1
|
Elling FJ, Pierrel F, Chobert SC, Abby SS, Evans TW, Reveillard A, Pelosi L, Schnoebelen J, Hemingway JD, Boumendjel A, Becker KW, Blom P, Cordes J, Nathan V, Baymann F, Lücker S, Spieck E, Leadbetter JR, Hinrichs KU, Summons RE, Pearson A. A novel quinone biosynthetic pathway illuminates the evolution of aerobic metabolism. Proc Natl Acad Sci U S A 2025; 122:e2421994122. [PMID: 39977315 PMCID: PMC11874023 DOI: 10.1073/pnas.2421994122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/09/2025] [Indexed: 02/22/2025] Open
Abstract
The dominant organisms in modern oxic ecosystems rely on respiratory quinones with high redox potential (HPQs) for electron transport in aerobic respiration and photosynthesis. The diversification of quinones, from low redox potential (LPQ) in anaerobes to HPQs in aerobes, is assumed to have followed Earth's surface oxygenation ~2.3 billion years ago. However, the evolutionary origins of HPQs remain unresolved. Here, we characterize the structure and biosynthetic pathway of an ancestral HPQ, methyl-plastoquinone (mPQ), that is unique to bacteria of the phylum Nitrospirota. mPQ is structurally related to the two previously known HPQs, plastoquinone from Cyanobacteriota/chloroplasts and ubiquinone from Pseudomonadota/mitochondria, respectively. We demonstrate a common origin of the three HPQ biosynthetic pathways that predates the emergence of Nitrospirota, Cyanobacteriota, and Pseudomonadota. An ancestral HPQ biosynthetic pathway evolved ≥ 3.4 billion years ago in an extinct lineage and was laterally transferred to these three phyla ~2.5 to 3.2 billion years ago. We show that Cyanobacteriota and Pseudomonadota were ancestrally aerobic and thus propose that aerobic metabolism using HPQs significantly predates Earth's surface oxygenation. Two of the three HPQ pathways were later obtained by eukaryotes through endosymbiosis forming chloroplasts and mitochondria, enabling their rise to dominance in modern oxic ecosystems.
Collapse
Affiliation(s)
- Felix J. Elling
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA02138
- Leibniz-Laboratory for Radiometric Dating and Isotope Research, Christian-Albrecht University of Kiel, Kiel24118, Germany
| | - Fabien Pierrel
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble38000, France
| | - Sophie-Carole Chobert
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble38000, France
| | - Sophie S. Abby
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble38000, France
| | - Thomas W. Evans
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- MARUM—Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen28359, Germany
| | - Arthur Reveillard
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble38000, France
| | - Ludovic Pelosi
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble38000, France
| | - Juliette Schnoebelen
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble38000, France
| | - Jordon D. Hemingway
- Department of Earth and Planetary Sciences, Geological Institute, ETH Zürich, Zurich8092, Switzerland
| | | | - Kevin W. Becker
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel24148, Germany
| | - Pieter Blom
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen6525 AJ, The Netherlands
| | - Julia Cordes
- MARUM—Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen28359, Germany
| | - Vinitra Nathan
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA02138
| | - Frauke Baymann
- Laboratoire de Bioénergétique et Ingénierie des Protéines UMR 7281 CNRS/AMU, FR3479, Marseille Cedex 20F-13402, France
| | - Sebastian Lücker
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen6525 AJ, The Netherlands
| | - Eva Spieck
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg22609, Germany
| | - Jared R. Leadbetter
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA91125
| | - Kai-Uwe Hinrichs
- MARUM—Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen28359, Germany
| | - Roger E. Summons
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Ann Pearson
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA02138
| |
Collapse
|
2
|
Spatola Rossi T, Gallia M, Erijman L, Figuerola E. Biotic and abiotic factors acting on community assembly in parallel anaerobic digestion systems from a brewery wastewater treatment plant. ENVIRONMENTAL TECHNOLOGY 2025; 46:135-150. [PMID: 38686914 DOI: 10.1080/09593330.2024.2343797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
Anaerobic digestion is a complex microbial process that mediates the transformation of organic waste into biogas. The performance and stability of anaerobic digesters relies on the structure and function of the microbial community. In this study, we asked whether the deterministic effect of wastewater composition outweighs the effect of reactor configuration on the structure and dynamics of anaerobic digester archaeal and bacterial communities. Biotic and abiotic factors acting on microbial community assembly in two parallel anaerobic digestion systems, an upflow anaerobic sludge blanket digestor (UASB) and a closed digester tank with a solid recycling system (CDSR), from a brewery WWTP were analysed utilizing 16S rDNA and mcrA amplicon sequencing and genome-centric metagenomics. This study confirmed the deterministic effect of the wastewater composition on bacterial community structure, while the archaeal community composition resulted better explained by organic loading rate (ORL) and volatile free acids (VFA). According to the functions assigned to the differentially abundant metagenome-assembled genomes (MAGs) between reactors, CDSR was enriched in genes related to methanol and methylamines methanogenesis, protein degradation, and sulphate and alcohol utilization. Conversely, the UASB reactor was enriched in genes associated with carbohydrate and lipid degradation, as well as amino acid, fatty acid, and propionate fermentation. By comparing interactions derived from the co-occurrence network with predicted metabolic interactions of the prokaryotic communities in both anaerobic digesters, we conclude that the overall community structure is mainly determined by habitat filtering.
Collapse
Affiliation(s)
| | - Mateo Gallia
- IB3- Institute of Biosciences, Biotechnology and Translational Biology- University of Buenos Aires Buenos Aires, Argentina
| | - Leonardo Erijman
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular 'Dr Héctor N. Torres' (INGEBI-CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Eva Figuerola
- IB3- Institute of Biosciences, Biotechnology and Translational Biology- University of Buenos Aires Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
3
|
Xu M, Ma W, Yao Y, Xu Q, Du W, Yin Y, Ji R, Wang X, Guo H. Investigation of the effects of polyethylene microplastics at environmentally relevant concentrations on the plant-soil-microbiota system: A two-year field trial. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176341. [PMID: 39299329 DOI: 10.1016/j.scitotenv.2024.176341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/30/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Microplastics are a potential threat to agricultural sustainability. However, the effects of microplastics at environmentally relevant concentrations on the plant-soil-microbiota system in realistic field conditions are largely unknown. Herein, we conducted a two-year field trial to study the effects of polyethylene (PE) microplastics at 0, 100, and 600 mg/kg on crop growth, soil properties, and the composition and function of microbial communities in a farmland with rice-wheat rotation. PE did not affect wheat growth but it increased the rice grain weight by 42.5 % at 600 mg/kg, and enhanced rice height by 35.4 % and 30.2 % at 100 and 600 mg/kg, respectively. The presence of PE significantly decreased soil available phosphorus during the wheat season, while it reduced soil total nitrogen, NH4+-N and available phosphorus during the rice season. There were five and sixteen bacterial orders identified changed by PE in wheat and rice soils, respectively. Specifically, PE at different concentrations differentially altered the abundances of sulfate-reducing bacteria Thermodesulfovibrionia, Thermoactinomycetales and Syntrophobacterales, and further modified soil sulfate respiration in wheat soils. During the rice season, PE (100 mg/kg) increased the abundance of Xanthomonadales by 98.0 % and enriched the functional groups of intracellular parasites, while PE (600 mg/kg) inhibited twelve cluster of orthologous group function classes and disturbed bacterial metabolism. This study suggests that PE exhibits a greater impact on the plant-soil-microbiota system during the rice season compared to the previous year's wheat season, highlighting the importance of crop type and cultivation practices in determining the environmental risks of microplastics in agroecosystems.
Collapse
Affiliation(s)
- Meiling Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wenqian Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yu Yao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Qiao Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Joint International Research Centre for Critical Zone Science by University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environmental Protection Industry, Nanjing University, Quanzhou 362046, China.
| |
Collapse
|
4
|
Maltseva AI, Elcheninov AG, Klyukina AA, Pimenov NV, Novikov AA, Lebedinsky AV, Frolov EN. Thermodesulfovibrio autotrophicus sp. nov., the first autotrophic representative of the widespread sulfate-reducing genus Thermodesulfovibrio, and Thermodesulfovibrio obliviosus sp. nov. that has lost this ability. Syst Appl Microbiol 2024; 47:126561. [PMID: 39551005 DOI: 10.1016/j.syapm.2024.126561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/19/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024]
Abstract
Representatives of the genus Thermodesulfovibrio are widespread thermophilic sulfate-reducing bacteria. The genus currently includes five species with validly published names. Two new Thermodesulfovibrio strains, 3907-1M T and 3462-1T, were isolated with molecular hydrogen as an electron donor, sulfate as an electron acceptor and acetate as the carbon source from hot springs of Kunashir Island and Kamchatka Peninsula. Similar to other Thermodesulfovibrio species, the new isolates grew by reduction of sulfate, thiosulfate or Fe (III) with a limited range of electron donors, such as hydrogen (in the presence of acetate), formate (in the presence of acetate), pyruvate and lactate. Surprisingly, strain 3907-1MT proved to be capable of autotrophic growth as well. Up to now, the genus Thermodesulfovibrio was represented by heterotrophic species only. Genome analysis revealed the presence of a gene cluster encoding enzymes of form III RubisCO-mediated transaldolase variant of the Calvin cycle in both strains, but genes encoding ribulose-1,5-bisphosphate carboxylase and phosphoribulokinase in the genome of the strain 3462-1T contained internal stop codons in their sequences. On the basis of phylogenomic analysis, as well as distinct phenotypic and genomic properties, strain 3907-1MT (=DSM 112797T =JCM 39445T =VKM B-3594T =UQM 41601T) is proposed to be classified as Thermodesulfovibrio autotrophicus sp. nov., and strain 3462-1T (=JCM 39444T =VKM B-3714T =UQM 41602T) - as Thermodesulfovibrio obliviosus sp. nov. Our results demonstrate a chemolithoautotrophic lifestyle in Thermodesulfovibrio representatives, suggesting greater ecological flexibility of this genus than previously assumed.
Collapse
Affiliation(s)
- Anastasia I Maltseva
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia.
| | - Alexander G Elcheninov
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexandra A Klyukina
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay V Pimenov
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Andrei A Novikov
- Department of Physical and Colloid Chemistry, Gubkin University, Moscow, Russia
| | - Alexander V Lebedinsky
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Evgenii N Frolov
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Park SY, Zhang Y, Kwon JS, Kwon MJ. Multi-approach assessment of groundwater biogeochemistry: Implications for the site characterization of prospective spent nuclear fuel repository sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171918. [PMID: 38522553 DOI: 10.1016/j.scitotenv.2024.171918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
The disposal of spent nuclear fuel in deep subsurface repositories using multi-barrier systems is considered to be the most promising method for preventing radionuclide leakage. However, the stability of the barriers can be affected by the activities of diverse microbes in subsurface environments. Therefore, this study investigated groundwater geochemistry and microbial populations, activities, and community structures at three potential spent nuclear fuel repository construction sites. The microbial analysis involved a multi-approach including both culture-dependent, culture-independent, and sequence-based methods for a comprehensive understanding of groundwater biogeochemistry. The results from all three sites showed that geochemical properties were closely related to microbial population and activities. Total number of cells estimates were strongly correlated to high dissolved organic carbon; while the ratio of adenosine-triphosphate:total number of cells indicated substantial activities of sulfate reducing bacteria. The 16S rRNA gene sequencing revealed that the microbial communities differed across the three sites, with each featuring microbes performing distinctive functions. In addition, our multi-approach provided some intriguing findings: a site with a low relative abundance of sulfate reducing bacteria based on the 16S rRNA gene sequencing showed high populations during most probable number incubation, implying that despite their low abundance, sulfate reducing bacteria still played an important role in sulfate reduction within the groundwater. Moreover, a redundancy analysis indicated a significant correlation between uranium concentrations and microbial community compositions, which suggests a potential impact of uranium on microbial community. These findings together highlight the importance of multi-methodological assessments in better characterizing groundwater biogeochemical properties for the selection of potential spent nuclear fuel disposal sites.
Collapse
Affiliation(s)
- Su-Young Park
- Department of Earth and Environmental Sciences, Korea University, Seoul, Republic of Korea
| | - Yidan Zhang
- Department of Earth and Environmental Sciences, Korea University, Seoul, Republic of Korea
| | - Jang-Soon Kwon
- Korea Atomic Energy Research Institute, Daejeon, Republic of Korea
| | - Man Jae Kwon
- Department of Earth and Environmental Sciences, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Wang S, Jiang L, Zhao Z, Chen Z, Wang J, Alain K, Cui L, Zhong Y, Peng Y, Lai Q, Dong X, Shao Z. Chemolithoautotrophic diazotrophs dominate dark nitrogen fixation in mangrove sediments. THE ISME JOURNAL 2024; 18:wrae119. [PMID: 38916247 PMCID: PMC11474244 DOI: 10.1093/ismejo/wrae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/21/2024] [Accepted: 06/22/2024] [Indexed: 06/26/2024]
Abstract
Diazotrophic microorganisms regulate marine productivity by alleviating nitrogen limitation. So far chemolithoautotrophic bacteria are widely recognized as the principal diazotrophs in oligotrophic marine and terrestrial ecosystems. However, the contribution of chemolithoautotrophs to nitrogen fixation in organic-rich habitats remains unclear. Here, we utilized metagenomic and metatranscriptomic approaches integrated with cultivation assays to investigate the diversity, distribution, and activity of diazotrophs residing in Zhangzhou mangrove sediments. Physicochemical assays show that the studied mangrove sediments are typical carbon-rich, sulfur-rich, nitrogen-limited, and low-redox marine ecosystems. These sediments host a wide phylogenetic variety of nitrogenase genes, including groups I-III and VII-VIII. Unexpectedly diverse chemolithoautotrophic taxa including Campylobacteria, Gammaproteobacteria, Zetaproteobacteria, and Thermodesulfovibrionia are the predominant and active nitrogen fixers in the 0-18 cm sediment layer. In contrast, the 18-20 cm layer is dominated by active diazotrophs from the chemolithoautotrophic taxa Desulfobacterota and Halobacteriota. Further analysis of MAGs shows that the main chemolithoautotrophs can fix nitrogen by coupling the oxidation of hydrogen, reduced sulfur, and iron, with the reduction of oxygen, nitrate, and sulfur. Culture experiments further demonstrate that members of chemolithoautotrophic Campylobacteria have the nitrogen-fixing capacity driven by hydrogen and sulfur oxidation. Activity measurements confirm that the diazotrophs inhabiting mangrove sediments preferentially drain energy from diverse reduced inorganic compounds other than from organics. Overall, our results suggest that chemolithoautotrophs rather than heterotrophs are dominant nitrogen fixers in mangrove sediments. This study underscores the significance of chemolithoautotrophs in carbon-dominant ecosystems.
Collapse
Affiliation(s)
- Shasha Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Lijing Jiang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Zhuoming Zhao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Zhen Chen
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Jun Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Karine Alain
- Univ Brest, CNRS, Ifremer, EMR6002 BIOMEX, Biologie Interactions et adaptations des Organismes en Milieu EXtrême, IRP 1211 MicrobSea, F-29280 Plouzané, France
| | - Liang Cui
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Yangsheng Zhong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Yongyi Peng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, PR China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, PR China
| |
Collapse
|
7
|
Mosley OE, Gios E, Handley KM. Implications for nitrogen and sulphur cycles: phylogeny and niche-range of Nitrospirota in terrestrial aquifers. ISME COMMUNICATIONS 2024; 4:ycae047. [PMID: 38650708 PMCID: PMC11033732 DOI: 10.1093/ismeco/ycae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
Increasing evidence suggests Nitrospirota are important contributors to aquatic and subsurface nitrogen and sulphur cycles. We determined the phylogenetic and ecological niche associations of Nitrospirota colonizing terrestrial aquifers. Nitrospirota compositions were determined across 59 groundwater wells. Distributions were strongly influenced by oxygen availability in groundwater, marked by a trade-off between aerobic (Nitrospira, Leptospirillum) and anaerobic (Thermodesulfovibrionia, unclassified) lineages. Seven Nitrospirota metagenome-assembled genomes (MAGs), or populations, were recovered from a subset of wells, including three from the recently designated class 9FT-COMBO-42-15. Most were relatively more abundant and transcriptionally active in dysoxic groundwater. These MAGs were analysed with 743 other Nitrospirota genomes. Results illustrate the predominance of certain lineages in aquifers (e.g. non-nitrifying Nitrospiria, classes 9FT-COMBO-42-15 and UBA9217, and Thermodesulfovibrionales family UBA1546). These lineages are characterized by mechanisms for nitrate reduction and sulphur cycling, and, excluding Nitrospiria, the Wood-Ljungdahl pathway, consistent with carbon-limited, low-oxygen, and sulphur-rich aquifer conditions. Class 9FT-COMBO-42-15 is a sister clade of Nitrospiria and comprises two families spanning a transition in carbon fixation approaches: f_HDB-SIOIB13 encodes rTCA (like Nitrospiria) and f_9FT-COMBO-42-15 encodes Wood-Ljungdahl CO dehydrogenase (like Thermodesulfovibrionia and UBA9217). The 9FT-COMBO-42-15 family is further differentiated by its capacity for sulphur oxidation (via DsrABEFH and SoxXAYZB) and dissimilatory nitrate reduction to ammonium, and gene transcription indicated active coupling of nitrogen and sulphur cycles by f_9FT-COMBO-42-15 in dysoxic groundwater. Overall, results indicate that Nitrospirota are widely distributed in groundwater and that oxygen availability drives the spatial differentiation of lineages with ecologically distinct roles related to nitrogen and sulphur metabolism.
Collapse
Affiliation(s)
- Olivia E Mosley
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
- Present address: NatureMetrics Ltd, Surrey Research Park, Guildford GU2 7HJ, United Kingdom
| | - Emilie Gios
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
- Present address: NINA, Norwegian Institute for Nature Research, Trondheim 7034, Norway
| | - Kim M Handley
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
8
|
Aerts JW, Sarbu SM, Brad T, Ehrenfreund P, Westerhoff HV. Microbial Ecosystems in Movile Cave: An Environment of Extreme Life. Life (Basel) 2023; 13:2120. [PMID: 38004260 PMCID: PMC10672346 DOI: 10.3390/life13112120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Movile Cave, situated in Romania close to the Black Sea, constitutes a distinct and challenging environment for life. Its partially submerged ecosystem depends on chemolithotrophic processes for its energetics, which are fed by a continuous hypogenic inflow of mesothermal waters rich in reduced chemicals such as hydrogen sulfide and methane. We sampled a variety of cave sublocations over the course of three years. Furthermore, in a microcosm experiment, minerals were incubated in the cave waters for one year. Both endemic cave samples and extracts from the minerals were subjected to 16S rRNA amplicon sequencing. The sequence data show specific community profiles in the different subenvironments, indicating that specialized prokaryotic communities inhabit the different zones in the cave. Already after one year, the different incubated minerals had been colonized by specific microbial communities, indicating that microbes in Movile Cave can adapt in a relatively short timescale to environmental opportunities in terms of energy and nutrients. Life can thrive, diversify and adapt in remote and isolated subterranean environments such as Movile Cave.
Collapse
Affiliation(s)
- Joost W. Aerts
- Molecular Cell Biology, A-LIFE, 01-E-57, Faculty of Science, VU University Amsterdam, Van der Boechorstraat 3, 1081 BT Amsterdam, The Netherlands
| | - Serban M. Sarbu
- “Emil Racoviţă” Institute of Speleology, Str. Frumoasă 31, 010986 Bucharest, Romania
- Department of Biological Sciences, California State University, Chico, CA 95929, USA
| | - Traian Brad
- “Emil Racoviţă” Institute of Speleology, Clinicilor 5-7, 400006 Cluj-Napoca, Romania;
| | - Pascale Ehrenfreund
- Laboratory for Astrophysics, Leiden Observatory, Leiden University, 2333 RA Leiden, The Netherlands
- Space Policy Institute, George Washington University, Washington, DC 20052, USA
| | - Hans V. Westerhoff
- Molecular Cell Biology, A-LIFE, 01-E-57, Faculty of Science, VU University Amsterdam, Van der Boechorstraat 3, 1081 BT Amsterdam, The Netherlands
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
- Stellenbosch Institute for Advanced Study, Stellenbosch 7600, South Africa
| |
Collapse
|
9
|
Lazar CS, Schwab VF, Ueberschaar N, Pohnert G, Trumbore S, Küsel K. Microbial degradation and assimilation of veratric acid in oxic and anoxic groundwaters. Front Microbiol 2023; 14:1252498. [PMID: 37901809 PMCID: PMC10602745 DOI: 10.3389/fmicb.2023.1252498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Microbial communities are key players in groundwater ecosystems. In this dark environment, heterotrophic microbes rely on biomass produced by the activity of lithoautotrophs or on the degradation of organic matter seeping from the surface. Most studies on bacterial diversity in groundwater habitats are based on 16S gene sequencing and full genome reconstructions showing potential metabolic pathways used in these habitats. However, molecular-based studies do not allow for the assessment of population dynamics over time or the assimilation of specific compounds and their biochemical transformation by microbial communities. Therefore, in this study, we combined DNA-, phospholipid fatty acid-, and metabolomic-stable isotope probing to target and identify heterotrophic bacteria in the groundwater setting of the Hainich Critical Zone Exploratory (CZE), focusing on 2 aquifers with different physico-chemical conditions (oxic and anoxic). We incubated groundwater from 4 different wells using either 13C-labeled veratric acid (a lignin-derived compound) (single labeling) or a combination of 13CO2 and D-labeled veratric acid (dual labeling). Our results show that heterotrophic activities dominate all groundwater sites. We identified bacteria with the potential to break down veratric acid (Sphingobium or Microbacterium). We observed differences in heterotrophic activities between the oxic and anoxic aquifers, indicating local adaptations of bacterial populations. The dual labeling experiments suggested that the serine pathway is an important carbon assimilation pathway and that organic matter was an important source of hydrogen in the newly produced lipids. These experiments also yielded different labeled taxa compared to the single labeling experiments, showing that there exists a complex interaction network in the groundwater habitats.
Collapse
Affiliation(s)
- Cassandre Sara Lazar
- Department of Biological Sciences, University of Quebec at Montreal (UQAM), Montreal, QC, Canada
- Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany
| | - Valérie F. Schwab
- Department Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Nico Ueberschaar
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Georg Pohnert
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Susan Trumbore
- Department Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Kirsten Küsel
- Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
10
|
D'Angelo T, Goordial J, Lindsay MR, McGonigle J, Booker A, Moser D, Stepanauskus R, Orcutt BN. Replicated life-history patterns and subsurface origins of the bacterial sister phyla Nitrospirota and Nitrospinota. THE ISME JOURNAL 2023; 17:891-902. [PMID: 37012337 DOI: 10.1038/s41396-023-01397-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023]
Abstract
The phyla Nitrospirota and Nitrospinota have received significant research attention due to their unique nitrogen metabolisms important to biogeochemical and industrial processes. These phyla are common inhabitants of marine and terrestrial subsurface environments and contain members capable of diverse physiologies in addition to nitrite oxidation and complete ammonia oxidation. Here, we use phylogenomics and gene-based analysis with ancestral state reconstruction and gene-tree-species-tree reconciliation methods to investigate the life histories of these two phyla. We find that basal clades of both phyla primarily inhabit marine and terrestrial subsurface environments. The genomes of basal clades in both phyla appear smaller and more densely coded than the later-branching clades. The extant basal clades of both phyla share many traits inferred to be present in their respective common ancestors, including hydrogen, one-carbon, and sulfur-based metabolisms. Later-branching groups, namely the more frequently studied classes Nitrospiria and Nitrospinia, are both characterized by genome expansions driven by either de novo origination or laterally transferred genes that encode functions expanding their metabolic repertoire. These expansions include gene clusters that perform the unique nitrogen metabolisms that both phyla are most well known for. Our analyses support replicated evolutionary histories of these two bacterial phyla, with modern subsurface environments representing a genomic repository for the coding potential of ancestral metabolic traits.
Collapse
Affiliation(s)
- Timothy D'Angelo
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME, 04544, USA
| | - Jacqueline Goordial
- University of Guelph, School of Environmental Sciences, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Melody R Lindsay
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME, 04544, USA
| | - Julia McGonigle
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME, 04544, USA
- Basepaws Pet Genetics, 1820 W. Carson Street, Suite 202-351, Torrance, CA, 90501, USA
| | - Anne Booker
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME, 04544, USA
| | - Duane Moser
- Desert Research Institute, 755 East Flamingo Road, Las Vegas, NV, 89119, USA
| | - Ramunas Stepanauskus
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME, 04544, USA
| | - Beth N Orcutt
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME, 04544, USA.
| |
Collapse
|
11
|
Bacterial, Archaeal, and Eukaryote Diversity in Planktonic and Sessile Communities Inside an Abandoned and Flooded Iron Mine (Quebec, Canada). Appl Microbiol 2023. [DOI: 10.3390/applmicrobiol3010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Abandoned and flooded ore mines are examples of hostile environments (cold, dark, oligotrophic, trace metal) with a potential vast diversity of microbial communities rarely characterized. This study aimed to understand the effects of depth, the source of water (surface or groundwater), and abiotic factors on the communities present in the old Forsyth iron mine in Quebec (Canada). Water and biofilm samples from the mine were sampled by a team of technical divers who followed a depth gradient (0 to 183 m deep) to study the planktonic and sessile communities’ diversity and structure. We used 16S/18S rRNA amplicon to characterize the taxonomic diversity of Bacteria, Archaea, and Eukaryotes. Our results show that depth was not a significant factor explaining the difference in community composition observed, but lifestyle (planktonic/sessile) was. We discovered a vast diversity of microbial taxa, with taxa involved in carbon- and sulfur-cycling. Sessile communities seem to be centered on C1-cycling with fungi and heterotrophs likely adapted to heavy-metal stress. Planktonic communities were dominated by ultra-small archaeal and bacterial taxa, highlighting harsh conditions in the mine waters. Microbial source tracking indicated sources of communities from surface to deeper layers and vice versa, suggesting the dispersion of organisms in the mine, although water connectivity remains unknown.
Collapse
|
12
|
Rogers TJ, Buongiorno J, Jessen GL, Schrenk MO, Fordyce JA, de Moor JM, Ramírez CJ, Barry PH, Yücel M, Selci M, Cordone A, Giovannelli D, Lloyd KG. Chemolithoautotroph distributions across the subsurface of a convergent margin. THE ISME JOURNAL 2023; 17:140-150. [PMID: 36257972 PMCID: PMC9751116 DOI: 10.1038/s41396-022-01331-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 12/15/2022]
Abstract
Subducting oceanic crusts release fluids rich in biologically relevant compounds into the overriding plate, fueling subsurface chemolithoautotrophic ecosystems. To understand the impact of subsurface geochemistry on microbial communities, we collected fluid and sediments from 14 natural springs across a ~200 km transect across the Costa Rican convergent margin and performed shotgun metagenomics. The resulting 404 metagenome-assembled genomes (MAGs) cluster into geologically distinct regions based on MAG abundance patterns: outer forearc-only (25% of total relative abundance), forearc/arc-only (38% of total relative abundance), and delocalized (37% of total relative abundance) clusters. In the outer forearc, Thermodesulfovibrionia, Candidatus Bipolaricaulia, and Firmicutes have hydrogenotrophic sulfate reduction and Wood-Ljungdahl (WL) carbon fixation pathways. In the forearc/arc, Anaerolineae, Ca. Bipolaricaulia, and Thermodesulfovibrionia have sulfur oxidation, nitrogen cycling, microaerophilic respiration, and WL, while Aquificae have aerobic sulfur oxidation and reverse tricarboxylic acid carbon fixation pathway. Transformation-based canonical correspondence analysis shows that MAG distribution corresponds to concentrations of aluminum, iron, nickel, dissolved inorganic carbon, and phosphate. While delocalized MAGs appear surface-derived, the subsurface chemolithoautotrophic, metabolic, and taxonomic landscape varies by the availability of minerals/metals and volcanically derived inorganic carbon. However, the WL pathway persists across all samples, suggesting that this versatile, energy-efficient carbon fixation pathway helps shape convergent margin subsurface ecosystems.
Collapse
Affiliation(s)
| | - Joy Buongiorno
- Division of Natural Sciences, Maryville College, Maryville, TN, USA
| | - Gerdhard L Jessen
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Center for Oceanographic Research COPAS COASTAL, Universidad de Concepción, Valdivia, Chile
| | | | | | - J Maarten de Moor
- National University of Costa Rica, Heredia, Costa Rica
- University of New Mexico, Albuquerque, NM, USA
| | | | - Peter H Barry
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Mustafa Yücel
- Institute of Marine Sciences, Middle East Technical University, Erdemli, Turkey
| | - Matteo Selci
- Department of Biology, University of Naples -Federico II, Naples, Italy
| | - Angela Cordone
- Department of Biology, University of Naples -Federico II, Naples, Italy
| | - Donato Giovannelli
- Department of Biology, University of Naples -Federico II, Naples, Italy
- Department of Marine and Coastal Science, Rutgers University, Rutgers, NJ, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- National Research Council - Institute of Marine Biological Resources and Biotechnologies - CNR-IRBIM, Ancona, Italy
| | | |
Collapse
|
13
|
Ayala-Muñoz D, Burgos WD, Sánchez-España J, Falagán C, Couradeau E, Macalady JL. Novel Microorganisms Contribute to Biosulfidogenesis in the Deep Layer of an Acidic Pit Lake. Front Bioeng Biotechnol 2022; 10:867321. [PMID: 35910036 PMCID: PMC9326234 DOI: 10.3389/fbioe.2022.867321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Cueva de la Mora is a permanently stratified acidic pit lake with extremely high concentrations of heavy metals at depth. In order to evaluate the potential for in situ sulfide production, we characterized the microbial community in the deep layer using metagenomics and metatranscriptomics. We retrieved 18 high quality metagenome-assembled genomes (MAGs) representing the most abundant populations. None of the MAGs were closely related to either cultured or non-cultured organisms from the Genome Taxonomy or NCBI databases (none with average nucleotide identity >95%). Despite oxygen concentrations that are consistently below detection in the deep layer, some archaeal and bacterial MAGs mapped transcripts of genes for sulfide oxidation coupled with oxygen reduction. Among these microaerophilic sulfide oxidizers, mixotrophic Thermoplasmatales archaea were the most numerous and represented 24% of the total community. Populations associated with the highest predicted in situ activity for sulfate reduction were affiliated with Actinobacteria, Chloroflexi, and Nitrospirae phyla, and together represented about 9% of the total community. These MAGs, in addition to a less abundant Proteobacteria MAG in the genus Desulfomonile, contained transcripts of genes in the Wood-Ljungdahl pathway. All MAGs had significant genetic potential for organic carbon oxidation. Our results indicate that novel acidophiles are contributing to biosulfidogenesis in the deep layer of Cueva de la Mora, and that in situ sulfide production is limited by organic carbon availability and sulfur oxidation.
Collapse
Affiliation(s)
- Diana Ayala-Muñoz
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, United States
- *Correspondence: Diana Ayala-Muñoz, ; Jennifer L. Macalady,
| | - William D. Burgos
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, United States
| | | | - Carmen Falagán
- School of Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Estelle Couradeau
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA, United States
| | - Jennifer L. Macalady
- Department of Geosciences, The Pennsylvania State University, University Park, PA, United States
- *Correspondence: Diana Ayala-Muñoz, ; Jennifer L. Macalady,
| |
Collapse
|
14
|
DeCastro ME, Escuder-Rodríguez JJ, Becerra M, Rodríguez-Belmonte E, González-Siso MI. Comparative Metagenomic Analysis of Two Hot Springs From Ourense (Northwestern Spain) and Others Worldwide. Front Microbiol 2021; 12:769065. [PMID: 34899652 PMCID: PMC8661477 DOI: 10.3389/fmicb.2021.769065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 01/12/2023] Open
Abstract
With their circumneutral pH and their moderate temperature (66 and 68°C, respectively), As Burgas and Muiño da Veiga are two important human-use hot springs, previously studied with traditional culture methods, but never explored with a metagenomic approach. In the present study, we have performed metagenomic sequence-based analyses to compare the taxonomic composition and functional potential of these hot springs. Proteobacteria, Deinococcus-Thermus, Firmicutes, Nitrospirae, and Aquificae are the dominant phyla in both geothermal springs, but there is a significant difference in the abundance of these phyla between As Burgas and Muiño da Veiga. Phylum Proteobacteria dominates As Burgas ecosystem while Aquificae is the most abundant phylum in Muiño da Veiga. Taxonomic and functional analyses reveal that the variability in water geochemistry might be shaping the differences in the microbial communities inhabiting these geothermal springs. The content in organic compounds of As Burgas water promotes the presence of heterotrophic populations of the genera Acidovorax and Thermus, whereas the sulfate-rich water of Muiño da Veiga favors the co-dominance of genera Sulfurihydrogenibium and Thermodesulfovibrio. Differences in ammonia concentration exert a selective pressure toward the growth of nitrogen-fixing bacteria such as Thermodesulfovibrio in Muiño da Veiga. Temperature and pH are two important factors shaping hot springs microbial communities as was determined by comparative analysis with other thermal springs.
Collapse
Affiliation(s)
| | | | | | | | - María-Isabel González-Siso
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, A Coruña, Spain
| |
Collapse
|
15
|
Chao YT, Lai SH, Chang MH, Chen CC, Lee WF, Chen JW, Hsu YC. A potential microbiological approach to the evaluation of earthquake-induced soil liquefaction. iScience 2021; 24:102984. [PMID: 34485866 PMCID: PMC8403730 DOI: 10.1016/j.isci.2021.102984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/19/2021] [Accepted: 08/11/2021] [Indexed: 01/23/2023] Open
Abstract
Earthquakes occur thousands of times every day around the world. They are naturally destructive seismic events and often result in soil liquefaction. Soil microbiota plays a vital role in soil environments and may serve as an effective indicator to assess soil liquefaction after earthquakes. This study aimed to detect the microbial community abundance and composition in soil samples of different depths. Soil samples were collected in Southern Taiwan immediately after the 2010 earthquake. Their physical characteristics were determined, and their microbial communities were analyzed through 16S amplicon sequencing. The results revealed that Nitrospirae phylum dominated in the liquefied layer. In particular, the genus HB118, dominant in the liquefied layer, was not detected at other soil depths or in the expelled liquefied soil. This finding not only provides valuable insights into changes in microbial community composition at different soil depths after earthquakes but also suggests a useful indicator for monitoring liquefied soil. This study characterized the microbial composition of liquefied soil after an earthquake Most abundant phylum Nitrospirae found in liquefied soil if 3 most abundant phyla removed HB118 spp is correlated with liquefied soil We set up the alternative monitoring methods of soil liquefaction after seismic events
Collapse
Affiliation(s)
- Ying Ting Chao
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan
| | - Sheng Hao Lai
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan
| | - Mei Hsun Chang
- Department of Civil Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Chun Chi Chen
- Department of Civil Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Wei Feng Lee
- Department of Civil Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Jing Wen Chen
- Department of Civil Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Yi Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan
| |
Collapse
|
16
|
Procaryotic Diversity and Hydrogenotrophic Methanogenesis in an Alkaline Spring (La Crouen, New Caledonia). Microorganisms 2021; 9:microorganisms9071360. [PMID: 34201651 PMCID: PMC8307142 DOI: 10.3390/microorganisms9071360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 01/01/2023] Open
Abstract
(1) Background: The geothermal spring of La Crouen (New Caledonia) discharges warm (42 °C) alkaline water (pH~9) enriched in dissolved nitrogen with traces of methane, but its microbial diversity has not yet been studied. (2) Methods: Cultivation-dependent and -independent methods (e.g., Illumina sequencing and quantitative PCR based on 16S rRNA gene) were used to describe the prokaryotic diversity of this spring. (3) Results: Prokaryotes were mainly represented by Proteobacteria (57% on average), followed by Cyanobacteria, Chlorofexi, and Candidatus Gracilibacteria (GN02/BD1-5) (each > 5%). Both potential aerobes and anaerobes, as well as mesophilic and thermophilic microorganisms, were identified. Some of them had previously been detected in continental hyperalkaline springs found in serpentinizing environments (The Cedars, Samail, Voltri, and Zambales ophiolites). Gammaproteobacteria, Ca. Gracilibacteria and Thermotogae were significantly more abundant in spring water than in sediments. Potential chemolithotrophs mainly included beta- and gammaproteobacterial genera of sulfate-reducers (Ca. Desulfobacillus), methylotrophs (Methyloversatilis), sulfur-oxidizers (Thiofaba, Thiovirga), or hydrogen-oxidizers (Hydrogenophaga). Methanogens (Methanobacteriales and Methanosarcinales) were the dominant Archaea, as found in serpentinization-driven and deep subsurface ecosystems. A novel alkaliphilic hydrogenotrophic methanogen (strain CAN) belonging to the genus Methanobacterium was isolated, suggesting that hydrogenotrophic methanogenesis occurs at La Crouen.
Collapse
|
17
|
Lukina AP, Karnachuk OV. A Novel Medium for Cultivation of “Desulforudis audaxviator”. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721030073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
18
|
Vogel MA, Mason OU, Miller TE. Composition of seagrass phyllosphere microbial communities suggests rapid environmental regulation of community structure. FEMS Microbiol Ecol 2021; 97:6119907. [PMID: 33493257 DOI: 10.1093/femsec/fiab013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/22/2021] [Indexed: 01/04/2023] Open
Abstract
Recent studies have revealed that seagrass blade surfaces, also known as the phyllosphere, are rich habitats for microbes; however, the primary drivers of composition and structure in these microbial communities are largely unknown. This study utilized a reciprocal transplant approach between two sites with different environmental conditions combined with 16S rRNA gene sequencing (iTag) to examine the relative influence of environmental conditions and host plant on phyllosphere community composition of the seagrass Thalassia testudinum. After 30 days, identity of phyllosphere microbial community members was more similar within the transplant sites than between despite differences in the source of host plant. Additionally, the diversity and evenness of these communities was significantly different between the two sites. These results indicated that local environmental conditions can be a primary driver in structuring seagrass phyllosphere microbial communities over relatively short time scales. Composition of microbial community members in this study also deviated from those in previous seagrass phyllosphere studies with a higher representation of candidate bacterial phyla and archaea than previously observed. The capacity for seagrass phyllosphere microbial communities to shift dramatically with environmental conditions, including ecosystem perturbations, could significantly affect seagrass-microbe interactions in ways that may influence the health of the seagrass host.
Collapse
Affiliation(s)
- Margaret A Vogel
- Florida State University, Department of Biological Science, 319 Stadium Drive, Tallahassee, FL 32306, USA
| | - Olivia U Mason
- Florida State University, Department of Earth, Ocean, and Atmospheric Science, 1011 Academic Way, Tallahassee, FL 32306, USA
| | - Thomas E Miller
- Florida State University, Department of Biological Science, 319 Stadium Drive, Tallahassee, FL 32306, USA
| |
Collapse
|
19
|
Environmental Impact of Sulfate-Reducing Bacteria, Their Role in Intestinal Bowel Diseases, and Possible Control by Bacteriophages. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020735] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sulfate-reducing bacteria (SRB) represent a group of prokaryotic microorganisms that are widely spread in the anoxic environment (seabed, riverbed and lakebed sediments, mud, intestinal tract of humans and animals, metal surfaces). SRB species also have an impact on processes occurring in the intestinal tract of humans and animals, including the connections between their presence and inflammatory bowel disease (IBD). Since these SRB can develop antimicrobial resistance toward the drugs, including antibiotics and antimicrobial agents, bacteriophages could represent an additional potential effective treatment. The main objectives of the review were as follows: (a) to review SRB (both from intestinal and environmental sources) regarding their role in intestinal diseases as well as their influence in environmental processes; and (b) to review, according to literature data, the influence of bacteriophages on SRB and their possible applications. Since SRB can have a significant adverse influence on industry as well as on humans and animals health, phage treatment of SRB can be seen as a possible effective method of SRB inhibition. However, there are relatively few studies concerning the influence of phages on SRB strains. Siphoviridae and Myoviridae families represent the main sulfide-producing bacteria phages. The most recent studies induced, by UV light, bacteriophages from Desulfovibrio vulgaris NCIMB 8303 and Desulfovibrio desulfuricans ATCC 13541. Notwithstanding costly and medically significant negative impacts of phages on SRB, they have been the subject of relatively few studies. The current search for alternatives to chemical biocides and antibiotics has led to the renewed interest in phages as antibacterial biocontrol and therapeutic agents, including their use against SRB. Hence, phages might represent a promising treatment against SRB in the future.
Collapse
|
20
|
Karnachuk OV, Lukina AP, Kadnikov VV, Sherbakova VA, Beletsky AV, Mardanov AV, Ravin NV. Targeted isolation based on metagenome‐assembled genomes reveals a phylogenetically distinct group of thermophilic spirochetes from deep biosphere. Environ Microbiol 2020; 23:3585-3598. [DOI: 10.1111/1462-2920.15218] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 12/22/2022]
Affiliation(s)
| | | | - Vitaly V. Kadnikov
- Institute of Bioengineering Research Center of Biotechnology of the Russian Academy of Sciences Moscow 119071 Russia
| | - Viktoria A. Sherbakova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms Federal Research Center ‘Pushchino Scientific Center for Biological Research, Russian Academy of Sciences’ Pushchino Moscow 142290 Russia
| | - Alexey V. Beletsky
- Institute of Bioengineering Research Center of Biotechnology of the Russian Academy of Sciences Moscow 119071 Russia
| | - Andrey V. Mardanov
- Institute of Bioengineering Research Center of Biotechnology of the Russian Academy of Sciences Moscow 119071 Russia
| | - Nikolai V. Ravin
- Institute of Bioengineering Research Center of Biotechnology of the Russian Academy of Sciences Moscow 119071 Russia
| |
Collapse
|
21
|
Umezawa K, Kojima H, Kato Y, Fukui M. Disproportionation of inorganic sulfur compounds by a novel autotrophic bacterium belonging to Nitrospirota. Syst Appl Microbiol 2020; 43:126110. [DOI: 10.1016/j.syapm.2020.126110] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/21/2022]
|
22
|
Mardanov AV, Kadnikov VV, Beletsky AV, Ravin NV. Sulfur and Methane-Oxidizing Microbial Community in a Terrestrial Mud Volcano Revealed by Metagenomics. Microorganisms 2020; 8:microorganisms8091333. [PMID: 32878336 PMCID: PMC7565565 DOI: 10.3390/microorganisms8091333] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022] Open
Abstract
Mud volcanoes are prominent geological structures where fluids and gases from the deep subsurface are discharged along a fracture network in tectonically active regions. Microbial communities responsible for sulfur and methane cycling and organic transformation in terrestrial mud volcanoes remain poorly characterized. Using a metagenomics approach, we analyzed the microbial community of bubbling fluids retrieved from an active mud volcano in eastern Crimea. The microbial community was dominated by chemolithoautotrophic Campylobacterota and Gammaproteobacteria, which are capable of sulfur oxidation coupled to aerobic and anaerobic respiration. Methane oxidation could be enabled by aerobic Methylococcales bacteria and anaerobic methanotrophic archaea (ANME), while methanogens were nearly absent. The ANME community was dominated by a novel species of Ca. Methanoperedenaceae that lacked nitrate reductase and probably couple methane oxidation to the reduction of metal oxides. Analysis of two Ca. Bathyarchaeota genomes revealed the lack of mcr genes and predicted that they could grow on fatty acids, sugars, and proteinaceous substrates performing fermentation. Thermophilic sulfate reducers indigenous to the deep subsurface, Thermodesulfovibrionales (Nitrospirae) and Ca. Desulforudis (Firmicutes), were found in minor amounts. Overall, the results obtained suggest that reduced compounds delivered from the deep subsurface support the development of autotrophic microorganisms using various electron acceptors for respiration.
Collapse
|
23
|
Bellec L, Cambon-Bonavita MA, Durand L, Aube J, Gayet N, Sandulli R, Brandily C, Zeppilli D. Microbial Communities of the Shallow-Water Hydrothermal Vent Near Naples, Italy, and Chemosynthetic Symbionts Associated With a Free-Living Marine Nematode. Front Microbiol 2020; 11:2023. [PMID: 32973733 PMCID: PMC7469538 DOI: 10.3389/fmicb.2020.02023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/30/2020] [Indexed: 11/17/2022] Open
Abstract
Shallow-water hydrothermal vents are widespread, especially in the Mediterranean Sea, owing to the active volcanism of the area. Apart free microbial communities’ investigations, few biological studies have been leaded yet. Investigations of microbial communities associated with Nematoda, an ecologically important group in sediments, can help to improve our overall understanding of these ecosystems. We used a multidisciplinary-approach, based on microscopic observations (scanning electron microscopy: SEM and Fluorescence In Situ Hybridization: FISH) coupled with a molecular diversity analysis using metabarcoding, based on the 16S rRNA gene (V3-V4 region), to characterize the bacterial community of a free-living marine nematode and its environment, the shallow hydrothermal vent near Naples (Italy). Observations of living bacteria in the intestine (FISH), molecular and phylogenetic analyses showed that this species of nematode harbors its own bacterial community, distinct from the surrounding sediment and water. Metabarcoding results revealed the specific microbiomes of the sediment from three sites of this hydrothermal area to be composed mainly of sulfur oxidizing and reducing related bacteria.
Collapse
Affiliation(s)
- Laure Bellec
- Ifremer, Centre Brest, REM/EEP/LEP, ZI de la Pointe du Diable, CS10070, Plouzané, France.,Laboratoire de Microbiologie des Environnements Extrêmes, Ifremer, CNRS, Univ Brest, Plouzané, France.,EPOC, UMR 5805, University of Bordeaux, Arcachon, France
| | | | - Lucile Durand
- Laboratoire de Microbiologie des Environnements Extrêmes, Ifremer, CNRS, Univ Brest, Plouzané, France
| | - Johanne Aube
- Laboratoire de Microbiologie des Environnements Extrêmes, Ifremer, CNRS, Univ Brest, Plouzané, France
| | - Nicolas Gayet
- Ifremer, Centre Brest, REM/EEP/LEP, ZI de la Pointe du Diable, CS10070, Plouzané, France
| | - Roberto Sandulli
- Laboratory of Marine Ecology, Department of Science and Technology, University of Naples "Parthenope," Naples, Italy
| | - Christophe Brandily
- Ifremer, Centre Brest, REM/EEP/LEP, ZI de la Pointe du Diable, CS10070, Plouzané, France
| | - Daniela Zeppilli
- Ifremer, Centre Brest, REM/EEP/LEP, ZI de la Pointe du Diable, CS10070, Plouzané, France
| |
Collapse
|
24
|
Integrating Hydrogeological and Microbiological Data and Modelling to Characterize the Hydraulic Features and Behaviour of Coastal Carbonate Aquifers: A Case in Western Cuba. WATER 2019. [DOI: 10.3390/w11101989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Carbonate aquifers are the primary source of freshwater in Cuba. Unfortunately, coastal groundwater is often contaminated by seawater intrusion. The main aim of the present study was to test the efficacy of an experimental modelling approach, ranging from hydrogeology/geomorphology to microbiology, to better characterise both the hydraulic features and behaviour of a coastal carbonate aquifer and acquire useful information to prevent groundwater salinization. The interdisciplinary approach was an effective tool in order to understand (i) the hydraulic role played by some fault zones; (ii) the influence of discontinuous heterogeneities on groundwater flow and saltwater wedge shape; (iii) mixing processes between different water bodies (groundwater, surface water, seawater); (iv) the role of karst conduits in influencing the step-like halocline within the mixing zone between fresh groundwater and seawater.
Collapse
|
25
|
Domestication of previously uncultivated Candidatus Desulforudis audaxviator from a deep aquifer in Siberia sheds light on its physiology and evolution. ISME JOURNAL 2019; 13:1947-1959. [PMID: 30899075 DOI: 10.1038/s41396-019-0402-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/07/2019] [Accepted: 02/28/2019] [Indexed: 11/09/2022]
Abstract
An enigmatic uncultured member of Firmicutes, Candidatus Desulforudis audaxviator (CDA), is known by its genome retrieved from the deep gold mine in South Africa, where it formed a single-species ecosystem fuelled by hydrogen from water radiolysis. It was believed that in situ conditions CDA relied on scarce energy supply and did not divide for hundreds to thousand years. We have isolated CDA strain BYF from a 2-km-deep aquifer in Western Siberia and obtained a laboratory culture growing with a doubling time of 28.5 h. BYF uses not only H2 but also various organic electron donors for sulfate respiration. Growth required elemental iron, and ferrous iron did not substitute for it. A complex intracellular organization included gas vesicles, internal membranes, and electron-dense structures enriched in phosphorus, iron, and calcium. Genome comparison of BYF with the South African CDA revealed minimal differences mostly related to mobile elements and prophage insertions. Two genomes harbored <800 single-nucleotide polymorphisms and had nearly identical CRISPR loci. We suggest that spores with the gas vesicles may facilitate global distribution of CDA followed by colonization of suitable subsurface environments. Alternatively, a slow evolution rate in the deep subsurface could result in high genetic similarity of CDA populations at two sites spatially separated for hundreds of millions of years.
Collapse
|
26
|
Bukhtiyarova PA, Antsiferov DV, Brasseur G, Avakyan MR, Frank YA, Ikkert OP, Pimenov NV, Tuovinen OH, Karnachuk OV. Isolation, characterization, and genome insights into an anaerobic sulfidogenic Tissierella bacterium from Cu-bearing coins. Anaerobe 2019; 56:66-77. [PMID: 30776428 DOI: 10.1016/j.anaerobe.2019.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/27/2019] [Accepted: 02/14/2019] [Indexed: 01/19/2023]
Abstract
Recent reports on antimicrobial effects of metallic Cu prompted this study of anaerobic microbial communities on copper surfaces. Widely circulating copper-containing coinage was used as a potential source for microorganisms that had had human contact and were tolerant to copper. This study reports on the isolation, characterization, and genome of an anaerobic sulfidogenic Tissierella sp. P1from copper-containing brass coinage. Dissimilatory (bi)sulfite reductase dsrAB present in strain P1 genome and the visible absorbance around 630 nm in the cells suggested the presence of a desulfoviridin-type protein. However, the sulfate reduction rate measurements with 35SO42- did not confirm the dissimilatory sulfate reduction by the strain. The P1 genome lacks APS reductase, sulfate adenylyltransferase, DsrC, and DsrMK necessary for dissimilatory sulfate reduction. The isolate produced up to 0.79 mM H2S during growth, possibly due to cysteine synthase (CysK) and/or cysteine desulfhydrase (CdsH) activities, encoded in the genome. The strain can tolerate up to 2.4 mM Cu2+(150 mg/l) in liquid medium, shows affinity to metallic copper, and can survive on copper-containing coins up to three days under ambient air and dry conditions. The genome sequence of strain P1 contained cutC, encoding a copper resistance protein, which distinguishes it from all other Tissierella strains with published genomes.
Collapse
Affiliation(s)
- Polina A Bukhtiyarova
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Tomsk, Russia
| | - Dmitry V Antsiferov
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Tomsk, Russia
| | - Gael Brasseur
- Laboratoire de Chimie Bactérienne, CNRS, Mediterranean Institute of Microbiology, Marseille, France
| | - Marat R Avakyan
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Tomsk, Russia
| | - Yulia A Frank
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Tomsk, Russia
| | - Olga P Ikkert
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Tomsk, Russia
| | - Nikolay V Pimenov
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| | - Olli H Tuovinen
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
| | - Olga V Karnachuk
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Tomsk, Russia.
| |
Collapse
|
27
|
Fortney NW, He S, Converse BJ, Boyd ES, Roden EE. Investigating the Composition and Metabolic Potential of Microbial Communities in Chocolate Pots Hot Springs. Front Microbiol 2018; 9:2075. [PMID: 30245673 PMCID: PMC6137239 DOI: 10.3389/fmicb.2018.02075] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/14/2018] [Indexed: 01/14/2023] Open
Abstract
Iron (Fe) redox-based metabolisms likely supported life on early Earth and may support life on other Fe-rich rocky planets such as Mars. Modern systems that support active Fe redox cycling such as Chocolate Pots (CP) hot springs provide insight into how life could have functioned in such environments. Previous research demonstrated that Fe- and Si-rich and slightly acidic to circumneutral-pH springs at CP host active dissimilatory Fe(III) reducing microorganisms. However, the abundance and distribution of Fe(III)-reducing communities at CP is not well-understood, especially as they exist in situ. In addition, the potential for direct Fe(II) oxidation by lithotrophs in CP springs is understudied, in particular when compared to indirect oxidation promoted by oxygen producing Cyanobacteria. Here, a culture-independent approach, including 16S rRNA gene amplicon and shotgun metagenomic sequencing, was used to determine the distribution of putative Fe cycling microorganisms in vent fluids and sediment cores collected along the outflow channel of CP. Metagenome-assembled genomes (MAGs) of organisms native to sediment and planktonic microbial communities were screened for extracellular electron transfer (EET) systems putatively involved in Fe redox cycling and for CO2 fixation pathways. Abundant MAGs containing putative EET systems were identified as part of the sediment community at locations where Fe(III) reduction activity has previously been documented. MAGs encoding both putative EET systems and CO2 fixation pathways, inferred to be FeOB, were also present, but were less abundant components of the communities. These results suggest that the majority of the Fe(III) oxides that support in situ Fe(III) reduction are derived from abiotic oxidation. This study provides new insights into the interplay between Fe redox cycling and CO2 fixation in sustaining chemotrophic communities in CP with attendant implications for other neutral-pH hot springs.
Collapse
Affiliation(s)
- Nathaniel W. Fortney
- Department of Geoscience, NASA Astrobiology Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Shaomei He
- Department of Geoscience, NASA Astrobiology Institute, University of Wisconsin-Madison, Madison, WI, United States
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Brandon J. Converse
- Department of Geoscience, NASA Astrobiology Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Eric S. Boyd
- Department of Microbiology and Immunology, NASA Astrobiology Institute, Montana State University, Bozeman, MT, United States
| | - Eric E. Roden
- Department of Geoscience, NASA Astrobiology Institute, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
28
|
Kadnikov VV, Mardanov AV, Beletsky AV, Banks D, Pimenov NV, Frank YA, Karnachuk OV, Ravin NV. A metagenomic window into the 2-km-deep terrestrial subsurface aquifer revealed multiple pathways of organic matter decomposition. FEMS Microbiol Ecol 2018; 94:5067867. [DOI: 10.1093/femsec/fiy152] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/06/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Vitaly V Kadnikov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prosp. 33-2, Moscow, 119071, Russia
| | - Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prosp. 33-2, Moscow, 119071, Russia
| | - Alexey V Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prosp. 33-2, Moscow, 119071, Russia
| | - David Banks
- School of Engineering, Systems Power & Energy, Glasgow University, Glasgow G12 8QQ, and Holymoor Consultancy Ltd., 360 Ashgate Road, Chesterfield, Derbyshire S40 4BW, UK
| | - Nikolay V Pimenov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prosp 33-2, Moscow, 119071, Russia
| | - Yulia A Frank
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Lenina prosp. 35, Tomsk, 634050, Russia
| | - Olga V Karnachuk
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Lenina prosp. 35, Tomsk, 634050, Russia
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prosp. 33-2, Moscow, 119071, Russia
| |
Collapse
|
29
|
Rice Paddy Nitrospirae Carry and Express Genes Related to Sulfate Respiration: Proposal of the New Genus "Candidatus Sulfobium". Appl Environ Microbiol 2018; 84:AEM.02224-17. [PMID: 29247059 PMCID: PMC5812927 DOI: 10.1128/aem.02224-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 12/08/2017] [Indexed: 01/16/2023] Open
Abstract
Nitrospirae spp. distantly related to thermophilic, sulfate-reducing Thermodesulfovibrio species are regularly observed in environmental surveys of anoxic marine and freshwater habitats. Here we present a metaproteogenomic analysis of Nitrospirae bacterium Nbg-4 as a representative of this clade. Its genome was assembled from replicated metagenomes of rice paddy soil that was used to grow rice in the presence and absence of gypsum (CaSO4·2H2O). Nbg-4 encoded the full pathway of dissimilatory sulfate reduction and showed expression of this pathway in gypsum-amended anoxic bulk soil as revealed by parallel metaproteomics. In addition, Nbg-4 encoded the full pathway of dissimilatory nitrate reduction to ammonia (DNRA), with expression of its first step being detected in bulk soil without gypsum amendment. The relative abundances of Nbg-4 were similar under both treatments, indicating that Nbg-4 maintained stable populations while shifting its energy metabolism. Whether Nbg-4 is a strict sulfate reducer or can couple sulfur oxidation to DNRA by operating the pathway of dissimilatory sulfate reduction in reverse could not be resolved. Further genome reconstruction revealed the potential to utilize butyrate, formate, H2, or acetate as an electron donor; the Wood-Ljungdahl pathway was expressed under both treatments. Comparison to publicly available Nitrospirae genome bins revealed the pathway for dissimilatory sulfate reduction also in related Nitrospirae recovered from groundwater. Subsequent phylogenomics showed that such microorganisms form a novel genus within the Nitrospirae, with Nbg-4 as a representative species. Based on the widespread occurrence of this novel genus, we propose for Nbg-4 the name “Candidatus Sulfobium mesophilum,” gen. nov., sp. nov. IMPORTANCE Rice paddies are indispensable for the food supply but are a major source of the greenhouse gas methane. If it were not counterbalanced by cryptic sulfur cycling, methane emission from rice paddy fields would be even higher. However, the microorganisms involved in this sulfur cycling are little understood. By using an environmental systems biology approach with Italian rice paddy soil, we could retrieve the population genome of a novel member of the phylum Nitrospirae. This microorganism encoded the full pathway of dissimilatory sulfate reduction and expressed it in anoxic paddy soil under sulfate-enriched conditions. Phylogenomics and comparison to the results of environmental surveys showed that such microorganisms are actually widespread in freshwater and marine environments. At the same time, they represent an undiscovered genus within the little-explored phylum Nitrospirae. Our results will be important for the design of enrichment strategies and postgenomic studies to further understanding of the contribution of these novel Nitrospirae spp. to the global sulfur cycle.
Collapse
|
30
|
Arshad A, Dalcin Martins P, Frank J, Jetten MSM, Op den Camp HJM, Welte CU. Mimicking microbial interactions under nitrate-reducing conditions in an anoxic bioreactor: enrichment of novel Nitrospirae bacteria distantly related to Thermodesulfovibrio. Environ Microbiol 2017; 19:4965-4977. [PMID: 29105249 DOI: 10.1111/1462-2920.13977] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/26/2017] [Accepted: 10/28/2017] [Indexed: 11/29/2022]
Abstract
Microorganisms are main drivers of the sulfur, nitrogen and carbon biogeochemical cycles. These elemental cycles are interconnected by the activity of different guilds in sediments or wastewater treatment systems. Here, we investigated a nitrate-reducing microbial community in a laboratory-scale bioreactor model that closely mimicked estuary or brackish sediment conditions. The bioreactor simultaneously consumed sulfide, methane and ammonium at the expense of nitrate. Ammonium oxidation occurred solely by the activity of anammox bacteria identified as Candidatus Scalindua brodae and Ca. Kuenenia stuttgartiensis. Fifty-three percent of methane oxidation was catalyzed by archaea affiliated to Ca. Methanoperedens and 47% by Ca. Methylomirabilis bacteria. Sulfide oxidation was mainly shared between two proteobacterial groups. Interestingly, competition for nitrate did not lead to exclusion of one particular group. Metagenomic analysis showed that the most abundant taxonomic group was distantly related to Thermodesulfovibrio sp. (87-89% 16S rRNA gene identity, 52-54% average amino acid identity), representing a new family within the Nitrospirae phylum. A high quality draft genome of the new species was recovered, and analysis showed high metabolic versatility. Related microbial groups are found in diverse environments with sulfur, nitrogen and methane cycling, indicating that these novel Nitrospirae bacteria might contribute to biogeochemical cycling in natural habitats.
Collapse
Affiliation(s)
- Arslan Arshad
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | | | - Jeroen Frank
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands.,Soehngen Institute for Anaerobic Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands.,Soehngen Institute for Anaerobic Microbiology, Radboud University, Nijmegen, The Netherlands.,Netherlands Earth Systems Science Center, Utrecht University, Utrecht, The Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands.,Soehngen Institute for Anaerobic Microbiology, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
31
|
Thiel V, Hügler M, Ward DM, Bryant DA. The Dark Side of the Mushroom Spring Microbial Mat: Life in the Shadow of Chlorophototrophs. II. Metabolic Functions of Abundant Community Members Predicted from Metagenomic Analyses. Front Microbiol 2017. [PMID: 28634470 PMCID: PMC5459899 DOI: 10.3389/fmicb.2017.00943] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial mat communities in the effluent channels of Octopus and Mushroom Springs within the Lower Geyser Basin of Yellowstone National Park have been extensively characterized. Previous studies have focused on the chlorophototrophic organisms of the phyla Cyanobacteria and Chloroflexi. However, the diversity and metabolic functions of the other portion of the community in the microoxic/anoxic region of the mat are poorly understood. We recently described the diverse but extremely uneven microbial assemblage in the undermat of Mushroom Spring based on 16S rRNA amplicon sequences, which was dominated by Roseiflexus members, filamentous anoxygenic chlorophototrophs. In this study, we analyzed the orange-colored undermat portion of the community of Mushroom Spring mats in a genome-centric approach and discuss the metabolic potentials of the major members. Metagenome binning recovered partial genomes of all abundant community members, ranging in completeness from ~28 to 96%, and allowed affiliation of function with taxonomic identity even for representatives of novel and Candidate phyla. Less complete metagenomic bins correlated with high microdiversity. The undermat portion of the community was found to be a mixture of phototrophic and chemotrophic organisms, which use bicarbonate as well as organic carbon sources derived from different cell components and fermentation products. The presence of rhodopsin genes in many taxa strengthens the hypothesis that light energy is of major importance. Evidence for the usage of all four bacterial carbon fixation pathways was found in the metagenome. Nitrogen fixation appears to be limited to Synechococcus spp. in the upper mat layer and Thermodesulfovibrio sp. in the undermat, and nitrate/nitrite metabolism was limited. A closed sulfur cycle is indicated by biological sulfate reduction combined with the presence of genes for sulfide oxidation mainly in phototrophs. Finally, a variety of undermat microorganisms have genes for hydrogen production and consumption, which leads to the observed diel hydrogen concentration patterns.
Collapse
Affiliation(s)
- Vera Thiel
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University ParkPA, United States
| | - Michael Hügler
- Department Microbiology and Molecular Biology, DVGW-Technologiezentrum WasserKarlsruhe, Germany
| | - David M Ward
- Department of Land Resources and Environmental Sciences, Montana State UniversityBozeman, MT, United States
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University ParkPA, United States.,Department of Chemistry and Biochemistry, Montana State UniversityBozeman, MT, United States
| |
Collapse
|