1
|
Wu C, Chen Y, Zheng C, Huang X, Xie Y, Lin L, Zhang X, Xie L. The Role of AaPGRP-LB in the Immune Response of Aedes albopictus Against Bacteria Infection. Int J Mol Sci 2025; 26:2188. [PMID: 40076812 PMCID: PMC11900923 DOI: 10.3390/ijms26052188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The initial phase of an insect's innate immune response to foreign pathogens is triggered by the identification of exogenous invaders, a mechanism facilitated by pattern recognition receptors. Among these receptors, peptidoglycan recognition proteins (PGRPs), abundant in insects, are essential components of the innate immune system. The roles of PGRPs have been extensively elucidated in Drosophila melanogaster; however, the mechanism underlying the immune response of Aedes albopictus to pathogens is unclear. Herein, we successfully cloned the full-length cDNA of a PGRP gene from Ae. albopictus, designated as the AaPGRP-LB gene. The open reading frame of AaPGRP-LB encodes 203 amino acids, including a secretion signal peptide and a canonical PGRP conserved domain. Multisequence alignment revealed that AaPGRP-LB possesses the amino acid residues essential for zinc binding and amidase activity. Molecular docking studies demonstrated that AaPGRP-LB exhibits a strong binding affinity for DAP-type and LYS-type peptidoglycan. The mRNA expression level of the AaPGRP-LB gene significantly increased after oral infection with Escherichia coli or Staphylococcus aureus. The purified recombinant AaPGRP-LB (rAaPGRP-LB) exhibited strong agglutination properties and demonstrated significant antimicrobial efficacy against E. coli and S. aureus in the presence of zinc ions. This study highlights the critical role of AaPGRP-LB in the immune response of Ae. albopictus. These findings provide a foundation for future research on mosquito immune pathways for innovative vector control and disease prevention strategies.
Collapse
Affiliation(s)
- Cheng Wu
- School of Basic Medical Sciences, Fujian Medical University, No. 1 Xuefu North Road, Fuzhou 350122, China; (C.W.); (Y.C.); (C.Z.); (X.H.); (Y.X.); (L.L.)
| | - Yahui Chen
- School of Basic Medical Sciences, Fujian Medical University, No. 1 Xuefu North Road, Fuzhou 350122, China; (C.W.); (Y.C.); (C.Z.); (X.H.); (Y.X.); (L.L.)
| | - Chenhua Zheng
- School of Basic Medical Sciences, Fujian Medical University, No. 1 Xuefu North Road, Fuzhou 350122, China; (C.W.); (Y.C.); (C.Z.); (X.H.); (Y.X.); (L.L.)
| | - Xitong Huang
- School of Basic Medical Sciences, Fujian Medical University, No. 1 Xuefu North Road, Fuzhou 350122, China; (C.W.); (Y.C.); (C.Z.); (X.H.); (Y.X.); (L.L.)
| | - Yuyang Xie
- School of Basic Medical Sciences, Fujian Medical University, No. 1 Xuefu North Road, Fuzhou 350122, China; (C.W.); (Y.C.); (C.Z.); (X.H.); (Y.X.); (L.L.)
| | - Lingqun Lin
- School of Basic Medical Sciences, Fujian Medical University, No. 1 Xuefu North Road, Fuzhou 350122, China; (C.W.); (Y.C.); (C.Z.); (X.H.); (Y.X.); (L.L.)
| | - Xiuli Zhang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, No. 1 Qiuyang Road, Fuzhou 350122, China
| | - Lihua Xie
- School of Basic Medical Sciences, Fujian Medical University, No. 1 Xuefu North Road, Fuzhou 350122, China; (C.W.); (Y.C.); (C.Z.); (X.H.); (Y.X.); (L.L.)
| |
Collapse
|
2
|
Kumar V, Garg S, Sisodia D, Gupta L, Kumar S, Saxena V. Midgut immune profiling and functional characterization of Aedes aegypti ABC transporter gene(s) using systemic and local bacterial challenges. Parasit Vectors 2025; 18:34. [PMID: 39891271 PMCID: PMC11786363 DOI: 10.1186/s13071-025-06658-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/01/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND The mosquito midgut is crucial for digestion and immune interactions. It produces several immune factors that protect the organ from invading pathogens and can limit their propagation. Studies on mosquito midgut transcriptome following pathogen exposure have revealed the presence of non-canonical immune genes, such as ABC transporters, whose function in insect immunity remains unexplored. Therefore, this study focuses on identifying and characterising the immune role of ABC transporters in the midgut of Aedes aegypti, a primary arboviral vector. METHODS To identify the midgut-expressed ABC transporters, the mosquitoes were challenged with a mixture of gram-negative (Escherichia coli) and gram-positive (Micrococcus luteus) bacteria, and the expression of all ABC transporters was analysed with PCR using gene-specific primers. Furthermore, the transcriptional alterations of midgut ABC transporters were explored at different time points upon a thoracic nano-injection (systemic challenge) or infectious blood meal (local challenge) of the bacterial mixture through quantitative real-time PCR (qPCR), and one gene was selected for RNAi-mediated gene silencing and its role assessment in midgut immune responses. RESULTS The expression of all 48 microbial-induced midgut-expressing Ae. aegypti ABC transporter genes upon systemic or local bacterial challenges was analyzed. Based on the transcriptomic data and potential immune expression similar to the well-known immune gene defensin, AaeABCG3 was selected for RNAi-mediated gene silencing and characterization. The AaeABCG3 gene silencing exhibited a significant reduction of midgut bacterial load through the induction of nitric oxide synthase (NOS) in sugar-fed and systemic bacterial-challenged mosquitoes. In contrast, midgut bacterial load was significantly regulated by induction of defensin A and cecropin G in the late hours of local bacterial challenges in AaeABCG3-silenced mosquitoes. CONCLUSIONS The silencing of AaeABCG3 modulated the mosquito midgut immune response and disturbed the midgut microbiota homeostasis. The systemic immune responses of AaeABCG3-silenced mosquitoes were influenced by the JAK-STAT pathway with no induction of Toll and IMD immune pathways. Interestingly, Toll and IMD immune pathways actively participated in the late hours of local bacterial challenges, suggesting that the route of infection influences these immune responses; however, the molecular mechanism behind these phenomena still needs to be explored. Overall, this work provides significant insight into the importance of ABC transporters in mosquito immunity.
Collapse
Affiliation(s)
- Vikas Kumar
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, 333031, Rajasthan, India
| | - Shilpi Garg
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, 333031, Rajasthan, India
| | - Diksha Sisodia
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, 333031, Rajasthan, India
| | - Lalita Gupta
- Department of Zoology, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Sanjeev Kumar
- Department of Biotechnology, Chaudhary Bansi Lal University, Bhiwani, Haryana, India.
| | - Vishal Saxena
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, 333031, Rajasthan, India.
| |
Collapse
|
3
|
Guan L, Wang X, Wan S, Wang Y, Zhang X, Wang S, Li C, Tang B. The Role of TcCYP6K1 and TcCYP9F2 Influences Trehalose Metabolism under High-CO 2 Stress in Tribolium castaneum (Coleoptera). INSECTS 2024; 15:502. [PMID: 39057235 PMCID: PMC11276637 DOI: 10.3390/insects15070502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Cytochrome P450 monooxygenases (CYP), crucial detoxification enzymes in insects, are involved in the metabolism of endogenous substances as well as the activation and degradation of exogenous compounds. In this study, T. castaneum was utilized to investigate the roles of TcCYP6K1 and TcCYP9F2 genes influencing in the trehalose metabolism pathway under high-CO2 stress. By predicting the functional sequences of TcCYP6K1 and TcCYP9F2 genes and analyzing their spatiotemporal expression patterns, it was discovered that both genes belong to the CYP3 group and exhibit high expression levels during the larval stage, decreasing during the pupal stage, while showing high expression in the fatty body, intestine, and malpighian tubules. Furthermore, following the knockdown of TcCYP6K1 and TcCYP9F2 genes in combination with treating larvae with 75% CO2, it was observed that larval mortality increased, and glycogen content significantly decreased, while trehalose content increased significantly. Additionally, membrane-bound trehalase enzyme activity declined, TPS gene expression was significantly upregulated, GS gene expression was significantly downregulated, and ATP content showed a marked decrease. In conclusion, CYP genes are critical responsive genes of T. castaneum to high CO2 levels, potentially impacting the insect's resistance to carbon dioxide through their involvement in the synthesis or breakdown of the carbohydrate metabolism pathway. These findings could serve as a theoretical basis for the utilization of novel pesticides in low-oxygen grain storage techniques and offer new insights for environmentally friendly pest control strategies in grain storage.
Collapse
Affiliation(s)
- Liwen Guan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (L.G.); (X.W.); (S.W.); (S.W.)
| | - Xianzhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (L.G.); (X.W.); (S.W.); (S.W.)
| | - Sijing Wan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (L.G.); (X.W.); (S.W.); (S.W.)
| | - Yuanyuan Wang
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang 550005, China; (Y.W.); (X.Z.)
| | - Xinyu Zhang
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang 550005, China; (Y.W.); (X.Z.)
| | - Shigui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (L.G.); (X.W.); (S.W.); (S.W.)
| | - Can Li
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang 550005, China; (Y.W.); (X.Z.)
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (L.G.); (X.W.); (S.W.); (S.W.)
| |
Collapse
|
4
|
Yu L, Yin Y, Wang Q, Zhao P, Han Q, Liao C. Impact of Ae-GRD on Ivermectin Resistance and Its Regulation by miR-71-5p in Aedes aegypti. INSECTS 2024; 15:453. [PMID: 38921167 PMCID: PMC11203581 DOI: 10.3390/insects15060453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
iGABAR, a member of the Cys-loop ligand-gated ion channel superfamily, is a significant target of the insecticide ivermectin (IVM). GRD is the potential subunit of the insect iGABAR. However, little information about GRD in Ae. aegypti has been reported. In this study, we involved cloning and characterizing the iGABAR subunit GRD of Ae. aegypti (Ae-GRD). Sequence analysis indicated that Ae-GRD, as part of the cysteine-loop ligand-gated ion channel family, is similar to other insect GRD. RNA interference (RNAi) was employed to explore IVM resistance in Ae. aegypti, resulting in a significant reduction in Ae-GRD expression (p < 0.05), and the mortality of Ae. aegypti adults with Ae-GRD knockdown was significantly decreased after exposure to ivermectin. Bioinformatics prediction identified miR-71-5p as a potential regulator of Ae-GRD. In vitro, dual-luciferase reporter assays confirmed that Ae-GRD expression was regulated by miR-71-5p. Microinjection of miR-71-5p mimics upregulated miR-71-5p expression and downregulated Ae-GRD gene expression, reducing mortality by 34.52% following IVM treatment. Conversely, microinjection of a miR-71-5p inhibitor decreased miR-71-5p expression but did not affect the susceptibility to IVM despite increased Ae-GRD expression (p < 0.05). In conclusion, Ae-GRD, as one of the iGABA receptor subunits, is a potential target of ivermectin. It may influence ivermectin resistance by modulating the GABA signaling pathway. The inhibition of Ae-GRD expression by miR-71-5p decreased ivermectin resistance and consequently lowered the mortality rate of Ae. aegypti mosquitoes. This finding provides empirical evidence of the relationship between Ae-GRD and its miRNA in modulating insecticide resistance, offering novel perspectives for mosquito control strategies.
Collapse
Affiliation(s)
- Lingling Yu
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (L.Y.); (Y.Y.); (Q.W.); (P.Z.)
- Hainan One Health Key Laboratory, Hainan University, Haikou 570228, China
- Hainan International One Health Institute, Hainan University, Haikou 570228, China
| | - Yanan Yin
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (L.Y.); (Y.Y.); (Q.W.); (P.Z.)
- Hainan One Health Key Laboratory, Hainan University, Haikou 570228, China
- Hainan International One Health Institute, Hainan University, Haikou 570228, China
| | - Qiuhui Wang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (L.Y.); (Y.Y.); (Q.W.); (P.Z.)
- Hainan One Health Key Laboratory, Hainan University, Haikou 570228, China
- Hainan International One Health Institute, Hainan University, Haikou 570228, China
| | - Peizhen Zhao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (L.Y.); (Y.Y.); (Q.W.); (P.Z.)
- Hainan One Health Key Laboratory, Hainan University, Haikou 570228, China
- Hainan International One Health Institute, Hainan University, Haikou 570228, China
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (L.Y.); (Y.Y.); (Q.W.); (P.Z.)
- Hainan One Health Key Laboratory, Hainan University, Haikou 570228, China
- Hainan International One Health Institute, Hainan University, Haikou 570228, China
| | - Chenghong Liao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (L.Y.); (Y.Y.); (Q.W.); (P.Z.)
- Hainan One Health Key Laboratory, Hainan University, Haikou 570228, China
- Hainan International One Health Institute, Hainan University, Haikou 570228, China
| |
Collapse
|
5
|
Croce AC, Garbelli A, Moyano A, Soldano S, Tejeda-Guzmán C, Missirlis F, Scolari F. Developmental and Nutritional Dynamics of Malpighian Tubule Autofluorescence in the Asian Tiger Mosquito Aedes albopictus. Int J Mol Sci 2023; 25:245. [PMID: 38203417 PMCID: PMC10778832 DOI: 10.3390/ijms25010245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Malpighian tubules (MTs) are arthropod excretory organs crucial for the osmoregulation, detoxification and excretion of xenobiotics and metabolic wastes, which include tryptophan degradation products along the kynurenine (KYN) pathway. Specifically, the toxic intermediate 3-hydroxy kynurenine (3-HK) is metabolized through transamination to xanthurenic acid or in the synthesis of ommochrome pigments. Early investigations in Drosophila larval fat bodies revealed an intracellular autofluorescence (AF) that depended on tryptophan administration. Subsequent observations documented AF changes in the MTs of Drosophila eye-color mutants genetically affecting the conversion of tryptophan to KYN or 3-HK and the intracellular availability of zinc ions. In the present study, the AF properties of the MTs in the Asian tiger mosquito, Aedes albopictus, were characterized in different stages of the insect's life cycle, tryptophan-administered larvae and blood-fed adult females. Confocal imaging and microspectroscopy showed AF changes in the distribution of intracellular, brilliant granules and in the emission spectral shape and amplitude between the proximal and distal segments of MTs across the different samples. The findings suggest AF can serve as a promising marker for investigating the functional status of MTs in response to metabolic alterations, contributing to the use of MTs as a potential research model in biomedicine.
Collapse
Affiliation(s)
- Anna Cleta Croce
- Institute of Molecular Genetics IGM CNR “Luigi Luca Cavalli-Sforza”, Via Abbiategrasso 207, 27100 Pavia, Italy; (A.G.); (A.M.); (S.S.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Anna Garbelli
- Institute of Molecular Genetics IGM CNR “Luigi Luca Cavalli-Sforza”, Via Abbiategrasso 207, 27100 Pavia, Italy; (A.G.); (A.M.); (S.S.)
| | - Andrea Moyano
- Institute of Molecular Genetics IGM CNR “Luigi Luca Cavalli-Sforza”, Via Abbiategrasso 207, 27100 Pavia, Italy; (A.G.); (A.M.); (S.S.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Sara Soldano
- Institute of Molecular Genetics IGM CNR “Luigi Luca Cavalli-Sforza”, Via Abbiategrasso 207, 27100 Pavia, Italy; (A.G.); (A.M.); (S.S.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Carlos Tejeda-Guzmán
- Department of Physiology, Biophysics and Neuroscience, Cinvestav, Mexico City 07360, Mexico; (C.T.-G.); (F.M.)
| | - Fanis Missirlis
- Department of Physiology, Biophysics and Neuroscience, Cinvestav, Mexico City 07360, Mexico; (C.T.-G.); (F.M.)
| | - Francesca Scolari
- Institute of Molecular Genetics IGM CNR “Luigi Luca Cavalli-Sforza”, Via Abbiategrasso 207, 27100 Pavia, Italy; (A.G.); (A.M.); (S.S.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
6
|
Zheng R, Wang Q, Wu R, Paradkar PN, Hoffmann AA, Wang GH. Holobiont perspectives on tripartite interactions among microbiota, mosquitoes, and pathogens. THE ISME JOURNAL 2023; 17:1143-1152. [PMID: 37231184 PMCID: PMC10356850 DOI: 10.1038/s41396-023-01436-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/18/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Mosquito-borne diseases like dengue and malaria cause a significant global health burden. Unfortunately, current insecticides and environmental control strategies aimed at the vectors of these diseases are only moderately effective in decreasing disease burden. Understanding and manipulating the interaction between the mosquito holobiont (i.e., mosquitoes and their resident microbiota) and the pathogens transmitted by these mosquitoes to humans and animals could help in developing new disease control strategies. Different microorganisms found in the mosquito's microbiota affect traits related to mosquito survival, development, and reproduction. Here, we review the physiological effects of essential microbes on their mosquito hosts; the interactions between the mosquito holobiont and mosquito-borne pathogen (MBP) infections, including microbiota-induced host immune activation and Wolbachia-mediated pathogen blocking (PB); and the effects of environmental factors and host regulation on the composition of the microbiota. Finally, we briefly overview future directions in holobiont studies, and how these may lead to new effective control strategies against mosquitoes and their transmitted diseases.
Collapse
Affiliation(s)
- Ronger Zheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiqi Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Runbiao Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Prasad N Paradkar
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Guan-Hong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Prado Sepulveda CC, Alencar RM, Santana RA, Belém de Souza I, D'Elia GMA, Godoy RSM, Duarte AP, Lopes SCP, de Lacerda MVG, Monteiro WM, Nacif-Pimenta R, Secundino NFC, Koerich LB, Pimenta PFP. Evolution and assembly of Anopheles aquasalis's immune genes: primary malaria vector of coastal Central and South America and the Caribbean Islands. Open Biol 2023; 13:230061. [PMID: 37433331 PMCID: PMC10335856 DOI: 10.1098/rsob.230061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/20/2023] [Indexed: 07/13/2023] Open
Abstract
Anophelines are vectors of malaria, the deadliest disease worldwide transmitted by mosquitoes. The availability of genomic data from various Anopheles species allowed evolutionary comparisons of the immune response genes in search of alternative vector control of the malarial parasites. Now, with the Anopheles aquasalis genome, it was possible to obtain more information about the evolution of the immune response genes. Anopheles aquasalis has 278 immune genes in 24 families or groups. Comparatively, the American anophelines possess fewer genes than Anopheles gambiae s. s., the most dangerous African vector. The most remarkable differences were found in the pathogen recognition and modulation families like FREPs, CLIP and C-type lectins. Even so, genes related to the modulation of the expression of effectors in response to pathogens and gene families that control the production of reactive oxygen species were more conserved. Overall, the results show a variable pattern of evolution in the immune response genes in the anopheline species. Environmental factors, such as exposure to different pathogens and differences in the microbiota composition, could shape the expression of this group of genes. The results presented here will contribute to a better knowledge of the Neotropical vector and open opportunities for malaria control in the endemic-affected areas of the New World.
Collapse
Affiliation(s)
- Cesar Camilo Prado Sepulveda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Rodrigo Maciel Alencar
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Rosa Amélia Santana
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Igor Belém de Souza
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Gigliola Mayra Ayres D'Elia
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Raquel Soares Maia Godoy
- Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, FIOCRUZ – Belo Horizonte. Minas Gerais, Brazil
| | - Ana Paula Duarte
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Stefanie Costa Pinto Lopes
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Instituto de Pesquisas Leônidas e Maria Deane, Fundação Oswaldo Cruz, Manaus, Amazonas, Brazil
| | - Marcus Vinicius Guimarães de Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Instituto de Pesquisas Leônidas e Maria Deane, Fundação Oswaldo Cruz, Manaus, Amazonas, Brazil
- University of Texas Medical Branch, Galveston, TX, USA
| | - Wuelton Marcelo Monteiro
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Rafael Nacif-Pimenta
- Departament of Epidemiology of Microbial Disease, Yale School of Public Health, New Haven, CT, USA
| | - Nágila Francinete Costa Secundino
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, FIOCRUZ – Belo Horizonte. Minas Gerais, Brazil
| | - Leonardo Barbosa Koerich
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paulo Filemon Paolucci Pimenta
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, FIOCRUZ – Belo Horizonte. Minas Gerais, Brazil
| |
Collapse
|
8
|
Kausar S, Liu R, Gul I, Abbas MN, Cui H. Transcriptome Sequencing Highlights the Regulatory Role of DNA Methylation in Immune-Related Genes' Expression of Chinese Oak Silkworm, Antheraea pernyi. INSECTS 2022; 13:296. [PMID: 35323594 PMCID: PMC8951095 DOI: 10.3390/insects13030296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022]
Abstract
Antheraea pernyi is an important lepidopteran used as a model insect species to investigate immune responses, development, and metabolism modulation. DNA methylation has recently been found to control various physiological processes throughout the life of animals; however, DNA methylation and its effect on the physiology of insects have been poorly investigated so far. In the present study, to better understand DNA methylation and its biological role in the immune system, we analyzed transcriptome profiles of A. pernyi pupae following DNA methylation inhibitor injection and Gram-positive bacteria stimulation. We then compared the profiles with a control group. We identified a total of 55,131 unigenes from the RNA sequence data. A comparison of unigene expression profiles showed that a total of 680 were up-regulated and 631 unigenes were down-regulated in the DNA-methylation-inhibition-bacteria-infected group compared to the control group (only bacteria-injected pupae), respectively. Here, we focused on the immune-related differentially expressed genes (DEGs) and screened 10 genes that contribute to immune responses with an up-regulation trend, suggesting that microbial pathogens evade host immunity by increasing DNA methylation of the host genome. Furthermore, several other unigenes related to other pathways were also changed, as shown in the KEGG analysis. Taken together, our data revealed that DNA methylation seems to play a crucial biological role in the regulation of gene expression in insects, and that infection may enhance the host genome DNA methylation by a yet-unknown mechanism.
Collapse
Affiliation(s)
- Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Ruochen Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Isma Gul
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| |
Collapse
|
9
|
Hong PP, Zhu XX, Yuan WJ, Niu GJ, Wang JX. Nitric Oxide Synthase Regulates Gut Microbiota Homeostasis by ERK-NF-κB Pathway in Shrimp. Front Immunol 2021; 12:778098. [PMID: 34925352 PMCID: PMC8678275 DOI: 10.3389/fimmu.2021.778098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/12/2021] [Indexed: 01/09/2023] Open
Abstract
The gut microbiota is a complex group of microorganisms that is not only closely related to intestinal immunity but also affects the whole immune system of the body. Antimicrobial peptides and reactive oxygen species participate in the regulation of gut microbiota homeostasis in invertebrates. However, it is unclear whether nitric oxide, as a key mediator of immunity that plays important roles in antipathogen activity and immune regulation, participates in the regulation of gut microbiota homeostasis. In this study, we identified a nitric oxide synthase responsible for NO production in the shrimp Marsupenaeus japonicus. The expression of Nos and the NO concentration in the gastrointestinal tract were increased significantly in shrimp orally infected with Vibrio anguillarum. After RNA interference of Nos or treatment with an inhibitor of NOS, L-NMMA, NO production decreased and the gut bacterial load increased significantly in shrimp. Treatment with the NO donor, sodium nitroprusside, increased the NO level and reduced the bacterial load significantly in the shrimp gastrointestinal tract. Mechanistically, V. anguillarum infection increased NO level via upregulation of NOS and induced phosphorylation of ERK. The activated ERK phosphorylated the NF-κB-like transcription factor, dorsal, and caused nuclear translocation of dorsal to increase expression of antimicrobial peptides (AMPs) responsible for bacterial clearance. In summary, as a signaling molecule, NOS-produced NO regulates intestinal microbiota homeostasis by promoting AMP expression against infected pathogens via the ERK-dorsal pathway in shrimp.
Collapse
Affiliation(s)
- Pan-Pan Hong
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiao-Xu Zhu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Wen-Jie Yuan
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Guo-Juan Niu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
10
|
Gabrieli P, Caccia S, Varotto-Boccazzi I, Arnoldi I, Barbieri G, Comandatore F, Epis S. Mosquito Trilogy: Microbiota, Immunity and Pathogens, and Their Implications for the Control of Disease Transmission. Front Microbiol 2021; 12:630438. [PMID: 33889137 PMCID: PMC8056039 DOI: 10.3389/fmicb.2021.630438] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/02/2021] [Indexed: 11/16/2022] Open
Abstract
In mosquitoes, the interaction between the gut microbiota, the immune system, and the pathogens that these insects transmit to humans and animals is regarded as a key component toward the development of control strategies, aimed at reducing the burden of severe diseases, such as malaria and dengue fever. Indeed, different microorganisms from the mosquito microbiota have been investigated for their ability to affect important traits of the biology of the host insect, related with its survival, development and reproduction. Furthermore, some microorganisms have been shown to modulate the immune response of mosquito females, significantly shaping their vector competence. Here, we will review current knowledge in this field, focusing on i) the complex interaction between the intestinal microbiota and mosquito females defenses, both in the gut and at humoral level; ii) how knowledge on these issues contributes to the development of novel and targeted strategies for the control of mosquito-borne diseases such as the use of paratransgenesis or taking advantage of the relationship between Wolbachia and mosquito hosts. We conclude by providing a brief overview of available knowledge on microbiota-immune system interplay in major insect vectors.
Collapse
Affiliation(s)
- Paolo Gabrieli
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| | - Silvia Caccia
- Department of Agricultural Sciences, University of Naples "Federico II", Naples, Italy.,Task Force on Microbiome Studies, University of Naples "Federico II", Naples, Italy
| | - Ilaria Varotto-Boccazzi
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| | - Irene Arnoldi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Giulia Barbieri
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Francesco Comandatore
- "L. Sacco" Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| | - Sara Epis
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| |
Collapse
|
11
|
Kakani P, Gupta L, Kumar S. Heme-Peroxidase 2, a Peroxinectin-Like Gene, Regulates Bacterial Homeostasis in Anopheles stephensi Midgut. Front Physiol 2020; 11:572340. [PMID: 33013485 PMCID: PMC7506126 DOI: 10.3389/fphys.2020.572340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/17/2020] [Indexed: 12/31/2022] Open
Abstract
The dynamic nature of mosquito gut microbiome is associated with different stages of development and feeding behaviors. Therefore, mosquito gut harbors a wide range of endogenous microbes that promote numerous life processes such as, nutrition, reproduction and immunity. In addition, gut microbiota also play an important role in the regulation of Plasmodium (malaria parasite) development. Thus, understanding the mechanism of microbial homeostasis in mosquito gut might be one of the strategies to manipulate malaria parasite development. In the present study, we characterized a 692 amino acids long secreted midgut heme-peroxidase 2 (AsHPX2) in Anopheles stephensi, the major Indian malaria vector. The presence of putative integrin binding motifs, LDV (Leu-Asp-Val), indicated its peroxinectin-like nature. Our phylogenetic analysis revealed that AsHPX2 is a Culicinae lineage-specific gene. RNA interference (RNAi)-mediated silencing of AsHPX2 gene significantly enhanced the growth of midgut bacteria in sugar-fed mosquitoes against sham-treated controls. Interestingly, blood-feeding drastically reduced AsHPX2 gene expression and enhanced the growth of midgut bacteria. These results revealed a negative correlation between the expression of AsHPX2 gene and gut bacterial growth. We proposed that AsHPX2, being a mosquito-specific gene, might serve as a "potent target" to manipulate midgut microbiota and vector competence.
Collapse
Affiliation(s)
- Parik Kakani
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, India.,Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Lalita Gupta
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, India.,Department of Zoology, Chaudhary Bansi Lal University, Bhiwani, India
| | - Sanjeev Kumar
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, India.,Department of Biotechnology, Chaudhary Bansi Lal University, Bhiwani, India
| |
Collapse
|
12
|
Analysis of blood-induced Anopheles gambiae midgut proteins and sexual stage Plasmodium falciparum interaction reveals mosquito genes important for malaria transmission. Sci Rep 2020; 10:14316. [PMID: 32868841 PMCID: PMC7459308 DOI: 10.1038/s41598-020-71186-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Plasmodium invasion of mosquito midguts is a mandatory step for malaria transmission. The roles of mosquito midgut proteins and parasite interaction during malaria transmission are not clear. This study aims to identify mosquito midgut proteins that interact with and affect P. falciparum invasion. Based on gene expression profiles and protein sequences, 76 mosquito secretory proteins that are highly expressed in midguts and up-regulated by blood meals were chosen for analysis. About 61 candidate genes were successfully cloned from Anopheles gambiae and expressed in insect cells. ELISA analysis showed that 25 of the insect cell-expressed recombinant mosquito proteins interacted with the P. falciparum-infected cell lysates. Indirect immunofluorescence assays confirmed 17 of them interacted with sexual stage parasites significantly stronger than asexual stage parasites. Knockdown assays found that seven candidate genes significantly changed mosquitoes' susceptibility to P. falciparum. Four of them (AGAP006268, AGAP002848, AGAP006972, and AGAP002851) played a protective function against parasite invasion, and the other three (AGAP008138, FREP1, and HPX15) facilitated P. falciparum transmission to mosquitoes. Notably, AGAP008138 is a unique gene that only exists in Anopheline mosquitoes. These gene products are ideal targets to block malaria transmission.
Collapse
|
13
|
Abbas MN, Kausar S, Zhao E, Cui H. Suppressors of cytokine signaling proteins as modulators of development and innate immunity of insects. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103561. [PMID: 31785267 DOI: 10.1016/j.dci.2019.103561] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
The suppressors of cytokine signaling (SOCS) are a family of intracellular molecules. Many members of this family have been reported to be involved in various physiological processes in invertebrates and vertebrates (e.g., developmental process and immune response). The functions of SOCS molecules seem to remain conserved in animals throughout evolutionary history. The members of the SOCS family play vital roles in the physiological processes by regulating the extent and duration of signaling activities of both Janus Kinase-Signal Transducer and Activators of Transcription (JAK-STAT) and epidermal growth factor receptor (EGFR) pathways in vivo. So far, in different insect species, a variable number of SOCS and SOCS box domain-containing proteins have been identified. These proteins are categorized into different types based on their sequence diversification, leading to an alteration in structure and regulatory function. The biological roles of the many SOCS proteins have been established as a negative or positive regulator of the signaling pathways, as mentioned earlier. Here, we discussed the existing knowledge on the SOCS proteins and their involvement in different biological functions in insects, and future perspectives to further elucidate their physiological roles.
Collapse
Affiliation(s)
- Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China; Key Laboratory of Sericulture Biology and Genetic Breeding, Ministry of Agricultural and Rural Affairs, Southwest University, Chongqing, 400715, China; Medical Research Institute, Southwest University, Chongqing, 400715, China.
| | - Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China; Key Laboratory of Sericulture Biology and Genetic Breeding, Ministry of Agricultural and Rural Affairs, Southwest University, Chongqing, 400715, China; Medical Research Institute, Southwest University, Chongqing, 400715, China.
| | - Erhu Zhao
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China; Key Laboratory of Sericulture Biology and Genetic Breeding, Ministry of Agricultural and Rural Affairs, Southwest University, Chongqing, 400715, China; Medical Research Institute, Southwest University, Chongqing, 400715, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China; Key Laboratory of Sericulture Biology and Genetic Breeding, Ministry of Agricultural and Rural Affairs, Southwest University, Chongqing, 400715, China; Medical Research Institute, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
14
|
Aedes aegypti HPX8C modulates immune responses against viral infection. PLoS Negl Trop Dis 2019; 13:e0007287. [PMID: 30986216 PMCID: PMC6464178 DOI: 10.1371/journal.pntd.0007287] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 03/08/2019] [Indexed: 12/26/2022] Open
Abstract
Mosquitoes act as vectors of numerous pathogens that cause human diseases. Dengue virus (DENV) transmitted by mosquito, Aedes aegypti, is responsible for dengue fever epidemics worldwide with a serious impact on human health. Currently, disease control mainly relies on vector targeted intervention strategies. Therefore, it is imperative to understand the molecular mechanisms underlying the innate immune response of mosquitoes against pathogens. In the present study, the expression profiles of immunity-related genes in the midgut responding to DENV infection by feeding were analyzed by transcriptome and quantitative real-time PCR. The level of Antimicrobial peptides (AMPs) increased seven days post-infection (d.p.i.), which could be induced by the Toll immune pathway. The expression of reactive oxygen species (ROS) genes, including antioxidant genes, such as HPX7, HPX8A, HPX8B, HPX8C were induced at one d.p.i. and peaked again at ten d.p.i. in the midgut. Interestingly, down-regulation of the antioxidant gene HPX8C by RNA interference led to reduction in the virus titer in the mosquito, probably due to the elevated levels of ROS. Application of a ROS inhibitor and scavenger molecules further established the role of oxygen free radicals in the modulation of the immune response to DENV infection. Overall, our comparative transcriptome analyses provide valuable information about the regulation of immunity related genes in the transmission vector in response to DENV infection. It further allows us to identify novel molecular mechanisms underlying the host-virus interaction, which might aid in the development of novel strategies to control mosquito-borne diseases. HPX8C is a heme-containing peroxidase, which can move reactive oxygen species (ROS) damage to the organism by reducing H2O2 to H2O. Previously, the peroxidase gene has been shown to modulate midgut immunity and regulate anti-malarial response in mosquitoes. In this study, the classical immune signaling pathways, Toll and IMD genes might be late responses against the viruses. HPX8C was demonstrated here to play a role in antiviral immunity against DENV infection in Ae. Aegypti mosquitoes. HPX8C expression was induced by DENV infection and continued to increase with an elevated virus titer. In HPX8C-depleted mosquitoes, the ROS level was found to be increased with a corresponding decrease in the DENV and ZIKV virus titer. Therefore, it was speculated that HPX8C mediated immune responses against the DENV in the mosquito in the late stage of viral infection, which could be controlled by Toll pathway.
Collapse
|
15
|
Kakani P, Kajla M, Choudhury TP, Gupta L, Kumar S. Anopheles stephensi Dual Oxidase Silencing Activates the Thioester-Containing Protein 1 Pathway to Suppress Plasmodium Development. J Innate Immun 2019; 11:496-505. [PMID: 30928970 DOI: 10.1159/000497417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/25/2019] [Indexed: 12/29/2022] Open
Abstract
We characterized the dual oxidase (Duox) gene in the major Indian malaria vector Anopheles stephensi, which regulates the generation of reactive oxygen species. The AsDuox gene encodes for a 1,475-amino-acid transmembrane protein that contains an N-terminal noncytoplasmic heme peroxidase domain, a calcium-binding domain, seven transmembrane domains, and a C-terminal cytoplasmic NADPH domain. Phylogenetic analyses revealed that A. stephensi Duox protein is highly conserved and shares 97-100% amino acid identity with other anopheline Duoxes. AsDuox is expressed in all the developmental stages of A. stephensi and the pupal stages revealed relatively higher expressions. The Duox gene is induced in Plasmodium-infected mosquito midguts, and RNA interference-mediated silencing of this gene suppressed parasite development through activation of the thioester-containing protein 1 pathway. We propose that this highly conserved anopheline Duox, being a Plasmodium agonist, is an excellent target to control malaria parasite development inside the insect host.
Collapse
Affiliation(s)
- Parik Kakani
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science, Vidya Vihar Campus, Pilani, India
| | - Mithilesh Kajla
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science, Vidya Vihar Campus, Pilani, India.,National Institute of Malaria Research, New Delhi, India
| | - Tania Pal Choudhury
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science, Vidya Vihar Campus, Pilani, India
| | - Lalita Gupta
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science, Vidya Vihar Campus, Pilani, India.,Department of Zoology, Chaudhary Bansi Lal University, Bhiwani, India
| | - Sanjeev Kumar
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science, Vidya Vihar Campus, Pilani, India, .,Department of Biotechnology, Chaudhary Bansi Lal University, Bhiwani, India,
| |
Collapse
|
16
|
Choudhury TP, Gupta L, Kumar S. Identification, characterization and expression analysis of Anopheles stephensi double peroxidase. Acta Trop 2019; 190:210-219. [PMID: 30352205 DOI: 10.1016/j.actatropica.2018.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/13/2018] [Accepted: 10/14/2018] [Indexed: 11/28/2022]
Abstract
Peroxidases catalyze the reduction of peroxides and that, in turn, oxidize various substrates. They have been widely reported to play an important role in mosquito innate immunity against various pathogens. Here, we have characterized double heme peroxidase (AsDBLOX) gene from the Indian malaria vector Anopheles stephensi. It is a true ortholog of An. gambiae DBLOX. This 4209 bp AsDBLOX gene encodes for a protein of 1402 amino acids that has two duplicated peroxidase domains, domain I (from amino acid 61 to 527) and domain II (from amino acid 714 to 1252). The first domain has only substrate binding sites and lacks all other motifs of a functional heme peroxidase (e.g. heme binding site, calcium binding site and homodimer interface). Instead, it has two integrin binding motifs-LDV (Leu-Asp-Val) and RGD (Arg-Gly-Asp). The second peroxidase domain, however, has all the features of a complete heme peroxidase along with an integrin binding motif LDI (Leu-Asp-Ile). Thus, AsDBLOX gene is a unique type of peroxinectin as these groups of proteins are characterized by integrin binding motifs along with a heme peroxidase domain. We also observed that the AsDBLOX gene is expressed in all the life cycle stages of mosquito and is highly induced in the pupal stage of development which indicates its possible role in development.
Collapse
Affiliation(s)
- Tania Pal Choudhury
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India
| | - Lalita Gupta
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India; Department of Zoology, Ch. Bansi Lal University, Bhiwani, Haryana, India
| | - Sanjeev Kumar
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India; Department of Biotechnology, Ch. Bansi Lal University, Bhiwani, Haryana, India.
| |
Collapse
|
17
|
Dhawan R, Gupta K, Kajla M, Kakani P, Choudhury TP, Kumar S, Kumar V, Gupta L. Apolipophorin-III Acts as a Positive Regulator of Plasmodium Development in Anopheles stephensi. Front Physiol 2017; 8:185. [PMID: 28439240 PMCID: PMC5383653 DOI: 10.3389/fphys.2017.00185] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/10/2017] [Indexed: 01/30/2023] Open
Abstract
Apolipophorin III (ApoLp-III) is a well-known hemolymph protein having a functional role in lipid transport and immune responses of insects. Here we report the molecular and functional characterization of Anopheles stephensi Apolipophorin-III (AsApoLp-III) gene. This gene consists of 679 nucleotides arranged into two exons of 45 and 540 bp that give an ORF encoding 194 amino acid residues. Excluding a putative signal peptide of the first 19 amino acid residues, the 175-residues in mature AsApoLp-III protein has a calculated molecular mass of 22 kDa. Phylogenetic analysis revealed the divergence of mosquitoes (Order Diptera) ApoLp-III from their counterparts in moths (Order: Lepidoptera). Also, it revealed a close relatedness of AsApoLp-III to ApoLp-III of An. gambiae. AsApoLp-III mRNA expression is strongly induced in Plasmodium berghei infected mosquito midguts suggesting its crucial role in parasite development. AsApoLp-III silencing decreased P. berghei oocysts numbers by 7.7 fold against controls. These effects might be due to the interruption of AsApoLp-III mediated lipid delivery to the developing oocysts. In addition, nitric oxide synthase (NOS), an antiplasmodial gene, is also highly induced in AsApoLp-III silenced midguts suggesting that this gene acts like an agonist and protects Plasmodium against the mosquito immunity.
Collapse
Affiliation(s)
- Rini Dhawan
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and SciencePilani, India
| | - Kuldeep Gupta
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and SciencePilani, India
| | - Mithilesh Kajla
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and SciencePilani, India
| | - Parik Kakani
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and SciencePilani, India
| | - Tania P Choudhury
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and SciencePilani, India
| | - Sanjeev Kumar
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and SciencePilani, India.,Department of Biotechnology, Chaudhary Bansi Lal UniversityBhiwani, India
| | - Vikas Kumar
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and SciencePilani, India
| | - Lalita Gupta
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and SciencePilani, India.,Department of Zoology, Chaudhary Bansi Lal UniversityBhiwani, India
| |
Collapse
|
18
|
Kajla M, Kakani P, Choudhury TP, Kumar V, Gupta K, Dhawan R, Gupta L, Kumar S. Anopheles stephensi Heme Peroxidase HPX15 Suppresses Midgut Immunity to Support Plasmodium Development. Front Immunol 2017; 8:249. [PMID: 28352267 PMCID: PMC5348522 DOI: 10.3389/fimmu.2017.00249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/20/2017] [Indexed: 01/17/2023] Open
Abstract
The heme peroxidase HPX15 is an evolutionary conserved anopheline lineage-specific gene. Previously, we found that this gene is present in the genome of 19 worldwide distributed different species of Anopheles mosquito and its orthologs are absent in other mosquitoes, insects, or human. In addition, 65–99% amino acid identity among these 19 orthologs permitted us to hypothesize that the functional aspects of this gene might be also conserved in different anophelines. In this study, we found that Anopheles stephensi AsHPX15 gene is mainly expressed in the midgut and highly induced after uninfected or Plasmodium berghei-infected blood feeding. RNA interference-mediated silencing of midgut AsHPX15 gene drastically reduced the number of developing P. berghei oocysts. An antiplasmodial gene nitric oxide synthase was induced 13-fold in silenced midguts when compared to the unsilenced controls. Interestingly, the induction of antiplasmodial immunity in AsHPX15-silenced midguts is in absolute agreement with Anopheles gambiae. In A. gambiae, AgHPX15 catalyzes the formation of a dityrosine network at luminal side of the midgut that suppresses the activation of mosquito immunity against the bolus bacteria. Thus, a low-immunity zone created by this mechanism indirectly supports Plasmodium development inside the midgut lumen. These indistinguishable functional behaviors and conserved homology indicates that HPX15 might be a potent target to manipulate the antiplasmodial immunity of the anopheline midgut, and it will open new frontiers in the field of malaria control.
Collapse
Affiliation(s)
- Mithilesh Kajla
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science (BITS) , Pilani , India
| | - Parik Kakani
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science (BITS) , Pilani , India
| | - Tania Pal Choudhury
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science (BITS) , Pilani , India
| | - Vikas Kumar
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science (BITS) , Pilani , India
| | - Kuldeep Gupta
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science (BITS) , Pilani , India
| | - Rini Dhawan
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science (BITS) , Pilani , India
| | - Lalita Gupta
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, India; Department of Zoology, Ch. Bansi Lal University, Bhiwani, India
| | - Sanjeev Kumar
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, India; Department of Biotechnology, Ch. Bansi Lal University, Bhiwani, India
| |
Collapse
|