1
|
Kaur G, Kaur R, Sodhi GK, George N, Rath SK, Walia HK, Dwibedi V, Saxena S. Stilbenes: a journey from folklore to pharmaceutical innovation. Arch Microbiol 2024; 206:229. [PMID: 38647675 DOI: 10.1007/s00203-024-03939-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/03/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024]
Abstract
In modern times, medicine is predominantly based on evidence-based practices, whereas in ancient times, indigenous people relied on plant-based medicines with factual evidence documented in ancient books or folklore that demonstrated their effectiveness against specific infections. Plants and microbes account for 70% of drugs approved by the USFDA (U.S. Food and Drug Administration). Stilbenes, polyphenolic compounds synthesized by plants under stress conditions, have garnered significant attention for their therapeutic potential, bridging ancient wisdom with modern healthcare. Resveratrol, the most studied stilbene, initially discovered in grapes, red wine, peanuts, and blueberries, exhibits diverse pharmacological properties, including cardiovascular protection, antioxidant effects, anticancer activity, and neuroprotection. Traditional remedies, documented in ancient texts like the Ayurvedic Charak Samhita, foreshadowed the medicinal properties of stilbenes long before their modern scientific validation. Today, stilbenes are integral to the booming wellness and health supplement market, with resveratrol alone projected to reach a market value of 90 million US$ by 2025. However, challenges in stilbene production persist due to limited natural sources and costly extraction methods. Bioprospecting efforts reveal promising candidates for stilbene production, particularly endophytic fungi, which demonstrate high-yield capabilities and genetic modifiability. However, the identification of optimal strains and fermentation processes remains a critical consideration. The current review emphasizes the knowledge of the medicinal properties of Stilbenes (i.e., cardiovascular, antioxidant, anticancer, anti-inflammatory, etc.) isolated from plant and microbial sources, while also discussing strategies for their commercial production and future research directions. This also includes examples of novel stilbenes compounds reported from plant and endophytic fungi.
Collapse
Affiliation(s)
- Gursharan Kaur
- University Institute of Biotechnology, Chandigarh University, Mohali, 140413, Punjab, India
| | - Rajinder Kaur
- Department of Plant Sciences, University of Idaho Moscow, Idaho, ID, 83844, USA
| | - Gurleen Kaur Sodhi
- Department of Biotechnology, Thapar Institute of Engineering and Technology Patiala, Patiala, Punjab, 147004, India
| | - Nancy George
- University Institute of Biotechnology, Chandigarh University, Mohali, 140413, Punjab, India
| | - Santosh Kumar Rath
- School of Pharmaceuticals and Population Health Informatics, Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, 248009, India
| | - Harleen Kaur Walia
- Department of Biotechnology, Thapar Institute of Engineering and Technology Patiala, Patiala, Punjab, 147004, India
| | - Vagish Dwibedi
- University Institute of Biotechnology, Chandigarh University, Mohali, 140413, Punjab, India.
- Institute of Soil, Water and Environmental Sciences, Volcani Research Center, Agricultural Research Organization, 7505101, Rishon LeZion, Israel.
| | - Sanjai Saxena
- Department of Biotechnology, Thapar Institute of Engineering and Technology Patiala, Patiala, Punjab, 147004, India
| |
Collapse
|
2
|
Toppo P, Jangir P, Mehra N, Kapoor R, Mathur P. Bioprospecting of endophytic fungi from medicinal plant Anisomeles indica L. for their diverse role in agricultural and industrial sectors. Sci Rep 2024; 14:588. [PMID: 38182714 PMCID: PMC10770348 DOI: 10.1038/s41598-023-51057-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
Endophytes are microorganisms that inhabit various plant parts and cause no damage to the host plants. During the last few years, a number of novel endophytic fungi have been isolated and identified from medicinal plants and were found to be utilized as bio-stimulants and bio fertilizers. In lieu of this, the present study aims to isolate and identify endophytic fungi associated with the leaves of Anisomeles indica L. an important medicinal plant of the Terai-Duars region of West Bengal. A total of ten endophytic fungi were isolated from the leaves of A. indica and five were identified using ITS1/ITS4 sequencing based on their ability for plant growth promotion, secondary metabolite production, and extracellular enzyme production. Endophytic fungal isolates were identified as Colletotrichum yulongense Ai1, Colletotrichum cobbittiense Ai2, Colletotrichum alienum Ai2.1, Colletotrichum cobbittiense Ai3, and Fusarium equiseti. Five isolates tested positive for their plant growth promotion potential, while isolates Ai4. Ai1, Ai2, and Ai2.1 showed significant production of secondary metabolites viz. alkaloids, phenolics, flavonoids, saponins, etc. Isolate Ai2 showed maximum total phenolic concentration (25.98 mg g-1), while isolate Ai4 showed maximum total flavonoid concentration (20.10 mg g-1). Significant results were observed for the production of extracellular enzymes such as cellulases, amylases, laccases, lipases, etc. The isolates significantly influenced the seed germination percentage of tomato seedlings and augmented their growth and development under in vitro assay. The present work comprehensively tested these isolates and ascertained their huge application for the commercial utilization of these isolates both in the agricultural and industrial sectors.
Collapse
Affiliation(s)
- Prabha Toppo
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, West Bengal, 734013, India
| | - Pooja Jangir
- Plant-Fungus Interactions Laboratory, Department of Botany, University of Delhi, Delhi, 110007, India
| | - Namita Mehra
- Plant-Fungus Interactions Laboratory, Department of Botany, University of Delhi, Delhi, 110007, India
| | - Rupam Kapoor
- Plant-Fungus Interactions Laboratory, Department of Botany, University of Delhi, Delhi, 110007, India
| | - Piyush Mathur
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, West Bengal, 734013, India.
| |
Collapse
|
3
|
Fanele A, Ndlovu SI. Endophytic fungal species Nigrospora oryzae and Alternaria alternata exhibit antimicrobial activity against gram-positive and gram-negative multi-drug resistant clinical bacterial isolates. BMC Complement Med Ther 2023; 23:323. [PMID: 37715184 PMCID: PMC10504728 DOI: 10.1186/s12906-023-04157-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 09/07/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND The emergence of multidrug-resistant pathogens and the lack of new antimicrobial drugs is a major public health concern that needs urgent and innovative solutions. Endophytic fungi living in unique niches such as in endosymbiosis with plants are increasingly drawing attention as alternative sources of novel and chemically diverse compounds with unique mechanisms of action. METHODS In the present study, ten endophytic fungi isolated from the medicinal plant, Sclerocarya birrea were screened for bioactivity against a panel of indicator bacteria. Three bioactive endophytic fungi (strains P02PL2, P02MS1, and P02MS2A) were selected and identified through ITS-rDNA sequencing. The whole broth extracts of the three selected isolates were further screened against contemporary drug-resistant bacterial pathogens. This was followed by partial purification by solid phase extraction and GC-MS analysis of bioactive fractions. RESULTS The bioactive endophytic fungi were identified as Alternaria alternata species (strains P02PL2 and P02MS1) and Nigrospora oryzae (strain P02MS2A). The whole broth extracts from N. oryzae P02MS2A exhibited a MIC of one μg/mL and 16 μg/mL against gram-negative, MDR Pseudomonas 5625574 and gram-positive MRSA 25775 clinical isolates, respectively. After partial purification and GC-MS analysis of whole broth extract from A. alternaria PO2MS1, 2-fluorobenzoic acid heptadecyl was putatively identified as the active compound in fraction C of this extract. This compound was also putatively identified in fraction E of A. alternata P02PL2, fraction B of A. alternata P02MS1 and fraction B of N. oryzae P02MS2A, and interestingly, all these fractions retained activity against the two MDR clinical isolates. CONCLUSION The putative identification of 2-fluorobenzoic acid heptadecyl compound showing a broad-spectrum of activity, more especially against gram-negative MDR contemporary pathogens is highly encouraging in the initiative at developing novel drugs to combat multi-drug resistance.
Collapse
Affiliation(s)
- Asiphe Fanele
- Discipline of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sizwe I Ndlovu
- Department of Biotechnology and Food Technology, Doornfontein Campus, University of Johannesburg, Johannesburg, South Africa.
| |
Collapse
|
4
|
Verma A, Tiwari H, Singh S, Gupta P, Rai N, Kumar Singh S, Singh BP, Rao S, Gautam V. Epigenetic manipulation for secondary metabolite activation in endophytic fungi: current progress and future directions. Mycology 2023; 14:275-291. [PMID: 38187885 PMCID: PMC10769123 DOI: 10.1080/21501203.2023.2241486] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/21/2023] [Indexed: 01/09/2024] Open
Abstract
Fungal endophytes have emerged as a promising source of secondary metabolites with significant potential for various applications in the field of biomedicine. The biosynthetic gene clusters of endophytic fungi are responsible for encoding several enzymes and transcriptional factors that are involved in the biosynthesis of secondary metabolites. The investigation of fungal metabolic potential at genetic level faces certain challenges, including the synthesis of appropriate amounts of chemicals, and loss of the ability of fungal endophytes to produce secondary metabolites in an artificial culture medium. Therefore, there is a need to delve deeper into the field of fungal genomics and transcriptomics to explore the potential of fungal endophytes in generating secondary metabolites governed by biosynthetic gene clusters. The silent biosynthetic gene clusters can be activated by modulating the chromatin structure using chemical compounds. Epigenetic modification plays a significant role by inducing cryptic gene responsible for the production of secondary metabolites using DNA methyl transferase and histone deacetylase. CRISPR-Cas9-based genome editing emerges an effective tool to enhance the production of desired metabolites by modulating gene expression. This review primarily focuses on the significance of epigenetic elicitors and their capacity to boost the production of secondary metabolites from endophytes. This article holds the potential to rejuvenate the drug discovery pipeline by introducing new chemical compounds.
Collapse
Affiliation(s)
- Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Harshita Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Swati Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Bhim Pratap Singh
- Department of Agriculture & Environmental Sciences (AES), National Institute of Food Technology Entrepreneurship & Management (NIFTEM), Sonepat, India
| | - Sombir Rao
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
5
|
Kashyap N, Singh SK, Yadav N, Singh VK, Kumari M, Kumar D, Shukla L, Bhardwaj N, Kumar A. Biocontrol Screening of Endophytes: Applications and Limitations. PLANTS (BASEL, SWITZERLAND) 2023; 12:2480. [PMID: 37447041 DOI: 10.3390/plants12132480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/24/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023]
Abstract
The considerable loss of crop productivity each year due to plant disease or pathogen invasion during pre- or post-harvest storage conditions is one of the most severe challenges to achieving the goals of food security for the rising global population. Although chemical pesticides severally affect the food quality and health of consumers, a large population relies on them for plant disease management. But currently, endophytes have been considered one of the most suitable biocontrol agents due to better colonization and acclimatization potential. However, a very limited number of endophytes have been used commercially as biocontrol agents. Isolation of endophytes and their screening to represent potential characteristics as biocontrol agents are considered challenging by different procedures. Through a web search using the keywords "endophytes as biocontrol agents" or "biocontrol mechanism of endophytes," we have succinctly summarised the isolation strategies and different in vitro and in vivo biocontrol screening methods of endophytic biocontrol agents in the present review. In this paper, biocontrol mechanisms of endophytes and their potential application in plant disease management have also been discussed. Furthermore, the registration and regulatory mechanism of the endophytic biocontrol agents are also covered.
Collapse
Affiliation(s)
- Nikhil Kashyap
- Department of Biotechnology, Noida International University, Greater Noida 203201, India
| | - Sandeep Kumar Singh
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Nisha Yadav
- Division of Agriculture Extension, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Vipin Kumar Singh
- Department of Botany, K.S. Saket P.G. College, Ayodhya 224123, India
| | - Madhuree Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | - Livleen Shukla
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Nikunj Bhardwaj
- Department of Zoology, Maharaj Singh College, Maa Shakumbhari University, Saharanpur 247001, India
| | - Ajay Kumar
- Department of Botany, M.V. College, Buxar 802101, India
| |
Collapse
|
6
|
Kushveer JS, Sharma R, Samantaray M, Amutha R, Sarma VV. Purification and evaluation of 2, 4-di-tert butylphenol (DTBP) as a biocontrol agent against phyto-pathogenic fungi. Fungal Biol 2023; 127:1067-1074. [PMID: 37344008 DOI: 10.1016/j.funbio.2023.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023]
Abstract
A fungal strain, Marasmiellus sp (PUK64), isolated from the mangrove forests in Muthupet, Tamil Nadu, East coast of India, along with others were screened for the search of potent bioactive compounds. A phenolic compound, 2,4-di-tert-butylphenol (DTBP), was isolated from the most promising strain PUK64 and its chemical structure was ascertained. DTBP demonstrated remarkable antifungal activity against the phytopathogenic fungi Aspergillus oryzae, Curvularia lunata and Fusarium verticillioides. In an in-vitro experimental setup, DTBP suppressed the growth of all three fungi, among which F. verticillioides was found to be highly susceptible. This effect relates with the inhibition of spore germination and hyphal growth that we observed. DTBP showed high affinity with the F. verticillioides's β-tubulin protein (determined by ligand-protein docking) as compared to the standard fungicide carbendazim (CBZ). Molecular docking and simulation studies of DTBP with target β-tubulin further confirmed the potential of β-tubulin binding in F. verticillioides. To our knowledge, this is the first report on DTBP-mediated biocontrol of phytopathogenic fungi, produced by Marasmiellus sp. PUK64 that can be potent inhibitor of β-tubulin protein of F. verticillioides.
Collapse
Affiliation(s)
- J S Kushveer
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Rahul Sharma
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Mahesh Samantaray
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - R Amutha
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | | |
Collapse
|
7
|
Evaluation of Congo red dye decolorization and degradation potential of an endophyte Colletotrichum gloeosporioides isolated from Thevetia peruviana (Pers.) K. Schum. Folia Microbiol (Praha) 2022; 68:381-393. [DOI: 10.1007/s12223-022-01017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/13/2022] [Indexed: 11/27/2022]
|
8
|
Kumari M, Qureshi KA, Jaremko M, White J, Singh SK, Sharma VK, Singh KK, Santoyo G, Puopolo G, Kumar A. Deciphering the role of endophytic microbiome in postharvest diseases management of fruits: Opportunity areas in commercial up-scale production. FRONTIERS IN PLANT SCIENCE 2022; 13:1026575. [PMID: 36466226 PMCID: PMC9716317 DOI: 10.3389/fpls.2022.1026575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
As endophytes are widely distributed in the plant's internal compartments and despite having enormous potential as a biocontrol agent against postharvest diseases of fruits, the fruit-endophyte-pathogen interactions have not been studied detail. Therefore, this review aims to briefly discuss the colonization patterns of endophytes and pathogens in the host tissue, the diversity and distribution patterns of endophytes in the carposphere of fruits, and host-endophyte-pathogen interactions and the molecular mechanism of the endophytic microbiome in postharvest disease management in fruits. Postharvest loss management is one of the major concerns of the current century. It is considered a critical challenge to food security for the rising global population. However, to manage the postharvest loss, still, a large population relies on chemical fungicides, which affect food quality and are hazardous to health and the surrounding environment. However, the scientific community has searched for alternatives for the last two decades. In this context, endophytic microorganisms have emerged as an economical, sustainable, and viable option to manage postharvest pathogens with integral colonization properties and eliciting a defense response against pathogens. This review extensively summarizes recent developments in endophytic interactions with harvested fruits and pathogens-the multiple biocontrol traits of endophytes and colonization and diversity patterns of endophytes. In addition, the upscale commercial production of endophytes for postharvest disease treatment is discussed.
Collapse
Affiliation(s)
- Madhuree Kumari
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (R.S.R.C.), Division of Biological and Environmental Sciences and Engineering (B.E.S.E.), King Abdullah University of Science and Technology (K.A.U.S.T.), Thuwal, Saudi Arabia
| | - James White
- Department of Plant Biology, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States
| | - Sandeep Kumar Singh
- Division of Microbiology, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Vijay Kumar Sharma
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| | | | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Gerardo Puopolo
- Center Agriculture Food Environment, University of Trento, Trentino, TN, Italy
| | - Ajay Kumar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| |
Collapse
|
9
|
Abo-Kadoum MA, Abouelela ME, Al Mousa AA, Abo-Dahab NF, Mosa MA, Helmy YA, Hassane AMA. Resveratrol biosynthesis, optimization, induction, bio-transformation and bio-degradation in mycoendophytes. Front Microbiol 2022; 13:1010332. [PMID: 36304949 PMCID: PMC9593044 DOI: 10.3389/fmicb.2022.1010332] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Resveratrol (3,4,5-trihydroxystilbene) is a naturally occurring polyphenolic stilbene compound produced by certain plant species in response to biotic and abiotic factors. Resveratrol has sparked a lot of interest due to its unique structure and approved therapeutic properties for the prevention and treatment of many diseases such as neurological disease, cardiovascular disease, diabetes, inflammation, cancer, and Alzheimer's disease. Over the last few decades, many studies have focused on the production of resveratrol from various natural sources and the optimization of large-scale production. Endophytic fungi isolated from various types of grapevines and Polygonum cuspidatum, the primary plant sources of resveratrol, demonstrated intriguing resveratrol-producing ability. Due to the increasing demand for resveratrol, one active area of research is the use of endophytic fungi and metabolic engineering techniques for resveratrol's large-scale production. The current review addresses an overview of endophytic fungi as a source for production, as well as biosynthesis pathways and relevant genes incorporated in resveratrol biosynthesis. Various approaches for optimizing resveratrol production from endophytic fungi, as well as their bio-transformation and bio-degradation, are explained in detail.
Collapse
Affiliation(s)
- M. A. Abo-Kadoum
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Mohamed E. Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Amal A. Al Mousa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nageh F. Abo-Dahab
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Mohamed A. Mosa
- Nanotechnology and Advanced Nano-Materials Laboratory (NANML), Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Yosra A. Helmy
- Department of Veterinary Science, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
- Department of Animal Hygiene, Zoonoses and Animal Ethology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Abdallah M. A. Hassane
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
10
|
Schüller A, Studt-Reinhold L, Strauss J. How to Completely Squeeze a Fungus-Advanced Genome Mining Tools for Novel Bioactive Substances. Pharmaceutics 2022; 14:1837. [PMID: 36145585 PMCID: PMC9505985 DOI: 10.3390/pharmaceutics14091837] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Fungal species have the capability of producing an overwhelming diversity of bioactive substances that can have beneficial but also detrimental effects on human health. These so-called secondary metabolites naturally serve as antimicrobial "weapon systems", signaling molecules or developmental effectors for fungi and hence are produced only under very specific environmental conditions or stages in their life cycle. However, as these complex conditions are difficult or even impossible to mimic in laboratory settings, only a small fraction of the true chemical diversity of fungi is known so far. This also implies that a large space for potentially new pharmaceuticals remains unexplored. We here present an overview on current developments in advanced methods that can be used to explore this chemical space. We focus on genetic and genomic methods, how to detect genes that harbor the blueprints for the production of these compounds (i.e., biosynthetic gene clusters, BGCs), and ways to activate these silent chromosomal regions. We provide an in-depth view of the chromatin-level regulation of BGCs and of the potential to use the CRISPR/Cas technology as an activation tool.
Collapse
Affiliation(s)
| | | | - Joseph Strauss
- Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, A-3430 Tulln/Donau, Austria
| |
Collapse
|
11
|
Sharma VK, Kharwar RN. Editorial: Epigenetic Remodeling of Microorganisms of Pharmaceutical and Industrial Importance. Front Microbiol 2022; 13:887208. [PMID: 35479619 PMCID: PMC9037137 DOI: 10.3389/fmicb.2022.887208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Vijay K. Sharma
- Agricultural Research Organization (ARO), Rishon LeZion, Israel
| | - Ravindra Nath Kharwar
- Mycopathology and Microbial Technology Laboratory, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
12
|
Lee C, Gong J, Kim J, Ko H, An S, Bang S, Deyrup ST, Noh M, Shim SH. Adiponectin-Secretion-Promoting Cyclic Peptide-Polyketide Hybrids from a Halophyte-Associated Fungus, Colletotrichum gloeosporioides JS0417. JOURNAL OF NATURAL PRODUCTS 2022; 85:501-510. [PMID: 35172097 DOI: 10.1021/acs.jnatprod.1c01102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Three new cyclic peptide-polyketide hybrids (1-3) and two new chaetiacandin-type polyketides (4 and 5) along with nine known compounds were isolated from cultures of a halophyte-associated fungus, Colletotrichum gloeosporioides JS0417. Spectroscopic analysis revealed that 1-3 were cyclic depsipeptides where 3,5,11-trihydroxy-2,6-dimethyldodecanoic acid was linked to two amino acids through amide and ester bonds to form a 12-membered ring. Relative and absolute configurations for the peptides were determined with spectroscopic analysis and chemical reactions. The cyclic depsipeptides 2 and 6 were determined to act as strong adiponectin-secretion-promoting modulators with potential to treat metabolic diseases associated with hypoadiponectinemia. Notably, a known compound, tryptophol, significantly inhibited PGE2 synthesis and also promoted adiponectin secretion, exhibiting a similar biological activity profile to aspirin, but with greater potency. The presence of an isoleucine moiety and non-glycosylation may be important for biological activity of the cyclic peptide-polyketide hybrids, and non-methoxylation of the side chain may influence activity of the indole derivatives.
Collapse
Affiliation(s)
- Changyeol Lee
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Junpyo Gong
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaekyeong Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyejin Ko
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungchan An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sunghee Bang
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Stephen T Deyrup
- Department of Chemistry and Biochemistry, Siena College, Londonville, New York 12211, United States
| | - Minsoo Noh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Hee Shim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
13
|
Phenolic and flavonoid contents and antioxidant activity of an endophytic fungus Nigrospora sphaerica (EHL2), inhabiting the medicinal plant Euphorbia hirta (dudhi) L. Arch Microbiol 2022; 204:140. [PMID: 35039945 PMCID: PMC8763303 DOI: 10.1007/s00203-021-02650-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/02/2022]
Abstract
Since endophytic fungi are pivotal sources of various bioactive natural compounds, the present study is aimed to investigate the antioxidant compounds of the endophytic fungus Nigrospora sphaerica isolated from a pantropical weed, Euphorbia hirta L. The fungus was fermented in four different media and each filtered broth was sequentially extracted in various solvents. Crude extracts collected from different solvents were subjected to phytochemical analysis and antioxidant activity. The total phenolic content (TPC) and total flavonoid content (TFC) were maximal in ethyl acetate crude extract (EtOAcE) of endophyte fermented in potato dextrose broth (PDB) medium (77.74 ± 0.046mgGAE/g and 230.59 ± 2.0 mgRE/g) with the highest 96.80% antioxidant activity. However, TPC and TFC were absent in hexane extract of Czapek Dox broth (CDB) medium exhibiting the lowest 4.63 ± 2.75% activity. The EtOAcE (PDB) showed a positive correlation between TFC and antiradical activity (R2 = 0.762; P < 0.05), whereas a high positive correlation was noticed between TPC and antioxidant activity (R2 = 0.989; P < 0.05). Furthermore, to determine the antioxidant activity, EtOAcE (PDB) was subjected to TLC bioautography-based partial purification, while GC/MS analysis of the partial purified extract was done to confirm the presence of phenolics along with antioxidant compounds that resulted in the detection of 2,4-Di-tert-butylphenol (13.83%), a phenolic compound accountable for the antioxidant potential. Conclusively, N. sphaerica is a potential candidate for natural antioxidant.
Collapse
|
14
|
Nishad JH, Singh A, Bharti R, Prajapati P, Sharma VK, Gupta VK, Kharwar RN. Effect of the Histone Methyltransferase Specific Probe BRD4770 on Metabolic Profiling of the Endophytic Fungus Diaporthe longicolla. Front Microbiol 2021; 12:725463. [PMID: 34659151 PMCID: PMC8513106 DOI: 10.3389/fmicb.2021.725463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
The endophytic fungus Diaporthe longicolla was isolated from the stem of Saraca asoca (Roxb.) Willd., commonly known as Ashok plant in India and Sri Lanka. Since no reports are available regarding epigenetic modulations by BRD4770 in microbial entities, D. longicolla was treated with different concentrations of BRD4770 for this purpose and evaluated for its antioxidant and antibacterial potential against five human pathogenic bacteria, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Shigella boydii, Klebsiella pneumoniae, and Escherichia coli. The crude extract obtained from cultures treated with 100 nM concentration of BRD4770 showed increased antioxidant activity and inhibition zone against S. aureus and MRSA, compared to the non-treated control. The composition of the non-treated and treated crude extract was analyzed, and induced compounds were identified with the help of Gas chromatography-mass spectrometry (GC-MS) and LC-ESI-MS/MS. LC-ESI-MS/MS analysis showed that berberine (antibacterial)-, caffeine-, and theobromine (antioxidant)-like compounds were induced in the BRD4770-treated crude extract. The presence of particular absorbance at a wavelength of 346.5 nm for berberine, 259.4 nm for caffeine, and 278.4 nm for theobromine in the reverse-phase high-performance liquid chromatography (HPLC) analysis of both BRD4770-treated crude metabolites and standard solution of the above compounds strongly supported the increased antibacterial and antioxidant activities that may be due to inducing the alterations in bioactivities of the BRD4770-treated culture.
Collapse
Affiliation(s)
- Jay Hind Nishad
- Mycopathology and Microbial Technology Laboratory, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Arti Singh
- Mycopathology and Microbial Technology Laboratory, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Rajnish Bharti
- Mycopathology and Microbial Technology Laboratory, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Priyanka Prajapati
- Mycopathology and Microbial Technology Laboratory, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | | | - Vijai Kumar Gupta
- Center for Safe and Improved Food, Biorefining and Advanced Materials Research Center, Scotland’s Rural College, Edinburgh, United Kingdom
| | - Ravindra Nath Kharwar
- Mycopathology and Microbial Technology Laboratory, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
15
|
Dwibedi V, Saxena S. Effect of precursor feeding, dietary supplementation, chemical elicitors and co-culturing on resveratrol production by Arcopilus aureus. Prep Biochem Biotechnol 2021; 52:404-412. [PMID: 34374634 DOI: 10.1080/10826068.2021.1955709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Resveratrol is an important stilbene, initially identified from red wine possessing immense therapeutic, cosmeceutical and nutraceutical applications. In the present study, endophytic fungus Arcopilus aureus(#12VVLMP) which produces resveratrol extracellularly was selected as a candidate for epigenetic modulation using natural supplements, precursor feeding, chemical elicitors and co-culturing to enhance resveratrol production. The present study highlighted the role of natural supplements i.e. grape seed extract and grape skin extract which constitute grape pomace to enhance resveratrol production by 27.7 and 13.65% respectively. Co-culturing also impacted the resveratrol production by A. aureus, enhancing it by 9.4%. Chemical elicitors and precursor feeding did not induce significant enhancement in resveratrol production. Enhancement of anti-oxidant effect was also observed in the case of use of natural supplements assayed by DPPH and ABTS• radical scavenging assays. Similarly anti-staphylococcal and anti-candida activities were potentially higher when natural supplements were used followed by co-culturing. These findings indicate that the use of natural supplement which is a by-product of wine industry may be used as a modulator of resveratrol production by A. aureus. This shall lead to a cost-effective fermentation process of resveratrol production, the global demand of which is continuously increasing.
Collapse
Affiliation(s)
- Vagish Dwibedi
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Sanjai Saxena
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| |
Collapse
|
16
|
Talukdar R, Padhi S, Rai AK, Masi M, Evidente A, Jha DK, Cimmino A, Tayung K. Isolation and Characterization of an Endophytic Fungus Colletotrichum coccodes Producing Tyrosol From Houttuynia cordata Thunb. Using ITS2 RNA Secondary Structure and Molecular Docking Study. Front Bioeng Biotechnol 2021; 9:650247. [PMID: 34222209 PMCID: PMC8249321 DOI: 10.3389/fbioe.2021.650247] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
An endophytic fungus isolated from healthy leaf tissues of Houttuynia cordata Thunb., an ethnomedicinal plant of North East India, showed a considerable amount of antimicrobial activity. The ethyl acetate extract of the fungal culture filtrates displayed promising antimicrobial activity against a panel of clinically significant pathogens including Candida albicans, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Bioassay guided purification of the organic extract using column and thin layer chromatography yielded a pure homogenous compound which was identified using spectroscopic methods (essentially by 1H NMR and MS) as tyrosol, a well-known phenylethanoid present in several natural sources. Besides, molecular docking studies against tyrosyl tRNA synthetases (TyrRS) of S. aureus (PDB ID: 1JIL) and E. coli (PDB ID: 1VBM), and CYP45014α-lanosterol demethylase (CYP51) of C. albicans (PDB ID: 5FSA) revealed tyrosol has a strong binding affinity with the enzyme active site residues. The fungus was identified as Colletotrichum sp. and characterized by its genomic ITS rDNA and ITS2 sequences. Phylogenetic analyses showed clustering of our isolate with Colletotrichum coccodes. Species of Colletotrichum are also reported to be plant pathogens. Therefore, to confirm the endophytic lifestyle of the isolate, ITS2 RNA secondary structure study was undertaken. The result indicated our isolate exhibited differences in the folding pattern as well as in motif structures when compared to those of pathogenic C. coccodes. The findings indicated that endophytic fungi harboring H. cordata could be explored as a potent source of antimicrobial agents.
Collapse
Affiliation(s)
- Rajreepa Talukdar
- Mycology and Plant Pathology Laboratory, Department of Botany, Gauhati University, Guwahati, India
| | - Srichandan Padhi
- Institute of Bioresources and Sustainable Development, Regional Centre, Gangtok, India
| | - Amit K Rai
- Institute of Bioresources and Sustainable Development, Regional Centre, Gangtok, India
| | - Marco Masi
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Antonio Evidente
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Dhruva Kumar Jha
- Mycology and Plant Pathology Laboratory, Department of Botany, Gauhati University, Guwahati, India
| | - Alessio Cimmino
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Kumananda Tayung
- Mycology and Plant Pathology Laboratory, Department of Botany, Gauhati University, Guwahati, India
| |
Collapse
|
17
|
Nishad JH, Singh A, Gautam VS, Kumari P, Kumar J, Yadav M, Kharwar RN. Bioactive potential evaluation and purification of compounds from an endophytic fungus Diaporthe longicolla, a resident of Saraca asoca (Roxb.) Willd. Arch Microbiol 2021; 203:4179-4188. [PMID: 34076738 DOI: 10.1007/s00203-021-02390-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/23/2021] [Accepted: 05/18/2021] [Indexed: 10/21/2022]
Abstract
An endophytic fungus (L3), isolated from the leaf tissues of Saraca asoca was identified as D. longicolla by microscopic and molecular methods. The crude extracts of D. longicolla revealed to harbor seven compounds in GC-MS analysis which was subjected to a thin layer chromatography (TLC) for purification and separation of bioactive ingredients. The partially purified fraction from TLC displayed the presence of 2-tridecene (Z) (RT-14.50), 5-tridecene (E) (RT-16.65) and 2,4-di-tert-butylphenol (RT-13.92) in GC-MS. High-performance liquid chromatography (HPLC) was performed to further purify the constituents which led to the collection of 2,4-di-tert-butyl phenol (RT-2.34) with excellent antioxidant activity and antibacterial activity against methicillin resistance Staphylococcus aureus (MRSA).
Collapse
Affiliation(s)
- Jay Hind Nishad
- Mycopathology and Microbial Technology Laboratory, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Arti Singh
- Mycopathology and Microbial Technology Laboratory, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Veer Singh Gautam
- Mycopathology and Microbial Technology Laboratory, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Puja Kumari
- Mycopathology and Microbial Technology Laboratory, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Jitendra Kumar
- Mycopathology and Microbial Technology Laboratory, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Monika Yadav
- Mycopathology and Microbial Technology Laboratory, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ravindra Nath Kharwar
- Mycopathology and Microbial Technology Laboratory, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
18
|
|
19
|
Epigenetic Modifiers Affect the Bioactive Compounds Secreted by an Endophyte of the Tropical Plant Piper longum. Molecules 2020; 26:molecules26010029. [PMID: 33374682 PMCID: PMC7793533 DOI: 10.3390/molecules26010029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
Seven endophytic fungi were isolated from the tropical medicinal plant Piper longum L. After preliminary screening, Phomopsis heveicola was selected for the epigenetic activation treatments. The antibacterial, antifungal, and antioxidant potentials of crude extracts obtained from the treatments (with and without epigenetic modifiers) were analyzed in vitro. The extracts inhibited growth of the human pathogens Pseudomonas aeruginosa, Shigella sonnei, Streptococcus pyogenes, and Salmonella typhi, as well as the phytopathogens Puccinia recondita, Rhizoctonia solani, Phytophthora infestans, and Botrytis cinerea. Furthermore, DPPH-scavenging activity was higher in valproic acid treated extracts. Volatile chemicals with known biological activities (measured with GC-MS/MS), were released in the valproic acid treatment. The antimicrobial potentials of the extracts were confirmed using MRM/MS analysis. The experiments revealed a new promising endophytic fungus, P. heveicola, to be utilized in biological plant protection and in biomedical applications.
Collapse
|
20
|
Mishra R, Kushveer JS, Khan MIK, Pagal S, Meena CK, Murali A, Dhayalan A, Venkateswara Sarma V. 2,4-Di-Tert-Butylphenol Isolated From an Endophytic Fungus, Daldinia eschscholtzii, Reduces Virulence and Quorum Sensing in Pseudomonas aeruginosa. Front Microbiol 2020; 11:1668. [PMID: 32849344 PMCID: PMC7418596 DOI: 10.3389/fmicb.2020.01668] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/25/2020] [Indexed: 02/01/2023] Open
Abstract
Pseudomonas aeruginosa is among the top three gram-negative bacteria according to the WHO’s critical priority list of pathogens against which newer antibiotics are urgently needed and considered a global threat due to multiple drug resistance. This situation demands unconventional antimicrobial strategies such as the inhibition of quorum sensing to alleviate the manifestation of classical resistance mechanisms. Here, we report that 2,4-di-tert-butylphenol (2,4-DBP), isolated from an endophytic fungus, Daldinia eschscholtzii, inhibits the quorum-sensing properties of P. aeruginosa. We have found that treating P. aeruginosa with 2,4-DBP substantially reduced the secretion of virulence factors as well as biofilm, and its associated factors that are controlled by quorum sensing, in a dose-dependent manner. Concomitantly, 2,4-DBP also significantly reduced the expression of quorum sensing-related genes, i.e., lasI, lasR, rhlI, and rhlR significantly. Importantly, 2,4-DBP restricted the adhesion and invasion of P. aeruginosa to the A549 lung alveolar carcinoma cells. In addition, bactericidal assay with 2,4-DBP exhibited synergism with ampicillin to kill P. aeruginosa. Furthermore, our computational studies predicted that 2,4-DBP could bind to the P. aeruginosa quorum-sensing receptors LasR and RhlR. Collectively, these data suggest that 2,4-DBP can be exploited as a standalone drug or in combination with antibiotic(s) as an anti-virulence and anti-biofilm agent to combat the multidrug resistant P. aeruginosa infection.
Collapse
Affiliation(s)
- Rashmi Mishra
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | | | - Mohd Imran K Khan
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Sudhakar Pagal
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | | | - Ayaluru Murali
- Centre for Bioinformatics, Pondicherry University, Puducherry, India
| | | | | |
Collapse
|
21
|
Toghueo RMK, Sahal D, Boyom FF. Recent advances in inducing endophytic fungal specialized metabolites using small molecule elicitors including epigenetic modifiers. PHYTOCHEMISTRY 2020; 174:112338. [PMID: 32179305 DOI: 10.1016/j.phytochem.2020.112338] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
Today when the quest of new lead molecules to supply the development pipeline is driving the course of drug discovery, endophytic fungi with their outstanding biosynthetic potential seem to be highly promising avenues for natural product scientists. However, challenges such as the production of inadequate quantities of compounds, the attenuation or loss of ability of endophytes to produce the compound of interest when grown in culture and the inability of fungal endophytes to express their full biosynthetic potential in laboratory conditions have been the major constraints. These have led to the application of small chemical elicitors that induce epigenetic changes in fungi to activate their silent gene clusters optimizing the amount of metabolites of interest or inducing the synthesis of hitherto undescribed compounds. In this respect small molecular weight compounds which are known to function as inhibitors of histone deacetylase (HDAC), DNA methyltransferase (DNMT) and proteasome have proven their efficacy in enhancing or inducing the production of specialized metabolites by fungi. Moreover, organic solvents, metals and plants extracts are also acknowledged for their ability to cause shifts in fungal metabolism. We highlight the successful studies from the past two decades reporting the ability of structurally diverse small molecular weight compounds to elicit the production of previously undescribed metabolites from endophytic fungi grown in culture. This mini review argues in favor of chemical elicitation as an effective strategy to optimize the production of fungal metabolites and invigorate the pipeline of drug discovery with new chemical entities.
Collapse
Affiliation(s)
- Rufin Marie Kouipou Toghueo
- Antimicrobial and Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Dinkar Sahal
- Malaria Drug Discovery Laboratory, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Fabrice Fekam Boyom
- Antimicrobial and Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| |
Collapse
|
22
|
Stimulation of secondary metabolite production in Hypoxylon anthochroum by naturally occurring epigenetic modifiers. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-019-00345-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Mishra R, Kushveer JS, Khan MIK, Pagal S, Meena CK, Murali A, Dhayalan A, Venkateswara Sarma V. 2,4-Di-Tert-Butylphenol Isolated From an Endophytic Fungus, Daldinia eschscholtzii, Reduces Virulence and Quorum Sensing in Pseudomonas aeruginosa. Front Microbiol 2020; 11:1668. [PMID: 32849344 DOI: 10.3389/fmicb.2020.0166-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/25/2020] [Indexed: 05/20/2023] Open
Abstract
Pseudomonas aeruginosa is among the top three gram-negative bacteria according to the WHO's critical priority list of pathogens against which newer antibiotics are urgently needed and considered a global threat due to multiple drug resistance. This situation demands unconventional antimicrobial strategies such as the inhibition of quorum sensing to alleviate the manifestation of classical resistance mechanisms. Here, we report that 2,4-di-tert-butylphenol (2,4-DBP), isolated from an endophytic fungus, Daldinia eschscholtzii, inhibits the quorum-sensing properties of P. aeruginosa. We have found that treating P. aeruginosa with 2,4-DBP substantially reduced the secretion of virulence factors as well as biofilm, and its associated factors that are controlled by quorum sensing, in a dose-dependent manner. Concomitantly, 2,4-DBP also significantly reduced the expression of quorum sensing-related genes, i.e., lasI, lasR, rhlI, and rhlR significantly. Importantly, 2,4-DBP restricted the adhesion and invasion of P. aeruginosa to the A549 lung alveolar carcinoma cells. In addition, bactericidal assay with 2,4-DBP exhibited synergism with ampicillin to kill P. aeruginosa. Furthermore, our computational studies predicted that 2,4-DBP could bind to the P. aeruginosa quorum-sensing receptors LasR and RhlR. Collectively, these data suggest that 2,4-DBP can be exploited as a standalone drug or in combination with antibiotic(s) as an anti-virulence and anti-biofilm agent to combat the multidrug resistant P. aeruginosa infection.
Collapse
Affiliation(s)
- Rashmi Mishra
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | | | - Mohd Imran K Khan
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Sudhakar Pagal
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | | | - Ayaluru Murali
- Centre for Bioinformatics, Pondicherry University, Puducherry, India
| | | | | |
Collapse
|
24
|
Dwibedi V, Kalia S, Saxena S. Isolation and enhancement of resveratrol production in Xylaria psidii by exploring the phenomenon of epigenetics: using DNA methyltransferases and histone deacetylase as epigenetic modifiers. Mol Biol Rep 2019; 46:4123-4137. [PMID: 31087245 DOI: 10.1007/s11033-019-04862-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/06/2019] [Indexed: 11/26/2022]
Abstract
Resveratrol is an important stilbene which is having a high demand due to its therapeutic, cosmeceutical and nutraceutical activities. The current study mainly focuses on strategies to enhance the fungal potential to produce resveratrol via the activation of the cryptic biosynthetic pathway with their particular interest in the antioxidant application. The endophytic fungus Xylaria psidii was isolated from the surface sterilized leaf of Vitis vinifera. With the help of HPLC analysis it is found that resveratrol concentration was maximum and enhanced in case of treatment with 5 μm SAHA (52.32 μg/mL) and by 10 μm AZA (48.94 μg/mL) followed by 10 μm SAHA (41.10 μg/mL) and 5 μm AZA (37.72 μg/mL). After treatment with different concentration of epigenetic modifiers such as HDAC inhibitors (SAHA) and dMNTs (AZA) inhibitors, a significant increase in antioxidant potential was obtained. In the case of DPPH increase in scavenging potential was found as compared to wild strain. Treatment with 5 μm SAHA and by 10 μm AZA was showing strong antioxidant potential among all the epigenetic variants as compared to wild strain. In the case of TEAC also the same trend as in the case of DPPH was obtained.
Collapse
Affiliation(s)
- Vagish Dwibedi
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Shreya Kalia
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Sanjai Saxena
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
| |
Collapse
|
25
|
Epigenetic Modifier Based Enhancement of Piperine Production in Endophytic Diaporthe sp. PF20. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s40011-018-0982-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
26
|
Zhang MG, Lee JY, Gallo RA, Tao W, Tse D, Doddapaneni R, Pelaez D. Therapeutic targeting of oncogenic transcription factors by natural products in eye cancer. Pharmacol Res 2017; 129:365-374. [PMID: 29203441 DOI: 10.1016/j.phrs.2017.11.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/15/2017] [Accepted: 11/30/2017] [Indexed: 02/08/2023]
Abstract
Carcinogenesis has a multifactorial etiology, and the underlying molecular pathogenesis is still not entirely understood, especially for eye cancers. Primary malignant intraocular neoplasms are relatively rare, but delayed detection and inappropriate management contribute to poor outcomes. Conventional treatment, such as orbital exenteration, chemotherapy, or radiotherapy, alone results in high mortality for many of these malignancies. Recent sequential multimodal therapy with a combination of high-dose chemotherapy, followed by appropriate surgery, radiotherapy, and additional adjuvant chemotherapy has helped dramatically improve management. Transcription factors are proteins that regulate gene expression by modulating the synthesis of mRNA. Since transcription is a dominant control point in the production of many proteins, transcription factors represent key regulators for numerous cellular functions, including proliferation, differentiation, and apoptosis, making them compelling targets for drug development. Natural compounds have been studied for their potential to be potent yet safe chemotherapeutic drugs. Since the ancient times, plant-derived bioactive molecules have been used to treat dreadful diseases like cancer, and several refined pharmaceutics have been developed from these compounds. Understanding targeting mechanisms of oncogenic transcription factors by natural products can add to our oncologic management toolbox. This review summarizes the current findings of natural products in targeting specific oncogenic transcription factors in various types of eye cancer.
Collapse
Affiliation(s)
- Michelle G Zhang
- Dr Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - John Y Lee
- Dr Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Ryan A Gallo
- Dr Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Wensi Tao
- Dr Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - David Tse
- Dr Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Ravi Doddapaneni
- Dr Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Daniel Pelaez
- Dr Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Department of Biomedical Engineering, University of Miami College of Engineering, Coral Gables, FL, 33146, USA.
| |
Collapse
|