1
|
Praphasanobol P, Chokwiwatkul R, Habila S, Chantawong Y, Buaboocha T, Comai L, Chadchawan S. Effects of Salt Stress at the Booting Stage of Grain Development on Physiological Responses, Starch Properties, and Starch-Related Gene Expression in Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2025; 14:885. [PMID: 40265802 PMCID: PMC11944574 DOI: 10.3390/plants14060885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/07/2025] [Accepted: 03/09/2025] [Indexed: 04/24/2025]
Abstract
Here, we investigated physiological responses, yield components, starch properties, and starch biosynthesis genes in five Thai rice (Oryza sativa L.) cultivars (SPR1, Hawm Daeng, RD43, RD69, and PTT1) with distinct starch characteristics under salt stress. Salt stress decreased flag leaf greenness (SPAD), normalized difference vegetation index (NDVI) levels, and carotenoid reflectance index 1 (CRI1) levels in all cultivars, resulting in reduced net photosynthesis, transpiration rates, and yield components across all cultivars, with Hawm Daeng and PTT1 being most susceptible. In contrast, RD69 and SPR1 were more tolerant, exhibiting recovered chlorophyll fluorescence levels and total performance index values after 3 days. Salt stress reduced apparent amylose content (AAC) and increased rapidly available glucose (RAG) levels in all cultivars. Granule-bound starch synthase I (GBSSI) expression declined the most in PTT1 and Hawm Daeng. SPAD, NDVI, CRI1, and photosynthetic parameters were correlated with GBSSI expression at the milky and dough stages of grain development. GBSSI expression levels showed little to no correlation with slowly available glucose but correlated with resistant starch levels at the booting stage of grain development. Salt stress affected yield components and rice starch quality, with variations depending on salt susceptibility, which in turn affected GBSSI expression levels during the milky and dough stages of grain development.
Collapse
Affiliation(s)
- Parama Praphasanobol
- Biological Sciences Program, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (R.C.); (S.H.); (Y.C.)
| | - Ratchata Chokwiwatkul
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (R.C.); (S.H.); (Y.C.)
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Susinya Habila
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (R.C.); (S.H.); (Y.C.)
- Department of Plant Science and Biotechnology, Faculty of Natural Science, University of Jos, Jos North 930003, Nigeria
| | - Yosita Chantawong
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (R.C.); (S.H.); (Y.C.)
| | - Teerapong Buaboocha
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Luca Comai
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA 95616, USA;
| | - Supachitra Chadchawan
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (R.C.); (S.H.); (Y.C.)
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
2
|
Han Z, Moh ESX, Ge X, Luo X, Wang H, Ma J, Shi S, Ye J. Mangrove fungi in action: Novel bioremediation strategy for high-chloride wastewater. BIORESOURCE TECHNOLOGY 2024; 414:131629. [PMID: 39414162 DOI: 10.1016/j.biortech.2024.131629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Bioremediation of extremely high-chloride wastewater poses significant challenges due to the adverse effects of elevated salt concentrations on most microorganisms, where chloride levels can be as high as 7% (w/v). Mangrove wetlands derived fungus, Aspergillus aculeatus, emerged as a promising candidate, capable of removing approximately 40% of chloride ions in environments with concentration of 15% (w/v), representative of industrial wastewater conditions. Transcriptomics and biochemical assays conducted under increasing salt conditions revealed that elevated chloride concentrations induce the expression and activity of S-adenosyl methionine-dependent methyltransferase, which facilitates the conversion of chloride into chloromethane. This is the first report characterizing the biological mechanism behind high salt tolerance and chloride removal capacity of Aspergillus aculeatus. This salt remediation mechanism may work as a starter for developing future bioremediation strategies to treat high-chloride wastewater using fungi, offering an eco-friendly alternative to traditional physical or chemical methods.
Collapse
Affiliation(s)
- Zhiping Han
- College of Food Science and Engineering, Lingnan Normal University, Zhanjiang, Guangdong, China
| | - Edward S X Moh
- ARC Centre of Excellence for Synthetic Biology, Macquarie University, School of Natural Sciences, Sydney, Australia
| | - Xin Ge
- Network and Information Technology Center, Lingnan Normal University, Zhanjiang, Guangdong, China
| | - Xingqian Luo
- College of Food Science and Engineering, Lingnan Normal University, Zhanjiang, Guangdong, China
| | - Haizhou Wang
- College of Food Science and Engineering, Lingnan Normal University, Zhanjiang, Guangdong, China
| | - Jie Ma
- College of Food Science and Engineering, Lingnan Normal University, Zhanjiang, Guangdong, China
| | - Sien Shi
- College of Food Science and Engineering, Lingnan Normal University, Zhanjiang, Guangdong, China
| | - Jianzhi Ye
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China.
| |
Collapse
|
3
|
Feng Y, He J, Zhang H, Jia X, Hu Y, Ye J, Gu X, Zhang X, Chen H. Phosphate solubilizing microorganisms: a sustainability strategy to improve urban ecosystems. Front Microbiol 2024; 14:1320853. [PMID: 38249462 PMCID: PMC10797123 DOI: 10.3389/fmicb.2023.1320853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Intensification of urban construction has gradually destroyed human habitat ecosystems. Plants, which serve as the foundation of ecosystems, require green, low-cost, and effective technologies to sustain their growth in stressful environments. A total of 286 keywords and 10 clusters from the bibliometric analysis of 529 articles (1999-2023) indicate the increasing importance of research on microbial functionality in landscape ecosystems. Phosphate solubilizing microorganisms (PSMs) also improve plant disease resistance, adaptability, and survival. PSMs are widely used to promote plant growth and improve ecological quality. They can increase the availability of phosphorus in the soil and reduce the dependence of plants on chemical fertilizers. Microorganisms regulate phosphorus as key tools in landscape ecosystems. Most importantly, in urban and rural landscape practices, PSMs can be applied to green spaces, residential landscapes, road greening, and nursery planting, which play significant roles in improving vegetation coverage, enhancing plant resistance, improving environmental quality, and mitigating the heat island effect. PSMs are also helpful in restoring the ecological environment and biodiversity of polluted areas, such as brownfields, to provide residents with a more liveable living environment. Therefore, the multiple efficacies of PSM are expected to play increasingly important roles in the construction of urban and rural landscape ecosystems.
Collapse
Affiliation(s)
- Yang Feng
- School of Art and Design, Xijing University, Xi'an, China
- Shaanxi Provincial Research Center of Public Scientific Quality Development and Cultural and Creative Industry Development, Xi'an, China
| | - Jing He
- School of Art and Design, Xijing University, Xi'an, China
| | - Hongchen Zhang
- School of Art and Design, Xijing University, Xi'an, China
| | - Xiaolin Jia
- School of Art and Design, Xijing University, Xi'an, China
- Shaanxi Provincial Research Center of Public Scientific Quality Development and Cultural and Creative Industry Development, Xi'an, China
| | - Youning Hu
- School of Biological and Environmental Engineering, Xi’an University, Xi'an, China
| | - Jianqing Ye
- School of Art and Design, Xijing University, Xi'an, China
| | - Xinyuan Gu
- School of Art and Design, Xijing University, Xi'an, China
| | - Xinping Zhang
- School of Art and Design, Xi’an University of Technology, Xi'an, China
| | - Haoming Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
4
|
Yin Y, Yang T, Li S, Li X, Wang W, Fan S. Transcriptomic analysis reveals that methyl jasmonate confers salt tolerance in alfalfa by regulating antioxidant activity and ion homeostasis. FRONTIERS IN PLANT SCIENCE 2023; 14:1258498. [PMID: 37780521 PMCID: PMC10536279 DOI: 10.3389/fpls.2023.1258498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023]
Abstract
Introduction Alfalfa, a globally cultivated forage crop, faces significant challenges due to its vulnerability to salt stress. Jasmonates (JAs) play a pivotal role in modulating both plant growth and response to stressors. Methods In this study, alfalfa plants were subjected to 150 mM NaCl with or without methyl jasmonate (MeJA). The physiological parameters were detected and a transcriptomic analysis was performed to elucidate the mechanisms underlying MeJA-mediated salt tolerance in alfalfa. Results Results showed that exogenous MeJA regulated alfalfa seed germination and primary root growth in a dose-dependent manner, with 5µM MeJA exerting the most efficient in enhancing salt tolerance. MeJA at this concentration elavated the salt tolerance of young alfalfa seedlings by refining plant growth, enhancing antioxidant capacity and ameliorating Na+ overaccumulation. Subsequent transcriptomic analysis identified genes differentially regulated by MeJA+NaCl treatment and NaCl alone. PageMan analysis revealed several significantly enriched categories altered by MeJA+NaCl treatment, compared with NaCl treatment alone, including genes involved in secondary metabolism, glutathione-based redox regulation, cell cycle, transcription factors (TFs), and other signal transductions (such as calcium and ROS). Further weighted gene co-expression network analysis (WGCNA) uncovered that turquoise and yellow gene modules were tightly linked to antioxidant enzymes activity and ion content, respectively. Pyruvate decar-boxylase (PDC) and RNA demethylase (ALKBH10B) were identified as the most central hub genes in these two modules. Also, some TFs-hub genes were identified by WGCNA in these two modules highly positive-related to antioxidant enzymes activity and ion content. Discussion MeJA triggered a large-scale transcriptomic remodeling, which might be mediated by transcriptional regulation through TFs or post-transcriptional regulation through demethylation. Our findings contributed new perspectives for understanding the underneath mechanisms by which JA-mediated salt tolerance in alfalfa.
Collapse
Affiliation(s)
- YanLing Yin
- School of Resources and Environmental Engineering, Ludong University, Yantai, Shandong, China
| | - TianHui Yang
- School of Resources and Environmental Engineering, Ludong University, Yantai, Shandong, China
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Shuang Li
- School of Resources and Environmental Engineering, Ludong University, Yantai, Shandong, China
| | - Xiaoning Li
- School of Resources and Environmental Engineering, Ludong University, Yantai, Shandong, China
| | - Wei Wang
- School of Resources and Environmental Engineering, Ludong University, Yantai, Shandong, China
| | - ShuGao Fan
- School of Resources and Environmental Engineering, Ludong University, Yantai, Shandong, China
| |
Collapse
|
5
|
Gaber DA, Berthelot C, Blaudez D, Kovács GM, Franken P. Impact of dark septate endophytes on salt stress alleviation of tomato plants. Front Microbiol 2023; 14:1124879. [PMID: 37415811 PMCID: PMC10320394 DOI: 10.3389/fmicb.2023.1124879] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/19/2023] [Indexed: 07/08/2023] Open
Abstract
Fungal endophytes can improve plant tolerance to abiotic stress conditions. Dark septate endophytes (DSEs) belong to phylogenetically non-related groups of root colonizing fungi among the Ascomycota with high melanin-producing activities. They can be isolated from roots of more than 600 plant species in diverse ecosystems. Still the knowledge about their interaction with host plants and their contribution to stress alleviation is limited. The current work aimed to test the abilities of three DSEs (Periconia macrospinosa, Cadophora sp., Leptodontidium sp.) to alleviate moderate and high salt stress in tomato plants. By including an albino mutant, the role of melanin for the interaction with plants and salt stress alleviation could also be tested. P. macrospinosa and Cadophora sp. improved shoot and root growth 6 weeks after inoculation under moderate and high salt stress conditions. No matter how much salt stress was applied, macroelement (P, N, and C) contents were unaffected by DSE inoculation. The four tested DSE strains successfully colonized the roots of tomato, but the colonization level was clearly reduced in the albino mutant of Leptodontidium sp. Any difference in the effects on plant growth between the Leptodontidium sp. wild type strain and the albino mutant could, however, not be observed. These results show that particular DSEs are able to increase salt tolerance as they promote plant growth specifically under stress condition. Increased plant biomasses combined with stable nutrient contents resulted in higher P uptake in shoots of inoculated plants at moderate and high salt conditions and higher N uptake in the absence of salt stress in all inoculated plants, in P. macrospinosa-inoculated plants at moderate salt condition and in all inoculated plants except the albino mutants at high salt condition. In summary, melanin in DSEs seems to be important for the colonization process, but does not influence growth, nutrient uptake or salt tolerance of plants.
Collapse
Affiliation(s)
- Dalia A. Gaber
- Leibniz-Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany
- Erfurt Research Centre for Horticultural Crops, University of Applied Sciences, Erfurt, Germany
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Charlotte Berthelot
- Université de Lorraine, CNRS, LIEC, Nancy, France
- CTIFL, Centre de Carquefou, Carquefou, France
| | | | - Gábor M. Kovács
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- Centre for Agricultural Research, Plant Protection Institute, Budapest, Hungary
| | - Philipp Franken
- Leibniz-Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany
- Erfurt Research Centre for Horticultural Crops, University of Applied Sciences, Erfurt, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
6
|
Liu R, Lv X, Wang X, Yang L, Cao J, Dai Y, Wu W, Wu Y. Integrative analysis of the multi-omics reveals the stripe rust fungus resistance mechanism of the TaPAL in wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1174450. [PMID: 37342140 PMCID: PMC10277697 DOI: 10.3389/fpls.2023.1174450] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/05/2023] [Indexed: 06/22/2023]
Abstract
Wheat is one of the major food crops in the world. However, stripe rust fungus significantly decreases wheat yield and quality. In the present study, transcriptomic and metabolite analyses were conducted in R88 (resistant line) and CY12 (susceptible cultivar) during Pst-CYR34 infection due to the limited availability of information regarding the underlying mechanisms governing wheat-pathogen interactions. The results revealed that Pst infection promoted the genes and metabolites involved in phenylpropanoid biosynthesis. The key enzyme gene TaPAL to regulate lignin and phenolic synthesis has a positive resistance contribution to Pst in wheat, which was verified by the virus-induced gene silencing (VIGS) technique. The distinctive resistance of R88 is regulated by the selective expression of genes involved in the fine-tuning of wheat-Pst interactions. Furthermore, metabolome analysis suggested that lignin biosynthesis-related metabolite accumulation was significantly affected by Pst. These results help to elucidate the regulatory networks of wheat-Pst interactions and pave the way for durable resistance breeding in wheat, which may ease environmental and food crises around the world.
Collapse
Affiliation(s)
- Rong Liu
- Faculty of Agriculture, Forestry and Food Engineering of Yibin University, Yibin, China
| | - Xue Lv
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiaohua Wang
- Faculty of Agriculture, Forestry and Food Engineering of Yibin University, Yibin, China
| | - Li Yang
- Wuhan Metware Biotechnology, Wuhan, Wuhan, China
| | - Jun Cao
- Faculty of Agriculture, Forestry and Food Engineering of Yibin University, Yibin, China
| | - Ya Dai
- Faculty of Agriculture, Forestry and Food Engineering of Yibin University, Yibin, China
| | - Wang Wu
- Faculty of Agriculture, Forestry and Food Engineering of Yibin University, Yibin, China
| | - Yu Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
7
|
Gul H, Ali R, Rauf M, Hamayun M, Arif M, Khan SA, Parveen Z, Alrefaei AF, Lee IJ. Aspergillus welwitschiae BK Isolate Ameliorates the Physicochemical Characteristics and Mineral Profile of Maize under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:1703. [PMID: 37111926 PMCID: PMC10145286 DOI: 10.3390/plants12081703] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/09/2023] [Accepted: 04/15/2023] [Indexed: 06/19/2023]
Abstract
Abiotic stressors are global limiting constraints for plant growth and development. The most severe abiotic factor for plant growth suppression is salt. Among many field crops, maize is more vulnerable to salt, which inhibits the growth and development of plants and results in low productivity or even crop loss under extreme salinity. Consequently, comprehending the effects of salt stress on maize crop improvement, while retaining high productivity and applying mitigation strategies, is essential for achieving the long-term objective of sustainable food security. This study aimed to exploit the endophytic fungal microbe; Aspergillus welwitschiae BK isolate for the growth promotion of maize under severe salinity stress. Current findings showed that salt stress (200 mM) negatively affected chlorophyll a and b, total chlorophyll, and endogenous IAA, with enhanced values of chlorophyll a/b ratio, carotenoids, total protein, total sugars, total lipids, secondary metabolites (phenol, flavonoids, tannins), antioxidant enzyme activity (catalase, ascorbate peroxidase), proline content, and lipid peroxidation in maize plants. However, BK inoculation reversed the negative impact of salt stress by rebalancing the chlorophyll a/b ratio, carotenoids, total protein, total sugars, total lipids, secondary metabolites (phenol, flavonoids, tannins), antioxidant enzyme activity (catalase, ascorbate peroxidase), and proline content to optimal levels suitable for growth promotion and ameliorating salt stress in maize plants. Furthermore, maize plants inoculated with BK under salt stress had lower Na+, Cl- concentrations, lower Na+/K+ and Na+/Ca2+ ratios, and higher N, P, Ca2+, K+, and Mg2+ content than non-inoculated plants. The BK isolate improved the salt tolerance by modulating physiochemical attributes, and the root-to-shoot translocation of ions and mineral elements, thereby rebalancing the Na+/K+, Na+/Ca2+ ratio of maize plants under salt stress.
Collapse
Affiliation(s)
- Humaira Gul
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (H.G.); (R.A.)
| | - Raid Ali
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (H.G.); (R.A.)
| | - Mamoona Rauf
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (H.G.); (R.A.)
| | - Muhammad Hamayun
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (H.G.); (R.A.)
| | - Muhammad Arif
- Department of Biotechnology, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan;
| | - Sumera Afzal Khan
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar 25120, Pakistan;
| | - Zahida Parveen
- Department of Biochemistry, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan;
| | | | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
8
|
Li X, Fan S, Cui X, Shao A, Wang W, Xie Y, Fu J. Transcriptome analysis of perennial ryegrass reveals the regulatory role of Aspergillus aculeatus under salt stress. PHYSIOLOGIA PLANTARUM 2022; 174:e13805. [PMID: 36270788 DOI: 10.1111/ppl.13805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/22/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Perennial ryegrass (Lolium perenne) is an important turf grass and forage grass with moderately tolerant to salinity stress. Aspergillus aculeatus has been documented to involved in salt stress response of perennial ryegrass, while the A. aculeatus-mediated molecular mechanisms are unclear. Therefore, to investigate the molecular mechanisms underlying A. aculeatus-mediated salt tolerance, the comprehensive transcriptome analysis of the perennial ryegrass roots was performed. Twelve cDNA libraries from roots were constructed after 12 h of plant-fungus cocultivation under 300 mM salt stress concentrations. A total of 21,915 differentially expressed genes (DEGs) were identified through pairwise comparisons. Enrichment analysis revealed that potentially important A. aculeatus-induced salt responsive genes belonging to specific categories, such as hormonal metabolism (auxin and salicylic acid metabolism related genes), secondary metabolism (flavonoid's metabolism related genes) and transcription factors (MYB, HSF and AP2/EREBP family). In addition, weighted gene co-expression network analysis (WGCNA) showed that blue and black modules were significantly positively correlated with the peroxidase activity and proline content, then the hub genes within these two modules were further identified. Taken together, we found the categories of A. aculeatus-induced salt responsive genes, revealing underlying fungus-induced molecular mechanisms of salt stress response in perennial ryegrass roots. Besides, fungus-induced salt-tolerant hub genes represent a foundation for further exploring the molecular mechanisms.
Collapse
Affiliation(s)
- Xiaoning Li
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - Shugao Fan
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - Xinyu Cui
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - An Shao
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - Wei Wang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - Yan Xie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Jinmin Fu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| |
Collapse
|
9
|
Living Fungi in an Opencast Limestone Mine: Who Are They and What Can They Do? J Fungi (Basel) 2022; 8:jof8100987. [DOI: 10.3390/jof8100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Opencast limestone mines or limestone quarries are considered challenging ecosystems for soil fungi as they are highly degraded land with specific conditions, including high temperature, prolonged sunlight exposure, and a lack of organic matter, moisture, and nutrients in soil. In such ecosystems, certain fungi can survive and have a crucial function in maintaining soil ecosystem functions. Unfortunately, we know very little about taxonomic diversity, potential functions, and the ecology of such fungi, especially for a limestone quarry in a tropical region. Here, we characterized and compared the living soil fungal communities in an opencast limestone mine, including mining site and its associated rehabilitation site (9 months post-rehabilitation), with the soil fungal community in a reference forest, using the amplicon sequencing of enrichment culture. Our results showed that living fungal richness in the quarry areas was significantly lower than that in the reference forest, and their community compositions were also significantly different. Living fungi in the mining sites mostly comprised of Ascomycota (Eurotiomycetes and Sordariomycetes) with strongly declined abundance or absence of Basidiomycota and Mucoromycota. After nine months of rehabilitation, certain taxa were introduced, such as Hypoxylon spp. and Phellinus noxius, though this change did not significantly differentiate fungal community composition between the mining and rehabilitation plots. The majority of fungi in these plots are classified as saprotrophs, which potentially produce all fifteen soil enzymes used as soil health indicators. Network analysis, which was analyzed to show insight into complex structures of living fungal community in the limestone quarry, showed a clear modular structure that was significantly impacted by different soil properties. Furthermore, this study suggests potential taxa that could be useful for future rehabilitation.
Collapse
|
10
|
Attia MS, Hashem AH, Badawy AA, Abdelaziz AM. Biocontrol of early blight disease of eggplant using endophytic Aspergillus terreus: improving plant immunological, physiological and antifungal activities. BOTANICAL STUDIES 2022; 63:26. [PMID: 36030517 PMCID: PMC9420682 DOI: 10.1186/s40529-022-00357-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/18/2022] [Indexed: 05/06/2023]
Abstract
BACKGROUND The eggplant suffers from many biotic stresses that cause severe damage to crop production. One of the most destructive eggplant pathogens is Alternaria solani, which causes early blight disease. A pot experiment was conducted to evaluate the role of fungal endophytes in protecting eggplant against early blight as well as in improving its growth performance. RESULTS Endophytic Aspergillus terreus was isolated from Ocimum basilicum leaves and identified morphologically and genetically. In vitro, crude extract of endophytic A. terreus exhibited promising antifungal activity against A. solani where minimum inhibitory concentration (MIC) was 1.25 mg/ml. Severity of the disease and rate of protection from the disease were recorded. Vegetative growth indices, physiological resistance signs (photosynthetic pigments, carbohydrates, proteins, phenols, proline, malondialdehyde (MDA), antioxidant enzymes), and isozymes were estimated. Alternaria solani caused a highly disease severity (87.5%) and a noticeable decreasing in growth characteristics and photosynthetic pigments except for carotenoids. Also, infection with A. solani caused significant decreases in the contents of carbohydrate and protein by 29.94% and 10.52%, respectively. Infection with A. solani caused enhancement in phenolics (77.21%), free proline (30.56%), malondialdehyde (30.26%), superoxide dismutase (SOD) (125.47%), catalase (CAT) (125.93%), peroxidase (POD) (25.07%) and polyphenol oxidase (PPO) (125.37%) compared to healthy plants. In contrast, the use of A. terreus on infected plants succeeded in recovering eggplants from the disease, as the disease severity was recorded (caused protection by 66.67%). Application of A. terreus either on healthy or infected eggplants showed several responses in number and density of peroxidase (POD) and polyphenol oxidase (PPO) isozymes. CONCLUSION It is necessary for us to address the remarkable improvement in the photosynthetic pigments, protein, carbohydrates, and enzymatic activity compared to infected control, which opens the way for more studies on the use of biocides as safe alternatives against fungal diseases.
Collapse
Affiliation(s)
- Mohamed S Attia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Ali A Badawy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Amer M Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| |
Collapse
|
11
|
Gupta SVK, Smith PMC, Natera SHA, Roessner U. Biochemical Changes in Two Barley Genotypes Inoculated With a Beneficial Fungus Trichoderma harzianum Rifai T-22 Grown in Saline Soil. FRONTIERS IN PLANT SCIENCE 2022; 13:908853. [PMID: 35982702 PMCID: PMC9379338 DOI: 10.3389/fpls.2022.908853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
One of the most important environmental factors impacting crop plant productivity is soil salinity. Fungal endophytes have been characterised as biocontrol agents that help in plant productivity and induce resistance responses to several abiotic stresses, including salinity. In the salt-tolerant cereal crop barley (Hordeum vulgare L.), there is limited information about the metabolites and lipids that change in response to inoculation with fungal endophytes in saline conditions. In this study, gas chromatography coupled to mass spectrometry (GC-MS) and LC-electrospray ionisation (ESI)-quadrupole-quadrupole time of flight (QqTOF)-MS were used to determine the metabolite and lipid changes in two fungal inoculated barley genotypes with differing tolerance levels to saline conditions. The more salt-tolerant cultivar was Vlamingh and less salt tolerant was Gairdner. Trichoderma harzianum strain T-22 was used to treat these plants grown in soil under control and saline (200 mM NaCl) conditions. For both genotypes, fungus-colonised plants exposed to NaCl had greater root and shoot biomass, and better chlorophyll content than non-colonised plants, with colonised-Vlamingh performing better than uninoculated control plants. The metabolome dataset using GC-MS consisted of a total of 93 metabolites of which 74 were identified in roots of both barley genotypes as organic acids, sugars, sugar acids, sugar alcohols, amino acids, amines, and a small number of fatty acids. LC-QqTOF-MS analysis resulted in the detection of 186 lipid molecular species, classified into three major lipid classes-glycerophospholipids, glycerolipids, and sphingolipids, from roots of both genotypes. In Cultivar Vlamingh both metabolites and lipids increased with fungus and salt treatment while in Gairdner they decreased. The results from this study suggest that the metabolic pathways by which the fungus imparts salt tolerance is different for the different genotypes.
Collapse
Affiliation(s)
| | | | - Siria H. A. Natera
- Metabolomics Australia, The University of Melbourne, Parkville, VIC, Australia
| | - Ute Roessner
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
12
|
Ali R, Gul H, Rauf M, Arif M, Hamayun M, Husna, Khilji SA, Ud-Din A, Sajid ZA, Lee IJ. Growth-Promoting Endophytic Fungus ( Stemphylium lycopersici) Ameliorates Salt Stress Tolerance in Maize by Balancing Ionic and Metabolic Status. FRONTIERS IN PLANT SCIENCE 2022; 13:890565. [PMID: 35898220 PMCID: PMC9311153 DOI: 10.3389/fpls.2022.890565] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/23/2022] [Indexed: 08/27/2023]
Abstract
Climate change is a major cause of the world's food security problems, and soil salinity is a severe hazard for a variety of crops. The exploitation of endophytic fungi that are known to have a positive association with plant roots is preferred for improving plant growth, yield, and overall performance under salt stress. The current study thus rationalized to address how salt stress affected the growth, biochemical properties, antioxidant capacity, endogenous indole-3-acetic acid (IAA), and the ionic status of maize associated with endophytic fungus (Stemphylium lycopersici). According to the findings, salt stress reduced chlorophyll a and b, total chlorophyll, total protein, sugars, lipids, and endogenous IAA levels. Enhanced values of chlorophyll a/b ratio, carotenoids, secondary metabolites (phenol, flavonoids, and tannins), antioxidant enzyme activity (catalase, ascorbate peroxidase), proline, and lipid peroxidation were noticed in maize plants under salt stress. Increased ionic content of Na+, Cl-, Na+/K+, and Na+/Ca2+ ratio, as well as decreased Ca2+, K+, Mg2+, N, and P contents, were also found in salt-stressed maize plants. In comparison to the non-saline medium, endophytic association promoted the antioxidant enzyme activities (798.7 U/g protein; catalase activity, 106 U/g protein; ascorbate peroxidase activity), IAA content (3.47 mg/g FW), and phenolics and flavonoids (88 and 1.68 μg/g FW, respectively), and decreased MDA content (0.016 nmol/g FW), Na+ ion content (18 mg/g dry weight), Cl- ion (16.6 mg/g dry weight), and Na+/K+ (0.78) and Na+/Ca2+ (1.79) ratios, in maize plants under salt stress, whereas Ca2+, K+, Mg2+, N, and P contents were increased in maize plants associated with S. lycopersici under salt stress. Current research exposed the role of S. lycopersici as an effective natural salt stress reducer and maize growth promoter; hence, it can be used as a biofertilizer to ameliorate salt stress tolerance in crops along with better growth performance in saline regions.
Collapse
Affiliation(s)
- Raid Ali
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Humaira Gul
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Mamoona Rauf
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Muhammad Arif
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Husna
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Sheza Ayaz Khilji
- Department of Botany, Division of Science and Technology, University of Education Township, Lahore, Pakistan
| | - Aziz Ud-Din
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
| | | | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
13
|
Muthuraja R, Muthukumar T. Co-inoculation of halotolerant potassium solubilizing Bacillus licheniformis and Aspergillus violaceofuscus improves tomato growth and potassium uptake in different soil types under salinity. CHEMOSPHERE 2022; 294:133718. [PMID: 35077735 DOI: 10.1016/j.chemosphere.2022.133718] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Soil salinity is an important stress that negatively affects crop growth and productivity, causing extensive agricultural losses, worldwide. Potassium (K) solubilizing microorganisms (KSMs) can impart abiotic stress tolerance in plants in addition to nutrient solubilization. In this study, the salinity tolerance of KSMs Bacillus licheniformis and Aspergillus violaceofuscus originating from saxicolous habitats was examined using different concentrations of NaCl (0, 25, 50, 75, 100, and 125 mM) under in vitro conditions. The results indicated that both KSMs were capable of tolerating salinity. As B. licheniformis had a maximum growth in 100 mM NaCl at 37 °C, A. violaceofuscus had the maximum biomass and catalase (CAT) activity at 75 mM NaCl. However, maximum proline content was detected at 100 mM NaCl in both KSMs. Further, the ability of these KSMs to promote tomato growth individually and in combination with the presence or absence of mica was also examined in unsterilized or sterilized Alfisol and Vertisol soils under induced salinity in greenhouse conditions. The results of the greenhouse study revealed that inoculation of KSMs along with/without mica amendment significantly improved the morphological and physiological characteristics of tomato plants under salinity. Plant height, leaf area, biomass, relative water content, proline content, and CAT activity of dual inoculated plants were significantly higher than non-inoculated plants. Significant correlations existed between various soil, plant growth, soil pH and available K. From the results, it could be concluded that B. licheniformis and A. violaceofuscus are potential candidates for improving crop production in saline-stressed soils.
Collapse
Affiliation(s)
- Raji Muthuraja
- Root and Soil Biology Laboratory, Department of Botany, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
| | - Thangavelu Muthukumar
- Root and Soil Biology Laboratory, Department of Botany, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
| |
Collapse
|
14
|
Zulfiqar U, Jiang W, Xiukang W, Hussain S, Ahmad M, Maqsood MF, Ali N, Ishfaq M, Kaleem M, Haider FU, Farooq N, Naveed M, Kucerik J, Brtnicky M, Mustafa A. Cadmium Phytotoxicity, Tolerance, and Advanced Remediation Approaches in Agricultural Soils; A Comprehensive Review. FRONTIERS IN PLANT SCIENCE 2022; 13:773815. [PMID: 35371142 PMCID: PMC8965506 DOI: 10.3389/fpls.2022.773815] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/02/2022] [Indexed: 05/03/2023]
Abstract
Cadmium (Cd) is a major environmental contaminant due to its widespread industrial use. Cd contamination of soil and water is rather classical but has emerged as a recent problem. Cd toxicity causes a range of damages to plants ranging from germination to yield suppression. Plant physiological functions, i.e., water interactions, essential mineral uptake, and photosynthesis, are also harmed by Cd. Plants have also shown metabolic changes because of Cd exposure either as direct impact on enzymes or other metabolites, or because of its propensity to produce reactive oxygen species, which can induce oxidative stress. In recent years, there has been increased interest in the potential of plants with ability to accumulate or stabilize Cd compounds for bioremediation of Cd pollution. Here, we critically review the chemistry of Cd and its dynamics in soil and the rhizosphere, toxic effects on plant growth, and yield formation. To conserve the environment and resources, chemical/biological remediation processes for Cd and their efficacy have been summarized in this review. Modulation of plant growth regulators such as cytokinins, ethylene, gibberellins, auxins, abscisic acid, polyamines, jasmonic acid, brassinosteroids, and nitric oxide has been highlighted. Development of plant genotypes with restricted Cd uptake and reduced accumulation in edible portions by conventional and marker-assisted breeding are also presented. In this regard, use of molecular techniques including identification of QTLs, CRISPR/Cas9, and functional genomics to enhance the adverse impacts of Cd in plants may be quite helpful. The review's results should aid in the development of novel and suitable solutions for limiting Cd bioavailability and toxicity, as well as the long-term management of Cd-polluted soils, therefore reducing environmental and human health hazards.
Collapse
Affiliation(s)
- Usman Zulfiqar
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Wenting Jiang
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Wang Xiukang
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Nauman Ali
- Agronomic Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Muhammad Ishfaq
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Kaleem
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Naila Farooq
- Department of Soil and Environmental Science, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Naveed
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Jiri Kucerik
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
| | - Martin Brtnicky
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Adnan Mustafa
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Prague, Czechia
| |
Collapse
|
15
|
Bi S, Lai H, Guo D, Liu X, Wang G, Chen X, Liu S, Yi H, Su Y, Li G. Spatio-temporal variation of bacterioplankton community structure in the Pearl River: impacts of artificial fishery habitat and physicochemical factors. BMC Ecol Evol 2022; 22:10. [PMID: 35114951 PMCID: PMC8812236 DOI: 10.1186/s12862-022-01965-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 01/22/2022] [Indexed: 11/30/2022] Open
Abstract
Background Artificial fishery habitat has been widely used in fishery resource protection and water habitat restoration. Although the bacterioplankton plays an important ecological role in fisheries ecosystems, the effect of artificial fishery habitat on bacterioplankton is not clear. In this study, high-throughput sequencing based on the 16S rRNA gene was carried out to study the characteristics of bacterioplankton community structure in artificial fishery habitat and to determine the principal environmental factors that shaped the composition, structure and function of bacterioplankton communities in an unfed aquaculture system. Results The results indicated that the most dominant phyla were Proteobacteria (Alphaproteobacteria and Gammaproteobacteria), Actinobacteria, Cyanobacteria, and Bacteroidetes, which accounted for 28.61%, 28.37%, 19.79%, and 10.25% of the total abundance, respectively. The factors that cause the differences in bacterioplankton community were mainly manifested in three aspects, including the diversity of the community, the role of artificial fishery habitat, and the change of environmental factors. The alpha diversity analysis showed that the diversity and richness index of the bacterioplankton communities were the highest in summer, which indicated that the seasonal variation characteristics had a great influence on it. The CCA analysis identified that the dissolved oxygen, temperature, and ammonium salt were the dominant environmental factors in an unfed aquaculture system. The LEfSe analysis founded 37 indicator species in artificial structure areas (AS group), only 9 kinds existing in the control areas of the open-water group (CW group). Meanwhile, the KEGG function prediction analysis showed that the genes which were related to metabolism in group AS were significantly enhanced. Conclusions This study can provide reference value for the effect of artificial habitat on bacterioplankton community and provide fundamental information for the follow-up study of ecological benefits of artificial fishery habitat. It may be contributed to apply artificial fishery habitat in more rivers. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-01965-3.
Collapse
Affiliation(s)
- Sheng Bi
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.,School of Agriculture, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Guangzhou, 510006, China
| | - Han Lai
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.,Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Guangzhou, 510006, China
| | - Dingli Guo
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.,Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Guangzhou, 510006, China
| | - Xuange Liu
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.,Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Guangzhou, 510006, China
| | - Gongpei Wang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.,Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Guangzhou, 510006, China.,Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xiaoli Chen
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.,Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Guangzhou, 510006, China
| | - Shuang Liu
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.,Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Guangzhou, 510006, China
| | - Huadong Yi
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.,Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Guangzhou, 510006, China
| | - Yuqin Su
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.,Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Guangzhou, 510006, China
| | - Guifeng Li
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China. .,Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Guangzhou, 510006, China. .,School of Life Sciences, Institute of Aquatic Economic Animals, Sun Yat-Sen University, No. 132, East Outer Ring Road, Guangzhou, 510006, China.
| |
Collapse
|
16
|
Gupta S, Smith PMC, Boughton BA, Rupasinghe TWT, Natera SHA, Roessner U. Inoculation of barley with Trichoderma harzianum T-22 modifies lipids and metabolites to improve salt tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7229-7246. [PMID: 34279634 DOI: 10.1093/jxb/erab335] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/17/2021] [Indexed: 05/23/2023]
Abstract
Soil salinity has a serious impact on plant growth and agricultural yield. Inoculation of crop plants with fungal endophytes is a cost-effective way to improve salt tolerance. We used metabolomics to study how Trichoderma harzianum T-22 alleviates NaCl-induced stress in two barley (Hordeum vulgare L.) cultivars, Gairdner and Vlamingh, with contrasting salinity tolerance. GC-MS was used to analyse polar metabolites and LC-MS to analyse lipids in roots during the early stages of interaction with Trichoderma. Inoculation reversed the severe effects of salt on root length in sensitive cv. Gairdner and, to a lesser extent, improved root growth in more tolerance cv. Vlamingh. Biochemical changes showed a similar pattern in inoculated roots after salt treatment. Sugars increased in both cultivars, with ribulose, ribose, and rhamnose specifically increased by inoculation. Salt stress caused large changes in lipids in roots but inoculation with fungus greatly reduced the extent of these changes. Many of the metabolic changes in inoculated cv. Gairdner after salt treatment mirror the response of uninoculated cv. Vlamingh, but there are some metabolites that changed in both cultivars only after fungal inoculation. Further study is required to determine how these metabolic changes are induced by fungal inoculation.
Collapse
Affiliation(s)
- Sneha Gupta
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Penelope M C Smith
- School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Berin A Boughton
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
- Australian National Phenome Centre, Murdoch University, Murdoch, Western Australia, Australia
| | - Thusitha W T Rupasinghe
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
- SCIEX, Mulgrave, Victoria, Australia
| | - Siria H A Natera
- Metabolomics Australia, The University of Melbourne, Parkville, Victoria, Australia
| | - Ute Roessner
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
17
|
Rizwan HM, Zhimin L, Harsonowati W, Waheed A, Qiang Y, Yousef AF, Munir N, Wei X, Scholz SS, Reichelt M, Oelmüller R, Chen F. Identification of Fungal Pathogens to Control Postharvest Passion Fruit ( Passiflora edulis) Decays and Multi-Omics Comparative Pathway Analysis Reveals Purple Is More Resistant to Pathogens than a Yellow Cultivar. J Fungi (Basel) 2021; 7:jof7100879. [PMID: 34682301 PMCID: PMC8538400 DOI: 10.3390/jof7100879] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 01/25/2023] Open
Abstract
Production of passion fruit (Passiflora edulis) is restricted by postharvest decay, which limits the storage period. We isolated, identified, and characterized fungal pathogens causing decay in two passion fruit cultivars during two fruit seasons in China. Morphological characteristics and nucleotide sequences of ITS-rDNA regions identified eighteen isolates, which were pathogenic on yellow and purple fruit. Fusarium kyushuense, Fusarium concentricum, Colletotrichum truncatum, and Alternaria alternata were the most aggressive species. Visible inspections and comparative analysis of the disease incidences demonstrated that wounded and non-wounded yellow fruit were more susceptible to the pathogens than the purple fruit. Purple cultivar showed higher expression levels of defense-related genes through expression and metabolic profiling, as well as significantly higher levels of their biosynthesis pathways. We also found fungi with potential beneficial features for the quality of fruits. Our transcriptomic and metabolomics data provide a basis to identify potential targets to improve the pathogen resistance of the susceptible yellow cultivar. The identified fungi and affected features of the fruit of both cultivars provide important information for the control of pathogens in passion fruit industry and postharvest storage.
Collapse
Affiliation(s)
- Hafiz Muhammad Rizwan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.M.R.); (Y.Q.); (A.F.Y.); (N.M.); (R.O.)
| | - Lin Zhimin
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China;
| | - Wiwiek Harsonowati
- Department of Bioresource Science, College of Agriculture, Ibaraki University, 3-21-1 Chuuo, Ami, Inashiki, Ibaraki 300-0393, Japan;
| | - Abdul Waheed
- Key Laboratory for Bio Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yang Qiang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.M.R.); (Y.Q.); (A.F.Y.); (N.M.); (R.O.)
| | - Ahmed Fathy Yousef
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.M.R.); (Y.Q.); (A.F.Y.); (N.M.); (R.O.)
- Department of Horticulture, College of Agriculture, University of Al-Azhar (Branch Assiut), Assiut 71524, Egypt
| | - Nigarish Munir
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.M.R.); (Y.Q.); (A.F.Y.); (N.M.); (R.O.)
| | - Xiaoxia Wei
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China;
| | - Sandra S. Scholz
- Matthias Schleiden Institute, Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany;
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany;
| | - Ralf Oelmüller
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.M.R.); (Y.Q.); (A.F.Y.); (N.M.); (R.O.)
- Matthias Schleiden Institute, Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany;
| | - Faxing Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.M.R.); (Y.Q.); (A.F.Y.); (N.M.); (R.O.)
- Correspondence:
| |
Collapse
|
18
|
Badawy AA, Alotaibi MO, Abdelaziz AM, Osman MS, Khalil AMA, Saleh AM, Mohammed AE, Hashem AH. Enhancement of Seawater Stress Tolerance in Barley by the Endophytic Fungus Aspergillus ochraceus. Metabolites 2021; 11:metabo11070428. [PMID: 34209783 PMCID: PMC8307109 DOI: 10.3390/metabo11070428] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 01/17/2023] Open
Abstract
Symbiotic plant-fungi interaction is a promising approach to alleviate salt stress in plants. Moreover, endophytic fungi are well known to promote the growth of various crop plants. Herein, seven fungal endophytes were screened for salt tolerance; the results revealed that Aspergillus ochraceus showed a great potentiality in terms of salt tolerance, up to 200 g L−1. The indole acetic acid (IAA) production antioxidant capacity and antifungal activity of A. ochraceus were evaluated, in vitro, under two levels of seawater stress, 15 and 30% (v/v; seawater/distilled water). The results illustrated that A. ochraceus could produce about 146 and 176 µg mL−1 IAA in 15 and 30% seawater, respectively. The yield of IAA by A. ochraceus at 30% seawater was significantly higher at all tryptophan concentrations, as compared with that at 15% seawater. Moreover, the antioxidant activity of ethyl acetate extract of A. ochraceus (1000 µg mL−1) at 15 and 30% seawater was 95.83 ± 1.25 and 98.33 ± 0.57%, respectively. Crude extracts of A. ochraceus obtained at 15 and 30% seawater exhibited significant antifungal activity against F. oxysporum, compared to distilled water. The irrigation of barley plants with seawater (15 and 30%) caused notable declines in most morphological indices, pigments, sugars, proteins, and yield characteristics, while increasing the contents of proline, malondialdehyde, and hydrogen peroxide and the activities of antioxidant enzymes. On the other hand, the application of A. ochraceus mitigated the harmful effects of seawater on the growth and physiology of barley plants. Therefore, this study suggests that the endophytic fungus A. ochraceus MT089958 could be applied as a strategy for mitigating the stress imposed by seawater irrigation in barley plants and, therefore, improving crop growth and productivity.
Collapse
Affiliation(s)
- Ali A. Badawy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.A.B.); (A.M.A.); (A.M.A.K.)
| | - Modhi O. Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia;
- Correspondence: (M.O.A.); (M.S.O.); (A.H.H.)
| | - Amer M. Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.A.B.); (A.M.A.); (A.M.A.K.)
| | - Mahmoud S. Osman
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.A.B.); (A.M.A.); (A.M.A.K.)
- Correspondence: (M.O.A.); (M.S.O.); (A.H.H.)
| | - Ahmed M. A. Khalil
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.A.B.); (A.M.A.); (A.M.A.K.)
- Biology Department, College of Science, Taibah University, Yanbu 41911, Saudi Arabia
| | - Ahmed M. Saleh
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Afrah E. Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia;
| | - Amr H. Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.A.B.); (A.M.A.); (A.M.A.K.)
- Correspondence: (M.O.A.); (M.S.O.); (A.H.H.)
| |
Collapse
|
19
|
Li X, Yin Y, Fan S, Xu X, Amombo E, Xie Y, Fu J. Aspergillus aculeatus enhances potassium uptake and photosynthetic characteristics in perennial ryegrass by increasing potassium availability. J Appl Microbiol 2021; 132:483-494. [PMID: 34153147 DOI: 10.1111/jam.15186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/21/2022]
Abstract
AIM Potassium (K) is a key determinant for plant development and productivity. However, more than 90% of K in the soil exists in an insoluble form. K-solubilizing microbes play an important role in the transformation of insoluble K. Thus, the objective of this study was to evaluate K-dissolving ability of Aspergillus aculeatus (F) and growth-promoting properties in perennial ryegrass. METHODS AND RESULTS Perennial ryegrass inoculated with A. aculeatus exhibited enhanced soluble K accompanied with higher growth rate and turf quality, compared with the noninoculated regimen. In addition, A. aculeatus also played a primary role in increasing chlorophyll content and photosynthetic capacity of the plant exposed to LK+F (K-feldspar plus A. aculeatus) treatment, compared with the CK (control, no K-feldspar and A. aculeatus), F (only A. aculeatus) and LK (only K-feldspar) groups. Furthermore, the antioxidase activities (CAT and POD) were significantly increased while the oxidative damage (EL and MDA) was dramatically decreased in the LK+F group compared to the LK (K-feldspar) group. Finally, in perennial ryegrass leaves, the genes expression levels of HAK8, HAK12 and HKT18 were obviously elevated in the LK+F group, compared to the CK, F and LK groups. CONCLUSION We concluded that A. aculeatus could solubilize K from bound form and be considered as K-solubilizing biofertilizer through supplementing K in soil. SIGNIFICANCE AND IMPACT OF THE STUDY Aspergillus aculeatus has the potential to be used as a biofertilizer in sustainable agriculture.
Collapse
Affiliation(s)
- Xiaoning Li
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, P.R. China
| | - Yanling Yin
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, P.R. China
| | - Shugao Fan
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, P.R. China
| | - Xiao Xu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, P.R. China
| | - Erick Amombo
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, P.R. China
| | - Yan Xie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan City, China
| | - Jinmin Fu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, P.R. China
| |
Collapse
|
20
|
Li X, Zhao C, Zhang T, Wang G, Amombo E, Xie Y, Fu J. Exogenous Aspergillus aculeatus Enhances Drought and Heat Tolerance of Perennial Ryegrass. Front Microbiol 2021; 12:593722. [PMID: 33679629 PMCID: PMC7933552 DOI: 10.3389/fmicb.2021.593722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Perennial ryegrass (Lolium perenne) is a cool-season grass whose growth and development are limited by drought and high temperature. Aspergillus aculeatus has been reported to promote plant growth and counteract the adverse effects of abiotic stresses. The objective of this study was to assess A. aculeatus-induced response mechanisms to drought and heat resistance in perennial ryegrass. We evaluated the physiological and biochemical markers of drought and heat stress based on the hormone homeostasis, photosynthesis, antioxidant enzymes activity, lipid peroxidation, and genes expression level. We found out that under drought and heat stress, A. aculeatus-inoculated leaves exhibited higher abscisic acid (ABA) and lower salicylic acid (SA) contents than non-inoculated regimes. In addition, under drought and heat stress, the fungus enhanced the photosynthetic performance, decreased the antioxidase activities, and mitigated membrane lipid peroxidation compared to non-inoculated regime. Furthermore, under drought stress, A. aculeatus induced a dramatic upregulation of sHSP17.8 and DREB1A and a downregulation of POD47, Cu/ZnSOD, and FeSOD genes. In addition, under heat stress, A. aculeatus-inoculated plants exhibited a higher expression level of HSP26.7a, sHSP17.8, and DREB1A while a lower expression level of POD47 and FeSOD than non-inoculated ones. Our results provide an evidence of the protective role of A. aculeatus in perennial ryegrass response to drought and heat stresses.
Collapse
Affiliation(s)
- Xiaoning Li
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Chuncheng Zhao
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Ting Zhang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Guangyang Wang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Erick Amombo
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Yan Xie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan City, China
| | - Jinmin Fu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| |
Collapse
|
21
|
Bouzouina M, Kouadria R, Lotmani B. Fungal endophytes alleviate salt stress in wheat in terms of growth, ion homeostasis and osmoregulation. J Appl Microbiol 2020; 130:913-925. [PMID: 32743928 DOI: 10.1111/jam.14804] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 02/06/2023]
Abstract
AIMS This study examined the ability of isolated endophytic fungi to confer salt stress tolerance on wheat. METHODS AND RESULTS Tolerance of pot-grown wheat in greenhouse to salt stress was measured by estimating emergence rate, growth, relative water content, photosynthetic pigments biosynthesis, Na+ and K+ contents, as well as sugar and proline levels under salt stress in inoculated wheat seedlings. Chaetomium coarctatum (66·7%) and Alternaria chlamydospora (56·7%) improved wheat seedling emergence under moderate salinity (2·5 dS m-1 ) compared to noninoculated plant (50%). However, under severe salinity (14 dS m-1 ), wheat emergence was enhanced only by A. chlamydospora. Additionally, A. chlamydospora and Fusarium equiseti enhanced root growth under saline conditions. The tested endophytes exhibited high proline content relative to control. Chaetomium coarctatum showed the highest leaf sugar level under saline stress. CONCLUSION Endophytic fungi bio-inoculation improved wheat salt stress tolerance. SIGNIFICANCE AND IMPACT OF THE STUDY The capacity of endophytic fungi to increase wheat tolerance under salinity stress and to improve growth could be applicable to agriculture.
Collapse
Affiliation(s)
- M Bouzouina
- Plant Protection Laboratory, Abdelhamid Ibn Badis - Mostaganem University, Kharrouba, Mostaganem, Algeria
| | - R Kouadria
- Plant Protection Laboratory, Abdelhamid Ibn Badis - Mostaganem University, Kharrouba, Mostaganem, Algeria
| | - B Lotmani
- Plant Protection Laboratory, Abdelhamid Ibn Badis - Mostaganem University, Kharrouba, Mostaganem, Algeria
| |
Collapse
|
22
|
Chandra P, Enespa, Singh R. Soil Salinity and Its Alleviation Using Plant Growth–Promoting Fungi. Fungal Biol 2020. [DOI: 10.1007/978-3-030-48474-3_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Xie Y, Sun X, Feng Q, Luo H, Wassie M, Amee M, Amombo E, Chen L. Comparative physiological and metabolomic analyses reveal mechanisms of Aspergillus aculeatus-mediated abiotic stress tolerance in tall fescue. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:342-350. [PMID: 31382176 DOI: 10.1016/j.plaphy.2019.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 05/13/2023]
Abstract
Aspergillus aculeatus has been shown to stimulate plant growth, but its role in plants abiotic stress tolerance and the underlying mechanisms are not fully documented. In this study, we investigated the mechanisms of A.aculeatus-mediated drought, heat and salt stress tolerance in tall fescue. The results showed that A.aculeatus inoculation improved drought and heat stress tolerance in tall fescue as observed from its effect on turf quality (TQ) and leaf relative water content (LWC). In the same stress conditions, A.aculeatus alleviated reactive oxygen species (ROS) induced burst and cell damage, as indicated by lower H2O2, electrolyte leakage (EL) and malondialdehyde (MDA) levels. Additionally, the A.aculeatus inoculated plants exhibited higher photosynthetic efficiency than uninoculated plants under drought, heat and salt stress conditions. The fungus reduced the uptake of Na+, and inoculated plants showed lower Na+/K+, Na+/Ca2+and Na+/Mg2+ ratios compared to uninoculated ones under salt stress. Furthermore, comparative metabolomic analysis showed that A.aculeatus exclusively increased amino acid (such as proline and glycine) and sugar (such as glucose, fructose, sorbose, and talose) accumulation under drought and heat stress. However, there were no differences between inoculated and uninoculated plants except for changes in H2O2 level, Na+ in the root and photosynthetic efficiency under salt stress. Taken together, this study provides the first evidence of the protective roles of A.aculeatus in the tall fescue response to abiotic stresses, partially via protection of photosynthesis and modulation of metabolic homeostasis.
Collapse
Affiliation(s)
- Yan Xie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan City, China
| | - Xiaoyan Sun
- The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi, Institute of Biology and Resources, Jiangxi Academy of Sciences, Nanchang City, China
| | - Qijia Feng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan City, China
| | - Hongji Luo
- Sichuan Changhong Green Environmental Science &Technology Co., Ltd, Chengdu City, China
| | - Misganaw Wassie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan City, China
| | - Maurice Amee
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan City, China
| | - Erick Amombo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan City, China
| | - Liang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan City, China.
| |
Collapse
|
24
|
He AL, Niu SQ, Zhao Q, Li YS, Gou JY, Gao HJ, Suo SZ, Zhang JL. Induced Salt Tolerance of Perennial Ryegrass by a Novel Bacterium Strain from the Rhizosphere of a Desert Shrub Haloxylon ammodendron. Int J Mol Sci 2018; 19:ijms19020469. [PMID: 29401742 PMCID: PMC5855691 DOI: 10.3390/ijms19020469] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 11/16/2022] Open
Abstract
Drought and soil salinity reduce agricultural output worldwide. Plant-growth-promoting rhizobacteria (PGPR) can enhance plant growth and augment plant tolerance to biotic and abiotic stresses. Haloxylon ammodendron, a C4 perennial succulent xerohalophyte shrub with excellent drought and salt tolerance, is naturally distributed in the desert area of northwest China. In our previous work, a bacterium strain numbered as M30-35 was isolated from the rhizosphere of H. ammodendron in Tengger desert, Gansu province, northwest China. In current work, the effects of M30-35 inoculation on salt tolerance of perennial ryegrass were evaluated and its genome was sequenced to identify genes associated with plant growth promotion. Results showed that M30-35 significantly enhanced growth and salt tolerance of perennial ryegrass by increasing shoot fresh and dry weights, chlorophyll content, root volume, root activity, leaf catalase activity, soluble sugar and proline contents that contributed to reduced osmotic potential, tissue K⁺ content and K⁺/Na⁺ ratio, while decreasing malondialdehyde (MDA) content and relative electric conductivity (REC), especially under higher salinity. The genome of M30-35 contains 4421 protein encoding genes, 12 rRNA, 63 tRNA-encoding genes and four rRNA operons. M30-35 was initially classified as a new species in Pseudomonas and named as Pseudomonas sp. M30-35. Thirty-four genes showing homology to genes associated with PGPR traits and abiotic stress tolerance were identified in Pseudomonas sp. M30-35 genome, including 12 related to insoluble phosphorus solubilization, four to auxin biosynthesis, four to other process of growth promotion, seven to oxidative stress alleviation, four to salt and drought tolerance and three to cold and heat tolerance. Further study is needed to clarify the correlation between these genes from M30-35 and the salt stress alleviation of inoculated plants under salt stress. Overall, our research indicated that desert shrubs appear rich in PGPRs that can help important crops tolerate abiotic stress.
Collapse
Affiliation(s)
- Ao-Lei He
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Shu-Qi Niu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Qi Zhao
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Yong-Sheng Li
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Jing-Yi Gou
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Hui-Juan Gao
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Sheng-Zhou Suo
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Jin-Lin Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
25
|
Wang G, Bi A, Amombo E, Li H, Zhang L, Cheng C, Hu T, Fu J. Exogenous Calcium Enhances the Photosystem II Photochemistry Response in Salt Stressed Tall Fescue. FRONTIERS IN PLANT SCIENCE 2017; 8:2032. [PMID: 29250091 PMCID: PMC5715236 DOI: 10.3389/fpls.2017.02032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/14/2017] [Indexed: 05/29/2023]
Abstract
Calcium enhances turfgrass response to salt stress. However, little is known about PSII photochemical changes when exogenous calcium was applied in salinity-stressed turfgrass. Here, we probe into the rearrangements of PSII electron transport and endogenous ion accumulation in tall fescue (Festuca arundinacea Schreber) treated with exogenous calcium under salt stress. Three-month-old seedlings of genotype "TF133" were subjected to the control (CK), salinity (S), salinity + calcium nitrate (SC), and salinity + ethylene glycol tetraacetic acid (SE). Calcium nitrate and ethylene glycol tetraacetic acid was used as exogenous calcium donor and calcium chelating agent respectively. At the end of a 5-day duration treatment, samples in SC regime had better photochemistry performance on several parameters than salinity only. Such as the Area (equal to the plastoquinone pool size), N (number of [Formula: see text] redox turnovers until Fm is reached), ψE0, or δRo (Efficiencdy/probability with which a PSII trapped electron is transferred from QA to QB or PSI acceptors), ABS/RC (Absorbed photon flux per RC). All the above suggested that calcium enhanced the electron transfer of PSII (especially beyond [Formula: see text]) and prevented reaction centers from inactivation in salt-stressed tall fescue. Furthermore, both grass shoot and root tissues generally accumulated more C, N, Ca2+, and K+ in the SC regime than S regime. Interrelated analysis indicated that ψE0, δRo, ABS/RC, C, and N content in shoots was highly correlated to each other and significantly positively related to Ca2+ and K+ content in roots. Besides, high salt increased ATP6E and CAMK2 transcription level in shoot at 1 and 5 day, respectively while exogenous calcium relieved it. In root, CAMK2 level was reduced by Salinity at 5 day and exogenous calcium recovered it. These observations involved in electron transport capacity and ion accumulation assist in understanding better the protective role of exogenous calcium in tall fescue under salt stress.
Collapse
Affiliation(s)
- Guangyang Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Aoyue Bi
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Erick Amombo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huiying Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Liang Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Cheng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Jinmin Fu
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| |
Collapse
|