1
|
Andrade CFDS, Souza MN, Dantas IIDS, Fonseca ASK, Ikuta N, Kipper D, Lunge VR. Salmonella enterica Enteritidis and Heidelberg serotype-specific molecular detection in poultry samples by a rapid isothermal method. Br Poult Sci 2025; 66:367-373. [PMID: 39527500 DOI: 10.1080/00071668.2024.2419623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/11/2024] [Indexed: 11/16/2024]
Abstract
1. Loop-mediated isothermal amplification (LAMP) assays were developed to detect Salmonella enterica subspecies enterica serotypes Enteritidis and Heidelberg in poultry farms. These serotype-specific methods were evaluated in comparison with PCR in the analysis of different Salmonella spp. serotypes from a culture collection and poultry farm samples.2. The results demonstrated the specific amplification of the genetic targets safA in all S. Enteritidis (n = 10) and ACF69659 in all S. Heidelberg (n = 36) isolates from the culture collection. The remaining isolates from other Salmonella spp. serotypes (n = 84) and bacterial species (n = 8) were negative in both LAMP assays.3. The methods detected DNAs from S. Enteritidis and S. Heidelberg after a single-step pre-enrichment in buffered peptone water of the poultry samples, which agreed with previously developed PCR methods to detect these same two serotypes.4. In conclusion, LAMP assays were useful for rapid serotype-specific detection, being suitable for surveillance purposes in resource-limited environments such as poultry farms.
Collapse
Affiliation(s)
- C F D S Andrade
- Molecular Diagnostics Laboratory, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - M N Souza
- Molecular Diagnostics Laboratory, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - I I D S Dantas
- Molecular Diagnostics Laboratory, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | | | - N Ikuta
- Simbios Biotecnologia, Cachoeirinha, Brazil
| | - D Kipper
- Simbios Biotecnologia, Cachoeirinha, Brazil
| | - V R Lunge
- Molecular Diagnostics Laboratory, Lutheran University of Brazil (ULBRA), Canoas, Brazil
- Simbios Biotecnologia, Cachoeirinha, Brazil
| |
Collapse
|
2
|
Queen J, Cing Z, Minsky H, Nandi A, Southward T, Ferri J, McMann M, Iyadorai T, Vadivelu J, Roslani A, Loke MF, Wanyiri J, White JR, Drewes JL, Sears CL. Fusobacterium nucleatum is enriched in invasive biofilms in colorectal cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.30.630810. [PMID: 39803475 PMCID: PMC11722383 DOI: 10.1101/2024.12.30.630810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Fusobacterium nucleatum is an oral bacterium known to colonize colorectal tumors, where it is thought to play an important role in cancer progression. Recent advances in sequencing and phenotyping of F. nucleatum have revealed important differences at the subspecies level, but whether these differences impact the overall tumor ecology, and tumorigenesis itself, remain poorly understood. In this study, we sought to characterize Fusobacteria in the tumor microbiome of a cohort of individuals with CRC through a combination of molecular, spatial, and microbiologic analyses. We assessed for relative abundance of F. nucleatum in tumors compared to paired normal tissue, and correlated abundance with clinical and pathological features. We demonstrate striking enrichment of F. nucleatum and the recently discovered subspecies animalis clade 2 (Fna C2) specifically in colon tumors that have biofilms, highlighting the importance of complex community partnerships in the pathogenesis of this important organism.
Collapse
Affiliation(s)
- Jessica Queen
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zam Cing
- University of Maryland Baltimore County, Baltimore, MD, USA
| | - Hana Minsky
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Asmita Nandi
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | - Madison McMann
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | - Julia L Drewes
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cynthia L Sears
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Eser E, Felton VA, Drolia R, Bhunia AK. Salmonella Detection in Food Using a HEK-hTLR5 Reporter Cell-Based Sensor. BIOSENSORS 2024; 14:444. [PMID: 39329819 PMCID: PMC11430776 DOI: 10.3390/bios14090444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/31/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024]
Abstract
The development of a rapid, sensitive, specific method for detecting foodborne pathogens is paramount for supplying safe food to enhance public health safety. Despite the significant improvement in pathogen detection methods, key issues are still associated with rapid methods, such as distinguishing living cells from dead, the pathogenic potential or health risk of the analyte at the time of consumption, the detection limit, and the sample-to-result. Mammalian cell-based assays analyze pathogens' interaction with host cells and are responsive only to live pathogens or active toxins. In this study, a human embryonic kidney (HEK293) cell line expressing Toll-Like Receptor 5 (TLR-5) and chromogenic reporter system (HEK dual hTLR5) was used for the detection of viable Salmonella in a 96-well tissue culture plate. This cell line responds to low concentrations of TLR5 agonist flagellin. Stimulation of TLR5 ligand activates nuclear factor-kB (NF-κB)-linked alkaline phosphatase (AP-1) signaling cascade inducing the production of secreted embryonic alkaline phosphatase (SEAP). With the addition of a ρ-nitrophenyl phosphate as a substrate, a colored end product representing a positive signal is quantified. The assay's specificity was validated with the top 20 Salmonella enterica serovars and 19 non-Salmonella spp. The performance of the assay was also validated with spiked food samples. The total detection time (sample-to-result), including shortened pre-enrichment (4 h) and selective enrichment (4 h) steps with artificially inoculated outbreak-implicated food samples (chicken, peanut kernel, peanut butter, black pepper, mayonnaise, and peach), was 15 h when inoculated at 1-100 CFU/25 g sample. These results show the potential of HEK-DualTM hTLR5 cell-based functional biosensors for the rapid screening of Salmonella.
Collapse
Affiliation(s)
- Esma Eser
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Department of Food Engineering, Faculty of Engineering, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Victoria A Felton
- Molecular and Cellular Microbiology Laboratory, Department of Biological Science, Old Dominion University, Norfolk, VA 23529, USA
| | - Rishi Drolia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Molecular and Cellular Microbiology Laboratory, Department of Biological Science, Old Dominion University, Norfolk, VA 23529, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
- Center for Bioelectronics, Old Dominion University, Norfolk, VA 23508, USA
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Khasanah H, Kusbianto DE, Purnamasari L, Cruz JFD, Widianingrum DC, Hwang SG. Modulation of chicken gut microbiota for enhanced productivity and health: A review. Vet World 2024; 17:1073-1083. [PMID: 38911084 PMCID: PMC11188898 DOI: 10.14202/vetworld.2024.1073-1083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/22/2024] [Indexed: 06/25/2024] Open
Abstract
Microbiota in the digestive tract has become an interesting topic for researchers in recent years. The profile of chicken digestive tract microbiota and its relationship with health and production efficiency have become basic data for modulating the diversity and abundance of the digestive tract microbiota. This article reviews the techniques used to analyze the diversity, role, and function of the gastrointestinal microbiota and the mechanisms by which they are modulated. The gut microbiota plays an important role in animal production, especially during feed digestion and animal health, because it interacts with the host against pathogens. Feed modulation can be a strategy to modulate gut composition and diversity to increase production efficiency by improving growth conditions.
Collapse
Affiliation(s)
- Himmatul Khasanah
- Study Program of Animal Husbandry University of Jember, Jember 68121, Indonesia
- Applied Molecular and Microbial Biotechnology (AM2B) Research Group, University of Jember, Jawa Timur, 68121, Indonesia
| | - Dwi E. Kusbianto
- Study Program of Agricultural Science, University of Jember, Jember 68121, Indonesia
| | - Listya Purnamasari
- Study Program of Animal Husbandry University of Jember, Jember 68121, Indonesia
- School of Animal Life Convergence Science, Hankyong National University, Anseong 17579, Republic of Korea
| | - Joseph F. dela Cruz
- Department of Basic Veterinary Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, Los Baños-4031, Philippines
| | - Desy C. Widianingrum
- Study Program of Animal Husbandry University of Jember, Jember 68121, Indonesia
- Applied Molecular and Microbial Biotechnology (AM2B) Research Group, University of Jember, Jawa Timur, 68121, Indonesia
| | - Seong Gu Hwang
- School of Animal Life Convergence Science, Hankyong National University, Anseong 17579, Republic of Korea
| |
Collapse
|
5
|
Waktole H, Ayele Y, Ayalkibet Y, Teshome T, Muluneh T, Ayane S, Borena BM, Abayneh T, Deresse G, Asefa Z, Eguale T, Amenu K, Ashenafi H, Antonissen G. Prevalence, Molecular Detection, and Antimicrobial Resistance of Salmonella Isolates from Poultry Farms across Central Ethiopia: A Cross-Sectional Study in Urban and Peri-Urban Areas. Microorganisms 2024; 12:767. [PMID: 38674711 PMCID: PMC11051739 DOI: 10.3390/microorganisms12040767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
A cross-sectional study was conducted to assess the prevalence, molecular detection, and antimicrobial resistance of Salmonella isolates within 162 poultry farms in selected urban and peri-urban areas of central Ethiopia. A total of 1515 samples, including cloacal swabs (n = 763), fresh fecal droppings (n = 188), litter (n = 188), feed (n = 188), and water (n = 188), were bacteriologically tested. The molecular detection of some culture-positive isolates was performed via polymerase chain reaction (PCR) by targeting spy and sdfl genes for Salmonella Typhimurium and Salmonella Enteritidis, respectively. Risk factors for the occurrence of the bacterial isolates were assessed. Antimicrobial susceptibility testing of PCR-confirmed Salmonella isolates was conducted using 12 antibiotics. In this study, it was observed that 50.6% of the farms were positive for Salmonella. The overall sample-level prevalence of Salmonella was 14.4%. Among the analyzed risk factors, the type of production, breed, and sample type demonstrated a statistically significant association (p < 0.05) with the bacteriological prevalence of Salmonella. The PCR test disclosed that 45.5% (15/33) and 23.3% (10/43) of the isolates were positive for genes of Salmonella Typhimurium and Salmonella Enteritidis, respectively. The antimicrobial susceptibility test disclosed multi-drug resistance to ten of the tested antibiotics that belong to different classes. Substantial isolation of Salmonella Typhimurium and Salmonella Enteritidis in poultry and on poultry farms, along with the existence of multi-drug resistant isolates, poses an alarming risk of zoonotic and food safety issues. Hence, routine flock testing, farm surveillance, biosecurity intervention, stringent antimicrobial use regulations, and policy support for the sector are highly needed.
Collapse
Affiliation(s)
- Hika Waktole
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
- Department of Microbiology, Immunology and Veterinary Public Health, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu P.O. Box 34, Ethiopia; (Y.A.); (Y.A.); (K.A.)
| | - Yonas Ayele
- Department of Microbiology, Immunology and Veterinary Public Health, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu P.O. Box 34, Ethiopia; (Y.A.); (Y.A.); (K.A.)
| | - Yamlaksira Ayalkibet
- Department of Microbiology, Immunology and Veterinary Public Health, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu P.O. Box 34, Ethiopia; (Y.A.); (Y.A.); (K.A.)
| | - Tsedale Teshome
- Department of Clinical Studies, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu P.O. Box 34, Ethiopia; (T.T.); (Z.A.)
| | - Tsedal Muluneh
- Department of Animal Production Studies, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu P.O. Box 34, Ethiopia;
| | - Sisay Ayane
- Department of Veterinary Science, School of Veterinary Medicine, Ambo University, Ambo P.O. Box 19, Ethiopia; (S.A.); (B.M.B.)
| | - Bizunesh Mideksa Borena
- Department of Veterinary Science, School of Veterinary Medicine, Ambo University, Ambo P.O. Box 19, Ethiopia; (S.A.); (B.M.B.)
| | - Takele Abayneh
- National Veterinary Institute (NVI), Bishoftu P.O. Box 19, Ethiopia; (T.A.); (G.D.)
| | - Getaw Deresse
- National Veterinary Institute (NVI), Bishoftu P.O. Box 19, Ethiopia; (T.A.); (G.D.)
| | - Zerihun Asefa
- Department of Clinical Studies, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu P.O. Box 34, Ethiopia; (T.T.); (Z.A.)
| | - Tadesse Eguale
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (T.E.); (H.A.)
| | - Kebede Amenu
- Department of Microbiology, Immunology and Veterinary Public Health, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu P.O. Box 34, Ethiopia; (Y.A.); (Y.A.); (K.A.)
- International Livestock Research Institute (ILRI), Addis Ababa P.O. Box 5689, Ethiopia
| | - Hagos Ashenafi
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (T.E.); (H.A.)
| | - Gunther Antonissen
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| |
Collapse
|
6
|
Wang XG, Zou ZP, Du Y, Ye BC, Zhou Y. Construction of an Engineered Escherichia coli with Efficient Chemotactic and Metabolizing Ability toward Tetrathionate. ACS Synth Biol 2023; 12:3414-3423. [PMID: 37939253 DOI: 10.1021/acssynbio.3c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The emergence of genetically engineered bacteria has provided a new means for the diagnosis and treatment of diseases. However, in vivo applications of these engineered bacteria are hindered by their inefficient accumulation in areas of inflammation. In this study, we constructed an engineered Escherichia coli (E. coli) for directional migration toward tetrathionate (a biomarker of gut inflammation), which is regulated by the TtrSR two-component system (TCS) from Shewanella baltica OS195 (S. baltica). Specifically, we removed endogenous cheZ to control the motility of E. coli. Moreover, we introduced the reductase gene cluster (ttrBCA) from Salmonella enterica serotype typhimurium (S. typhimurium), a major pathogen causing gut inflammation, into E. coli to metabolize tetrathionate. The resulting strain was tested for its motility along the gradients of tetrathionate; the engineered strain exhibits tropism to tetrathionate compared with the original strain. Furthermore, the engineered E. coli could only restore its smooth swimming ability when tetrathionate existed. With these modifications enabling tetrathionate-mediated chemotactic and metabolizing activity, this strategy with therapeutic elements will provide a great potential opportunity for target treatment of various diseases by swapping the corresponding genetic circuits.
Collapse
Affiliation(s)
- Xin-Ge Wang
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong RD 130, Shanghai 200237, China
| | - Zhen-Ping Zou
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong RD 130, Shanghai 200237, China
| | - Yue Du
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong RD 130, Shanghai 200237, China
| | - Bang-Ce Ye
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong RD 130, Shanghai 200237, China
| | - Ying Zhou
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong RD 130, Shanghai 200237, China
| |
Collapse
|
7
|
Kanaan MHG. Prevalence and antimicrobial resistance of Salmonella enterica serovars Enteritidis and Typhimurium isolated from retail chicken meat in Wasit markets, Iraq. Vet World 2023; 16:455-463. [PMID: 37041841 PMCID: PMC10082727 DOI: 10.14202/vetworld.2023.455-463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/27/2023] [Indexed: 03/19/2023] Open
Abstract
Background and Aim: Food poisoning caused by Salmonella enterica serovars is the most common type of foodborne illness. Tainted chicken meat is a major vector for spreading these serovars throughout the food supply chain. Salmonella isolates that developed resistance to commonly used antimicrobials pose a noteworthy risk to public health, yet there has been a lack of data on this issue in Iraq. Therefore, it is crucial to address these serious public health challenges with an adequate database on the occurrence and antibiotic resistance of these serovars. This study aimed to determine the frequency of occurrence of Salmonella enterica serovars Enteritidis and Typhimurium (S. Enteritidis and S. Typhimurium), antimicrobial resistance (AMR), and prevalence of multidrug resistance among S. Enteritidis and S. Typhimurium isolated from poultry meat collected in Wasit Province in Iraq.
Materials and Methods: A total of 150 raw and frozen poultry meat samples were gathered from retail markets in various locales across the Wasit Governorate in Iraq. Salmonella spp. were successfully cultured and identified using the technique recommended by ISO 6579:2002, with minor modifications. The multiplex polymerase chain reaction approach was used to confirm Salmonella spp. (S. Enteritidis and S. Typhimurium). A disk diffusion test was performed to determine the susceptibility to particular antimicrobial agents, and 12 different antimicrobial agents were evaluated.
Results: Only 19 of the 150 (12.7%) samples tested positive for Salmonella (16% and 11% were isolated from raw and frozen chicken meat, respectively). S. Enteritidis accounted for 63.2%, whereas S. Typhimurium accounted for 36.8%. Nalidixic acid resistance was the most common (73.7%), followed by sulfamethoxazole-trimethoprim (63.2%) and tetracycline (63.2%), but gentamicin and ciprofloxacin (up to 15.8%) only had modest resistance. Antibiogram of S. Enteritidis and S. Typhimurium yield 13 antibiotypes. Among the 19 Salmonella isolates, 12 of 19 (63.2%) established resistance to no less than three categories of antimicrobials.
Conclusion: This study highlighted the necessity of limiting the utilization of antibiotics in animal production by providing vital information regarding the frequency and AMR of Salmonella at markets in Wasit Province. Therefore, risk assessment models could use these data to lessen the amount of Salmonella passed on to humans in Iraq from chicken meat.
Keywords: antimicrobial resistance, chicken, food poisoning, serovars.
Collapse
Affiliation(s)
- Manal H. G. Kanaan
- Department of Agriculture, Technical Institute of Suwaria, Middle Technical University, Baghdad, Iraq
| |
Collapse
|
8
|
Ferguson M, Hsu CK, Grim C, Kauffman M, Jarvis K, Pettengill JB, Babu US, Harrison LM, Li B, Hayford A, Balan KV, Freeman JP, Rajashekara G, Lipp EK, Rozier RS, Zimeri AM, Burall LS. A longitudinal study to examine the influence of farming practices and environmental factors on pathogen prevalence using structural equation modeling. Front Microbiol 2023; 14:1141043. [PMID: 37089556 PMCID: PMC10117993 DOI: 10.3389/fmicb.2023.1141043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/14/2023] [Indexed: 04/25/2023] Open
Abstract
The contamination of fresh produce with foodborne pathogens has been an on-going concern with outbreaks linked to these commodities. Evaluation of farm practices, such as use of manure, irrigation water source, and other factors that could influence pathogen prevalence in the farming environment could lead to improved mitigation strategies to reduce the potential for contamination events. Soil, water, manure, and compost were sampled from farms in Ohio and Georgia to identify the prevalence of Salmonella, Listeria monocytogenes (Lm), Campylobacter, and Shiga-toxin-producing Escherichia coli (STEC), as well as Arcobacter, an emerging human pathogen. This study investigated agricultural practices to determine which influenced pathogen prevalence, i.e., the percent positive samples. These efforts identified a low prevalence of Salmonella, STEC, and Campylobacter in soil and water (< 10%), preventing statistical modeling of these pathogens. However, Lm and Arcobacter were found in soil (13 and 7%, respectively), manure (49 and 32%, respectively), and water samples (18 and 39%, respectively) at a comparatively higher prevalence, suggesting different dynamics are involved in their survival in the farm environment. Lm and Arcobacter prevalence data, soil chemical characteristics, as well as farm practices and weather, were analyzed using structural equation modeling to identify which factors play a role, directly or indirectly, on the prevalence of these pathogens. These analyses identified an association between pathogen prevalence and weather, as well as biological soil amendments of animal origin. Increasing air temperature increased Arcobacter and decreased Lm. Lm prevalence was found to be inversely correlated with the use of surface water for irrigation, despite a high Lm prevalence in surface water suggesting other factors may play a role. Furthermore, Lm prevalence increased when the microbiome's Simpson's Diversity Index decreased, which occurred as soil fertility increased, leading to an indirect positive effect for soil fertility on Lm prevalence. These results suggest that pathogen, environment, and farm management practices, in addition to produce commodities, all need to be considered when developing mitigation strategies. The prevalence of Arcobacter and Lm versus the other pathogens suggests that multiple mitigation strategies may need to be employed to control these pathogens.
Collapse
Affiliation(s)
- Martine Ferguson
- Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| | - Chiun-Kang Hsu
- Office of Applied Safety and Research Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Christopher Grim
- Office of Applied Safety and Research Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Michael Kauffman
- Center for Food Animal Health, The Ohio State University, Wooster, OH, United States
| | - Karen Jarvis
- Office of Applied Safety and Research Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - James B. Pettengill
- Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| | - Uma S. Babu
- Office of Applied Safety and Research Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Lisa M. Harrison
- Office of Applied Safety and Research Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Baoguang Li
- Office of Applied Safety and Research Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Alice Hayford
- Office of Applied Safety and Research Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Kannan V. Balan
- Office of Applied Safety and Research Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Josefina P. Freeman
- Office of Applied Safety and Research Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Gireesh Rajashekara
- Center for Food Animal Health, The Ohio State University, Wooster, OH, United States
| | - Erin K. Lipp
- Department of Environmental Health Science, University of Georgia, Athens, GA, United States
| | - Ralph Scott Rozier
- Department of Environmental Health Science, University of Georgia, Athens, GA, United States
| | - Anne Marie Zimeri
- Department of Environmental Health Science, University of Georgia, Athens, GA, United States
| | - Laurel S. Burall
- Office of Applied Safety and Research Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
- *Correspondence: Laurel S. Burall,
| |
Collapse
|
9
|
Stevens EL, Carleton HA, Beal J, Tillman GE, Lindsey RL, Lauer AC, Pightling A, Jarvis KG, Ottesen A, Ramachandran P, Hintz L, Katz LS, Folster JP, Whichard JM, Trees E, Timme RE, McDERMOTT P, Wolpert B, Bazaco M, Zhao S, Lindley S, Bruce BB, Griffin PM, Brown E, Allard M, Tallent S, Irvin K, Hoffmann M, Wise M, Tauxe R, Gerner-Smidt P, Simmons M, Kissler B, Defibaugh-Chavez S, Klimke W, Agarwala R, Lindsay J, Cook K, Austerman SR, Goldman D, McGARRY S, Hale KR, Dessai U, Musser SM, Braden C. Use of Whole Genome Sequencing by the Federal Interagency Collaboration for Genomics for Food and Feed Safety in the United States. J Food Prot 2022; 85:755-772. [PMID: 35259246 DOI: 10.4315/jfp-21-437] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/22/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT This multiagency report developed by the Interagency Collaboration for Genomics for Food and Feed Safety provides an overview of the use of and transition to whole genome sequencing (WGS) technology for detection and characterization of pathogens transmitted commonly by food and for identification of their sources. We describe foodborne pathogen analysis, investigation, and harmonization efforts among the following federal agencies: National Institutes of Health; Department of Health and Human Services, Centers for Disease Control and Prevention (CDC) and U.S. Food and Drug Administration (FDA); and the U.S. Department of Agriculture, Food Safety and Inspection Service, Agricultural Research Service, and Animal and Plant Health Inspection Service. We describe single nucleotide polymorphism, core-genome, and whole genome multilocus sequence typing data analysis methods as used in the PulseNet (CDC) and GenomeTrakr (FDA) networks, underscoring the complementary nature of the results for linking genetically related foodborne pathogens during outbreak investigations while allowing flexibility to meet the specific needs of Interagency Collaboration partners. We highlight how we apply WGS to pathogen characterization (virulence and antimicrobial resistance profiles) and source attribution efforts and increase transparency by making the sequences and other data publicly available through the National Center for Biotechnology Information. We also highlight the impact of current trends in the use of culture-independent diagnostic tests for human diagnostic testing on analytical approaches related to food safety and what is next for the use of WGS in the area of food safety. HIGHLIGHTS
Collapse
Affiliation(s)
- Eric L Stevens
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Heather A Carleton
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| | - Jennifer Beal
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Glenn E Tillman
- U.S. Department of Agriculture, Food Safety and Inspection Service, Washington, DC 20250
| | - Rebecca L Lindsey
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| | - A C Lauer
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| | - Arthur Pightling
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Karen G Jarvis
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Andrea Ottesen
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Padmini Ramachandran
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Leslie Hintz
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Lee S Katz
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| | - Jason P Folster
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| | - Jean M Whichard
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| | - Eija Trees
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| | - Ruth E Timme
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Patrick McDERMOTT
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Laurel, Maryland 20708
| | - Beverly Wolpert
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Michael Bazaco
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Shaohua Zhao
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Laurel, Maryland 20708
| | - Sabina Lindley
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Beau B Bruce
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| | - Patricia M Griffin
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| | - Eric Brown
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Marc Allard
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Sandra Tallent
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Kari Irvin
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Maria Hoffmann
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Matt Wise
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| | - Robert Tauxe
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| | - Peter Gerner-Smidt
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| | - Mustafa Simmons
- U.S. Department of Agriculture, Food Safety and Inspection Service, Washington, DC 20250
| | - Bonnie Kissler
- U.S. Department of Agriculture, Food Safety and Inspection Service, Washington, DC 20250
| | | | - William Klimke
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Richa Agarwala
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - James Lindsay
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705
| | - Kimberly Cook
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705
| | - Suelee Robbe Austerman
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Ames, Iowa 50010, USA
| | - David Goldman
- U.S. Department of Agriculture, Food Safety and Inspection Service, Washington, DC 20250
| | - Sherri McGARRY
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| | - Kis Robertson Hale
- U.S. Department of Agriculture, Food Safety and Inspection Service, Washington, DC 20250
| | - Uday Dessai
- U.S. Department of Agriculture, Food Safety and Inspection Service, Washington, DC 20250
| | - Steven M Musser
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Chris Braden
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| |
Collapse
|
10
|
Billington C, Kingsbury JM, Rivas L. Metagenomics Approaches for Improving Food Safety: A Review. J Food Prot 2022; 85:448-464. [PMID: 34706052 DOI: 10.4315/jfp-21-301] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/21/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Advancements in next-generation sequencing technology have dramatically reduced the cost and increased the ease of microbial whole genome sequencing. This approach is revolutionizing the identification and analysis of foodborne microbial pathogens, facilitating expedited detection and mitigation of foodborne outbreaks, improving public health outcomes, and limiting costly recalls. However, next-generation sequencing is still anchored in the traditional laboratory practice of the selection and culture of a single isolate. Metagenomic-based approaches, including metabarcoding and shotgun and long-read metagenomics, are part of the next disruptive revolution in food safety diagnostics and offer the potential to directly identify entire microbial communities in a single food, ingredient, or environmental sample. In this review, metagenomic-based approaches are introduced and placed within the context of conventional detection and diagnostic techniques, and essential considerations for undertaking metagenomic assays and data analysis are described. Recent applications of the use of metagenomics for food safety are discussed alongside current limitations and knowledge gaps and new opportunities arising from the use of this technology. HIGHLIGHTS
Collapse
Affiliation(s)
- Craig Billington
- Institute of Environmental Science and Research, 27 Creyke Road, Ilam, Christchurch 8041, New Zealand
| | - Joanne M Kingsbury
- Institute of Environmental Science and Research, 27 Creyke Road, Ilam, Christchurch 8041, New Zealand
| | - Lucia Rivas
- Institute of Environmental Science and Research, 27 Creyke Road, Ilam, Christchurch 8041, New Zealand
| |
Collapse
|
11
|
Zhao N, Khamash DF, Koh H, Voskertchian A, Egbert E, Mongodin EF, White JR, Hittle L, Colantuoni E, Milstone AM. Low Diversity in Nasal Microbiome Associated With Staphylococcus aureus Colonization and Bloodstream Infections in Hospitalized Neonates. Open Forum Infect Dis 2021; 8:ofab475. [PMID: 34651052 PMCID: PMC8507450 DOI: 10.1093/ofid/ofab475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Staphylococcus aureus is a leading cause of infectious morbidity and mortality in neonates. Few data exist on the association of the nasal microbiome and susceptibility to neonatal S. aureus colonization and infection. METHODS We performed 2 matched case-control studies (colonization cohort-neonates who did and did not acquire S. aureus colonization; bacteremia cohort-neonates who did [colonized neonates] and did not [controls] acquire S. aureus colonization and neonates with S. aureus bacteremia [bacteremic neonantes]). Neonates in 2 intensive care units were enrolled and matched on week of life at time of colonization or infection. Nasal samples were collected weekly until discharge and cultured for S. aureus, and the nasal microbiome was characterized using 16S rRNA gene sequencing. RESULTS In the colonization cohort, 43 S. aureus-colonized neonates were matched to 82 controls. At 1 week of life, neonates who acquired S. aureus colonization had lower alpha diversity (Wilcoxon rank-sum test P < .05) and differed in beta diversity (omnibus MiRKAT P = .002) even after adjusting for birth weight (P = .01). The bacteremia cohort included 10 neonates, of whom 80% developed bacteremia within 4 weeks of birth and 70% had positive S. aureus cultures within a few days of bacteremia. Neonates with bacteremia had an increased relative abundance of S. aureus sequences and lower alpha diversity measures compared with colonized neonates and controls. CONCLUSIONS The association of increased S. aureus abundance and decrease of microbiome diversity suggest the need for interventions targeting the nasal microbiome to prevent S. aureus disease in vulnerable neonates.
Collapse
Affiliation(s)
- Ni Zhao
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Dina F Khamash
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hyunwook Koh
- Deptartment of Applied Mathematics & Statistics, The State University of New York, Korea (SUNY Korea), Incheon, South Korea
| | - Annie Voskertchian
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emily Egbert
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emmanuel F Mongodin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | - Elizabeth Colantuoni
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Aaron M Milstone
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Darwish N, Shao J, Schreier LL, Proszkowiec-Weglarz M. Choice of 16S ribosomal RNA primers affects the microbiome analysis in chicken ceca. Sci Rep 2021; 11:11848. [PMID: 34088939 PMCID: PMC8178357 DOI: 10.1038/s41598-021-91387-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/26/2021] [Indexed: 01/12/2023] Open
Abstract
We evaluated the effect of applying different sets of 16S rRNA primers on bacterial composition, diversity, and predicted function in chicken ceca. Cecal contents from Ross 708 birds at 1, 3, and 5 weeks of age were collected for DNA isolation. Eight different primer pairs targeting different variable regions of the 16S rRNA gene were employed. DNA sequences were analyzed using open-source platform QIIME2 and the Greengenes database. PICRUSt2 was used to determine the predicted function of bacterial communities. Changes in bacterial relative abundance due to 16S primers were determined by GLMs. The average PCR amplicon size ranged from 315 bp (V3) to 769 bp (V4–V6). Alpha- and beta-diversity, taxonomic composition, and predicted functions were significantly affected by the primer choice. Beta diversity analysis based on Unweighted UniFrac distance matrix showed separation of microbiota with four different clusters of bacterial communities. Based on the alpha- and beta-diversity and taxonomic composition, variable regions V1–V3(1) and (2), and V3–V4 and V3–V5 were in most consensus. Our data strongly suggest that selection of particular sets of the 16S rRNA primers can impact microbiota analysis and interpretation of results in chicken as was shown previously for humans and other animal species.
Collapse
Affiliation(s)
- Nadia Darwish
- Agricultural Research Service, NEA, Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, 10300 Baltimore Avenue, B-200, Rm. 100B, BARC-East, Beltsville, MD, 20705, USA.,Agricultural Research Service, Northeast Area, Statistic Group, United States Department of Agriculture, Beltsville, MD, 20705, USA
| | - Jonathan Shao
- Agricultural Research Service, Northeast Area, Statistic Group, United States Department of Agriculture, Beltsville, MD, 20705, USA
| | - Lori L Schreier
- Agricultural Research Service, NEA, Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, 10300 Baltimore Avenue, B-200, Rm. 100B, BARC-East, Beltsville, MD, 20705, USA
| | - Monika Proszkowiec-Weglarz
- Agricultural Research Service, NEA, Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, 10300 Baltimore Avenue, B-200, Rm. 100B, BARC-East, Beltsville, MD, 20705, USA.
| |
Collapse
|
13
|
Guest C, Harris R, Sfanos KS, Shrestha E, Partin AW, Trock B, Mangold L, Bader R, Kozak A, Mclean S, Simons J, Soule H, Johnson T, Lee WY, Gao Q, Aziz S, Stathatou PM, Thaler S, Foster S, Mershin A. Feasibility of integrating canine olfaction with chemical and microbial profiling of urine to detect lethal prostate cancer. PLoS One 2021; 16:e0245530. [PMID: 33596212 PMCID: PMC7888653 DOI: 10.1371/journal.pone.0245530] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/02/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is the second leading cause of cancer death in men in the developed world. A more sensitive and specific detection strategy for lethal prostate cancer beyond serum prostate specific antigen (PSA) population screening is urgently needed. Diagnosis by canine olfaction, using dogs trained to detect cancer by smell, has been shown to be both specific and sensitive. While dogs themselves are impractical as scalable diagnostic sensors, machine olfaction for cancer detection is testable. However, studies bridging the divide between clinical diagnostic techniques, artificial intelligence, and molecular analysis remains difficult due to the significant divide between these disciplines. We tested the clinical feasibility of a cross-disciplinary, integrative approach to early prostate cancer biosensing in urine using trained canine olfaction, volatile organic compound (VOC) analysis by gas chromatography-mass spectroscopy (GC-MS) artificial neural network (ANN)-assisted examination, and microbial profiling in a double-blinded pilot study. Two dogs were trained to detect Gleason 9 prostate cancer in urine collected from biopsy-confirmed patients. Biopsy-negative controls were used to assess canine specificity as prostate cancer biodetectors. Urine samples were simultaneously analyzed for their VOC content in headspace via GC-MS and urinary microbiota content via 16S rDNA Illumina sequencing. In addition, the dogs' diagnoses were used to train an ANN to detect significant peaks in the GC-MS data. The canine olfaction system was 71% sensitive and between 70-76% specific at detecting Gleason 9 prostate cancer. We have also confirmed VOC differences by GC-MS and microbiota differences by 16S rDNA sequencing between cancer positive and biopsy-negative controls. Furthermore, the trained ANN identified regions of interest in the GC-MS data, informed by the canine diagnoses. Methodology and feasibility are established to inform larger-scale studies using canine olfaction, urinary VOCs, and urinary microbiota profiling to develop machine olfaction diagnostic tools. Scalable multi-disciplinary tools may then be compared to PSA screening for earlier, non-invasive, more specific and sensitive detection of clinically aggressive prostate cancers in urine samples.
Collapse
Affiliation(s)
- Claire Guest
- Medical Detection Dogs, Milton Keynes, United Kingdom
| | - Rob Harris
- Medical Detection Dogs, Milton Keynes, United Kingdom
| | - Karen S. Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Eva Shrestha
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Alan W. Partin
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Bruce Trock
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Leslie Mangold
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Rebecca Bader
- Cambridge Polymer Group, Cambridge, Massachusetts, United States of America
| | - Adam Kozak
- Cambridge Polymer Group, Cambridge, Massachusetts, United States of America
| | - Scott Mclean
- Cambridge Polymer Group, Cambridge, Massachusetts, United States of America
| | - Jonathan Simons
- Prostate Cancer Foundation, Santa Monica, California, United States of America
| | - Howard Soule
- Prostate Cancer Foundation, Santa Monica, California, United States of America
| | - Thomas Johnson
- Prostate Cancer Foundation, Santa Monica, California, United States of America
| | - Wen-Yee Lee
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Qin Gao
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Sophie Aziz
- Medical Detection Dogs, Milton Keynes, United Kingdom
| | - Patritsia Maria Stathatou
- The Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Stephen Thaler
- Imagination Engines, St. Charles, Missouri, United States of America
| | - Simmie Foster
- Department of Psychiatry, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Andreas Mershin
- The Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
14
|
Jarvis KG, Hsu CK, Pettengill JB, Ihrie J, Karathia H, Hasan NA, Grim CJ. Microbiome Population Dynamics of Cold-Smoked Sockeye Salmon during Refrigerated Storage and after Culture Enrichment. J Food Prot 2021; 85:238-253. [PMID: 34614175 DOI: 10.4315/jfp-21-228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/05/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Cold-smoked salmon is a ready-to-eat seafood product of high commercial importance. The processing and storage steps facilitate the introduction, growth, and persistence of foodborne pathogens and spoilage bacteria. The growth of commensal bacteria during storage and once the product is opened also influence the quality and safety of cold-smoked salmon. Here we investigated the microbial community through targeted 16S rRNA gene and shotgun metagenomic sequencing as means to better understand the interactions among bacteria in cold-smoked salmon. Cold-smoked salmon samples were tested over 30 days of aerobic storage at 4°C and cultured at each time point in a buffered Listeria enrichment broth (BLEB) commonly used to detect Listeria in foods. The microbiomes were composed of Firmicutes and Proteobacteria, namely, Carnobacterium, Brochothrix, Pseudomonas, Serratia, and Psychrobacter. Pseudomonas species were the most diverse species, with 181 taxa identified. In addition, we identified potential homologs to 10 classes of bacteriocins in microbiomes of cold-smoked salmon stored at 4°C and corresponding BLEB culture enrichments. The findings presented here contribute to our understanding of microbiome population dynamics in cold-smoked salmon, including changes in bacterial taxa during aerobic cold storage and after culture enrichment. This may facilitate improvements to pathogen detection and quality preservation of this food. HIGHLIGHTS
Collapse
Affiliation(s)
- Karen G Jarvis
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland 20708
| | - Chiun-Kang Hsu
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland 20708
| | - James B Pettengill
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland 20742
| | - John Ihrie
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland 20742
| | - Hiren Karathia
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Nur A Hasan
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland 20742, USA
| | - Christopher J Grim
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland 20708
| |
Collapse
|
15
|
Waldman J, Souza MN, Fonseca ASK, Ikuta N, Lunge VR. Direct detection of Salmonella from poultry samples by DNA isothermal amplification. Br Poult Sci 2020; 61:653-659. [PMID: 32772559 DOI: 10.1080/00071668.2020.1808188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
1. Salmonellosis is one of the most important diseases in public health and it is usually associated with poultry product consumption. This study aimed to validate rapid methods to detect Salmonella spp. from poultry samples. 2. A DNA isothermal amplification method, previously developed for other matrices, was applied for the specific detection of Salmonella spp. from various samples, including poultry tissues, drag and boot swabs, faeces and feed. A new procedure was validated with Salmonella spp. serotypes and isolates from other enteric bacterial species, as well as naturally contaminated poultry samples. 3. The study demonstrated the successful development and implementation of a procedure, including a DNA isothermal amplification method, for the detection of Salmonella spp. directly from tissues, drag and boot swabs, faeces and feed. The whole procedure can be performed in less than 24 hours and it has been successfully used in a veterinary diagnostic laboratory.
Collapse
Affiliation(s)
- J Waldman
- Laboratório de Diagnóstico Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde, Universidade Luterana do Brasil (ULBRA) , Canoas, Brazil
| | - M N Souza
- Laboratório de Diagnóstico Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde, Universidade Luterana do Brasil (ULBRA) , Canoas, Brazil
| | | | - N Ikuta
- Laboratório de Diagnóstico Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde, Universidade Luterana do Brasil (ULBRA) , Canoas, Brazil.,Simbios Biotecnologia , Cachoeirinha, Brazil
| | - V R Lunge
- Laboratório de Diagnóstico Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde, Universidade Luterana do Brasil (ULBRA) , Canoas, Brazil.,Simbios Biotecnologia , Cachoeirinha, Brazil
| |
Collapse
|
16
|
Harhay DM, Weinroth MD, Bono JL, Harhay GP, Bosilevac JM. Rapid estimation of Salmonella enterica contamination level in ground beef - Application of the time-to-positivity method using a combination of molecular detection and direct plating. Food Microbiol 2020; 93:103615. [PMID: 32912587 DOI: 10.1016/j.fm.2020.103615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/21/2020] [Accepted: 07/31/2020] [Indexed: 11/28/2022]
Abstract
Little progress has been made in decreasing the incidence rate of salmonellosis in the US over the past decade. Mitigating the contribution of contaminated raw meat to the salmonellosis incidence rate requires rapid methods for quantifying Salmonella, so that highly contaminated products can be removed before entering the food chain. Here we evaluated the use of Time-to-Positivity (TTP) as a rapid, semi-quantitative approach for estimating Salmonella contamination levels in ground beef. Growth rates of 14 Salmonella strains (inoculated at log 1 to -2 CFU/g) were characterized in lean ground beef mTSB enrichments and time-to-detection was determined using culture and molecular detection methods. Enrichments were sampled at five timepoints and results were used to construct a prediction model of estimated contamination level by TTP (superscript indicates time in hours) defined as TTP4: ≥5 CFU/g; TTP6: ≤5, ≥1 CFU/g; TTP8: ≤1, ≥0.01 CFU/g; with samples negative at 8 h estimated ≤0.01 CFU/g. Model performance measures showed high sensitivity (100%) and specificity (83% and 93% for two detection methods) for samples with a TTP4, with false negative rates of 0%.
Collapse
Affiliation(s)
- Dayna M Harhay
- United States Department of Agriculture, Roman L. Hruska U.S. Meat Animal Research Center, Meat Safety and Quality Research Unit, Clay Center, NE, 68933, USA.
| | - Margaret D Weinroth
- United States Department of Agriculture, Roman L. Hruska U.S. Meat Animal Research Center, Meat Safety and Quality Research Unit, Clay Center, NE, 68933, USA
| | - James L Bono
- United States Department of Agriculture, Roman L. Hruska U.S. Meat Animal Research Center, Meat Safety and Quality Research Unit, Clay Center, NE, 68933, USA
| | - Gregory P Harhay
- United States Department of Agriculture, Roman L. Hruska U.S. Meat Animal Research Center, Meat Safety and Quality Research Unit, Clay Center, NE, 68933, USA
| | - Joseph M Bosilevac
- United States Department of Agriculture, Roman L. Hruska U.S. Meat Animal Research Center, Meat Safety and Quality Research Unit, Clay Center, NE, 68933, USA
| |
Collapse
|
17
|
Proszkowiec-Weglarz M, Miska KB, Schreier LL, Grim CJ, Jarvis KG, Shao J, Vaessen S, Sygall R, Jenkins MC, Kahl S, Russell B. Research Note: Effect of butyric acid glycerol esters on ileal and cecal mucosal and luminal microbiota in chickens challenged with Eimeria maxima. Poult Sci 2020; 99:5143-5148. [PMID: 32988553 PMCID: PMC7598111 DOI: 10.1016/j.psj.2020.06.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/25/2020] [Accepted: 06/17/2020] [Indexed: 01/05/2023] Open
Abstract
Coccidiosis is one of the most prevalent diseases seen in the poultry industry leading to excessive economic losses. The aim of this study was to investigate the effect of butyric acid glycerol esters (BE) on the ileal and cecal microbiota in birds challenged with Eimeria maxima (EM). Ross 708 male broilers were fed a diet supplemented with 0 (control) or 0.25% BE from day 1. On day 21, half of the birds were infected with 103 EM oocysts. For determing microbiota, ileal and cecal contents and epithelial scrapings were collected at 7 and 10 D postinfection (PI). Alpha diversity of bacterial communities was mostly affected (P < 0.05) by time PI and EM infection. The richness of luminal bacterial populations in the ileum and ceca was affected (P < 0.05) by addition of BE and by time PI × EM × BE interaction, respectively. In the ileal and cecal luminal and mucosal bacterial communities, permutational multivariate analysis of variance (PERMANOVA, unweighted UniFrac) showed significant (P < 0.05) differences because of time PI and interaction between time PI, EM, and BE. Significant (P < 0.05) differences in taxonomic composition at the family level were observed in microbiota of luminal and mucosal populations of the ileum and ceca owing to time PI, EM, BE, and their interactions. The bacterial community present in the cecal lumen was characterized by the lowest number of differential bacteria, whereas the cecal mucosal community was characterized by the highest number of differentially abundant bacteria. In conclusion, our results show that EM infection and time PI has the biggest impact on microbial diversity in the chicken gut. The presence of BE in the diet had a limited effect on gut microbiota.
Collapse
Affiliation(s)
- Monika Proszkowiec-Weglarz
- United States Department of Agriculture, Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, MD 20705, U.S.A..
| | - Katarzyna B Miska
- United States Department of Agriculture, Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, MD 20705, U.S.A
| | - Lori L Schreier
- United States Department of Agriculture, Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, MD 20705, U.S.A
| | - Christopher J Grim
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Unites States Food and Drug Administration, Laurel, MD 20708, U.S.A
| | - Karen G Jarvis
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Unites States Food and Drug Administration, Laurel, MD 20708, U.S.A
| | - Jonathan Shao
- United States Department of Agriculture, Agricultural Research Service, Northeast Area, Statistic Group, Beltsville, MD 20705, U.S.A
| | | | | | - Mark C Jenkins
- United States Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705, U.S.A
| | - Stanislaw Kahl
- United States Department of Agriculture, Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, MD 20705, U.S.A
| | - Beverly Russell
- United States Department of Agriculture, Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, MD 20705, U.S.A
| |
Collapse
|
18
|
Forghani F, Li S, Zhang S, Mann DA, Deng X, den Bakker HC, Diez-Gonzalez F. Salmonella enterica and Escherichia coli in Wheat Flour: Detection and Serotyping by a Quasimetagenomic Approach Assisted by Magnetic Capture, Multiple-Displacement Amplification, and Real-Time Sequencing. Appl Environ Microbiol 2020; 86:e00097-20. [PMID: 32358002 PMCID: PMC7301854 DOI: 10.1128/aem.00097-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/14/2020] [Indexed: 11/20/2022] Open
Abstract
Food safety is a new area for novel applications of metagenomics analysis, which not only can detect and subtype foodborne pathogens in a single workflow but may also produce additional information with in-depth analysis capabilities. In this study, we applied a quasimetagenomic approach by combining short-term enrichment, immunomagnetic separation (IMS), multiple-displacement amplification (MDA), and nanopore sequencing real-time analysis for simultaneous detection of Salmonella and Escherichia coli in wheat flour. Tryptic soy broth was selected for the 12-h enrichment of samples at 42°C. Enrichments were subjected to IMS using beads capable of capturing both Salmonella and E. coli MDA was performed on harvested beads, and amplified DNA fragments were subjected to DNA library preparation for sequencing. Sequencing was performed on a portable device with real-time basecalling adaptability, and resulting sequences were subjected to two parallel pipelines for further analysis. After 1 h of sequencing, the quasimetagenomic approach could detect all targets inoculated at approximately 1 CFU/g flour to the species level. Discriminatory power was determined by simultaneous detection of dual inoculums of Salmonella and E. coli, absence of detection in control samples, and consistency in microbial flora composition of the same flour samples over several rounds of experiments. The total turnaround time for detection was approximately 20 h. Longer sequencing for up to 15 h enabled serotyping for many of the samples with more than 99% genome coverage, which could be subjected to other appropriate genetic analysis pipelines in less than a total of 36 h.IMPORTANCE Enterohemorrhagic Escherichia coli (EHEC) and Salmonella are of serious concern in low-moisture foods, including wheat flour and its related products, causing illnesses, outbreaks, and recalls. The development of advanced detection methods based on molecular principles of analysis is essential to incorporate into interventions intended to reduce the risk from these pathogens. In this work, a quasimetagenomic method based on real-time sequencing analysis and assisted by magnetic capture and DNA amplification was developed. This protocol is capable of detecting multiple Salmonella and/or E. coli organisms in the sample within less than a day, and it can also generate sufficient whole-genome sequences of the target organisms suitable for subsequent bioinformatics analysis. Multiplex detection and identification were accomplished in less than 20 h and additional whole-genome analyses of different nature were attained within 36 h, in contrast to the several days required in previous sequencing pipelines.
Collapse
Affiliation(s)
- Fereidoun Forghani
- Center for Food Safety, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, USA
| | - Shaoting Li
- Center for Food Safety, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, USA
| | - Shaokang Zhang
- Center for Food Safety, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, USA
| | - David A Mann
- Center for Food Safety, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, USA
| | - Xiangyu Deng
- Center for Food Safety, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, USA
| | - Henk C den Bakker
- Center for Food Safety, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, USA
| | - Francisco Diez-Gonzalez
- Center for Food Safety, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, USA
| |
Collapse
|
19
|
Jarvis KG, Daquigan N, White JR, Morin PM, Howard LM, Manetas JE, Ottesen A, Ramachandran P, Grim CJ. Microbiomes Associated With Foods From Plant and Animal Sources. Front Microbiol 2018; 9:2540. [PMID: 30405589 PMCID: PMC6206262 DOI: 10.3389/fmicb.2018.02540] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/04/2018] [Indexed: 12/28/2022] Open
Abstract
Food microbiome composition impacts food safety and quality. The resident microbiota of many food products is influenced throughout the farm to fork continuum by farming practices, environmental factors, and food manufacturing and processing procedures. Currently, most food microbiology studies rely on culture-dependent methods to identify bacteria. However, advances in high-throughput DNA sequencing technologies have enabled the use of targeted 16S rRNA gene sequencing to profile complex microbial communities including non-culturable members. In this study we used 16S rRNA gene sequencing to assess the microbiome profiles of plant and animal derived foods collected at two points in the manufacturing process; post-harvest/pre-retail (cilantro) and retail (cilantro, masala spice mixes, cucumbers, mung bean sprouts, and smoked salmon). Our findings revealed microbiome profiles, unique to each food, that were influenced by the moisture content (dry spices, fresh produce), packaging methods, such as modified atmospheric packaging (mung bean sprouts and smoked salmon), and manufacturing stage (cilantro prior to retail and at retail). The masala spice mixes and cucumbers were comprised mainly of Proteobacteria, Firmicutes, and Actinobacteria. Cilantro microbiome profiles consisted mainly of Proteobacteria, followed by Bacteroidetes, and low levels of Firmicutes and Actinobacteria. The two brands of mung bean sprouts and the three smoked salmon samples differed from one another in their microbiome composition, each predominated by either by Firmicutes or Proteobacteria. These data demonstrate diverse and highly variable resident microbial communities across food products, which is informative in the context of food safety, and spoilage where indigenous bacteria could hamper pathogen detection, and limit shelf life.
Collapse
Affiliation(s)
- Karen G. Jarvis
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Ninalynn Daquigan
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | | | - Paul M. Morin
- Office of Regulatory Affairs, Northeast Food and Feed Laboratory, U.S. Food and Drug Administration, Jamaica, NY, United States
| | - Laura M. Howard
- Office of Regulatory Affairs, Northeast Food and Feed Laboratory, U.S. Food and Drug Administration, Jamaica, NY, United States
| | - Julia E. Manetas
- Office of Regulatory Affairs, Northeast Food and Feed Laboratory, U.S. Food and Drug Administration, Jamaica, NY, United States
| | - Andrea Ottesen
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| | - Padmini Ramachandran
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| | - Christopher J. Grim
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| |
Collapse
|
20
|
Godoy-Vitorino F, Romaguera J, Zhao C, Vargas-Robles D, Ortiz-Morales G, Vázquez-Sánchez F, Sanchez-Vázquez M, de la Garza-Casillas M, Martinez-Ferrer M, White JR, Bittinger K, Dominguez-Bello MG, Blaser MJ. Cervicovaginal Fungi and Bacteria Associated With Cervical Intraepithelial Neoplasia and High-Risk Human Papillomavirus Infections in a Hispanic Population. Front Microbiol 2018; 9:2533. [PMID: 30405584 PMCID: PMC6208322 DOI: 10.3389/fmicb.2018.02533] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/04/2018] [Indexed: 01/28/2023] Open
Abstract
The human cervicovaginal microbiota resides at an interface between the host and the environment and may affect susceptibility to disease. Puerto Rican women have high human papillomavirus (HPV) infection and cervical cancer rates. We hypothesized that the population structure of the cervicovaginal bacterial and fungal biota changed with cervical squamous intraepithelial lesions and HPV infections. DNA was extracted from cervix, introitus, and anal sites of 62 patients attending high-risk San Juan clinics. The 16S rRNA V4 region and ITS-2 fungal regions were amplified and sequenced using Illumina technology. HPV genotyping was determined by reverse hybridization with the HPV SPF10-LiPA25 kit. HPV prevalence was 84% of which ∼44% subjects were infected with high-risk HPV, ∼35% were co-infected with as many as 9 HPV types and ∼5% were infected with exclusively low-risk HPV types. HPV diversity did not change with cervical dysplasia. Cervical bacteria were more diverse in patients with CIN3 pre-cancerous lesions. We found enrichment of Atopobium vaginae and Gardnerella vaginalis in patients with CIN3 lesions. We found no significant bacterial biomarkers associated with HPV infections. Fungal diversity was significantly higher in cervical samples with high-risk HPV and introitus samples of patients with Atypical Squamous Cells of Undetermined Significance (ASCUS). Fungal biomarker signatures for vagina and cervix include Sporidiobolaceae and Sacharomyces for ASCUS, and Malassezia for high-risk HPV infections. Our combined data suggests that specific cervicovaginal bacterial and fungal populations are related to the host epithelial microenvironment, and could play roles in cervical dysplasia.
Collapse
Affiliation(s)
- Filipa Godoy-Vitorino
- Microbiome Lab, Department of Microbiology and Medical Zoology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, United States
- Microbial Ecology and Genomics Laboratory, Department of Natural Sciences, Inter American University of Puerto Rico, San Juan, PR, United States
| | - Josefina Romaguera
- Department of Obstetrics and Gynecology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, United States
| | - Chunyu Zhao
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Daniela Vargas-Robles
- Department of Biology, University of Puerto Rico, San Juan, PR, Puerto Rico
- Servicio Autónomo Centro Amazónico de Investigación y Control de Enfermedades Tropicales Simón Bolívar, MPPS, Puerto Ayacucho, Venezuela
| | - Gilmary Ortiz-Morales
- Microbial Ecology and Genomics Laboratory, Department of Natural Sciences, Inter American University of Puerto Rico, San Juan, PR, United States
| | - Frances Vázquez-Sánchez
- Microbial Ecology and Genomics Laboratory, Department of Natural Sciences, Inter American University of Puerto Rico, San Juan, PR, United States
| | | | - Manuel de la Garza-Casillas
- Microbial Ecology and Genomics Laboratory, Department of Natural Sciences, Inter American University of Puerto Rico, San Juan, PR, United States
| | - Magaly Martinez-Ferrer
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR, United States
- Department of Pharmaceutical Sciences, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, United States
| | | | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Maria Gloria Dominguez-Bello
- Department of Biochemistry and Microbiology and of Anthropology, Rutgers University, New Brunswick, NJ, United States
| | - Martin J. Blaser
- Department of Medicine and Department of Microbiology, School of Medicine, New York University, New York, NY, United States
| |
Collapse
|
21
|
El Baaboua A, El Maadoudi M, Bouyahya A, Belmehdi O, Kounnoun A, Zahli R, Abrini J. Evaluation of Antimicrobial Activity of Four Organic Acids Used in Chicks Feed to Control Salmonella typhimurium: Suggestion of Amendment in the Search Standard. Int J Microbiol 2018; 2018:7352593. [PMID: 30364137 PMCID: PMC6188770 DOI: 10.1155/2018/7352593] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/29/2018] [Indexed: 12/12/2022] Open
Abstract
Today, the general public has become increasingly aware of salmonellosis problems. Organic acids are known by their antimicrobial potential and commonly used for improving the quality of poultry feed. In this context, the present work evaluated the inhibitory effect of four organic acids, namely, acetic acid, citric acid, lactic acid, and tartaric acid, at different levels of contamination by Salmonella typhimurium. The neutralization of these organic acids in vitro and in the presence of one-day-old chick's organs was also investigated during the search for Salmonella serovars in birds as described in the Moroccan standard "NM 08.0.550." The effect of four organic acids on Salmonella typhimurium was tested in vitro and in the presence of chick's organs at different concentrations set of strain and organic acids tested. The MIC results demonstrated that tartaric acid, citric acid, and acetic acid inhibited Salmonella typhimurium at concentrations of 0.312%, 0.625%, and 0.512% for the three levels of strain: 10, 100, and 103 CFU/ml, respectively, while lactic acid and depending on the amount of the strain introduced acts differently: 0.078% for 10 CFU/ml and 0.156% for 100 and 103 CFU/ml. The concentration of 0.04M of Na2HPO4 solution has proved, in vitro, in caecums and organs of chicks (in presence of organic acids) that strain introduced, even at low concentrations, can be recovered. The use of additives has beneficial effects in Salmonella control program. However, the present results recommend the amendment of Salmonella research standard, taking into account the probable presence of organic acids in digestive content of one-day-old chicks.
Collapse
Affiliation(s)
- Aicha El Baaboua
- Biology and Health Laboratory, Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Science, Abdelmalek Essaadi University, Tetouan, Morocco
- Regional Laboratory for Analysis and Research, National Office for Food Safety, Tangier, Morocco
| | - Mohamed El Maadoudi
- Regional Laboratory for Analysis and Research, National Office for Food Safety, Tangier, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathology Biology, Faculty of Sciences, and Genomic Center of Human Pathology, Mohammed V University, Rabat, Morocco
| | - Omar Belmehdi
- Biology and Health Laboratory, Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Science, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Ayoub Kounnoun
- Regional Laboratory for Analysis and Research, National Office for Food Safety, Tangier, Morocco
- Laboratory of Applied Biology and Pathology, Department of Biology, Faculty of Science, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Rajae Zahli
- Biology and Health Laboratory, Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Science, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Jamal Abrini
- Biology and Health Laboratory, Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Science, Abdelmalek Essaadi University, Tetouan, Morocco
| |
Collapse
|
22
|
Hyeon JY, Li S, Mann DA, Zhang S, Li Z, Chen Y, Deng X. Quasimetagenomics-Based and Real-Time-Sequencing-Aided Detection and Subtyping of Salmonella enterica from Food Samples. Appl Environ Microbiol 2018; 84:e02340-17. [PMID: 29196295 PMCID: PMC5795075 DOI: 10.1128/aem.02340-17] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/28/2017] [Indexed: 11/20/2022] Open
Abstract
Metagenomics analysis of food samples promises isolation-independent detection and subtyping of foodborne bacterial pathogens in a single workflow. The selective concentration of Salmonella genomic DNA by immunomagnetic separation (IMS) and multiple displacement amplification (MDA) shortened the time for culture enrichment of Salmonella-spiked raw chicken breast samples by over 12 h while permitting serotyping and high-fidelity single nucleotide polymorphism (SNP) typing of the pathogen using short shotgun sequencing reads. The herein-termed quasimetagenomics approach was evaluated on Salmonella-spiked lettuce and black peppercorn samples as well as retail chicken parts naturally contaminated with different serotypes of Salmonella Culture enrichment of between 8 and 24 h was required for detecting and subtyping naturally occurring Salmonella from unspiked chicken parts compared with 4- to 12-h culture enrichment when Salmonella-spiked food samples were analyzed, indicating the likely need for longer culture enrichment to revive low levels of stressed or injured Salmonella cells in food. A further acceleration of the workflow was achieved by real-time nanopore sequencing. After 1.5 h of analysis on a potable sequencer, sufficient data were generated from sequencing the IMS-MDA products of a cultured-enriched lettuce sample to enable serotyping and robust phylogenetic placement of the inoculated isolate.IMPORTANCE Both culture enrichment and next-generation sequencing remain time-consuming processes for food testing, whereas rapid methods for pathogen detection are widely available. Our study demonstrated a substantial acceleration of these processes by the use of immunomagnetic separation (IMS) with multiple displacement amplification (MDA) and real-time nanopore sequencing. In one example, the combined use of the two methods delivered a less than 24-h turnaround time from the collection of a Salmonella-contaminated lettuce sample to the phylogenetic identification of the pathogen. An improved efficiency such as this is important for further expanding the use of whole-genome and metagenomics sequencing in the microbial analysis of food. Our results suggest the potential of the quasimetagenomics approach in areas where rapid detection and subtyping of foodborne pathogens are important, such as for foodborne outbreak response and the precision tracking and monitoring of foodborne pathogens in production environments and supply chains.
Collapse
Affiliation(s)
- Ji-Yeon Hyeon
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, Georgia, USA
| | - Shaoting Li
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, Georgia, USA
| | - David A Mann
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, Georgia, USA
| | - Shaokang Zhang
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, Georgia, USA
| | - Zhen Li
- Washington State Department of Health, Public Health Laboratories, Shoreline, Washington, USA
| | - Yi Chen
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, USA
| | - Xiangyu Deng
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, Georgia, USA
| |
Collapse
|
23
|
Daquigan N, Seekatz AM, Greathouse KL, Young VB, White JR. High-resolution profiling of the gut microbiome reveals the extent of Clostridium difficile burden. NPJ Biofilms Microbiomes 2017; 3:35. [PMID: 29214047 PMCID: PMC5717231 DOI: 10.1038/s41522-017-0043-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 11/07/2017] [Accepted: 11/16/2017] [Indexed: 02/07/2023] Open
Abstract
Microbiome profiling through 16S rRNA gene sequence analysis has proven to be a useful research tool in the study of C. difficile infection (CDI); however, CDI microbiome studies typically report results at the genus level or higher, thus precluding identification of this pathogen relative to other members of the gut microbiota. Accurate identification of C. difficile relative to the overall gut microbiome may be useful in assessments of colonization in research studies or as a prognostic indicator for patients with CDI. To investigate the burden of C. difficile at the species level relative to the overall gut microbiome, we applied a high-resolution method for 16S rRNA sequence assignment to previously published gut microbiome studies of CDI and other patient populations. We identified C. difficile in 131 of 156 index cases of CDI (average abundance 1.78%), and 18 of 211 healthy controls (average abundance 0.008%). We further detected substantial levels of C. difficile in a subset of infants that persisted over the first two to 12 months of life. Correlation analysis of C. difficile burden compared to other detected species demonstrated consistent negative associations with C. scindens and multiple Blautia species. These analyses contribute insight into the relative burden of C. difficile in the gut microbiome for multiple patient populations, and indicate that high-resolution 16S rRNA gene sequence analysis may prove useful in the development and evaluation of new therapies for CDI.
Collapse
Affiliation(s)
| | - Anna Maria Seekatz
- Department of Internal Medicine/Infectious Diseases Division, University of Michigan Medical School, Ann Arbor, MI USA
| | | | - Vincent B. Young
- Department of Internal Medicine/Infectious Diseases Division, University of Michigan Medical School, Ann Arbor, MI USA
| | | |
Collapse
|
24
|
High-resolution bacterial 16S rRNA gene profile meta-analysis and biofilm status reveal common colorectal cancer consortia. NPJ Biofilms Microbiomes 2017; 3:34. [PMID: 29214046 PMCID: PMC5707393 DOI: 10.1038/s41522-017-0040-3] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) remains the third most common cancer worldwide, with a growing incidence among young adults. Multiple studies have presented associations between the gut microbiome and CRC, suggesting a link with cancer risk. Although CRC microbiome studies continue to profile larger patient cohorts with increasingly economical and rapid DNA sequencing platforms, few common associations with CRC have been identified, in part due to limitations in taxonomic resolution and differences in analysis methodologies. Complementing these taxonomic studies is the newly recognized phenomenon that bacterial organization into biofilm structures in the mucus layer of the gut is a consistent feature of right-sided (proximal), but not left-sided (distal) colorectal cancer. In the present study, we performed 16S rRNA gene amplicon sequencing and biofilm quantification in a new cohort of patients from Malaysia, followed by a meta-analysis of eleven additional publicly available data sets on stool and tissue-based CRC microbiota using Resphera Insight, a high-resolution analytical tool for species-level characterization. Results from the Malaysian cohort and the expanded meta-analysis confirm that CRC tissues are enriched for invasive biofilms (particularly on right-sided tumors), a symbiont with capacity for tumorigenesis (Bacteroides fragilis), and oral pathogens including Fusobacterium nucleatum, Parvimonas micra, and Peptostreptococcus stomatis. Considered in aggregate, species from the Human Oral Microbiome Database are highly enriched in CRC. Although no detected microbial feature was universally present, their substantial overlap and combined prevalence supports a role for the gut microbiota in a significant percentage (>80%) of CRC cases. Many studies have found a link between gut microbes and bowel cancer, the third most common cancer worldwide. The details of the association, however, have remained elusive. Researchers in the USA and Malaysia, led by Dr. Cynthia Sears at John Hopkins School of Medicine in Maryland, examined mucosal biofilm status by fluorescence microscopy and performed a meta-analysis of bacterial genetic associations in stool and colon tissues to clarify the connection. They found that bowel cancers were enriched in invasive bacterial biofilms as well as several specific gut and oral species, including one - Fusobacterium nucleatum - known to promote tumorigenesis in mouse models. Analyzing gut microbial populations might help assess bowel cancer risk. Further research is needed, however, to determine if these bacteria directly contribute to disease causality.
Collapse
|
25
|
Guerrero-Preston R, White JR, Godoy-Vitorino F, Rodríguez-Hilario A, Navarro K, González H, Michailidi C, Jedlicka A, Canapp S, Bondy J, Dziedzic A, Mora-Lagos B, Rivera-Alvarez G, Ili-Gangas C, Brebi-Mieville P, Westra W, Koch W, Kang H, Marchionni L, Kim Y, Sidransky D. High-resolution microbiome profiling uncovers Fusobacterium nucleatum, Lactobacillus gasseri/johnsonii, and Lactobacillus vaginalis associated to oral and oropharyngeal cancer in saliva from HPV positive and HPV negative patients treated with surgery and chemo-radiation. Oncotarget 2017; 8:110931-110948. [PMID: 29340028 PMCID: PMC5762296 DOI: 10.18632/oncotarget.20677] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/12/2017] [Indexed: 12/19/2022] Open
Abstract
Microbiome studies show altered microbiota in head and neck squamous cell carcinoma (HNSCC), both in terms of taxonomic composition and metabolic capacity. These studies utilized a traditional bioinformatics methodology, which allows for accurate taxonomic assignment down to the genus level, but cannot accurately resolve species level membership. We applied Resphera Insight, a high-resolution methodology for 16S rRNA taxonomic assignment that is able to provide species-level context in its assignments of 16S rRNA next generation sequencing (NGS) data. Resphera Insight applied to saliva samples from HNSCC patients and healthy controls led to the discovery that a subset of HNSCC saliva samples is significantly enriched with commensal species from the vaginal flora, including Lactobacillus gasseri/johnsonii (710x higher in saliva) and Lactobacillus vaginalis (52x higher in saliva). These species were not observed in normal saliva from Johns Hopkins patients, nor in 16S rRNA NGS saliva samples from the Human Microbiome Project (HMP). Interestingly, both species were only observed in saliva from Human Papilloma Virus (HPV) positive and HPV negative oropharyngeal cancer patients. We confirmed the representation of both species in HMP data obtained from mid-vagina (n=128) and vaginal introitus (n=121) samples. Resphera Insight also led to the discovery that Fusobacterium nucleatum, an oral cavity flora commensal bacterium linked to colon cancer, is enriched (600x higher) in saliva from a subset of HNSCC patients with advanced tumors stages. Together, these high-resolution analyses on 583 samples suggest a possible role for bacterial species in the therapeutic outcome of HPV positive and HPV negative HNSCC patients.
Collapse
Affiliation(s)
- Rafael Guerrero-Preston
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA.,Department of Obstetrics and Gynecology, University of Puerto Rico, School of Medicine, San Juan, Puerto Rico
| | - James Robert White
- Department of Computational Biology Resphera Biosciences, Baltimore, MD, USA
| | - Filipa Godoy-Vitorino
- Natural Sciences Department, Microbial Ecology and Genomics Lab, Inter American University of Puerto Rico, Metropolitan Campus, San Juan, Puerto Rico
| | - Arnold Rodríguez-Hilario
- Natural Sciences Department, Microbial Ecology and Genomics Lab, Inter American University of Puerto Rico, Metropolitan Campus, San Juan, Puerto Rico
| | - Kelvin Navarro
- Natural Sciences Department, Microbial Ecology and Genomics Lab, Inter American University of Puerto Rico, Metropolitan Campus, San Juan, Puerto Rico
| | - Herminio González
- Natural Sciences Department, Microbial Ecology and Genomics Lab, Inter American University of Puerto Rico, Metropolitan Campus, San Juan, Puerto Rico
| | - Christina Michailidi
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Anne Jedlicka
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, School of Public Health, Baltimore, Maryland, USA
| | - Sierra Canapp
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Jessica Bondy
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Amanda Dziedzic
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, School of Public Health, Baltimore, Maryland, USA
| | - Barbara Mora-Lagos
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA.,Laboratory of Molecular Pathology, Department of Pathological Anatomy, School of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Gustavo Rivera-Alvarez
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA.,Department of Obstetrics and Gynecology, University of Puerto Rico, School of Medicine, San Juan, Puerto Rico
| | - Carmen Ili-Gangas
- Laboratory of Molecular Pathology, Department of Pathological Anatomy, School of Medicine, Universidad de La Frontera, Temuco, Chile.,Center of Excellence in Translational Medicine - Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Priscilla Brebi-Mieville
- Laboratory of Molecular Pathology, Department of Pathological Anatomy, School of Medicine, Universidad de La Frontera, Temuco, Chile.,Center of Excellence in Translational Medicine - Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - William Westra
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Wayne Koch
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Hyunseok Kang
- Department of Oncology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Luigi Marchionni
- Department of Oncology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Young Kim
- Department of Otolaryngology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David Sidransky
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
26
|
Grim CJ, Daquigan N, Lusk Pfefer TS, Ottesen AR, White JR, Jarvis KG. High-Resolution Microbiome Profiling for Detection and Tracking of Salmonella enterica. Front Microbiol 2017; 8:1587. [PMID: 28868052 PMCID: PMC5563311 DOI: 10.3389/fmicb.2017.01587] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/04/2017] [Indexed: 12/17/2022] Open
Abstract
16S rRNA community profiling continues to be a useful tool to study microbiome composition and dynamics, in part due to advances in next generation sequencing technology that translate into reductions in cost. Reliable taxonomic identification to the species-level, however, remains difficult, especially for short-read sequencing platforms, due to incomplete coverage of the 16S rRNA gene. This is especially true for Salmonella enterica, which is often found as a low abundant member of the microbial community, and is often found in combination with several other closely related enteric species. Here, we report on the evaluation and application of Resphera Insight, an ultra-high resolution taxonomic assignment algorithm for 16S rRNA sequences to the species level. The analytical pipeline achieved 99.7% sensitivity to correctly identify S. enterica from WGS datasets extracted from the FDA GenomeTrakr Bioproject, while demonstrating 99.9% specificity over other Enterobacteriaceae members. From low-diversity and low-complexity samples, namely ice cream, the algorithm achieved 100% specificity and sensitivity for Salmonella detection. As demonstrated using cilantro and chili powder, for highly complex and diverse samples, especially those that contain closely related species, the detection threshold will likely have to be adjusted higher to account for misidentifications. We also demonstrate the utility of this approach to detect Salmonella in the clinical setting, in this case, bloodborne infections.
Collapse
Affiliation(s)
- Christopher J Grim
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, LaurelMD, United States
| | - Ninalynn Daquigan
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, LaurelMD, United States
| | - Tina S Lusk Pfefer
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College ParkMD, United States
| | - Andrea R Ottesen
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College ParkMD, United States
| | | | - Karen G Jarvis
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, LaurelMD, United States
| |
Collapse
|