1
|
Xue Z, Liu X, Zhou X, Liu F, Yin S, Liu X. Two NPC1 homologous proteins are involved in asexual reproduction, pathogenicity, and lipid trafficking in Phytophthora sojae. Int J Biol Macromol 2025; 286:138430. [PMID: 39643179 DOI: 10.1016/j.ijbiomac.2024.138430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Niemann-Pick type C (NPC) disease is characterized by lysosomal lipid storage disorders and defects in lipid trafficking, primarily due to mutations in the NPC1 protein. Two NPC1 homologous proteins are present in the genome of Phytophthora sojae, named as PsNPC1-1 and PsNPC1-2. Both proteins exhibit high sequence identity, consistent conserved functional domains, similar gene expression patterns, and comparable subcellular localization. Deletion of a single PsNPC1 gene did not result in significant phenotypic changes. However, simultaneous deletion of both PsNPC1 genes led to reduced mycelial growth, decreased sporangial production, impaired pathogenicity, and an inability to release normal zoospores in P. sojae. Furthermore, dysfunction of PsNPC1s did not completely block the absorption and utilization of exogenous sterols by P. sojae. While lipidome analysis revealed that the relative contents of fatty acyls, sphingolipids and saccharolipids were significantly elevated in the double-gene deletion mutant, alongside obvious alterations in glycerophospholipid and glycerolipid metabolism. Additionally, we observed a significant down-regulation of PsCDP-AP protein along with its interactions with both PsNPC1s. Deletion of PsCDP-AP also impaired asexual reproduction and virulence of P. sojae. These findings demonstrate that both PsNPC1 proteins may collaborate with other key regulators to modulate asexual reproduction, pathogenicity and lipid trafficking in P. sojae.
Collapse
Affiliation(s)
- Zhaolin Xue
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaofei Liu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China; State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xin Zhou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Fangmin Liu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shuangshuang Yin
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xili Liu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China; State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China.
| |
Collapse
|
2
|
Dort EN, Hamelin RC. Heterogeneity in establishment of polyethylene glycol-mediated plasmid transformations for five forest pathogenic Phytophthora species. PLoS One 2024; 19:e0306158. [PMID: 39255283 PMCID: PMC11386421 DOI: 10.1371/journal.pone.0306158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
Plasmid-mediated DNA transformation is a foundational molecular technique and the basis for most CRISPR-Cas9 gene editing systems. While plasmid transformations are well established for many agricultural Phytophthora pathogens, development of this technique in forest Phytophthoras is lacking. Given our long-term research objective to develop CRISPR-Cas9 gene editing in a forest pathogenic Phytophthora species, we sought to establish the functionality of polyethylene glycol (PEG)-mediated plasmid transformation in five species: P. cactorum, P. cinnamomi, P. cryptogea, P. ramorum, and P. syringae. We used the agricultural pathogen P. sojae, a species for which PEG-mediated transformations are well-established, as a transformation control. Using a protocol previously optimized for P. sojae, we tested transformations in the five forest Phytophthoras with three different plasmids: two developed for CRISPR-Cas9 gene editing and one developed for fluorescent protein tagging. Out of the five species tested, successful transformation, as indicated by stable growth of transformants on a high concentration of antibiotic selective growth medium and diagnostic PCR, was achieved only with P. cactorum and P. ramorum. However, while transformations in P. cactorum were consistent and stable, transformations in P. ramorum were highly variable and yielded transformants with very weak mycelial growth and abnormal morphology. Our results indicate that P. cactorum is the best candidate to move forward with CRISPR-Cas9 protocol development and provide insight for future optimization of plasmid transformations in forest Phytophthoras.
Collapse
Affiliation(s)
- Erika N Dort
- Department of Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Richard C Hamelin
- Department of Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Québec, Canada
- Département des Sciences du bois et de la Forêt, Faculté de Foresterie et Géographie, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
3
|
Kharel A, Rookes J, Ziemann M, Cahill D. Viable protoplast isolation, organelle visualization and transformation of the globally distributed plant pathogen Phytophthora cinnamomi. PROTOPLASMA 2024; 261:1073-1092. [PMID: 38702562 PMCID: PMC11358197 DOI: 10.1007/s00709-024-01953-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/11/2024] [Indexed: 05/06/2024]
Abstract
Phytophthora cinnamomi is an oomycete plant pathogen with a host range of almost 5000 plant species worldwide and therefore poses a serious threat to biodiversity. Omics technology has provided significant progress in our understanding of oomycete biology, however, transformation studies of Phytophthora for gene functionalisation are still in their infancy. Only a limited number of Phytophthora species have been successfully transformed and gene edited to elucidate the role of particular genes. There is a need to escalate our efforts to understand molecular processes, gene regulation and infection mechanisms of the pathogen to enable us to develop new disease management strategies. The primary obstacle hindering the advancement of transformation studies in Phytophthora is their challenging and unique nature, coupled with our limited comprehension of why they remain such an intractable system to work with. In this study, we have identified some of the key factors associated with the recalcitrant nature of P. cinnamomi. We have incorporated fluorescence microscopy and flow cytometry along with the organelle-specific dyes, fluorescein diacetate, Hoechst 33342 and MitoTracker™ Red CMXRos, to assess P. cinnamomi-derived protoplast populations. This approach has also provided valuable insights into the broader cell biology of Phytophthora. Furthermore, we have optimized the crucial steps that allow transformation of P. cinnamomi and have generated transformed isolates that express a cyan fluorescent protein, with a transformation efficiency of 19.5%. We therefore provide a platform for these methodologies to be applied for the transformation of other Phytophthora species and pave the way for future gene functionalisation studies.
Collapse
Affiliation(s)
- Aayushree Kharel
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, VIC, 3216, Australia
| | - James Rookes
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, VIC, 3216, Australia
| | - Mark Ziemann
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, VIC, 3216, Australia
- Burnet Institute, Melbourne, Australia
| | - David Cahill
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, VIC, 3216, Australia.
| |
Collapse
|
4
|
Huhtinen O, Prince S, Lamminmäki U, Salbo R, Kulmala A. Increased stable integration efficiency in CHO cells through enhanced nuclear localization of Bxb1 serine integrase. BMC Biotechnol 2024; 24:44. [PMID: 38926833 PMCID: PMC11210126 DOI: 10.1186/s12896-024-00871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Mammalian display is an appealing technology for therapeutic antibody development. Despite the advantages of mammalian display, such as full-length IgG display with mammalian glycosylation and its inherent ability to select antibodies with good biophysical properties, the restricted library size and large culture volumes remain challenges. Bxb1 serine integrase is commonly used for the stable genomic integration of antibody genes into mammalian cells, but presently lacks the efficiency required for the display of large mammalian display libraries. To increase the Bxb1 integrase-mediated stable integration efficiency, our study investigates factors that potentially affect the nuclear localization of Bxb1 integrase. METHODS In an attempt to enhance Bxb1 serine integrase-mediated integration efficiency, we fused various nuclear localization signals (NLS) to the N- and C-termini of the integrase. Concurrently, we co-expressed multiple proteins associated with nuclear transport to assess their impact on the stable integration efficiency of green fluorescent protein (GFP)-encoding DNA and an antibody display cassette into the genome of Chinese hamster ovary (CHO) cells containing a landing pad for Bxb1 integrase-mediated integration. RESULTS The nucleoplasmin NLS from Xenopus laevis, when fused to the C-terminus of Bxb1 integrase, demonstrated the highest enhancement in stable integration efficiency among the tested NLS fusions, exhibiting over a 6-fold improvement compared to Bxb1 integrase lacking an NLS fusion. Subsequent additions of extra NLS fusions to the Bxb1 integrase revealed an additional 131% enhancement in stable integration efficiency with the inclusion of two copies of C-terminal nucleoplasmin NLS fusions. Further improvement was achieved by co-expressing the Ran GTPase-activating protein (RanGAP). Finally, to validate the applicability of these findings to more complex proteins, the DNA encoding the membrane-bound clinical antibody abrilumab was stably integrated into the genome of CHO cells using Bxb1 integrase with two copies of C-terminal nucleoplasmin NLS fusions and co-expression of RanGAP. This approach demonstrated over 14-fold increase in integration efficiency compared to Bxb1 integrase lacking an NLS fusion. CONCLUSIONS This study demonstrates that optimizing the NLS sequence fusion for Bxb1 integrase significantly enhances the stable genomic integration efficiency. These findings provide a practical approach for constructing larger libraries in mammalian cells through the stable integration of genes into a genomic landing pad.
Collapse
Affiliation(s)
- Olli Huhtinen
- Protein & Antibody Engineering, Orion Corporation, Turku, Finland.
- Department of Life Technologies, University of Turku, Turku, Finland.
| | - Stuart Prince
- MediCity Research Laboratory, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Urpo Lamminmäki
- Department of Life Technologies, University of Turku, Turku, Finland
| | - Rune Salbo
- Protein & Antibody Engineering, Orion Corporation, Turku, Finland
| | - Antti Kulmala
- Protein & Antibody Engineering, Orion Corporation, Turku, Finland.
| |
Collapse
|
5
|
Zhou R, Ng SK, Sung JJY, Goh WWB, Wong SH. Data pre-processing for analyzing microbiome data - A mini review. Comput Struct Biotechnol J 2023; 21:4804-4815. [PMID: 37841330 PMCID: PMC10569954 DOI: 10.1016/j.csbj.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/01/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023] Open
Abstract
The human microbiome is an emerging research frontier due to its profound impacts on health. High-throughput microbiome sequencing enables studying microbial communities but suffers from analytical challenges. In particular, the lack of dedicated preprocessing methods to improve data quality impedes effective minimization of biases prior to downstream analysis. This review aims to address this gap by providing a comprehensive overview of preprocessing techniques relevant to microbiome research. We outline a typical workflow for microbiome data analysis. Preprocessing methods discussed include quality filtering, batch effect correction, imputation of missing values, normalization, and data transformation. We highlight strengths and limitations of each technique to serve as a practical guide for researchers and identify areas needing further methodological development. Establishing robust, standardized preprocessing will be essential for drawing valid biological conclusions from microbiome studies.
Collapse
Affiliation(s)
- Ruwen Zhou
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232, Singapore
| | - Siu Kin Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232, Singapore
| | - Joseph Jao Yiu Sung
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232, Singapore
- Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, National Healthcare Group, 11 Jalan Tan Tock Seng, 308433, Singapore
| | - Wilson Wen Bin Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
- Center for Biomedical Informatics, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Sunny Hei Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232, Singapore
- Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, National Healthcare Group, 11 Jalan Tan Tock Seng, 308433, Singapore
| |
Collapse
|
6
|
Novel Roles of MT1-MMP and MMP-2: Beyond the Extracellular Milieu. Int J Mol Sci 2022; 23:ijms23179513. [PMID: 36076910 PMCID: PMC9455801 DOI: 10.3390/ijms23179513] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 12/14/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are critical enzymes involved in a variety of cellular processes. MMPs are well known for their ability to degrade the extracellular matrix (ECM) and their extracellular role in cell migration. Recently, more research has been conducted on investigating novel subcellular localizations of MMPs and their intracellular roles at their respective locations. In this review article, we focus on the subcellular localization and novel intracellular roles of two closely related MMPs: membrane-type-1 matrix metalloproteinase (MT1-MMP) and matrix metalloproteinase-2 (MMP-2). Although MT1-MMP is commonly known to localize on the cell surface, the protease also localizes to the cytoplasm, caveolae, Golgi, cytoskeleton, centrosome, and nucleus. At these subcellular locations, MT1-MMP functions in cell migration, macrophage metabolism, invadopodia development, spindle formation and gene expression, respectively. Similar to MT1-MMP, MMP-2 localizes to the caveolae, mitochondria, cytoskeleton, nucleus and nucleolus and functions in calcium regulation, contractile dysfunction, gene expression and ribosomal RNA transcription. Our particular interest lies in the roles MMP-2 and MT1-MMP serve within the nucleus, as they may provide critical insights into cancer epigenetics and tumor migration and invasion. We suggest that targeting nuclear MT1-MMP or MMP-2 to reduce or halt cell proliferation and migration may lead to the development of new therapies for cancer and other diseases.
Collapse
|
7
|
Hu EZ, Lan XR, Liu ZL, Gao J, Niu DK. A positive correlation between GC content and growth temperature in prokaryotes. BMC Genomics 2022; 23:110. [PMID: 35139824 PMCID: PMC8827189 DOI: 10.1186/s12864-022-08353-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND GC pairs are generally more stable than AT pairs; GC-rich genomes were proposed to be more adapted to high temperatures than AT-rich genomes. Previous studies consistently showed positive correlations between growth temperature and the GC contents of structural RNA genes. However, for the whole genome sequences and the silent sites of the codons in protein-coding genes, the relationship between GC content and growth temperature is in a long-lasting debate. RESULTS With a dataset much larger than previous studies (681 bacteria and 155 archaea with completely assembled genomes), our phylogenetic comparative analyses showed positive correlations between optimal growth temperature (Topt) and GC content both in bacterial and archaeal structural RNA genes and in bacterial whole genome sequences, chromosomal sequences, plasmid sequences, core genes, and accessory genes. However, in the 155 archaea, we did not observe a significant positive correlation of Topt with whole-genome GC content (GCw) or GC content at four-fold degenerate sites. We randomly drew 155 samples from the 681 bacteria for 1000 rounds. In most cases (> 95%), the positive correlations between Topt and genomic GC contents became statistically nonsignificant (P > 0.05). This result suggested that the small sample sizes might account for the lack of positive correlations between growth temperature and genomic GC content in the 155 archaea and the bacterial samples of previous studies. Comparing the GC content among four categories (psychrophiles/psychrotrophiles, mesophiles, thermophiles, and hyperthermophiles) also revealed a positive correlation between GCw and growth temperature in bacteria. By including the GCw of incompletely assembled genomes, we expanded the sample size of archaea to 303. Positive correlations between GCw and Topt appear especially after excluding the halophilic archaea whose GC contents might be strongly shaped by intense UV radiation. CONCLUSIONS This study explains the previous contradictory observations and ends a long debate. Prokaryotes growing in high temperatures have higher GC contents. Thermal adaptation is one possible explanation for the positive association. Meanwhile, we propose that the elevated efficiency of DNA repair in response to heat mutagenesis might have the by-product of increasing GC content like that happens in intracellular symbionts and marine bacterioplankton.
Collapse
Affiliation(s)
- En-Ze Hu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xin-Ran Lan
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Zhi-Ling Liu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jie Gao
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Deng-Ke Niu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
8
|
Ruiz-García AB, Canales C, Morán F, Ruiz-Torres M, Herrera-Mármol M, Olmos A. Characterization of Spanish Olive Virome by High Throughput Sequencing Opens New Insights and Uncertainties. Viruses 2021; 13:v13112233. [PMID: 34835039 PMCID: PMC8622421 DOI: 10.3390/v13112233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 01/04/2023] Open
Abstract
The use of high throughput sequencing (HTS) for the analysis of Spanish olive trees showing leaf yellowing discoloration, defoliation, and/or decline has provided new insights into the olive viruses present in Spain and has opened discussions about the pros and cons of these technologies for diagnostic purposes. In this study, we report for the first time in Spanish orchards the presence of olive leaf yellowing-associated virus (OLYaV), for which the second full coding sequence has been determined. This virus has also been detected in a putative vector, the psyllid Euphyllura olivina. In addition, the presence in Spain of Olea europaea geminivirus (OEGV), recently reported in Italy, has been confirmed, and the full-length sequence of two isolates was obtained by HTS and Sanger sequencing. These results, as well as the detection of other viral sequences related to olive latent virus 3 (OLV-3) and olive viral satellite RNA, raises questions on the biological significance of the findings, about the requirement of standardization on the interpretation of HTS results, and the necessity of additional tests to confirm the relevance of the HTS detection of viral sequences.
Collapse
Affiliation(s)
- Ana Belén Ruiz-García
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra, Moncada-Náquera Km 4.5, 46113 Moncada, Spain; (A.B.R.-G.); (C.C.); (F.M.)
| | - Celia Canales
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra, Moncada-Náquera Km 4.5, 46113 Moncada, Spain; (A.B.R.-G.); (C.C.); (F.M.)
| | - Félix Morán
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra, Moncada-Náquera Km 4.5, 46113 Moncada, Spain; (A.B.R.-G.); (C.C.); (F.M.)
| | - Manuel Ruiz-Torres
- Laboratorio de Producción y Sanidad Vegetal de Jaén, Junta de Andalucía, Sierra Morena, 12b, 23620 Mengíbar, Spain; (M.R.-T.); (M.H.-M.)
| | - Magdalena Herrera-Mármol
- Laboratorio de Producción y Sanidad Vegetal de Jaén, Junta de Andalucía, Sierra Morena, 12b, 23620 Mengíbar, Spain; (M.R.-T.); (M.H.-M.)
| | - Antonio Olmos
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra, Moncada-Náquera Km 4.5, 46113 Moncada, Spain; (A.B.R.-G.); (C.C.); (F.M.)
- Correspondence:
| |
Collapse
|
9
|
Xue Z, Wang W, Shen J, Zhang J, Zhang X, Liu X. A Patched-Like Protein PsPTL Is Not Essential for the Growth and Response to Various Stresses in Phytophthora sojae. Front Microbiol 2021; 12:673784. [PMID: 34690942 PMCID: PMC8530017 DOI: 10.3389/fmicb.2021.673784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/07/2021] [Indexed: 11/18/2022] Open
Abstract
Patched (Ptc) and Patched-related (Ptr) proteins containing sterol-sensing domains (SSD) and Patched domains are highly conserved in eukaryotes for lipid transport and metabolism. Four proteins containing predicted SSD and Patched domains were simultaneously found by searching the Phytophthora sojae genome database, and one of them was identified as a Patched-like (PTL) protein. Here, we investigated the biological function of PsPTL. The expression level of PsPTL was higher during mycelial and sporulation stages, compared to zoospore (ZO), cyst, and germinated-cyst stages, without significant change during infection. However, deletion of PsPTL using CRISPR/Cas9 had no significant effect on the growth, development, or virulence of P. sojae. Further investigations showed that PsPTL is not essential for P. sojae to cope with external stresses such as temperature, pH, oxidative and osmotic pressure. In addition, this gene did not appear to play an essential role in P. sojae’s response to exogenous sterols. The transcript levels of the other three proteins containing predicted SSD and Patched domains were also not significantly upregulated in PsPTL deletion transformants. Our studies demonstrated that PsPTL is not an essential protein for P. sojae under the tested conditions, and more in-depth research is required for revealing the potential functions of PsPTL under special conditions or in other signaling pathways.
Collapse
Affiliation(s)
- Zhaolin Xue
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Weizhen Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jinghuan Shen
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jinhui Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xitao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xili Liu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
10
|
Fang Y, Coelho MA, Shu H, Schotanus K, Thimmappa BC, Yadav V, Chen H, Malc EP, Wang J, Mieczkowski PA, Kronmiller B, Tyler BM, Sanyal K, Dong S, Nowrousian M, Heitman J. Long transposon-rich centromeres in an oomycete reveal divergence of centromere features in Stramenopila-Alveolata-Rhizaria lineages. PLoS Genet 2020; 16:e1008646. [PMID: 32150559 PMCID: PMC7082073 DOI: 10.1371/journal.pgen.1008646] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/19/2020] [Accepted: 02/03/2020] [Indexed: 12/11/2022] Open
Abstract
Centromeres are chromosomal regions that serve as platforms for kinetochore assembly and spindle attachments, ensuring accurate chromosome segregation during cell division. Despite functional conservation, centromere DNA sequences are diverse and often repetitive, making them challenging to assemble and identify. Here, we describe centromeres in an oomycete Phytophthora sojae by combining long-read sequencing-based genome assembly and chromatin immunoprecipitation for the centromeric histone CENP-A followed by high-throughput sequencing (ChIP-seq). P. sojae centromeres cluster at a single focus at different life stages and during nuclear division. We report an improved genome assembly of the P. sojae reference strain, which enabled identification of 15 enriched CENP-A binding regions as putative centromeres. By focusing on a subset of these regions, we demonstrate that centromeres in P. sojae are regional, spanning 211 to 356 kb. Most of these regions are transposon-rich, poorly transcribed, and lack the histone modification H3K4me2 but are embedded within regions with the heterochromatin marks H3K9me3 and H3K27me3. Strikingly, we discovered a Copia-like transposon (CoLT) that is highly enriched in the CENP-A chromatin. Similar clustered elements are also found in oomycete relatives of P. sojae, and may be applied as a criterion for prediction of oomycete centromeres. This work reveals a divergence of centromere features in oomycetes as compared to other organisms in the Stramenopila-Alveolata-Rhizaria (SAR) supergroup including diatoms and Plasmodium falciparum that have relatively short and simple regional centromeres. Identification of P. sojae centromeres in turn also advances the genome assembly. Oomycetes are fungal-like microorganisms that belong to the stramenopiles within the Stramenopila-Alveolata-Rhizaria (SAR) supergroup. The Phytophthora oomycetes are infamous as plant killers, threatening crop production worldwide. Because of the highly repetitive nature of their genomes, assembly of oomycete genomes presents challenges that impede identification of centromeres, which are chromosomal sites mediating faithful chromosome segregation. We report long-read sequencing-based genome assembly of the Phytophthora sojae reference strain, which facilitated the discovery of centromeres. P. sojae harbors large regional centromeres fully embedded in heterochromatin, and enriched for a Copia-like transposon that is also found in discrete clusters in other oomycetes. This study provides insight into the oomycete genome organization, broadens our knowledge of centromere structure, function and evolution in eukaryotes, and may help elucidate the high frequency of aneuploidy during oomycete reproduction.
Collapse
Affiliation(s)
- Yufeng Fang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Marco A. Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Haidong Shu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Klaas Schotanus
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Bhagya C. Thimmappa
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Vikas Yadav
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Han Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ewa P. Malc
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jeremy Wang
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Piotr A. Mieczkowski
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Brent Kronmiller
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Brett M. Tyler
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Kaustuv Sanyal
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Suomeng Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Minou Nowrousian
- Lehrstuhl fuer Molekulare und Zellulaere Botanik, Ruhr-Universitaet Bochum, Bochum, Germany
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
11
|
Fang Y, Tyler BM. Nuclear localization of a putative Phytophthora sojae bZIP1 transcription factor is mediated by multiple targeting motifs. Mol Microbiol 2017; 104:621-635. [PMID: 28213898 DOI: 10.1111/mmi.13652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2017] [Indexed: 11/28/2022]
Abstract
Oomycetes are fungal-like eukaryotic microbes in the kingdom Stramenopila. We recently found that the oomycete plant pathogen Phytophthora sojae uses nuclear localization signals (NLSs) for translocation of proteins into the nucleus that differ from conventional well-characterized NLSs from mammals and yeast. Here, we have characterized in depth the NLSs of a P. sojae basic leucine zipper transcription factor, PsbZIP1. Nuclear localization of PsbZIP1 was determined by a central conserved region overlapping the DNA binding domain. Mutational analysis of this region identified four distinct elements that contributed multiplicatively to nuclear localization, but the conserved DNA binding residues were not required. Three of the elements showed autonomous NLS activity and the fourth served as a nuclear localization enhancer. Sequences within two of the nuclear localization elements defined a new form of bipartite NLS consisting of a triplet of basic residues followed by a tail of scattered basic amino acids.
Collapse
Affiliation(s)
- Yufeng Fang
- Interdisciplinary Ph.D. Program in Genetics, Bioinformatics & Computational Biology, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, 24061, USA.,Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Brett M Tyler
- Interdisciplinary Ph.D. Program in Genetics, Bioinformatics & Computational Biology, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, 24061, USA.,Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|