Collapse
Affiliation(s)
- Raquel Nogueira
- Laboratory of Microbiology and Technology of Marine Products (MICROTEC), Instituto de Investigaciones Marinas (IIM), CSIC, Eduardo Cabello 6, 36208 Vigo, Spain
| | - Marta López Cabo
- Laboratory of Microbiology and Technology of Marine Products (MICROTEC), Instituto de Investigaciones Marinas (IIM), CSIC, Eduardo Cabello 6, 36208 Vigo, Spain
| | - Lucía García-Sanmartín
- Laboratory of Microbiology and Technology of Marine Products (MICROTEC), Instituto de Investigaciones Marinas (IIM), CSIC, Eduardo Cabello 6, 36208 Vigo, Spain
| | - Lucía Sánchez-Ruiloba
- Optical Microscopy and Image Analysis Facility, Scientific-Technical Support Unit, Instituto de Investigaciones Marinas (IIM), CSIC, Eduardo Cabello 6, 36208 Vigo, Spain
| | - Juan José Rodríguez-Herrera
- Laboratory of Microbiology and Technology of Marine Products (MICROTEC), Instituto de Investigaciones Marinas (IIM), CSIC, Eduardo Cabello 6, 36208 Vigo, Spain.
| |
Collapse
|
19
|
Castro VS, Conte CA, de Souza Figueiredo EE, Yang X, Stanford K. Efficacy of Quaternary Ammonium Compounds for Control of Individual and Mixed Cultures of Escherichia coli with High- and Low-Quaternary Ammonium Compounds Resistance. Foodborne Pathog Dis 2023; 20:261-269. [PMID: 37379475 DOI: 10.1089/fpd.2023.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023] Open
Abstract
Escherichia coli is a well-characterized micro-organism in scientific literature. Similarly, quaternary ammonium compounds (QACs) are historical sanitizers in food processing. However, the use of QACs has been questioned due to bacterial resistance in some studies. Therefore, this study aimed to compare effects of single and mixed cultures of E. coli strains of different serogroups with either high (six strains) or low (five strains) resistance to QACs. Twenty-five combinations of strains with either high (H)- or low (L)-QAC resistance were analyzed (H + H vs. L + L). After exposure to QAC, combinations with statistical differences (p < 0.05) compared with individuals were selected and an inactivation model determined using GInaFit®. Only one combination of two strains (C23 and C20) with low-QAC resistance (mixture T18) had greater resistance (p < 0.05) than the individual isolates. The combination T18 and individual strain C23 presented a Weibull model, whereas the other isolated strain (C20) presented a biphasic inactivation model with a shoulder. Whole genome sequencing determined that unlike C20, C23 carried yehW, which may have led to Weibull inactivation. Possibly, very rapid interaction of C20 with the QAC favored increased survival of C23 and overall persistence of the T18 mixture. Consequently, our results indicate that individual E. coli with low-QAC resistance can synergistically interfere with QAC inactivation.
Collapse
Affiliation(s)
- Vinicius Silva Castro
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Carlos Adam Conte
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Xianqin Yang
- Science and Technology Branch, Agriculture and AgriFood Canada, Lacombe, Alberta, Canada
| | - Kim Stanford
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
20
|
Oremefetse D, Aijaz A, Sanelisiwe D, Mrudula P. Survival of Candida auris on environmental surface material and low-level resistance to disinfectant. J Hosp Infect 2023:S0195-6701(23)00120-2. [PMID: 37116661 DOI: 10.1016/j.jhin.2023.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/30/2023] [Accepted: 04/16/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND Candida auris persist in the environment despite disinfection. The survival on various environmental surfaces and the effect of sub-lethal concentrations of disinfectants on C. auris has not been studied. AIM This study investigated the survival of C. auris on environmental surfaces and the effect of sub-inhibitory concentrations of disinfectants. METHODS Surface material blocks were fabricated, artificially contaminated with C. auris, and for 3 weeks viable counts were assessed. In addition, C. auris cells were pulsed daily with disinfectants for 15 days and MICs were determined. Ergosterol quantities and efflux pump assays were also performed on disinfectant exposed strains using standard methods. RESULTS C. auris survived on all the surfaces for more than 3 weeks with the lowest count of 2.3 log cfu regardless of wet and dry conditions. Wet wood supported growth of C. auris with a one log increase in contrast to the dry condition which inhibited this organism (both p <0.01). In the biofilm form, C. auris flourished on all the surfaces. Although the MICs increased in sodium dichloroisocyanurate and benzalkonium chloride pulsed C. auris cells, only the benzalkonium chloride exposed cells showed decreased ergosterol content and an activated efflux pump. CONCLUSIONS Although C. auris survived on all the tested surfaces, survival on wet wood was remarkable. Benzalkonium chloride pulsed C. auris developed some degree of tolerance to disinfectant and showed efflux pump activation, suggesting the development of low-level resistance.
Collapse
Affiliation(s)
- Dire Oremefetse
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, South Africa
| | - Ahmad Aijaz
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, South Africa; Infection Control, Charlotte Maxeke Johannesburg Academic Hospital National Health Laboratory Service, South Africa
| | - Duze Sanelisiwe
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, South Africa
| | - Patel Mrudula
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, South Africa; Infection Control, Charlotte Maxeke Johannesburg Academic Hospital National Health Laboratory Service, South Africa.
| |
Collapse
|
21
|
Photodynamic inactivation of Salmonella enterica and Listeria monocytogenes inoculated onto stainless steel or polyurethane surfaces. Food Microbiol 2023; 110:104174. [DOI: 10.1016/j.fm.2022.104174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022]
|
22
|
Molecular typing and genome sequencing allow the identification of persistent Listeria monocytogenes strains and the tracking of the contamination source in food environments. Int J Food Microbiol 2023; 386:110025. [PMID: 36436413 DOI: 10.1016/j.ijfoodmicro.2022.110025] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
The presence of Listeria monocytogenes (Lm) in the food processing environment (facilities and products) is a challenging problem in food safety management. Lm is one of the main causes of mortality in foodborne infections, and the trend is continuously increasing. In this study, a collection of 323 Lm strain isolates recovered from food matrices and food industry environments (surfaces and equipment) over four years from 80 food processing facilities was screened using a restriction site-associated tag sequencing (2b-RAD) typing approach developed for Lm. Thirty-six different restriction site-associated DNA (RAD) types (RTs) were identified, most of which correspond to lineage II. RT1, the most represented genotype in our collection and already reported as one of the most prevalent genotypes in the food environment, was significantly associated with meat processing facilities. The sequencing of the genomes of strains belonging to the same RT and isolated in the same facility in different years revealed several clusters of persistence. The definition of the persistent strains (PSs) allowed the identification of the potential source of contamination in the incoming raw meat that is introduced in the facility to be processed. The slaughterhouses, which, according to the European Union (EU) regulation, are not inspected for the presence of Lm could be hotspots for the persistence of Lm PSs.
Collapse
|
23
|
Li X, Shi X, Song Y, Yao S, Li K, Shi B, Sun J, Liu Z, Zhao W, Zhao C, Wang J. Genetic diversity, antibiotic resistance, and virulence profiles of Listeria monocytogenes from retail meat and meat processing. Food Res Int 2022; 162:112040. [DOI: 10.1016/j.foodres.2022.112040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/30/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022]
|
24
|
Rozman U, Duh D, Cimerman M, Turk SŠ. Hygiene of Medical Devices and Minimum Inhibitory Concentrations for Alcohol-Based and QAC Disinfectants among Isolates from Physical Therapy Departments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14690. [PMID: 36429408 PMCID: PMC9691081 DOI: 10.3390/ijerph192214690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Disinfectants are used intensively to control and prevent healthcare-associated infections. With continuous use and exposure to disinfectants, bacteria may develop reduced susceptibility. The study aimed to check the hygiene of devices in the physiotherapy department. For isolated bacterial strains, we aimed to determine the minimum inhibitory concentration of five different disinfectant wipe products currently in use. Microbiological environmental sampling in four various institutions in four different cities from two counties was performed, followed by CFU calculation and identification using matrix-assisted laser desorption and ionization with time-of-flight analyzer mass spectrometry (MALDI-TOF). The sampling was performed on three different occasions: before patient use, after patient use, and after disinfection. The susceptibility of isolates to three different alcohol-based and three different quaternary ammonium compounds (QAC) disinfectant wipes was examined by determining the minimal inhibitory concentrations (MIC). We identified 27 different bacterial species from 11 different genera. Gram-positive bacteria predominated. The most abundant genera were Staphylococcus, Micrococcus, and Bacillus. The average MIC values of alcohol-based disinfectants range between 66.61 and 148.82 g/L, and those of QAC-based disinfectants range between 2.4 and 3.5 mg/L. Distinctive strains with four-fold increases in MIC values, compared to average values, were identified. The widespread use of disinfectants can induce a reduction in the susceptibility of bacteria against disinfectants and affect the increase in the proportion of antibiotic-resistant bacteria. Therefore, it is urgent to define clear criteria for defining a microorganism as resistant to disinfectants by setting epidemiological cut-off (ECOFF) values and standardizing protocols for testing the resistance of microorganisms against disinfectants.
Collapse
Affiliation(s)
- Urška Rozman
- Faculty of Health Sciences, University of Maribor, Žitna ulica 15, 2000 Maribor, Slovenia
| | - Darja Duh
- Chemicals Office of the Republic of Slovenia, Ajdovščina 4, 1000 Ljubljana, Slovenia
| | - Mojca Cimerman
- National Laboratory of Health, Environment and Food, Prvomajska ulica 1, 2000 Maribor, Slovenia
| | - Sonja Šostar Turk
- Faculty of Health Sciences, University of Maribor, Žitna ulica 15, 2000 Maribor, Slovenia
| |
Collapse
|
25
|
Wand ME, Sutton JM. Efflux-mediated tolerance to cationic biocides, a cause for concern? MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748532 DOI: 10.1099/mic.0.001263] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
AbstractWith an increase in the number of isolates resistant to multiple antibiotics, infection control has become increasingly important to help combat the spread of multi-drug-resistant pathogens. An important component of this is through the use of disinfectants and antiseptics (biocides). Antibiotic resistance has been well studied in bacteria, but little is known about potential biocide resistance genes and there have been few reported outbreaks in hospitals resulting from a breakdown in biocide effectiveness. Development of increased tolerance to biocides has been thought to be more difficult due to the mode of action of biocides which affect multiple cellular targets compared with antibiotics. Very few genes which contribute towards increased biocide tolerance have been identified. However, the majority of those that have are components or regulators of different efflux pumps or genes which modulate membrane function/modification. This review will examine the role of efflux in increased tolerance towards biocides, focusing on cationic biocides and heavy metals against Gram-negative bacteria. As many efflux pumps which are upregulated by biocide presence also contribute towards an antimicrobial resistance phenotype, the role of these efflux pumps in cross-resistance to both other biocides and antibiotics will be explored.
Collapse
Affiliation(s)
- Matthew E Wand
- Technology Development Group, UK Health Security Agency, Research and Evaluation, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - J Mark Sutton
- Technology Development Group, UK Health Security Agency, Research and Evaluation, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| |
Collapse
|
26
|
Sharan M, Vijay D, Dhaka P, Bedi JS, Gill JPS. Biofilms as a microbial hazard in the food industry: A scoping review. J Appl Microbiol 2022; 133:2210-2234. [PMID: 35945912 DOI: 10.1111/jam.15766] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/06/2022] [Indexed: 11/29/2022]
Abstract
Biofilms pose a serious public health hazard with a significant economic impact on the food industry. The present scoping review is designed to analyse the literature published during 2001-2020 on biofilm formation of microbes, their detection methods, and association with antimicrobial resistance (if any). The peer-reviewed articles retrieved from 04 electronic databases were assessed using PRISMA-ScR guidelines. From the 978 preliminary search results, a total of 88 publications were included in the study. On analysis, the commonly isolated pathogens were Listeria monocytogenes, Staphylococcus aureus, Salmonella spp., Escherichia coli, Bacillus spp., Vibrio spp., Campylobacter jejuni and Clostridium perfringens. The biofilm-forming ability of microbes was found to be influenced by various factors such as attachment surfaces, temperature, presence of other species, nutrient availability etc. A total of 18 studies characterized the biofilm-forming genes, particularly for S. aureus, Salmonella spp., and E. coli. In most studies, polystyrene plate and/or stainless-steel coupons were used for biofilm formation, and the detection was carried out by crystal violet assays and/or by plate counting method. The strain-specific significant differences in biofilm formation were observed in many studies, and few studies carried out analysis of multi-species biofilms. The association between biofilm formation and antimicrobial resistance was not clearly defined. Further, viable but non-culturable form of the foodborne pathogens is posing an unseen (by conventional cultivation techniques) but potent threat to the food safety. The present review recommends the need for carrying out systematic surveys and risk analysis of biofilms in food chain to highlight the evidence-based public health concerns, especially in regions where microbiological food hazards are quite prevalent.
Collapse
Affiliation(s)
- Manjeet Sharan
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Deepthi Vijay
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy, India
| | - Pankaj Dhaka
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Jasbir Singh Bedi
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Jatinder Paul Singh Gill
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| |
Collapse
|
27
|
Guerreiro DN, Boyd A, O'Byrne CP. The stressosome is required to transduce low pH signals leading to increased transcription of the amino acid-based acid tolerance mechanisms in Listeria monocytogenes. Access Microbiol 2022; 4:acmi000455. [PMID: 36415544 PMCID: PMC9675040 DOI: 10.1099/acmi.0.000455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/02/2022] [Indexed: 10/03/2023] Open
Abstract
Increasing proton concentration in the environment represents a potentially lethal stress for single-celled microorganisms. To survive in an acidifying environment, the foodborne pathogen Listeria monocytogenes quickly activates the alternative sigma factor B (σB), resulting in upregulation of the general stress response (GSR) regulon. Activation of σB is regulated by the stressosome, a multi-protein sensory complex involved in stress detection and signal transduction. In this study, we used L. monocytogenes strains harbouring two stressosome mutants to investigate the role of this complex in triggering expression of known amino acid-based resistance mechanisms in response to low pH. We found that expression of glutamate decarboxylase (gadD3) and arginine and agmatine deiminases (arcA and aguA1, respectively) were upregulated upon acid shock (pH 5 for 15 min) in a stressosome-dependent manner. In contrast, transcription of the arg operons (argGH and argCJBDF), which encode enzymes for the l-arginine biosynthesis pathway, were upregulated upon acid shock in a stressosome-independent manner. Finally, we found that transcription of argR, which encodes a transcriptional regulator of the arc and arg operons, was largely unaffected by acidic shock. Thus, our findings suggest that the stressosome plays a role in activating amino acid-based pH homeostatic mechanisms in L. monocytogenes . Additionally, we show that genes encoding the l-arginine biosynthesis pathway are highly upregulated under acidic conditions, suggesting that intracellular arginine can help withstand environmental acidification in this pathogen.
Collapse
Affiliation(s)
- Duarte N. Guerreiro
- Bacterial Stress Response Group, Microbiology, School of Biological and Chemical Sciences, National University of Ireland, Galway, Ireland
| | - Aoife Boyd
- Pathogenic Mechanisms Research Group, Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Conor P. O'Byrne
- Bacterial Stress Response Group, Microbiology, School of Biological and Chemical Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
28
|
Ward S, Bedale W, Glass KA. Listeria monocytogenes Outbreaks Related to Commercially Produced Caramel Apples: Developments in Sanitation, Product Formulation, and Packaging: A Review. J Food Prot 2022; 85:1287-1299. [PMID: 35666586 DOI: 10.4315/jfp-22-069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/27/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Prior to a deadly 2014 listeriosis outbreak, caramel apples were not thought to be vehicles for the foodborne pathogen Listeria monocytogenes. The purpose of this review article is to summarize what has been learned from research prompted by this outbreak. This overview includes descriptions of the two L. monocytogenes infection outbreaks related to prepackaged caramel apples and a brief discussion of apple sanitation, the production processes used to make caramel apples, and research on ways to prevent future outbreaks associated with caramel apples. A qualitative analysis of the literature and interviews with current caramel apple manufacturers were conducted. Sanitation, packaging, and storage procedures used by manufacturers in the past may not effectively inactivate L. monocytogenes from contaminated product. Novel apple sanitation methods and product formulations to control L. monocytogenes on caramel apples have been developed and, in some cases, implemented in commercial production. HIGHLIGHTS
Collapse
Affiliation(s)
- Stevie Ward
- Food Research Institute, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, USA
| | - Wendy Bedale
- Food Research Institute, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, USA
| | - Kathleen A Glass
- Food Research Institute, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, USA
| |
Collapse
|
29
|
Pervasive Listeria monocytogenes Is Common in the Norwegian Food System and Is Associated with Increased Prevalence of Stress Survival and Resistance Determinants. Appl Environ Microbiol 2022; 88:e0086122. [PMID: 36005805 PMCID: PMC9499026 DOI: 10.1128/aem.00861-22] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To investigate the diversity, distribution, persistence, and prevalence of stress survival and resistance genes of Listeria monocytogenes clones dominating in food processing environments in Norway, genome sequences from 769 L. monocytogenes isolates from food industry environments, foods, and raw materials (512 of which were sequenced in the present study) were subjected to whole-genome multilocus sequence typing (wgMLST), single-nucleotide polymorphism (SNP), and comparative genomic analyses. The data set comprised isolates from nine meat and six salmon processing facilities in Norway collected over a period of three decades. The most prevalent clonal complex (CC) was CC121, found in 10 factories, followed by CC7, CC8, and CC9, found in 7 factories each. Overall, 72% of the isolates were classified as persistent, showing 20 or fewer wgMLST allelic differences toward an isolate found in the same factory in a different calendar year. Moreover, over half of the isolates (56%) showed this level of genetic similarity toward an isolate collected from a different food processing facility. These were designated as pervasive strains, defined as clusters with the same level of genetic similarity as persistent strains but isolated from different factories. The prevalence of genetic determinants associated with increased survival in food processing environments, including heavy metal and biocide resistance determinants, stress response genes, and inlA truncation mutations, showed a highly significant increase among pervasive isolates but not among persistent isolates. Furthermore, these genes were significantly more prevalent among the isolates from food processing environments compared to in isolates from natural and rural environments (n = 218) and clinical isolates (n = 111) from Norway. IMPORTANCEListeria monocytogenes can persist in food processing environments for months to decades and spread through the food system by, e.g., contaminated raw materials. Knowledge of the distribution and diversity of L. monocytogenes is important in outbreak investigations and is essential to effectively track and control this pathogen in the food system. The present study presents a comprehensive overview of the prevalence of persistent clones and of the diversity of L. monocytogenes in Norwegian food processing facilities. The results demonstrate extensive spread of highly similar strains throughout the Norwegian food system, in that 56% of the 769 collected isolates from food processing factories belonged to clusters of L. monocytogenes identified in more than one facility. These strains were associated with an overall increase in the prevalence of plasmids and determinants of heavy metal and biocide resistance, as well as other genetic elements associated with stress survival mechanisms and persistence.
Collapse
|
30
|
Persistence of Listeria monocytogenes ST5 in Ready-to-Eat Food Processing Environment. Foods 2022; 11:foods11172561. [PMID: 36076746 PMCID: PMC9454991 DOI: 10.3390/foods11172561] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Most human listeriosis is foodborne, and ready-to-eat (RET) foods contaminated by Listeria monocytogenes during processing are found to be common vehicles. In this study, a total of four L. monocytogens STs (ST5, ST121, ST120, and ST2) have been identified in two RTE food plants from 2019 to 2020 in Shanghai, China. The L. monocytogenes ST5 was predominant in one RTE food processing plant, and it persists in the RTE meat processing plant with continued clone transmission. The genetic features of the four STs isolates were different. ST5 and ST121 had the three genes clpL, mdrL, and lde; however, ST120 and ST2 had two genes except for clpL. SSI-1was present in ST5, ST121, and ST120. Additionally, SSI-2 was present only in the ST121 isolates. ST120 had all six biofilm-forming associated genes (actA, prfA, lmo0673, recO, lmo2504 and luxS). The ST2 isolate had only three biofilm-forming associated genes, which were prfA, lmo0673, and recO. The four ST isolates had different biofilm formation abilities at different stages. The biofilm formation ability of ST120 was significantly higher when grown for one day. However, the biofilm formation ability of ST120 reduced significantly after growing for four days. In contrast, the biofilm formation ability of ST5 and ST121 increased significantly. These results suggested that ST5 and ST121 had stronger ability to adapt to stressful environments. Biofilms formed by all four STs grown over four days can be sanitized entirely by a disinfectant concentration of 500 mg/L. Additionally, only ST5 and ST121 biofilm cells survived in sub-lethal concentrations of chlorine-containing disinfectant. These results suggested that ST5 and ST121 were more resistant to chlorine-containing disinfectants. These results indicated that the biofilm formation ability of L. monocytogenes isolates changed at different stages. Additionally, the persistence in food processing environments might be verified by the biofilm formation, stress resistance, etc. Alternatively, these results underlined that disinfectants should be used at lethal concentrations. More attention should be paid to ST5 and ST121, and stronger surveillance should be taken to prevent and control the clonal spread of L. monocytogenes isolates in food processing plants in Shanghai.
Collapse
|
31
|
Pellissery AJ, Vinayamohan PG, Xue J, Wang X, Viju LS, Joseph D, Luo Y, Donoghue AM, Venkitanarayanan K. Efficacy of pectin-based caproic acid, caprylic acid, linalool, and cuminaldehyde coatings in reducing Salmonella Heidelberg on chicken eggs. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.874219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Among the animal derived food products, contamination of poultry eggs, and egg shell surface is one of the major causes for foodborne salmonellosis in the United States. As a means of reducing the pathogen transfer to the internal egg contents, polysaccharide-based coatings containing antimicrobial phytochemicals could potentially serve as a biocontrol strategy for shelled egg products. The current study investigated the efficacy of four GRAS (Generally Recognized as Safe)-status plant-derived compounds, namely, caproic acid (CAO), caprylic acid (CAY), linalool (LIN) and cuminaldehyde (CUM), as pectin-based coating treatments, individually or in combination, for reducing Salmonella Heidelberg (SH) on shell eggs. A three-strain mixture of SH (~8.0 log CFU in 50 μL inoculum) was spot-inoculated on surface sterilized white-shelled eggs. Eggs were evenly coated with either pectin-based treatments of CAO (1%), CAY (1%), LIN (1%) and CUM (1%), individually, or a combination of 4 phytochemicals (COMB- each phytochemical at 0.5% v/v level of inclusion). The treated eggs were stored at 4°C and SH counts were enumerated on days 0, 1, 3, 5, 7, 14, and 21 of storage. The study was replicated thrice, 3 eggs/treatment/day time point, and the data were analyzed using two-way ANOVA with significance tested at p < 0.05. On day 0, pectin-coated control eggs had ~7.6 log CFU of SH/egg. At the end of refrigerated storage (day 21), pectin-based coating of CAO and CAY at 1% level reduced SH by 2.0–2.5 log CFU/egg (P < 0.05) when compared to controls. In addition, the CUM and LIN based coatings produced 3.0 log and 3.9 log reduction, respectively, in SH counts on eggs by day 21 of storage. Among the treatments with phytochemical combinations, COMB1 [pectin (2%) + Caprylic acid, caproic acid and cuminaldehyde (each at 0.5% level)] was found to be most effective, reducing SH counts to 2.5–3.3 log CFU/egg from day 0 through day 14, and by the end of storage period (day 21), a 3.5 log CFU reduction/egg (p < 0.05) compared to untreated controls. Morphological studies of treated eggs using atomic force microscopy (AFM) have shown that the roughness of eggs can be influenced by a combination of various compounds. Results indicate the potential efficacy of the aforesaid phytochemicals in reducing SH on shell eggs; however, further studies investigating their industrial feasibility and effects on sensory attributes of eggs are warranted.
Collapse
|
32
|
Daeschel D, Pettengill JB, Wang Y, Chen Y, Allard M, Snyder AB. Genomic analysis of Listeria monocytogenes from US food processing environments reveals a high prevalence of QAC efflux genes but limited evidence of their contribution to environmental persistence. BMC Genomics 2022; 23:488. [PMID: 35787787 PMCID: PMC9252043 DOI: 10.1186/s12864-022-08695-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/10/2022] [Indexed: 12/28/2022] Open
Abstract
Background Quaternary ammonium compound (QAC) efflux genes increase the minimum inhibitory concentration of Listeria monocytogenes (Lm) to benzalkonium chloride sanitizer, but the contribution of these genes to persistence in food processing environments is unclear. The goal of this study was to leverage genomic data and associated metadata for 4969 Lm isolates collected between 1999 and 2019 to: (1) evaluate the prevalence of QAC efflux genes among Lm isolates from diverse US food processors, (2) use comparative genomic analyses to assess confounding factors, such as clonal complex identity and stress tolerance genotypes, and (3) identify patterns in QAC efflux gene gain and loss among persistent clones within specific facilities over time. Results The QAC efflux gene cassette bcrABC was present in nearly half (46%) of all isolates. QAC efflux gene prevalence among isolates was associated with clonal complex (𝛘2 < 0.001) and clonal complex was associated with the facility type (𝛘2 < 0.001). Consequently, changes in the prevalence of QAC efflux genes within individual facilities were generally attributable to changes in the prevalence of specific clonal complexes. Additionally, a GWAS and targeted BLAST search revealed that clonal complexes with a high prevalence of QAC efflux genes commonly possessed other stress tolerance genes. For example, a high prevalence of bcrABC in a clonal complex was significantly associated with the presence of the SSI-1 gene cluster (p < 0.05). QAC efflux gene gain and loss were both observed among persistent populations of Lm in individual facilities, suggesting a limited direct role for QAC efflux genes as predictors of persistence. Conclusion This study suggests that although there is evidence that QAC efflux genes are part of a suite of adaptations common among Lm isolated from some food production environments, these genes may be neither sufficient nor necessary to enhance persistence. This is a crucial distinction for decision making in the food industry. For example, changes to sanitizer regimen targeting QAC tolerance would not address other contributing genetic or non-genetic factors, such as equipment hygienic design which physically mediates sanitizer exposure. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08695-2.
Collapse
Affiliation(s)
- Devin Daeschel
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - James B Pettengill
- Biostatistics and Bioinformatics Staff, Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Yu Wang
- Biostatistics and Bioinformatics Staff, Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Yi Chen
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Marc Allard
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Abigail B Snyder
- Department of Food Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
33
|
Comparison of Selected Phenotypic Features of Persistent and Sporadic Strains of Listeria monocytogenes Sampled from Fish Processing Plants. Foods 2022; 11:foods11101492. [PMID: 35627065 PMCID: PMC9140201 DOI: 10.3390/foods11101492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 11/28/2022] Open
Abstract
(1) Background: The main source of transmission of Listeria monocytogenes is contaminated food, e.g., fish and meat products and raw fruit and vegetables. The bacteria can remain for 13 years on machines in food processing plants, including fish plants. (2) Methods: A total of 720 swabs were collected from a salmon filleting line. The research material consisted of 62 (8.6%) L. monocytogenes isolates. Pulsed Field Gel Electrophoresis (PFGE) allowed detecting a pool of persistent strains. All persistent strains (n = 6) and a parallel group of strains collected sporadically (n = 6) were characterized by their ability to invade HT-29 cells, biofilm formation ability, and minimum bactericidal concentrations (MBC) of selected disinfectants. (3) Results: Among the obtained isolates, 38 genetically different strains were found, including 6 (15.8%) persistent strains. The serogroup 1/2a-3a represented 28 strains (73.7%), including the persistent ones. There were no significant differences in invasiveness between the persistent and sporadic strains. The persistent strains tolerated higher concentrations of the tested disinfectants, except for iodine-based compounds. The persistent strains initiated the biofilm formation process faster and formed it more intensively. (4) Conclusions: The presence of persistent strains in the food processing environment is a great challenge for producers to ensure consumer safety. This study attempts to elucidate the phenotypic characteristics of persistent L. monocytogenes strains.
Collapse
|
34
|
Nonsynonymous Mutations in fepR Are Associated with Adaptation of Listeria monocytogenes and Other Listeria spp. to Low Concentrations of Benzalkonium Chloride but Do Not Increase Survival of L. monocytogenes and Other Listeria spp. after Exposure to Benzalkonium Chloride Concentrations Recommended for Use in Food Processing Environments. Appl Environ Microbiol 2022; 88:e0048622. [PMID: 35587542 PMCID: PMC9195947 DOI: 10.1128/aem.00486-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Selection for Listeria monocytogenes strains that are tolerant to quaternary ammonium compounds (such as benzalkonium chloride [BC]) is a concern across the food industry, including in fresh produce processing environments. This study evaluated the ability of 67 strains of produce-associated L. monocytogenes and other Listeria spp. (“parent strains”) to show enhanced BC tolerance after serial passaging in increasing BC concentrations and to maintain this tolerance after substreaking in the absence of BC. After serial passaging in BC, 62/67 “BC passaged cultures” showed higher MICs (4 to 20 mg/L) than parent strains (2 to 6 mg/L). After the substreaking of two isolates from BC passaged cultures for each parent strain, 105/134 “adapted isolates” maintained MICs (4 to 6 mg/L) higher than parent strain MICs. These results suggested that adapted isolates acquired heritable adaptations that confer BC tolerance. Whole-genome sequencing and Sanger sequencing of fepR, a local repressor of the MATE family efflux pump FepA, identified nonsynonymous fepR mutations in 48/67 adapted isolates. The mean inactivation of adapted isolates after exposure to use-level concentrations of BC (300 mg/L) was 4.48 log, which was not significantly different from inactivation observed in parent strains. Serial passaging of cocultures of L. monocytogenes strains containing bcrABC or qacH did not yield adapted isolates that showed enhanced BC tolerance in comparison to that of monocultures. These results suggest that horizontal gene transfer either did not occur or did not yield isolates with enhanced BC tolerance. Overall, this study provides new insights into selection of BC tolerance among L. monocytogenes and other Listeria spp. IMPORTANCEListeria monocytogenes tolerance to quaternary ammonium compounds has been raised as a concern with regard to L. monocytogenes persistence in food processing environments, including in fresh produce packing and processing environments. Persistence of L. monocytogenes can increase the risk of product contamination, food recalls, and foodborne illness outbreaks. Our study shows that strains of L. monocytogenes and other Listeria spp. can acquire heritable adaptations that confer enhanced tolerance to low concentrations of benzalkonium chloride, but these adaptations do not increase survival of L. monocytogenes and other Listeria spp. when exposed to concentrations of benzalkonium chloride used for food contact surface sanitation (300 mg/L). Overall, these findings suggest that the emergence of benzalkonium chloride-tolerant Listeria strains in food processing environments is of limited concern, as even strains adapted to gain higher MICs in vitro maintain full sensitivity to the concentrations of benzalkonium chloride used for food contact surface sanitation.
Collapse
|
35
|
Gundolf T, Kalb R, Rossmanith P, Mester P. Bacterial Resistance Toward Antimicrobial Ionic Liquids Mediated by Multidrug Efflux Pumps. Front Microbiol 2022; 13:883931. [PMID: 35663893 PMCID: PMC9161554 DOI: 10.3389/fmicb.2022.883931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
The effective elimination of foodborne pathogens through cleaning and disinfection measures is of great importance to the food processing industry. As food producers rely heavily on disinfectants to control pathogenic bacteria in their facilities, the increasing spread of tolerant, often even multidrug resistant, strains is of particular concern. In addition to efforts to prevent or at least reduce development and spread of strains resistant to disinfectants and sanitizers, there is an urgent need for new and effective antimicrobials. One new class of promising antimicrobials is ionic liquids (ILs), which have been reported to be effective against resistant strains as they interact with bacterial cells in multiple ways, but investigations of their effectivity against MDR bacteria or specific defense mechanisms are still limited. This study investigates the role of multidrug efflux pumps of the Resistance Nodulation-Division family (RND) on the resistance of bacterial pathogens Escherichia coli and Salmonella enterica serovar Typhimurium toward 10 antimicrobial active ILs. Results reveal that, while known structure–activity relationships (SARs), such as the side-chain effect, were found for all strains, antimicrobial ILs with one elongated alkyl side chain were significantly affected by the RND efflux pump, highlighting the importance of efflux pumps for future IL toxicity studies. In case of antimicrobial ILs with multiple side chains and different cationic head groups, two ILs were identified that were highly active against all investigated strains with little to no effect of the efflux pump. The results obtained in this study for RND efflux pumps can serve as a starting point for identifying and designing antimicrobial ILs as effective biocides against MDR bacteria.
Collapse
Affiliation(s)
- Tobias Gundolf
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Unit for Food Microbiology, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, Vienna, Austria
| | - Roland Kalb
- Proionic Production of Ionic Substances GmbH, Grambach, Austria
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Peter Rossmanith
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Unit for Food Microbiology, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, Vienna, Austria
| | - Patrick Mester
- Unit for Food Microbiology, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, Vienna, Austria
- *Correspondence: Patrick Mester,
| |
Collapse
|
36
|
Macleod J, Beeton ML, Blaxland J. An Exploration of Listeria monocytogenes, Its Influence on the UK Food Industry and Future Public Health Strategies. Foods 2022; 11:1456. [PMID: 35627026 PMCID: PMC9141670 DOI: 10.3390/foods11101456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Listeria monocytogenes is a Gram-positive intracellular pathogen that can cause listeriosis, an invasive disease affecting pregnant women, neonates, the elderly, and immunocompromised individuals. Principally foodborne, the pathogen is transmitted typically through contaminated foods. As a result, food manufacturers exert considerable efforts to eliminate L. monocytogenes from foodstuffs and the environment through food processing and disinfection. However, L. monocytogenes demonstrates a range of environmental stress tolerances, resulting in persistent colonies that act as reservoirs for the reintroduction of L. monocytogenes to food contact surfaces and food. Novel technologies for the rapid detection of L. monocytogenes and disinfection of food manufacturing industries have been developed to overcome these obstacles to minimise the risk of outbreaks and sporadic cases of listeriosis. This review is aimed at exploring L. monocytogenes in the UK, providing a summary of outbreaks, current routine microbiological testing and the increasing awareness of biocide tolerances. Recommendations for future research in the UK are made, pertaining to expanding the understanding of L. monocytogenes dissemination in the UK food industry and the continuation of novel technological developments for disinfection of food and the food manufacturing environment.
Collapse
Affiliation(s)
- Joshua Macleod
- Microbiology and Infection Research Group, School of Sport and Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, UK; (J.M.); (M.L.B.)
- ZERO2FIVE Food Industry Centre, Llandaff Campus, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, UK
| | - Michael L. Beeton
- Microbiology and Infection Research Group, School of Sport and Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, UK; (J.M.); (M.L.B.)
| | - James Blaxland
- Microbiology and Infection Research Group, School of Sport and Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, UK; (J.M.); (M.L.B.)
- ZERO2FIVE Food Industry Centre, Llandaff Campus, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, UK
| |
Collapse
|
37
|
Osek J, Lachtara B, Wieczorek K. Listeria monocytogenes - How This Pathogen Survives in Food-Production Environments? Front Microbiol 2022; 13:866462. [PMID: 35558128 PMCID: PMC9087598 DOI: 10.3389/fmicb.2022.866462] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022] Open
Abstract
The foodborne pathogen Listeria monocytogenes is the causative agent of human listeriosis, a severe disease, especially dangerous for the elderly, pregnant women, and newborns. Although this infection is comparatively rare, it is often associated with a significant mortality rate of 20-30% worldwide. Therefore, this microorganism has an important impact on food safety. L. monocytogenes can adapt, survive and even grow over a wide range of food production environmental stress conditions such as temperatures, low and high pH, high salt concentration, ultraviolet lights, presence of biocides and heavy metals. Furthermore, this bacterium is also able to form biofilm structures on a variety of surfaces in food production environments which makes it difficult to remove and allows it to persist for a long time. This increases the risk of contamination of food production facilities and finally foods. The present review focuses on the key issues related to the molecular mechanisms of the pathogen survival and adaptation to adverse environmental conditions. Knowledge and understanding of the L. monocytogenes adaptation approaches to environmental stress factors will have a significant influence on the development of new, efficient, and cost-effective methods of the pathogen control in the food industry, which is critical to ensure food production safety.
Collapse
Affiliation(s)
- Jacek Osek
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, Puławy, Poland
| | | | | |
Collapse
|
38
|
Evaluation of the Persistence and Characterization of Listeria monocytogenes in Foodservice Operations. Foods 2022; 11:foods11060886. [PMID: 35327308 PMCID: PMC8955912 DOI: 10.3390/foods11060886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 12/27/2022] Open
Abstract
Listeria monocytogenes is a major foodborne pathogen that can contaminate food products and colonize food-producing facilities. Foodservice operations (FSOp) are frequently responsible for foodborne outbreaks due to food safety practices failures. We investigated the presence of and characterized L. monocytogenes from two FSOp (cafeterias) distributing ready-to-eat meals and verified FSOp’s compliance with good manufacturing practices (GMP). Two facilities (FSOp-A and FSOp-B) were visited three times each over 5 months. We sampled foods, ingredients, and surfaces for microbiological analysis, and L. monocytogenes isolates were characterized by phylogenetic analyses and phenotypic characteristics. GMP audits were performed in the first and third visits. A ready-to-eat salad (FSOp-A) and a frozen ingredient (FSOp-B) were contaminated with L. monocytogenes, which was also detected on Zone 3 surfaces (floor, drains, and a boot cover). The phylogenetic analysis demonstrated that FSOp-B had persistent L. monocytogenes strains, but environmental isolates were not closely related to food or ingredient isolates. GMP audits showed that both operations worked under “fair” conditions, and “facilities and equipment” was the section with the least compliances. The presence of L. monocytogenes in the environment and GMP failures could promote food contamination with this pathogen, presenting a risk to consumers.
Collapse
|
39
|
Co-Occurrence of L. monocytogenes with Other Bacterial Genera and Bacterial Diversity on Cleaned Conveyor Surfaces in a Swine Slaughterhouse. Microorganisms 2022; 10:microorganisms10030613. [PMID: 35336188 PMCID: PMC8948719 DOI: 10.3390/microorganisms10030613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 11/25/2022] Open
Abstract
Bacterial pathogens, such as Listeria monocytogenes, can show resistance to disinfection and persistence on working surfaces, permitting them to survive and contaminate food products. Persistence—a complex phenomenon involving interactions between many bacteria within a biofilm—is modulated by in situ characteristics. This study aimed to describe, in silico, the microbiota identified in a swine slaughterhouse after sanitation procedures to better understand the presence of L. monocytogenes on these surfaces. Molecular tools for characterization of microbial communities were used to assess the relative contribution of different bacteria resulting from this phenomenon, and the 16S rRNA sequencing method was used on samples from meat conveyor belt surfaces collected on four sampling visits to study the co-occurrence between L. monocytogenes and other bacteria. From the background microbiota, a total of six genera were found to be negatively correlated with Listeria spp., suggesting Listeria growth inhibition, competition, or at least an absence of shared habitats. Based on these results, a complete scenario of interactions of Listeria with components of background microbiota was established. This work contributes to identifying avenues that could prevent the growth and persistence of L. monocytogenes on food-processing surfaces.
Collapse
|
40
|
Guerreiro DN, Pucciarelli MG, Tiensuu T, Gudynaite D, Boyd A, Johansson J, García-del Portillo F, O’Byrne CP. Acid stress signals are integrated into the σB-dependent general stress response pathway via the stressosome in the food-borne pathogen Listeria monocytogenes. PLoS Pathog 2022; 18:e1010213. [PMID: 35275969 PMCID: PMC8942246 DOI: 10.1371/journal.ppat.1010213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/23/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022] Open
Abstract
The general stress response (GSR) in Listeria monocytogenes plays a critical role in the survival of this pathogen in the host gastrointestinal tract. The GSR is regulated by the alternative sigma factor B (σB), whose role in protection against acid stress is well established. Here, we investigated the involvement of the stressosome, a sensory hub, in transducing low pH signals to induce the GSR. Mild acid shock (15 min at pH 5.0) activated σB and conferred protection against a subsequent lethal pH challenge. A mutant strain where the stressosome subunit RsbR1 was solely present retained the ability to induce σB activity at pH 5.0. The role of stressosome phosphorylation in signal transduction was investigated by mutating the putative phosphorylation sites in the core stressosome proteins RsbR1 (rsbR1-T175A, -T209A, -T241A) and RsbS (rsbS-S56A), or the stressosome kinase RsbT (rsbT-N49A). The rsbS S56A and rsbT N49A mutations abolished the response to low pH. The rsbR1-T209A and rsbR1-T241A mutants displayed constitutive σB activity. Mild acid shock upregulates invasion genes inlAB and stimulates epithelial cell invasion, effects that were abolished in mutants with an inactive or overactive stressosome. Overall, the results show that the stressosome is required for acid-induced activation of σB in L. monocytogenes. Furthermore, they show that RsbR1 can function independently of its paralogues and signal transduction requires RsbT-mediated phosphorylation of RsbS on S56 and RsbR1 on T209 but not T175. These insights shed light on the mechanisms of signal transduction that activate the GSR in L. monocytogenes in response to acidic environments, and highlight the role this sensory process in the early stages of the infectious cycle. The stress sensing hub known as the stressosome, found in many bacterial and archaeal lineages, plays a crucial role in both stress tolerance and virulence in the food-borne pathogen Listeria monocytogenes. However, the mechanisms that lead to its activation and the subsequent activation of the general stress response have remained elusive. In this study, we examined the signal transduction mechanisms that operate in the stressosome in response to acid stress. We found that only one of the five putative sensory proteins present in L. monocytogenes, RsbR1, was required for effective transduction of acid tress signals. We further found that phosphorylation of RsbS and RsbR1, mediated by the RsbT kinase, is essential for signal transduction. Failure to phosphorylate RsbS on Serine 56 completely abolished acid sensing by the stressosome, which prevented the development of adaptive acid tolerance. The acid-induced activation of internalin gene expression was also abolished in mutants with defective stressosome signalling, suggesting a role for the stressosome in the invasion of host cells. Together the data provide new insights into the mechanisms that activate the stressosome in response to acid stress and highlight the role this sensory hub plays in virulence.
Collapse
Affiliation(s)
- Duarte N. Guerreiro
- Bacterial Stress Response Group, Microbiology, School of Biological and Chemical Sciences, National University of Ireland, Galway, Ireland
| | - M. Graciela Pucciarelli
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, Madrid, Spain
- Department of Molecular Biology, Universidad Autónoma de Madrid, Centre of Molecular Biology ‘Severo Ochoa’ (CBMSO CSIC-UAM), Madrid, Spain
| | - Teresa Tiensuu
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre of Microbial Research, Umeå, Sweden
| | - Diana Gudynaite
- Bacterial Stress Response Group, Microbiology, School of Biological and Chemical Sciences, National University of Ireland, Galway, Ireland
| | - Aoife Boyd
- Pathogenic Mechanisms Research Group, Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Jörgen Johansson
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre of Microbial Research, Umeå, Sweden
| | | | - Conor P. O’Byrne
- Bacterial Stress Response Group, Microbiology, School of Biological and Chemical Sciences, National University of Ireland, Galway, Ireland
- * E-mail:
| |
Collapse
|
41
|
Bland R, Brown SRB, Waite-Cusic J, Kovacevic J. Probing antimicrobial resistance and sanitizer tolerance themes and their implications for the food industry through the Listeria monocytogenes lens. Compr Rev Food Sci Food Saf 2022; 21:1777-1802. [PMID: 35212132 DOI: 10.1111/1541-4337.12910] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022]
Abstract
The development of antibiotic resistance is a serious public health crisis, reducing our ability to effectively combat infectious bacterial diseases. The parallel study of reduced susceptibility to sanitizers is growing, particularly for environmental foodborne pathogens, such as Listeria monocytogenes. As regulations demand a seek-and-destroy approach for L. monocytogenes, understanding sanitizer efficacy and its uses are critical for the food industry. Studies have reported the ability of L. monocytogenes to survive in sanitizer concentrations 10-1000 times lower than the manufacturer-recommended concentration (MRC). Notably, data show that at MRC and when applied according to the label instructions, sanitizers remain largely effective. Studies also report that variables such as the presence of organic material, application time/temperature, and bacterial attachment to surfaces can impact sanitizer effectiveness. Due to the lack of standardization in the methodology and definitions of sanitizer resistance, tolerance, and susceptibility, different messages are conveyed in different studies. In this review, we examine the diversity of definitions, terminology, and methodologies used in studies examining L. monocytogenes resistance and susceptibility to antimicrobials. Research available to date fails to demonstrate "resistance" of L. monocytogenes to recommended sanitizer treatments as prescribed by the label. As such, sanitizer tolerance would be a more accurate description of L. monocytogenes response to low sanitizer concentrations (i.e., sub-MRC). Conservative use of word "resistance" will reduce confusion and allow for concise messaging as sanitizer research findings are communicated to industry and regulators.
Collapse
Affiliation(s)
- Rebecca Bland
- Food Innovation Center, Oregon State University, Portland, Oregon, USA.,Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Stephanie R B Brown
- Food Innovation Center, Oregon State University, Portland, Oregon, USA.,Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Joy Waite-Cusic
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Jovana Kovacevic
- Food Innovation Center, Oregon State University, Portland, Oregon, USA.,Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
42
|
Bland R, Waite-Cusic J, Weisberg AJ, Riutta ER, Chang JH, Kovacevic J. Adaptation to a Commercial Quaternary Ammonium Compound Sanitizer Leads to Cross-Resistance to Select Antibiotics in Listeria monocytogenes Isolated From Fresh Produce Environments. Front Microbiol 2022; 12:782920. [PMID: 35082767 PMCID: PMC8784610 DOI: 10.3389/fmicb.2021.782920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
The effective elimination of Listeria monocytogenes through cleaning and sanitation is of great importance to the food processing industry. Specifically in fresh produce operations, the lack of a kill step requires effective cleaning and sanitation to mitigate the risk of cross-contamination from the environment. As facilities rely on sanitizers to control L. monocytogenes, reports of the development of tolerance to sanitizers and other antimicrobials through cross-resistance is of particular concern. We investigated the potential for six L. monocytogenes isolates from fresh produce handling and processing facilities and packinghouses to develop cross-resistance between a commercial sanitizer and antibiotics. Experimental adaptation of isolates belonging to hypervirulent clonal complexes (CC2, CC4, and CC6) to a commercial quaternary ammonium compound sanitizer (cQAC) resulted in elevated minimum inhibitory concentrations (2–3 ppm) and minimum bactericidal concentrations (3–4 ppm). Susceptibility to cQAC was restored for all adapted (qAD) isolates in the presence of reserpine, a known efflux pump inhibitor. Reduced sensitivity to 7/17 tested antibiotics (chloramphenicol, ciprofloxacin, clindamycin, kanamycin, novobiocin, penicillin, and streptomycin) was observed in all tested isolates. qAD isolates remained susceptible to antibiotics commonly used in the treatment of listeriosis (i.e., ampicillin and gentamicin). The whole genome sequencing of qAD strains, followed by comparative genomic analysis, revealed several mutations in fepR, the regulator for FepA fluoroquinolone efflux pump. The results suggest that mutations in fepR play a role in the reduction in antibiotic susceptibility following low level adaptation to cQAC. Further investigation into the cross-resistance mechanisms and pressures leading to the development of this phenomenon among L. monocytogenes isolates recovered from different sources is needed to better understand the likelihood of cross-resistance development in food chain isolates and the implications for the food industry.
Collapse
Affiliation(s)
- Rebecca Bland
- Food Innovation Center, Oregon State University, Portland, OR, United States.,Department of Food Science and Technology, Oregon State University, Corvallis, OR, United States
| | - Joy Waite-Cusic
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, United States
| | - Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Elizabeth R Riutta
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Jovana Kovacevic
- Food Innovation Center, Oregon State University, Portland, OR, United States.,Department of Food Science and Technology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
43
|
Lakicevic BZ, Den Besten HMW, De Biase D. Landscape of Stress Response and Virulence Genes Among Listeria monocytogenes Strains. Front Microbiol 2022; 12:738470. [PMID: 35126322 PMCID: PMC8811131 DOI: 10.3389/fmicb.2021.738470] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/30/2021] [Indexed: 12/23/2022] Open
Abstract
The pathogenic microorganism Listeria monocytogenes is ubiquitous and responsible for listeriosis, a disease with a high mortality rate in susceptible people. It can persist in different habitats, including the farm environment, the food production environments, and in foods. This pathogen can grow under challenging conditions, such as low pH, low temperatures, and high salt concentrations. However, L. monocytogenes has a high degree of strain divergence regarding virulence potential, environmental adaption, and stress response. This review seeks to provide the reader with an up-to-date overview of clonal and serotype-specific differences among L. monocytogenes strains. Emphasis on the genes and genomic islands responsible for virulence and resistance to environmental stresses is given to explain the complex adaptation among L. monocytogenes strains. Moreover, we highlight the use of advanced diagnostic technologies, such as whole-genome sequencing, to fine-tune quantitative microbiological risk assessment for better control of listeriosis.
Collapse
Affiliation(s)
- Brankica Z. Lakicevic
- Institute of Meat Hygiene and Technology, Belgrade, Serbia
- *Correspondence: Brankica Z. Lakicevic,
| | | | - Daniela De Biase
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
44
|
The Use of Ozone as an Eco-Friendly Strategy against Microbial Biofilm in Dairy Manufacturing Plants: A Review. Microorganisms 2022; 10:microorganisms10010162. [PMID: 35056612 PMCID: PMC8781958 DOI: 10.3390/microorganisms10010162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
Managing spoilage and pathogenic bacteria contaminations represents a major challenge for the food industry, especially for the dairy sector. Biofilms formed by these microorganisms in food processing environment continue to pose concerns to food manufacturers as they may impact both the safety and quality of processed foods. Bacteria inside biofilm can survive in harsh environmental conditions and represent a source of repeated food contamination in dairy manufacturing plants. Among the novel approaches proposed to control biofilm in food processing plants, the ozone treatment, in aqueous or gaseous form, may represent one of the most promising techniques due to its antimicrobial action and low environmental impact. The antimicrobial effectiveness of ozone has been well documented on a wide variety of microorganisms in planktonic forms, whereas little data on the efficacy of ozone treatment against microbial biofilms are available. In addition, ozone is recognized as an eco-friendly technology since it does not leave harmful residuals in food products or on contact surfaces. Thus, this review intends to present an overview of the current state of knowledge on the possible use of ozone as an antimicrobial agent against the most common spoilage and pathogenic microorganisms, usually organized in biofilm, in dairy manufacturing plants.
Collapse
|
45
|
van Dijk HFG, Verbrugh HA, Abee T, Andriessen JW, van Dijk HFG, ter Kuile BH, Mevius DJ, Montforts MHMM, van Schaik W, Schmitt H, Smidt H, Veening JW, Voss A. Resisting disinfectants. COMMUNICATIONS MEDICINE 2022; 2:6. [PMID: 35603291 PMCID: PMC9053202 DOI: 10.1038/s43856-021-00070-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/16/2021] [Indexed: 12/03/2022] Open
Abstract
van Dijk et al. discuss the potential for antimicrobial resistance as a consequence of disinfectant use. The authors advocate for the prudent use of disinfectants in all sectors of society.
Collapse
|
46
|
Mohanta YK, Chakrabartty I, Mishra AK, Chopra H, Mahanta S, Avula SK, Patowary K, Ahmed R, Mishra B, Mohanta TK, Saravanan M, Sharma N. Nanotechnology in combating biofilm: A smart and promising therapeutic strategy. Front Microbiol 2022; 13:1028086. [PMID: 36938129 PMCID: PMC10020670 DOI: 10.3389/fmicb.2022.1028086] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/19/2022] [Indexed: 03/06/2023] Open
Abstract
Since the birth of civilization, people have recognized that infectious microbes cause serious and often fatal diseases in humans. One of the most dangerous characteristics of microorganisms is their propensity to form biofilms. It is linked to the development of long-lasting infections and more severe illness. An obstacle to eliminating such intricate structures is their resistance to the drugs now utilized in clinical practice (biofilms). Finding new compounds with anti-biofilm effect is, thus, essential. Infections caused by bacterial biofilms are something that nanotechnology has lately shown promise in treating. More and more studies are being conducted to determine whether nanoparticles (NPs) are useful in the fight against bacterial infections. While there have been a small number of clinical trials, there have been several in vitro outcomes examining the effects of antimicrobial NPs. Nanotechnology provides secure delivery platforms for targeted treatments to combat the wide range of microbial infections caused by biofilms. The increase in pharmaceuticals' bioactive potential is one of the many ways in which nanotechnology has been applied to drug delivery. The current research details the utilization of several nanoparticles in the targeted medication delivery strategy for managing microbial biofilms, including metal and metal oxide nanoparticles, liposomes, micro-, and nanoemulsions, solid lipid nanoparticles, and polymeric nanoparticles. Our understanding of how these nanosystems aid in the fight against biofilms has been expanded through their use.
Collapse
Affiliation(s)
- Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
- *Correspondence: Yugal Kishore Mohanta,
| | - Ishani Chakrabartty
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
- Indegene Pvt. Ltd., Manyata Tech Park, Bangalore, India
| | | | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Saurov Mahanta
- National Institute of Electronics and Information Technology (NIELIT), Guwahati Centre, Guwahati, Assam, India
| | - Satya Kumar Avula
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Kaustuvmani Patowary
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
| | - Ramzan Ahmed
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Bibhudutta Mishra
- Department of Gastroenterology and HNU, All India Institute of Medical Sciences, New Delhi, India
| | - Tapan Kumar Mohanta
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
- Tapan Kumar Mohanta,
| | - Muthupandian Saravanan
- AMR and Nanotherapeutics Laboratory, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Imphal, Manipur, India
- Nanaocha Sharma,
| |
Collapse
|
47
|
Quereda JJ, Morón-García A, Palacios-Gorba C, Dessaux C, García-del Portillo F, Pucciarelli MG, Ortega AD. Pathogenicity and virulence of Listeria monocytogenes: A trip from environmental to medical microbiology. Virulence 2021; 12:2509-2545. [PMID: 34612177 PMCID: PMC8496543 DOI: 10.1080/21505594.2021.1975526] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023] Open
Abstract
Listeria monocytogenes is a saprophytic gram-positive bacterium, and an opportunistic foodborne pathogen that can produce listeriosis in humans and animals. It has evolved an exceptional ability to adapt to stress conditions encountered in different environments, resulting in a ubiquitous distribution. Because some food preservation methods and disinfection protocols in food-processing environments cannot efficiently prevent contaminations, L. monocytogenes constitutes a threat to human health and a challenge to food safety. In the host, Listeria colonizes the gastrointestinal tract, crosses the intestinal barrier, and disseminates through the blood to target organs. In immunocompromised individuals, the elderly, and pregnant women, the pathogen can cross the blood-brain and placental barriers, leading to neurolisteriosis and materno-fetal listeriosis. Molecular and cell biology studies of infection have proven L. monocytogenes to be a versatile pathogen that deploys unique strategies to invade different cell types, survive and move inside the eukaryotic host cell, and spread from cell to cell. Here, we present the multifaceted Listeria life cycle from a comprehensive perspective. We discuss genetic features of pathogenic Listeria species, analyze factors involved in food contamination, and review bacterial strategies to tolerate stresses encountered both during food processing and along the host's gastrointestinal tract. Then we dissect host-pathogen interactions underlying listerial pathogenesis in mammals from a cell biology and systemic point of view. Finally, we summarize the epidemiology, pathophysiology, and clinical features of listeriosis in humans and animals. This work aims to gather information from different fields crucial for a comprehensive understanding of the pathogenesis of L. monocytogenes.
Collapse
Affiliation(s)
- Juan J. Quereda
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. Valencia, Spain
| | - Alvaro Morón-García
- Departamento de Biología Celular. Facultad de Ciencias Biológicas, Universidad Complutense de Madrid. Madrid, Spain
| | - Carla Palacios-Gorba
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. Valencia, Spain
| | - Charlotte Dessaux
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| | - Francisco García-del Portillo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| | - M. Graciela Pucciarelli
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Biología Molecular ‘Severo Ochoa’. Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid. Madrid, Spain
| | - Alvaro D. Ortega
- Departamento de Biología Celular. Facultad de Ciencias Biológicas, Universidad Complutense de Madrid. Madrid, Spain
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
48
|
Kokkoni EA, Andritsos N, Sakarikou C, Michailidou S, Argiriou A, Giaouris E. Investigating Transcriptomic Induction of Resistance and/or Virulence in Listeria monocytogenes Cells Surviving Sublethal Antimicrobial Exposure. Foods 2021; 10:foods10102382. [PMID: 34681431 PMCID: PMC8535302 DOI: 10.3390/foods10102382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/26/2021] [Accepted: 10/05/2021] [Indexed: 01/06/2023] Open
Abstract
The potential transcriptomic induction of resistance and/or virulence in two L. monocytogenes strains belonging to the most frequent listeriosis-associated serovars (i.e., 1/2a and 4b), following their sublethal antimicrobial exposure, was studied through qPCR determination of the relative expression of 10 selected related genes (i.e., groEL, hly, iap, inlA, inlB, lisK, mdrD, mdrL, prfA, and sigB). To induce sublethal stress, three common antimicrobials (i.e., benzalkonium chloride, thymol, and ampicillin) were individually applied for 2 h at 37 °C against stationary phase cells of each strain, each at a sublethal concentration. In general, the expression of most of the studied genes remained either stable or was significantly downregulated following the antimicrobial exposure, with some strain-specific differences to be yet recorded. Thymol provoked downregulation of most of the studied genes, significantly limiting the expression of 6/10 and 4/10 genes in the strains of ser. 1/2a and ser. 4b, respectively, including those coding for the master regulators of stress response and virulence (SigB and PrfA, respectively), in both strains. At the same time, the two genes coding for the invasion internalin proteins (InlA and InlB), with crucial role in the onset of L. monocytogenes pathogenesis, were both importantly upregulated in ser. 4b strain. The results obtained increase our knowledge of the stress physiology of L. monocytogenes under certain sublethal antimicrobial conditions that could be encountered within the food chain and in clinical settings, and may assist in better and more effective mitigation strategies.
Collapse
Affiliation(s)
- Eleni-Anna Kokkoni
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 & Makrygianni, 81400 Myrina, Greece; (E.-A.K.); (N.A.); (C.S.); (S.M.); (A.A.)
| | - Nikolaos Andritsos
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 & Makrygianni, 81400 Myrina, Greece; (E.-A.K.); (N.A.); (C.S.); (S.M.); (A.A.)
- Athens Analysis Laboratories S.A., Microbiology Laboratory, Nafpliou 29, 14452 Metamorfosi, Greece
| | - Christina Sakarikou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 & Makrygianni, 81400 Myrina, Greece; (E.-A.K.); (N.A.); (C.S.); (S.M.); (A.A.)
| | - Sofia Michailidou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 & Makrygianni, 81400 Myrina, Greece; (E.-A.K.); (N.A.); (C.S.); (S.M.); (A.A.)
- Centre for Research and Technology Hellas (CERTH), Institute of Applied Biosciences, 57001 Thessaloniki, Greece
| | - Anagnostis Argiriou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 & Makrygianni, 81400 Myrina, Greece; (E.-A.K.); (N.A.); (C.S.); (S.M.); (A.A.)
- Centre for Research and Technology Hellas (CERTH), Institute of Applied Biosciences, 57001 Thessaloniki, Greece
| | - Efstathios Giaouris
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 & Makrygianni, 81400 Myrina, Greece; (E.-A.K.); (N.A.); (C.S.); (S.M.); (A.A.)
- Correspondence: ; Tel.: +30-22540-83115
| |
Collapse
|
49
|
Milani ES, Hasani A, Varschochi M, Sadeghi J, Memar MY, Hasani A. Biocide resistance in Acinetobacter baumannii: appraising the mechanisms. J Hosp Infect 2021; 117:135-146. [PMID: 34560167 DOI: 10.1016/j.jhin.2021.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022]
Abstract
A global upsurge in antibiotic-resistant Acinetobacter baumannii requires supervised selection of biocides and disinfectants to avert nosocomial infections by reducing its spread. Moreover, inadequate and improper biocides have been reported as a contributing factor in antimicrobial resistance. Regardless of the manner of administration, a biocidal concentration that does not kill the target bacteria creates a stress response, propagating the resistance mechanisms. This is an essential aspect of the disinfection programme and the overall bio-contamination management plan. Knowing the mechanisms of action of biocides and resistance modalities may open new avenues to discover novel agents. This review describes the mechanisms of action of some biocides, resistance mechanisms, and approaches to study susceptibility/resistance to these agents.
Collapse
Affiliation(s)
- E S Milani
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - A Hasani
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Clinical Research Development Unit, Sina Educational, Research and Treatment Centre, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - M Varschochi
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - J Sadeghi
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - M Y Memar
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - A Hasani
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
50
|
Unrath N, McCabe E, Macori G, Fanning S. Application of Whole Genome Sequencing to Aid in Deciphering the Persistence Potential of Listeria monocytogenes in Food Production Environments. Microorganisms 2021; 9:1856. [PMID: 34576750 PMCID: PMC8464834 DOI: 10.3390/microorganisms9091856] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/26/2023] Open
Abstract
Listeria monocytogenes is the etiological agent of listeriosis, a foodborne illness associated with high hospitalizations and mortality rates. This bacterium can persist in food associated environments for years with isolates being increasingly linked to outbreaks. This review presents a discussion of genomes of Listeria monocytogenes which are commonly regarded as persisters within food production environments, as well as genes which are involved in mechanisms aiding this phenotype. Although criteria for the detection of persistence remain undefined, the advent of whole genome sequencing (WGS) and the development of bioinformatic tools have revolutionized the ability to find closely related strains. These advancements will facilitate the identification of mechanisms responsible for persistence among indistinguishable genomes. In turn, this will lead to improved assessments of the importance of biofilm formation, adaptation to stressful conditions and tolerance to sterilizers in relation to the persistence of this bacterium, all of which have been previously associated with this phenotype. Despite much research being published around the topic of persistence, more insights are required to further elucidate the nature of true persistence and its implications for public health.
Collapse
Affiliation(s)
- Natalia Unrath
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
| | - Evonne McCabe
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
- Department of Microbiology, St. Vincent’s University Hospital, D04 T6F4 Dublin, Ireland
| | - Guerrino Macori
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
| |
Collapse
|