1
|
Delgado-Fernández E, Nicola L, Covarrubias SA, Girometta CE, Valdez-Tenezaca A. Fungal Diversity in an Undisturbed Andean Páramo Soil in Quimsacocha (Ecuador). J Fungi (Basel) 2024; 10:623. [PMID: 39330383 PMCID: PMC11432993 DOI: 10.3390/jof10090623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/31/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024] Open
Abstract
The Andean Páramo is an environment known for its high biodiversity; however, due to its remote location and difficult access, it is still relatively poorly studied. The aim of this work was to explore the fungal biodiversity of Ecuadorian Páramo soils in the undisturbed natural reserve of Quimsacocha through ITS metabarconding with an MiSeq platform. This analysis revealed the presence of 370 fungal Amplicon Sequence Variants (ASVs), mainly composed by Ascomycota, Mortierellomycota and Basidiomycota. The biodiversity had a great variability among the 19 samples, but the soil humidity proved to be a significant driver of diversity in the relatively dry environment of Páramo. Some of most abundant fungal genera have important relationships with plant roots. This work represents the first glimpse into the complex biodiversity of soil fungi in this understudied area, and further studies will be needed to better understand the fungal biodiversity in this region, together with the development of necessary measures of environmental protection.
Collapse
Affiliation(s)
- Ernesto Delgado-Fernández
- Laboratorios Ciencias de la Vida, Grupo de Investigación INBIAM, Departamento de Ingeniería Ambiental, Universidad Politécnica Salesiana, Calle Vieja 12-30 y Elia Liut, Cuenca 010102, Ecuador;
| | - Lidia Nicola
- Mycology Laboratory, Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, 27100 Pavia, Italy;
| | - Sergio A. Covarrubias
- Academic Unit of Chemical Sciences, Campus Siglo XXI, University of Zacatecas, Carretera Zacatecas-Guadalajara km 6, La Escondida, Zacatecas 98160, Mexico;
| | - Carolina Elena Girometta
- Mycology Laboratory, Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, 27100 Pavia, Italy;
| | - Adrián Valdez-Tenezaca
- Laboratorios Ciencias de la Vida, Grupo de Investigación INBIAM, Departamento de Ingeniería Ambiental, Universidad Politécnica Salesiana, Calle Vieja 12-30 y Elia Liut, Cuenca 010102, Ecuador;
- Laboratorio de Patología Frutal, Departamento de Producción Agrícola, Facultad de Ciencias Agrarias, Universidad de Talca, Campus Talca, Av. Lircay s/n, Talca 360000, Chile
| |
Collapse
|
2
|
Xing H, Chen W, Liu Y, Cahill JF. Local Community Assembly Mechanisms and the Size of Species Pool Jointly Explain the Beta Diversity of Soil Fungi. MICROBIAL ECOLOGY 2024; 87:58. [PMID: 38602532 PMCID: PMC11008070 DOI: 10.1007/s00248-024-02374-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Fungi play vital regulatory roles in terrestrial ecosystems. Local community assembly mechanisms, including deterministic and stochastic processes, as well as the size of regional species pools (gamma diversity), typically influence overall soil microbial community beta diversity patterns. However, there is limited evidence supporting their direct and indirect effects on beta diversity of different soil fungal functional groups in forest ecosystems. To address this gap, we collected 1606 soil samples from a 25-ha subtropical forest plot in southern China. Our goal was to determine the direct effects and indirect effects of regional species pools on the beta diversity of soil fungi, specifically arbuscular mycorrhizal (AM), ectomycorrhizal (EcM), plant-pathogenic, and saprotrophic fungi. We quantified the effects of soil properties, mycorrhizal tree abundances, and topographical factors on soil fungal diversity. The beta diversity of plant-pathogenic fungi was predominantly influenced by the size of the species pool. In contrast, the beta diversity of EcM fungi was primarily driven indirectly through community assembly processes. Neither of them had significant effects on the beta diversity of AM and saprotrophic fungi. Our results highlight that the direct and indirect effects of species pools on the beta diversity of soil functional groups of fungi can significantly differ even within a relatively small area. They also demonstrate the independent and combined effects of various factors in regulating the diversities of soil functional groups of fungi. Consequently, it is crucial to study the fungal community not only as a whole but also by considering different functional groups within the community.
Collapse
Affiliation(s)
- Hua Xing
- ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Minhuang District, 200241, Shanghai, China
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Wuwei Chen
- Qingyuan Bureau Natural Resources and Planning, Qingyuan, 323800, China
| | - Yu Liu
- ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Minhuang District, 200241, Shanghai, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200082, China.
| | - James F Cahill
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| |
Collapse
|
3
|
Hiiesalu I, Schweichhart J, Angel R, Davison J, Doležal J, Kopecký M, Macek M, Řehakova K. Plant-symbiotic fungal diversity tracks variation in vegetation and the abiotic environment along an extended elevational gradient in the Himalayas. FEMS Microbiol Ecol 2023; 99:fiad092. [PMID: 37562924 DOI: 10.1093/femsec/fiad092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/30/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023] Open
Abstract
Arbuscular mycorrhizal (AM) fungi can benefit plants under environmental stress, and influence plant adaptation to warmer climates. However, very little is known about the ecology of these fungi in alpine environments. We sampled plant roots along a large fraction (1941-6150 m asl (above sea level)) of the longest terrestrial elevational gradient on Earth and used DNA metabarcoding to identify AM fungi. We hypothesized that AM fungal alpha and beta diversity decreases with increasing elevation, and that different vegetation types comprise dissimilar communities, with cultured (putatively ruderal) taxa increasingly represented at high elevations. We found that the alpha diversity of AM fungal communities declined linearly with elevation, whereas within-site taxon turnover (beta diversity) was unimodally related to elevation. The composition of AM fungal communities differed between vegetation types and was influenced by elevation, mean annual temperature, and precipitation. In general, Glomeraceae taxa dominated at all elevations and vegetation types; however, higher elevations were associated with increased presence of Acaulosporaceae, Ambisporaceae, and Claroideoglomeraceae. Contrary to our expectation, the proportion of cultured AM fungal taxa in communities decreased with elevation. These results suggest that, in this system, climate-induced shifts in habitat conditions may facilitate more diverse AM fungal communities at higher elevations but could also favour ruderal taxa.
Collapse
Affiliation(s)
- Inga Hiiesalu
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50 409 Tartu, Estonia
| | - Johannes Schweichhart
- Biology Centre of the CAS, Institute of Soil Biology and Biochemistry, Na Sádkách 702/7 , 370 05 České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Roey Angel
- Biology Centre of the CAS, Institute of Soil Biology and Biochemistry, Na Sádkách 702/7 , 370 05 České Budějovice, Czech Republic
| | - John Davison
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50 409 Tartu, Estonia
| | - Jiři Doležal
- Institute of Botany of the CAS, Dukelská 135, 379 01 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Martin Kopecký
- Institute of Botany of the CAS, Zámek 1, 252 43 Průhonice, Czech Republic
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21, Praha 6, Czech Republic
| | - Martin Macek
- Institute of Botany of the CAS, Zámek 1, 252 43 Průhonice, Czech Republic
| | - Klára Řehakova
- Biology Centre of the CAS, Institute of Hydrobiology, Na Sádkách 702/7, 370 05 České Budějovice, Czech Republic
- Institute of Botany of the CAS, Dukelská 135, 379 01 Třeboň, Czech Republic
| |
Collapse
|
4
|
Aranguren R, Voyron S, Ungaro F, Cañón J, Lumini E. Metabarcoding Reveals Impact of Different Land Uses on Fungal Diversity in the South-Eastern Region of Antioquia, Colombia. PLANTS (BASEL, SWITZERLAND) 2023; 12:1126. [PMID: 36903986 PMCID: PMC10005449 DOI: 10.3390/plants12051126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Changes in soil fungal communities caused by land use have not been sufficiently studied in South American Andosols, which are considered key food production areas. Since fungal communities play an important role in soil functionality, this study analysed 26 soil samples of Andosols collected from locations devoted to conservation, agriculture and mining activities in Antioquia, Colombia, to establish differences between fungal communities as indicators of soil biodiversity loss using Illumina MiSeq metabarcoding on nuclear ribosomal ITS2 region. A non-metric multidimensional scaling allowed to explore driver factors of changes in fungal communities, while the significance of these variations was assessed by PERMANOVA. Furthermore, the effect size of land use over relevant taxa was quantified. Our results suggest a good coverage of fungal diversity with a detection of 353,312 high-quality ITS2 sequences. We found strong correlations of Shannon and Fisher indexes with dissimilarities on fungal communities (r = 0.94). These correlations allow grouping soil samples according to land use. Variations in temperature, air humidity and organic matter content lead to changes in abundances of relevant orders (Wallemiales and Trichosporonales). The study highlights specific sensitivities of fungal biodiversity features in tropical Andosols, which may serve as a basis for robust assessments of soil quality in the region.
Collapse
Affiliation(s)
- Raul Aranguren
- GAIA Research Group, Universidad de Antioquia, Medellín 050010, Colombia
| | - Samuele Voyron
- Department of Life Sciences and Systems Biology, University of Turin, 10124 Turin, Italy
- Institute for Sustainable Plant Protection (IPSP), National Research Council (CNR), 10125 Turin, Italy
| | - Fabrizio Ungaro
- Institute for Bio-Economy (IBE), National Research Council (CNR), 50018 Florence, Italy
| | - Julio Cañón
- GAIA Research Group, Universidad de Antioquia, Medellín 050010, Colombia
| | - Erica Lumini
- Institute for Sustainable Plant Protection (IPSP), National Research Council (CNR), 10125 Turin, Italy
| |
Collapse
|
5
|
Current Insight into Traditional and Modern Methods in Fungal Diversity Estimates. J Fungi (Basel) 2022; 8:jof8030226. [PMID: 35330228 PMCID: PMC8955040 DOI: 10.3390/jof8030226] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/19/2022] [Accepted: 02/20/2022] [Indexed: 12/04/2022] Open
Abstract
Fungi are an important and diverse component in various ecosystems. The methods to identify different fungi are an important step in any mycological study. Classical methods of fungal identification, which rely mainly on morphological characteristics and modern use of DNA based molecular techniques, have proven to be very helpful to explore their taxonomic identity. In the present compilation, we provide detailed information on estimates of fungi provided by different mycologistsover time. Along with this, a comprehensive analysis of the importance of classical and molecular methods is also presented. In orderto understand the utility of genus and species specific markers in fungal identification, a polyphasic approach to investigate various fungi is also presented in this paper. An account of the study of various fungi based on culture-based and cultureindependent methods is also provided here to understand the development and significance of both approaches. The available information on classical and modern methods compiled in this study revealed that the DNA based molecular studies are still scant, and more studies are required to achieve the accurate estimation of fungi present on earth.
Collapse
|
6
|
Johnston-Monje D, Gutiérrez JP, Lopez-Lavalle LAB. Seed-Transmitted Bacteria and Fungi Dominate Juvenile Plant Microbiomes. Front Microbiol 2021; 12:737616. [PMID: 34745040 PMCID: PMC8569520 DOI: 10.3389/fmicb.2021.737616] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
Plant microbiomes play an important role in agricultural productivity, but there is still much to learn about their provenance, diversity, and organization. In order to study the role of vertical transmission in establishing the bacterial and fungal populations of juvenile plants, we used high-throughput sequencing to survey the microbiomes of seeds, spermospheres, rhizospheres, roots, and shoots of the monocot crops maize (B73), rice (Nipponbare), switchgrass (Alamo), Brachiaria decumbens, wheat, sugarcane, barley, and sorghum; the dicot crops tomato (Heinz 1706), coffee (Geisha), common bean (G19833), cassava, soybean, pea, and sunflower; and the model plants Arabidopsis thaliana (Columbia-0) and Brachypodium distachyon (Bd21). Unsterilized seeds were planted in either sterile sand or farm soil inside hermetically sealed jars, and after as much as 60 days of growth, DNA was extracted to allow for amplicon sequence-based profiling of the bacterial and fungal populations that developed. Seeds of most plants were dominated by Proteobacteria and Ascomycetes, with all containing operational taxonomic units (OTUs) belonging to Pantoea and Enterobacter. All spermospheres also contained DNA belonging to Pseudomonas, Bacillus, and Fusarium. Despite having only seeds as a source of inoculum, all plants grown on sterile sand in sealed jars nevertheless developed rhizospheres, endospheres, and phyllospheres dominated by shared Proteobacteria and diverse fungi. Compared to sterile sand-grown seedlings, growth on soil added new microbial diversity to the plant, especially to rhizospheres; however, all 63 seed-transmitted bacterial OTUs were still present, and the most abundant bacteria (Pantoea, Enterobacter, Pseudomonas, Klebsiella, and Massilia) were the same dominant seed-transmitted microbes observed in sterile sand-grown plants. While most plant mycobiome diversity was observed to come from soil, judging by read abundance, the dominant fungi (Fusarium and Alternaria) were also vertically transmitted. Seed-transmitted fungi and bacteria appear to make up the majority of juvenile crop plant microbial populations by abundance, and based on occupancy, there seems to be a pan-angiosperm seed-transmitted core bacterial microbiome. Further study of these seed-transmitted microbes will be important to understand their role in plant growth and health, as well as their fate during the plant life cycle and may lead to innovations for agricultural inoculant development.
Collapse
Affiliation(s)
- David Johnston-Monje
- MaxPlanck Tandem Group in Plant Microbial Ecology, Universidad del Valle, Cali, Colombia.,International Center for Tropical Agriculture, Palmira, Colombia.,Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | | |
Collapse
|
7
|
Legacy Effects Overshadow Tree Diversity Effects on Soil Fungal Communities in Oil Palm-Enrichment Plantations. Microorganisms 2020; 8:microorganisms8101577. [PMID: 33066264 PMCID: PMC7656304 DOI: 10.3390/microorganisms8101577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/28/2020] [Accepted: 10/09/2020] [Indexed: 11/24/2022] Open
Abstract
Financially profitable large-scale cultivation of oil palm monocultures in previously diverse tropical rain forest areas constitutes a major ecological crisis today. Not only is a large proportion of the aboveground diversity lost, but the belowground soil microbiome, which is important for the sustainability of soil function, is massively altered. Intermixing oil palms with native tree species promotes vegetation biodiversity and stand structural complexity in plantations, but the impact on soil fungi remains unknown. Here, we analyzed the diversity and community composition of soil fungi three years after tree diversity enrichment in an oil palm plantation in Sumatra (Indonesia). We tested the effects of tree diversity, stand structural complexity indices, and soil abiotic conditions on the diversity and community composition of soil fungi. We hypothesized that the enrichment experiment alters the taxonomic and functional community composition, promoting soil fungal diversity. Fungal community composition was affected by soil abiotic conditions (pH, N, and P), but not by tree diversity and stand structural complexity indices. These results suggest that intensive land use and abiotic filters are a legacy to fungal communities, overshadowing the structuring effects of the vegetation, at least in the initial years after enrichment plantings.
Collapse
|
8
|
Větrovský T, Morais D, Kohout P, Lepinay C, Algora C, Awokunle Hollá S, Bahnmann BD, Bílohnědá K, Brabcová V, D'Alò F, Human ZR, Jomura M, Kolařík M, Kvasničková J, Lladó S, López-Mondéjar R, Martinović T, Mašínová T, Meszárošová L, Michalčíková L, Michalová T, Mundra S, Navrátilová D, Odriozola I, Piché-Choquette S, Štursová M, Švec K, Tláskal V, Urbanová M, Vlk L, Voříšková J, Žifčáková L, Baldrian P. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci Data 2020; 7:228. [PMID: 32661237 PMCID: PMC7359306 DOI: 10.1038/s41597-020-0567-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/05/2020] [Indexed: 02/08/2023] Open
Abstract
Fungi are key players in vital ecosystem services, spanning carbon cycling, decomposition, symbiotic associations with cultivated and wild plants and pathogenicity. The high importance of fungi in ecosystem processes contrasts with the incompleteness of our understanding of the patterns of fungal biogeography and the environmental factors that drive those patterns. To reduce this gap of knowledge, we collected and validated data published on the composition of soil fungal communities in terrestrial environments including soil and plant-associated habitats and made them publicly accessible through a user interface at https://globalfungi.com . The GlobalFungi database contains over 600 million observations of fungal sequences across > 17 000 samples with geographical locations and additional metadata contained in 178 original studies with millions of unique nucleotide sequences (sequence variants) of the fungal internal transcribed spacers (ITS) 1 and 2 representing fungal species and genera. The study represents the most comprehensive atlas of global fungal distribution, and it is framed in such a way that third-party data addition is possible.
Collapse
Affiliation(s)
- Tomáš Větrovský
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Daniel Morais
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Petr Kohout
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Clémentine Lepinay
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Camelia Algora
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Sandra Awokunle Hollá
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Barbara Doreen Bahnmann
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Květa Bílohnědá
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Vendula Brabcová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Federica D'Alò
- Laboratory of Systematic Botany and Mycology, University of Tuscia, Largo dell'Università snc, Viterbo, 01100, Italy
| | - Zander Rainier Human
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Mayuko Jomura
- Department of Forest Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Miroslav Kolařík
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Jana Kvasničková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Salvador Lladó
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Rubén López-Mondéjar
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Tijana Martinović
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Tereza Mašínová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Lenka Meszárošová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Lenka Michalčíková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Tereza Michalová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Sunil Mundra
- Department of Biology, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
- Section for Genetics and Evolutionary Biology, University of Oslo, Blindernveien 31, 0316, Oslo, Norway
| | - Diana Navrátilová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Iñaki Odriozola
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Sarah Piché-Choquette
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Martina Štursová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Karel Švec
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Vojtěch Tláskal
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Michaela Urbanová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Lukáš Vlk
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Jana Voříšková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Lucia Žifčáková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Petr Baldrian
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic.
| |
Collapse
|
9
|
Martinez-Swatson K, Kjøller R, Cozzi F, Simonsen HT, Rønsted N, Barnes C. Exploring evolutionary theories of plant defence investment using field populations of the deadly carrot. ANNALS OF BOTANY 2020; 125:737-750. [PMID: 31563960 PMCID: PMC7182587 DOI: 10.1093/aob/mcz151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND AIMS There are a number of disparate models predicting variation in plant chemical defences between species, and within a single species over space and time. These can give conflicting predictions. Here we review a number of these theories, before assessing their power to predict the spatial-temporal variation of thapsigargins between and within populations of the deadly carrot (Thapsia garganica). By utilizing multiple models simultaneously (optimum defence theory, growth rate hypothesis, growth-differentiation balance hypothesis, intra-specific framework and resource exchange model of plant defence), we will highlight gaps in their predictions and evaluate the performance of each. METHODS Thapsigargins are potent anti-herbivore compounds that occur in limited richness across the different plant tissues of T. garganica, and therefore represent an ideal system for exploring these models. Thapsia garganica plants were collected from six locations on the island of Ibiza, Spain, and the thapsigargins quantified within reproductive, vegetative and below-ground tissues. The effects of sampling time, location, mammalian herbivory, soil nutrition and changing root-associated fungal communities on the concentrations of thapsigargins within these in situ observations were analysed, and the results were compared with our model predictions. KEY RESULTS The models performed well in predicting the general defence strategy of T. garganica and the above-ground distribution of thapsigargins, but failed to predict the considerable proportion of defences found below ground. Models predicting variation over environmental gradients gave conflicting and less specific predictions, with intraspecific variation remaining less understood. CONCLUSION Here we found that multiple models predicting the general defence strategy of plant species could likely be integrated into a single model, while also finding a clear need to better incorporate below-ground defences into models of plant chemical defences. We found that constitutive and induced thapsigargins differed in their regulation, and suggest that models predicting intraspecific defences should consider them separately. Finally, we suggest that in situ studies be supplemented with experiments in controlled environments to identify specific environmental parameters that regulate variation in defences within species.
Collapse
Affiliation(s)
| | - Rasmus Kjøller
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Henrik Toft Simonsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Nina Rønsted
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- National Tropical Botanical Garden, Kalaheo, Hawaii, USA
| | - Christopher Barnes
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Wemheuer F, Berkelmann D, Wemheuer B, Daniel R, Vidal S, Bisseleua Daghela HB. Agroforestry Management Systems Drive the Composition, Diversity, and Function of Fungal and Bacterial Endophyte Communities in Theobroma Cacao Leaves. Microorganisms 2020; 8:E405. [PMID: 32183118 PMCID: PMC7143032 DOI: 10.3390/microorganisms8030405] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/22/2022] Open
Abstract
Cacao (Theobroma cacao L.) is one of the most economically important crops worldwide. Despite the important role of endophytes for plant growth and health, very little is known about the effect of agroforestry management systems on the endophyte communities of T. cacao. To close this knowledge gap, we investigated the diversity, community composition, and function of bacterial and fungal endophytes in the leaves of T. cacao trees growing in five major cacao-growing regions in the central region of Cameroon using DNA metabarcoding. Fungal but not bacterial alpha diversity measures differed significantly between the agroforestry management systems. Interestingly, less managed home-garden cacao forests harbored the lowest fungal richness and diversity. Our results suggest that the composition of bacterial and fungal endophyte communities is predominantly affected by agroforestry management systems and, to a lesser extent, by environmental properties. The core microbiome detected comprised important fungal phytopathogens, such as Lasiodiplodia species. Several predicted pathways of bacterial endophytes and functional guilds of fungal endophytes differed between the agroforest systems which might be attributed to bacteria and fungi specifically associated with a single agroforest. Our results provide the basis for future studies on foliar fungal and bacterial endophytes of T. cacao and their responsiveness towards agroforestry management systems.
Collapse
Affiliation(s)
- Franziska Wemheuer
- Section of Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Grisebachstr. 6, D-37077 Göttingen, Germany; (F.W.); (H.B.B.D.)
| | - Dirk Berkelmann
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany; (D.B.); (B.W.); (R.D.)
| | - Bernd Wemheuer
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany; (D.B.); (B.W.); (R.D.)
| | - Rolf Daniel
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany; (D.B.); (B.W.); (R.D.)
| | - Stefan Vidal
- Section of Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Grisebachstr. 6, D-37077 Göttingen, Germany; (F.W.); (H.B.B.D.)
| | - Hervé Bertin Bisseleua Daghela
- Section of Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Grisebachstr. 6, D-37077 Göttingen, Germany; (F.W.); (H.B.B.D.)
- Laboratory of Entomology, Institute of Agricultural Research for Development (IRAD), BP 2067, Yaoundé, Cameroon
| |
Collapse
|
11
|
Zhao PS, Guo MS, Gao GL, Zhang Y, Ding GD, Ren Y, Akhtar M. Community structure and functional group of root-associated Fungi of Pinus sylvestris var. mongolica across stand ages in the Mu Us Desert. Ecol Evol 2020; 10:3032-3042. [PMID: 32211174 PMCID: PMC7083681 DOI: 10.1002/ece3.6119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/30/2022] Open
Abstract
Root-associated fungi (RAF) are an important factor affecting the host's growth, and their contribution to Pinus sylvestris var. mongolica plantation decline is substantial. Therefore, we selected three age groups of P. sylvestris plantations (26, 33, and 43 years), in the Mu Us Desert, to characterize the community structure and functional groups of RAF, identified by Illumina high-throughput sequencing and FUNGuild platform, respectively. The effects of soil properties and enzyme activities on fungal diversity and functional groups were also examined. The results indicated that (a) 805 operational taxonomic units of RAF associated with P. sylvestris belonged to six phyla and 163 genera. Diversity and richness were not significantly different in the three age groups, but community composition showed significant differences. Ascomycota and Basidiomycota dominated the fungal community, while Rhizopogon dominated in each plot. (b) The proportion of pathotrophs decreased with increasing age, while that of symbiotrophs increased sharply, which were mainly represented by ectomycorrhizal fungi. (c) Stand age and soil enzyme activity had a greater influence on fungal community composition than did soil properties, whereas environmental variables were not significantly correlated with fungal diversity and richness. Dynamics of fungal community composition and functional groups with the aging plantations reflected the growth state of P. sylvestris and were related to plantation degradation.
Collapse
Affiliation(s)
- Pei-Shan Zhao
- Yanchi Research Station School of Soil and Water Conservation Beijing Forestry University Beijing China
- Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation Beijing China
- Engineering Research Center of Forestry Ecological Engineering Ministry of Education Beijing Forestry University Beijing China
| | - Mi-Shan Guo
- Yanchi Research Station School of Soil and Water Conservation Beijing Forestry University Beijing China
- Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation Beijing China
- Engineering Research Center of Forestry Ecological Engineering Ministry of Education Beijing Forestry University Beijing China
| | - Guang-Lei Gao
- Yanchi Research Station School of Soil and Water Conservation Beijing Forestry University Beijing China
- Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation Beijing China
- Engineering Research Center of Forestry Ecological Engineering Ministry of Education Beijing Forestry University Beijing China
| | - Ying Zhang
- Yanchi Research Station School of Soil and Water Conservation Beijing Forestry University Beijing China
- Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation Beijing China
- Engineering Research Center of Forestry Ecological Engineering Ministry of Education Beijing Forestry University Beijing China
| | - Guo-Dong Ding
- Yanchi Research Station School of Soil and Water Conservation Beijing Forestry University Beijing China
- Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation Beijing China
- Engineering Research Center of Forestry Ecological Engineering Ministry of Education Beijing Forestry University Beijing China
| | - Yue Ren
- Yanchi Research Station School of Soil and Water Conservation Beijing Forestry University Beijing China
- Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation Beijing China
- Engineering Research Center of Forestry Ecological Engineering Ministry of Education Beijing Forestry University Beijing China
| | - Mobeen Akhtar
- Yanchi Research Station School of Soil and Water Conservation Beijing Forestry University Beijing China
- Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation Beijing China
- Engineering Research Center of Forestry Ecological Engineering Ministry of Education Beijing Forestry University Beijing China
| |
Collapse
|
12
|
Schimann H, Vleminckx J, Baraloto C, Engel J, Jaouen G, Louisanna E, Manzi S, Sagne A, Roy M. Tree communities and soil properties influence fungal community assembly in neotropical forests. Biotropica 2020. [DOI: 10.1111/btp.12747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Heidy Schimann
- INRA EcoFoG (AgroParisTech, CNRS, CIRAD, INRA, Université des Antilles, Université de Guyane) Kourou France
| | - Jason Vleminckx
- Department of Biological Science Florida International University Miami FL USA
| | | | - Julien Engel
- AMAP (Université de Montpellier, CIRAD, CNRS, INRA, IRD) Montpellier France
| | - Gaelle Jaouen
- AgroParisTech EcoFoG (AgroParisTech, CNRS, CIRAD, INRA, Université des Antilles, Université de Guyane) Kourou France
| | - Eliane Louisanna
- INRA EcoFoG (AgroParisTech, CNRS, CIRAD, INRA, Université des Antilles, Université de Guyane) Kourou France
| | - Sophie Manzi
- Laboratoire Évolution et Diversité Biologique CNRS, UMR 5174 UPS CNRS ENFA IRD Université Toulouse 3 Paul Sabatier Toulouse France
| | - Audrey Sagne
- INRA EcoFoG (AgroParisTech, CNRS, CIRAD, INRA, Université des Antilles, Université de Guyane) Kourou France
| | - Mélanie Roy
- Laboratoire Évolution et Diversité Biologique CNRS, UMR 5174 UPS CNRS ENFA IRD Université Toulouse 3 Paul Sabatier Toulouse France
| |
Collapse
|
13
|
Gavito ME, Leyva-Morales R, Vega-Peña EV, Arita H, Jairus T, Vasar M, Öpik M. Local-scale spatial diversity patterns of ectomycorrhizal fungal communities in a subtropical pine-oak forest. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2019.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Alzarhani AK, Clark DR, Underwood GJC, Ford H, Cotton TEA, Dumbrell AJ. Are drivers of root-associated fungal community structure context specific? ISME JOURNAL 2019; 13:1330-1344. [PMID: 30692628 PMCID: PMC6474305 DOI: 10.1038/s41396-019-0350-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 11/22/2018] [Accepted: 12/25/2018] [Indexed: 12/01/2022]
Abstract
The composition and structure of plant-root-associated fungal communities are determined by local abiotic and biotic conditions. However, the relative influence and identity of relationships to abiotic and biotic factors may differ across environmental and ecological contexts, and fungal functional groups. Thus, understanding which aspects of root-associated fungal community ecology generalise across contexts is the first step towards a more predictive framework. We investigated how the relative importance of biotic and abiotic factors scale across environmental and ecological contexts using high-throughput sequencing (ca. 55 M Illumina metabarcoding sequences) of >260 plant-root-associated fungal communities from six UK salt marshes across two geographic regions (South-East and North-West England) in winter and summer. Levels of root-associated fungal diversity were comparable with forests and temperate grasslands, quadrupling previous estimates of salt-marsh fungal diversity. Whilst abiotic variables were generally most important, a range of site- and spatial scale-specific abiotic and biotic drivers of diversity and community composition were observed. Consequently, predictive models of diversity trained on one site, extrapolated poorly to others. Fungal taxa from the same functional groups responded similarly to the specific drivers of diversity and composition. Thus site, spatial scale and functional group are key factors that, if accounted for, may lead to a more predictive understanding of fungal community ecology.
Collapse
Affiliation(s)
- A Khuzaim Alzarhani
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK.,Faculty of Science, Northern Border University, Arar, Saudi Arabia
| | - Dave R Clark
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Graham J C Underwood
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Hilary Ford
- School of Environment, Natural Resources and Geography, Thoday buildings, Bangor University, Bangor, LL57 2DG, UK
| | - T E Anne Cotton
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK.,Department of Animal and Plant Sciences, The University of Sheffield, Alfred Denny Building, Sheffield, SY, S10 2TN, UK
| | - Alex J Dumbrell
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK.
| |
Collapse
|
15
|
Wemheuer B, Thomas T, Wemheuer F. Fungal Endophyte Communities of Three Agricultural Important Grass Species Differ in Their Response Towards Management Regimes. Microorganisms 2019; 7:E37. [PMID: 30691243 PMCID: PMC6407066 DOI: 10.3390/microorganisms7020037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/26/2022] Open
Abstract
Despite the importance of endophytic fungi for plant health, it remains unclear how these fungi are influenced by grassland management practices. Here, we investigated the effect of fertilizer application and mowing frequency on fungal endophyte communities and their life strategies in aerial tissues of three agriculturally important grass species (Dactylis glomerata L., Festuca rubra L. and Lolium perenne L.) over two consecutive years. Our results showed that the management practices influenced fungal communities in the plant holobiont, but observed effects differed between grass species and sampling year. Phylogenetic diversity of fungal endophytes in D. glomerata was significantly affected by mowing frequency in 2010, whereas fertilizer application and the interaction of fertilization with mowing frequency had a significant impact on community composition of L. perenne in 2010 and 2011, respectively. Taken together, our research provides a basis for future studies on responses of fungal endophytes towards management practices. To the best of our knowledge, this is the first study simultaneously assessing fungal endophyte communities in aerial parts of three agriculturally important grass species over two consecutive years.
Collapse
Affiliation(s)
- Bernd Wemheuer
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, D-37077 Göttingen, Germany.
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Torsten Thomas
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Franziska Wemheuer
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, D-37077 Göttingen, Germany.
- Division of Agricultural Entomology, Department of Crop Sciences, Georg-August University of Göttingen, D-37077 Göttingen, Germany.
| |
Collapse
|
16
|
Zhang J, Zhang B, Liu Y, Guo Y, Shi P, Wei G. Distinct large-scale biogeographic patterns of fungal communities in bulk soil and soybean rhizosphere in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:791-800. [PMID: 29990927 DOI: 10.1016/j.scitotenv.2018.07.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/27/2018] [Accepted: 07/01/2018] [Indexed: 05/20/2023]
Abstract
Fungi play a crucial role in the agroecological system; however, little is known about their large-scale biogeographical patterns and how various ecological processes contribute to community assembly, especially in the crop rhizosphere. In this study, we investigated the spatial distribution and community assembly of fungi in the bulk soil and rhizosphere of soybean collected from 43 sites across China using high-throughput sequencing. The alpha diversity of the rhizosphere was lower than that of bulk soil. The fungal community structures of the two soil compartments were distinct. Fungal communities in the rhizosphere had a steeper distance-decay relationship slope between sampled sites than those in bulk soil, suggesting a greater influence of historical processes (geographical separation) in the rhizosphere. The relative importance of dispersal limitation and environmental filtering for the fungal community composition differed between bulk soil and rhizosphere. Sloan neutral model analysis suggested that niche-based processes dominated the assemblage of fungal communities in the two soil compartments, while neutral processes had a weaker influence in the rhizosphere than in bulk soil. Additionally, we analyzed the structures of abundant and rare fungal sub-communities in each soil compartment. Rare sub-communities were more strongly influenced by dispersal limitation than abundant sub-communities. These results expand the current understanding of root-associated fungal community biogeography in agricultural soils on a large scale.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Baogang Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yao Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yanqing Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Peng Shi
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
17
|
Ritter CD, Zizka A, Roger F, Tuomisto H, Barnes C, Nilsson RH, Antonelli A. High-throughput metabarcoding reveals the effect of physicochemical soil properties on soil and litter biodiversity and community turnover across Amazonia. PeerJ 2018; 6:e5661. [PMID: 30280033 PMCID: PMC6161700 DOI: 10.7717/peerj.5661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/29/2018] [Indexed: 11/24/2022] Open
Abstract
Background Knowledge on the globally outstanding Amazonian biodiversity and its environmental determinants stems almost exclusively from aboveground organisms, notably plants. In contrast, the environmental factors and habitat preferences that drive diversity patterns for micro-organisms in the ground remain elusive, despite the fact that micro-organisms constitute the overwhelming majority of life forms in any given location, in terms of both diversity and abundance. Here we address how the diversity and community turnover of operational taxonomic units (OTU) of organisms in soil and litter respond to soil physicochemical properties; whether OTU diversities and community composition in soil and litter are correlated with each other; and whether they respond in a similar way to soil properties. Methods We used recently inferred OTUs from high-throughput metabarcoding of the 16S (prokaryotes) and 18S (eukaryotes) genes to estimate OTU diversity (OTU richness and effective number of OTUs) and community composition for prokaryotes and eukaryotes in soil and litter across four localities in Brazilian Amazonia. All analyses were run separately for prokaryote and eukaryote OTUs, and for each group using both presence-absence and abundance data. Combining these with novel data on soil chemical and physical properties, we identify abiotic correlates of soil and litter organism diversity and community structure using regression, ordination, and variance partitioning analysis. Results Soil organic carbon content was the strongest factor explaining OTU diversity (negative correlation) and pH was the strongest factor explaining community turnover for prokaryotes and eukaryotes in both soil and litter. We found significant effects also for other soil variables, including both chemical and physical properties. The correlation between OTU diversity in litter and in soil was non-significant for eukaryotes and weak for prokaryotes. The community compositions of both prokaryotes and eukaryotes were more separated among habitat types (terra-firme, várzea, igapó and campina) than between substrates (soil and litter). Discussion In spite of the limited sampling (four localities, 39 plots), our results provide a broad-scale view of the physical and chemical correlations of soil and litter biodiversity in a longitudinal transect across the world’s largest rainforest. Our methods help to understand links between soil properties, OTU diversity patterns, and community composition and turnover. The lack of strong correlation between OTU diversity in litter and in soil suggests independence of diversity drives of these substrates and highlights the importance of including both measures in biodiversity assessments. Massive sequencing of soil and litter samples holds the potential to complement traditional biological inventories in advancing our understanding of the factors affecting tropical diversity.
Collapse
Affiliation(s)
- Camila D Ritter
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden.,Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Alexander Zizka
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden.,Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Fabian Roger
- Centre for Environmental and Climate Research, Lund University, Lund, Sweden
| | - Hanna Tuomisto
- Department of Biology, University of Turku, Turku, Finland
| | - Christopher Barnes
- Natural History Museum of Denmark, University of Copenhagen, Denmark, Copenhagen, Denmark
| | - R Henrik Nilsson
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden.,Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Alexandre Antonelli
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden.,Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.,Gothenburg Botanical Garden, Göteborg, Sweden, Gothenburg, Sweden.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States of America
| |
Collapse
|
18
|
Argüelles-Moyao A, Garibay-Orijel R. Ectomycorrhizal fungal communities in high mountain conifer forests in central Mexico and their potential use in the assisted migration of Abies religiosa. MYCORRHIZA 2018; 28:509-521. [PMID: 29948411 DOI: 10.1007/s00572-018-0841-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Abies religiosa forests in central Mexico are the only overwinter refuge of the monarch butterfly and provide important ecosystem services. These forests have lost 55% of their original area and as a consequence, diversity and biotic interactions in these ecosystems are in risk. The aim of this study was to compare the soil fungal diversity and community structure in the Abies religiosa forests and surrounding Pinus montezumae, Pinus hartwegii, and coniferous mixed forest plant communities to provide data on ecology of mycorrhizal interactions for the assisted migration of A. religiosa. We sampled soil from five coniferous forests, extracted total soil DNA, and sequenced the ITS2 region by Illumina MiSeq. The soil fungi community was integrated by 1746 taxa with a species turnover ranging from 0.280 to 0.461 between sampling sites. In the whole community, the more abundant and frequent species were Russula sp. (aff. olivobrunnea), Mortierella sp.1, and Piloderma sp. (aff. olivacearum). The ectomycorrhizal fungi were the more frequent and abundant functional group. A total of 298 species (84 ectomycorrhizal) was shared in the five conifer forests; these widely distributed species were dominated by Russulaceae and Clavulinaceae. The fungal community composition was significantly influenced by altitude and the lowest species turnover happened between the two A. religiosa forests even though they have different soil types. As Pinus montezumae forests have a higher altitudinal distribution adjacent to A. religiosa and share the largest number of ectomycorrhizal fungi with it, we suggest these forests as a potential habitat for new A. religiosa populations.
Collapse
Affiliation(s)
- Andrés Argüelles-Moyao
- Laboratorio de Sistemática, Ecología y Aprovechamiento de Hongos Ectomicorrízicos, Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria. Del. Coyoacán, C.P. 04510, Mexico City, CDMX, Mexico
- Posgrado en Ciencias Biológicas, Edificio B, 1° Piso, Unidad de Posgrado, Circuito de Posgrados, Universidad Nacional Autónoma de México, Ciudad Universitaria, Del. Coyoacán, C.P. 04510, Mexico City, CDMX, Mexico
| | - Roberto Garibay-Orijel
- Laboratorio de Sistemática, Ecología y Aprovechamiento de Hongos Ectomicorrízicos, Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria. Del. Coyoacán, C.P. 04510, Mexico City, CDMX, Mexico.
| |
Collapse
|
19
|
Statistical analysis of co-occurrence patterns in microbial presence-absence datasets. PLoS One 2017; 12:e0187132. [PMID: 29145425 PMCID: PMC5689832 DOI: 10.1371/journal.pone.0187132] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/13/2017] [Indexed: 12/31/2022] Open
Abstract
Drawing on a long history in macroecology, correlation analysis of microbiome datasets is becoming a common practice for identifying relationships or shared ecological niches among bacterial taxa. However, many of the statistical issues that plague such analyses in macroscale communities remain unresolved for microbial communities. Here, we discuss problems in the analysis of microbial species correlations based on presence-absence data. We focus on presence-absence data because this information is more readily obtainable from sequencing studies, especially for whole-genome sequencing, where abundance estimation is still in its infancy. First, we show how Pearson's correlation coefficient (r) and Jaccard's index (J)-two of the most common metrics for correlation analysis of presence-absence data-can contradict each other when applied to a typical microbiome dataset. In our dataset, for example, 14% of species-pairs predicted to be significantly correlated by r were not predicted to be significantly correlated using J, while 37.4% of species-pairs predicted to be significantly correlated by J were not predicted to be significantly correlated using r. Mismatch was particularly common among species-pairs with at least one rare species (<10% prevalence), explaining why r and J might differ more strongly in microbiome datasets, where there are large numbers of rare taxa. Indeed 74% of all species-pairs in our study had at least one rare species. Next, we show how Pearson's correlation coefficient can result in artificial inflation of positive taxon relationships and how this is a particular problem for microbiome studies. We then illustrate how Jaccard's index of similarity (J) can yield improvements over Pearson's correlation coefficient. However, the standard null model for Jaccard's index is flawed, and thus introduces its own set of spurious conclusions. We thus identify a better null model based on a hypergeometric distribution, which appropriately corrects for species prevalence. This model is available from recent statistics literature, and can be used for evaluating the significance of any value of an empirically observed Jaccard's index. The resulting simple, yet effective method for handling correlation analysis of microbial presence-absence datasets provides a robust means of testing and finding relationships and/or shared environmental responses among microbial taxa.
Collapse
|