1
|
Manyi-Loh CE, Lues R. Listeria monocytogenes and Listeriosis: The Global Enigma. Foods 2025; 14:1266. [PMID: 40238523 PMCID: PMC11989209 DOI: 10.3390/foods14071266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Listeria monocytogenes is an intracellular, Gram-positive, non-spore-forming, non-encapsulated, facultative anaerobic, rod-shaped, and psychrotrophic food-borne pathogen that causes the infection, listeriosis, thus it attracts great attention following listeriosis outbreaks, which are often associated with high mortality rates. The prevalence of listeriosis is quite low globally; however, the most recent and deadliest outbreak occurred in South Africa, during which 216 persons lost their lives. L. monocytogenes is endowed with the potential to multiply through a wide range of harsh environmental conditions, forming biofilms on varying surfaces in the food industry, as well as having persistent and antibiotic-resistant cells, which pose a major threat and burden to the ready-to-eat food industry. A more frustrating characteristic of this bacterium is its strain divergence, alongside an increased level of antibiotic resistance registered among the strains of L. monocytogenes recovered from food, humans, and environmental sources, especially to those antibiotics involved in the treatment of human listeriosis. Antibiotic resistance exerted by and among pathogenic food-borne microbes is an ongoing public health menace that continues to be an issue. Against this background, a thorough search into different databases using various search engines was performed, which led to the gathering of salient information that was organised, chronologically, based on Listeria monocytogenes and listeriosis. Altogether, the findings elaborated in this study present up-to date knowledge on different aspects of this pathogen which will improve our understanding of the mystery associated with it and the ways to prevent and control its dissemination through ready-to-eat foods. In addition, constant monitoring of the antibiotic resistance profiles of strains of L. monocytogenes from varying sources detected changes, giving an update on the trend in antibiotic resistance. Overall, monitoring of bacterial contamination serves as the key aspect in the control of the food safety output in the food industry.
Collapse
Affiliation(s)
- Christy E. Manyi-Loh
- Centre for Applied Food Sustainability and Biotechnology, Central University of Technology, Bloemfontein X9301, South Africa;
| | | |
Collapse
|
2
|
Roobab U, Fidalgo LG, Arshad RN, Khan AW, Zeng XA, Bhat ZF, Bekhit AEDA, Batool Z, Aadil RM. High-pressure processing of fish and shellfish products: Safety, quality, and research prospects. Compr Rev Food Sci Food Saf 2022; 21:3297-3325. [PMID: 35638360 DOI: 10.1111/1541-4337.12977] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 04/06/2022] [Accepted: 04/20/2022] [Indexed: 12/20/2022]
Abstract
Seafood products have been one of the main drivers behind the popularity of high-pressure processing (HPP) in the food industry owing to a high demand for fresh ready-to-eat seafood products and food safety. This review provides an overview of the advanced knowledge available on the use of HPP for production of wholesome and highly nutritive clean label fish and shellfish products. Out of 653 explored items, 65 articles published during 2016-2021 were used. Analysis of the literature showed that most of the earlier work evaluated the HPP effect on physicochemical and sensorial properties, and limited information is available on nutritional aspects. HPP has several applications in the seafood industry. Application of HPP (400-600 MPa) eliminates common seafood pathogens, such as Vibrio and Listeria spp., and slows the growth of spoilage microorganisms. Use of cold water as a pressure medium induces minimal changes in sensory and nutritional properties and helps in the development of clean label seafood products. This technology (200-350 MPa) is also useful to shuck oysters, lobsters, crabs, mussels, clams, and scallops to increase recovery of the edible meat. High-pressure helps to preserve organoleptic and functional properties for an extended time during refrigerated storage. Overall, HPP helps seafood manufacturers to maintain a balance between safety, quality, processing efficiency, and regulatory compliance. Further research is required to understand the mechanisms of pressure-induced modifications and clean label strategies to minimize these modifications.
Collapse
Affiliation(s)
- Ume Roobab
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China.,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, Guangdong, China
| | - Liliana G Fidalgo
- Department of Technology and Applied Sciences, School of Agriculture, Polytechnic Institute of Beja, Beja, Portugal.,LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rai Naveed Arshad
- Institute of High Voltage & High Current, School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Abdul Waheed Khan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, Guangdong, China
| | - Zuhaib F Bhat
- Division of Livestock Products Technology, SKUAST-Jammu, Jammu and Kashmir, India
| | - Ala El-Din A Bekhit
- Department of Food Sciences, University of Otago, Dunedin, Otago, New Zealand
| | - Zahra Batool
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
3
|
Gao Y, Guan X, Wan A, Cui Y, Kou X, Li R, Wang S. Thermal Inactivation Kinetics and Radio Frequency Control of Aspergillus in Almond Kernels. Foods 2022; 11:foods11111603. [PMID: 35681353 PMCID: PMC9180863 DOI: 10.3390/foods11111603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Mold infections in almonds are a safety issue during post-harvest, storage and consumption, leading to health problems for consumers and causing economic losses. The aim of this study was to isolate mold from infected almond kernels and identify it by whole genome sequence (WGS). Then, the more heat resistant mold was selected and the thermal inactivation kinetics of this mold influenced by temperature and water activity (aw) was developed. Hot air-assisted radio frequency (RF) heating was used to validate pasteurization efficacy based on the thermal inactivation kinetics of this target mold. The results showed that the two types of molds were Penicillium and Aspergillus identified by WGS. The selected Aspergillus had higher heat resistance than the Penicillium in the almond kernels. Inactivation data for the target Aspergillus fitted the Weibull model better than the first-order kinetic model. The population changes of the target Aspergillus under the given conditions could be predicted from Mafart’s modified Bigelow model. The RF treatment was effectively used for inactivating Aspergillus in almond kernels based on Mafart’s modified Bigelow model and the cumulative lethal time model.
Collapse
Affiliation(s)
- Yu Gao
- College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang 712100, China; (Y.G.); (X.G.); (X.K.)
| | - Xiangyu Guan
- College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang 712100, China; (Y.G.); (X.G.); (X.K.)
| | - Ailin Wan
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (A.W.); (Y.C.)
| | - Yuan Cui
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (A.W.); (Y.C.)
| | - Xiaoxi Kou
- College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang 712100, China; (Y.G.); (X.G.); (X.K.)
| | - Rui Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang 712100, China; (Y.G.); (X.G.); (X.K.)
- Correspondence: (R.L.); (S.W.); Tel./Fax: +86-29-8709-2391 (R.L. & S.W.)
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang 712100, China; (Y.G.); (X.G.); (X.K.)
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164-6120, USA
- Correspondence: (R.L.); (S.W.); Tel./Fax: +86-29-8709-2391 (R.L. & S.W.)
| |
Collapse
|
4
|
A modified Weibull model for design of oscillated high hydrostatic pressure processes. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Kontominas MG, Badeka AV, Kosma IS, Nathanailides CI. Innovative Seafood Preservation Technologies: Recent Developments. Animals (Basel) 2021; 11:E92. [PMID: 33418992 PMCID: PMC7825328 DOI: 10.3390/ani11010092] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 11/16/2022] Open
Abstract
Fish and fishery products are among the food commodities of high commercial value, high-quality protein content, vitamins, minerals and unsaturated fatty acids, which are beneficial to health. However, seafood products are highly perishable and thus require proper processing to maintain their quality and safety. On the other hand, consumers, nowadays, demand fresh or fresh-like, minimally processed fishery products that do not alter their natural quality attributes. The present article reviews the results of studies published over the last 15 years in the literature on: (i) the main spoilage mechanisms of seafood including contamination with pathogens and (ii) innovative processing technologies applied for the preservation and shelf life extension of seafood products. These primarily include: high hydrostatic pressure, natural preservatives, ozonation, irradiation, pulse light technology and retort pouch processing.
Collapse
Affiliation(s)
- Michael G. Kontominas
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.V.B.); (I.S.K.)
| | - Anastasia V. Badeka
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.V.B.); (I.S.K.)
| | - Ioanna S. Kosma
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.V.B.); (I.S.K.)
| | | |
Collapse
|
6
|
George J, Aras S, Kabir MN, Wadood S, Chowdhury S, Fouladkhah AC. Sensitivity of Planktonic Cells of Staphylococcus aureus to Elevated Hydrostatic Pressure as Affected by Mild Heat, Carvacrol, Nisin, and Caprylic Acid. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17197033. [PMID: 32993008 PMCID: PMC7579652 DOI: 10.3390/ijerph17197033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/15/2020] [Accepted: 09/23/2020] [Indexed: 11/30/2022]
Abstract
Current study investigated effects of elevated hydrostatic pressure exposure in the presence of mild heat and natural antimicrobials against Staphylococcus aureus. Hydrostatic pressure of 350 to 550 MPa with nisin (5000 IU/mL), carvacrol, or caprylic acid (0.5% v/v) were applied for the reduction in four-strain mixture of S. aureus in HEPES buffer at 4 and 40 °C for up to 7 min. Results were statistically analyzed by ANOVA and D-values were additionally calculated using best-fitted linear model. Prior to exposure to treatments at 4 °C, counts of the pathogen were 7.95 ± 0.4 log CFU/mL and were reduced (p < 0.05) to 6.44 ± 0.3 log CFU/mL after 7 min of treatment at 450 MPa. D-value associated with this treatment was 5.34 min (R2 = 0.72). At 40 °C, counts were 8.21 ± 0.7 and 5.77 ± 0.3 log CFU/mL before and after the 7-min treatments, respectively. D-value associated with 40 °C treatment was 3.30 min (R2 = 0.62). Application of the antimicrobials provided additional pathogen reduction augmentation for treatments < 5 min. The results of the current study could be incorporated for meeting regulatory requirements such as Food Code, HACCP, and Preventive Control for Human Food of Food Safety Modernization Act for assuring microbiological safety of products against this prevalent pathogen of public health concern.
Collapse
Affiliation(s)
- Jyothi George
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA; (J.G.); (S.A.); (M.N.K.); (S.W.); (S.C.)
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Sadiye Aras
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA; (J.G.); (S.A.); (M.N.K.); (S.W.); (S.C.)
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Md Niamul Kabir
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA; (J.G.); (S.A.); (M.N.K.); (S.W.); (S.C.)
| | - Sabrina Wadood
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA; (J.G.); (S.A.); (M.N.K.); (S.W.); (S.C.)
| | - Shahid Chowdhury
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA; (J.G.); (S.A.); (M.N.K.); (S.W.); (S.C.)
| | - Aliyar Cyrus Fouladkhah
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA; (J.G.); (S.A.); (M.N.K.); (S.W.); (S.C.)
- Cooperative Extension Program, Tennessee State University, Nashville, TN 37209, USA
- Correspondence: ; Tel.: +1-970-690-7392
| |
Collapse
|
7
|
Bahrami A, Moaddabdoost Baboli Z, Schimmel K, Jafari SM, Williams L. Efficiency of novel processing technologies for the control of Listeria monocytogenes in food products. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.12.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Effects of water activity, temperature and particle size on thermal inactivation of Escherichia coli ATCC 25922 in red pepper powder. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106817] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Degala HL, Scott JR, Rico Espinoza FI, Mahapatra AK, Kannan G. Synergistic effect of ozonated and electrolyzed water on the inactivation kinetics of
Escherichia coli
on goat meat. J Food Saf 2019. [DOI: 10.1111/jfs.12740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hema L. Degala
- Food Engineering Laboratory, Agricultural Research Station, College of Agriculture, Family Sciences and TechnologyFort Valley State University Fort Valley Georgia
| | - Jasmine R. Scott
- Food Engineering Laboratory, Agricultural Research Station, College of Agriculture, Family Sciences and TechnologyFort Valley State University Fort Valley Georgia
| | | | - Ajit K. Mahapatra
- Food Engineering Laboratory, Agricultural Research Station, College of Agriculture, Family Sciences and TechnologyFort Valley State University Fort Valley Georgia
| | - Govind Kannan
- Food Engineering Laboratory, Agricultural Research Station, College of Agriculture, Family Sciences and TechnologyFort Valley State University Fort Valley Georgia
| |
Collapse
|
10
|
Ma Y, Yin X, Bi X, Su F, Liang Z, Luo M, Fu D, Xing Y, Che Z. Physicochemical properties and bioactive compounds of fermented pomegranate juice as affected by high-pressure processing and thermal treatment. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1640737] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yuan Ma
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Xiaocui Yin
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Xiufang Bi
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Fan Su
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Zhilin Liang
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu, China
- Key Laboratory of Food Non-thermal Processing, Engineering and Technology Research Center for Food Non-thermal Processing, Yibin Xihua University Research Institute, Yibin, China
| | - Ming Luo
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Dongxu Fu
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu, China
- Key Laboratory of Food Non-thermal Processing, Engineering and Technology Research Center for Food Non-thermal Processing, Yibin Xihua University Research Institute, Yibin, China
| | - Yage Xing
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Zhenming Che
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu, China
| |
Collapse
|
11
|
Kaur BP, Rao PS. Kinetic modeling of polyphenoloxidase inactivation during thermal-assisted high pressure processing in black tiger shrimp (Penaeus monodon). Food Control 2017. [DOI: 10.1016/j.foodcont.2017.05.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|