1
|
Sun L, Bernes G, Hetta M, Gustafsson AH, Höjer A, Saedén KH, Lundh Å, Dicksved J. The microbiota of ensiled forages and of bulk tank milk on dairy cattle farms in northern Sweden. J Dairy Sci 2024; 107:8961-8976. [PMID: 38945265 DOI: 10.3168/jds.2024-24971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/07/2024] [Indexed: 07/02/2024]
Abstract
Factors contributing to variations in the quality and microbiota of ensiled forages and in bulk tank microbiota in milk from cows fed different forages were investigated. Nutritional quality, fermentation parameters and hygiene quality of forage samples and corresponding bulk tank milk samples collected in 3 periods from 18 commercial farms located in northern Sweden were compared. Principal coordinates analysis revealed that the microbiota in forage and bulk milk, analyzed using 16S rRNA gene-based amplicon sequencing, were significantly different. The genera Lactobacillus, Weissella, and Leuconostoc dominated in forage samples, whereas Pseudomonas, Staphylococcus, and Streptococcus dominated in bulk milk samples. Forage quality and forage-associated microbiota were affected by ensiling method and by use of silage additive. Forages stored in bunker and tower silos (confounded with use of additive) were associated with higher levels of acetic and lactic acid and Lactobacillus. Forage ensiled as bales (confounded with no use of additive) was associated with higher DM content, water-soluble carbohydrate content, pH, yeast count, and the genera Weissella, Leuconostoc, and Enterococcus. For bulk tank milk samples, milking system was identified as the major factor affecting the microbiota and type of forage preservation had little effect. Analysis of common amplicon sequence variants (ASV) suggested that forage was not the major source of Lactobacillus found in bulk tank milk.
Collapse
Affiliation(s)
- Li Sun
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden.
| | - Gun Bernes
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Mårten Hetta
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | | | - Annika Höjer
- Norrmejerier Ek. Förening, SE-906 22 Umeå, Sweden
| | | | - Åse Lundh
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Johan Dicksved
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| |
Collapse
|
2
|
van Olst B, Nugroho A, Boeren S, Vervoort J, Bachmann H, Kleerebezem M. Bacterial proteome adaptation during fermentation in dairy environments. Food Microbiol 2024; 121:104514. [PMID: 38637076 DOI: 10.1016/j.fm.2024.104514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 04/20/2024]
Abstract
The enzymatic repertoire of starter cultures belonging to the Lactococcus genus determines various important characteristics of fermented dairy products but might change in response to the substantial environmental changes in the manufacturing process. Assessing bacterial proteome adaptation in dairy and other food environments is challenging due to the high matrix-protein concentration and is even further complicated in particularly cheese by the high fat concentrations, the semi-solid state of that matrix, and the non-growing state of the bacteria. Here, we present bacterial harvesting and processing procedures that enable reproducible, high-resolution proteome determination in lactococcal cultures harvested from laboratory media, milk, and miniature Gouda cheese. Comparative proteome analysis of Lactococcus cremoris NCDO712 grown in laboratory medium and milk revealed proteome adaptations that predominantly reflect the differential (micro-)nutrient availability in these two environments. Additionally, the drastic environmental changes during cheese manufacturing only elicited subtle changes in the L. cremoris NCDO712 proteome, including modified expression levels of enzymes involved in flavour formation. The technical advances we describe offer novel opportunities to evaluate bacterial proteomes in relation to their performance in complex, protein- and/or fat-rich food matrices and highlight the potential of steering starter culture performance by preculture condition adjustments.
Collapse
Affiliation(s)
- Berdien van Olst
- Host-Microbe Interactomics, Wageningen University & Research, Wageningen, the Netherlands; Laboratory of Biochemistry, Wageningen University & Research, Wageningen, the Netherlands; TI Food and Nutrition, Wageningen, the Netherlands
| | - Avis Nugroho
- Host-Microbe Interactomics, Wageningen University & Research, Wageningen, the Netherlands; Microbiology Department, NIZO Food Research, Ede, the Netherlands; TI Food and Nutrition, Wageningen, the Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, the Netherlands; TI Food and Nutrition, Wageningen, the Netherlands
| | - Jacques Vervoort
- Host-Microbe Interactomics, Wageningen University & Research, Wageningen, the Netherlands; Laboratory of Biochemistry, Wageningen University & Research, Wageningen, the Netherlands; TI Food and Nutrition, Wageningen, the Netherlands
| | - Herwig Bachmann
- Microbiology Department, NIZO Food Research, Ede, the Netherlands; Systems Biology Lab, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; TI Food and Nutrition, Wageningen, the Netherlands
| | - Michiel Kleerebezem
- Host-Microbe Interactomics, Wageningen University & Research, Wageningen, the Netherlands; TI Food and Nutrition, Wageningen, the Netherlands.
| |
Collapse
|
3
|
Salas-Tovar JA, Escobedo-García S, Olivas GI, Acosta-Muñiz CH, Harte F, Sepulveda DR. The MATH test. A three-phase assay? FEMS Microbiol Lett 2024; 371:fnae045. [PMID: 38866708 DOI: 10.1093/femsle/fnae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/09/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024] Open
Abstract
This study aimed to investigating the possible interference caused by glass test tubes on the quantification of bacterial adhesion to hydrocarbons by the MATH test. The adhesion of four bacteria to hexadecane and to glass test tubes was evaluated employing different suspending polar phases. The role of the ionic strength of the polar phase regarding adhesion to glassware was investigated. Within the conditions studied, Gram-positive bacteria adhered to both the test tube and the hydrocarbon regardless of the polar phase employed; meanwhile, Escherichia coli ATCC 25922 did not attach to either one. The capacity of the studied microorganisms to adhere to glassware was associated with their electron-donor properties. The ionic strength of the suspending media altered the patterns of adhesion to glass in a strain-specific manner by defining the magnitude of electrostatic repulsion observed between bacteria and the glass surface. This research demonstrated that glass test tubes may interact with suspended bacterial cells during the MATH test under specific conditions, which may lead to overestimating the percentage of adhesion to hydrocarbons and, thus, to erroneous values of cell surface hydrophobicity.
Collapse
Affiliation(s)
- Jesús A Salas-Tovar
- Centro de Investigación en Alimentación y Desarrollo, Ave. Río Conchos S/N, Parque Industrial, Cd. Cuauhtémoc, Chihuahua 31570, Mexico
| | - Sarai Escobedo-García
- Centro de Investigación en Alimentación y Desarrollo, Ave. Río Conchos S/N, Parque Industrial, Cd. Cuauhtémoc, Chihuahua 31570, Mexico
| | - Guadalupe I Olivas
- Centro de Investigación en Alimentación y Desarrollo, Ave. Río Conchos S/N, Parque Industrial, Cd. Cuauhtémoc, Chihuahua 31570, Mexico
| | - Carlos H Acosta-Muñiz
- Centro de Investigación en Alimentación y Desarrollo, Ave. Río Conchos S/N, Parque Industrial, Cd. Cuauhtémoc, Chihuahua 31570, Mexico
| | - Federico Harte
- Department of Food Science, The Pennsylvania State University, 331 Rodney A. Erickson Food Science Building University Park, PA 16802, United States
| | - David R Sepulveda
- Centro de Investigación en Alimentación y Desarrollo, Ave. Río Conchos S/N, Parque Industrial, Cd. Cuauhtémoc, Chihuahua 31570, Mexico
| |
Collapse
|
4
|
Christensen LF, Høie MH, Bang-Berthelsen CH, Marcatili P, Hansen EB. Comparative Structure Analysis of the Multi-Domain, Cell Envelope Proteases of Lactic Acid Bacteria. Microorganisms 2023; 11:2256. [PMID: 37764099 PMCID: PMC10535647 DOI: 10.3390/microorganisms11092256] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Lactic acid bacteria (LAB) have an extracellular proteolytic system that includes a multi-domain, cell envelope protease (CEP) with a subtilisin homologous protease domain. These CEPs have different proteolytic activities despite having similar protein sequences. Structural characterization has previously been limited to CEP homologs of dairy- and human-derived LAB strains, excluding CEPs of plant-derived LAB strains. CEP structures are a challenge to determine experimentally due to their large size and attachment to the cell envelope. This study aims to clarify the prevalence and structural diversity of CEPs by using the structure prediction software AlphaFold 2. Domain boundaries are clarified based on a comparative analysis of 21 three-dimensional structures, revealing novel domain architectures of CEP homologs that are not necessarily restricted to specific LAB species or ecological niches. The C-terminal flanking region of the protease domain is divided into fibronectin type-III-like domains with various structural traits. The analysis also emphasizes the existence of two distinct domains for cell envelope attachment that are preceded by an intrinsically disordered cell wall spanning domain. The domain variants and their combinations provide CEPs with different stability, proteolytic activity, and potentially adhesive properties, making CEPs targets for steering proteolytic activity with relevance for both food development and human health.
Collapse
Affiliation(s)
- Lise Friis Christensen
- National Food Institute, Technical University of Denmark, Kemitorvet, DK-2800 Kongens Lyngby, Denmark
| | - Magnus Haraldson Høie
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kongens Lyngby, Denmark
| | | | - Paolo Marcatili
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kongens Lyngby, Denmark
| | - Egon Bech Hansen
- National Food Institute, Technical University of Denmark, Kemitorvet, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
5
|
Salas-Tovar JA, Escobedo-García S, Olivas GI, Acosta-Muñiz CH, Harte F, Sepulveda DR. Method-induced variation in the bacterial cell surface hydrophobicity MATH test. J Microbiol Methods 2021; 185:106234. [PMID: 33971217 DOI: 10.1016/j.mimet.2021.106234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 02/08/2023]
Abstract
Bacterial cell surface hydrophobicity is a relevant property in determining the ability of bacteria to adhere to inert surfaces. This property has been measured using the microbial adhesion to hydrocarbon (MATH) test. Several reports in the literature establish the percentage of adhesion to hydrocarbons (PoAtH) value produced by the MATH test for a broad variety of bacteria. Discrepancies in PoAtH values reported for the same strain of a specific microorganism suggest that some method-induced variation may exist, as different research teams employ different versions of the assay. The objective of the present study was to compare the performance of different versions of the MATH test as reported in the literature, to quantify the magnitude of the method-induced variation on PoAtH values. The study demonstrated that PoAtH values are influenced twice as much by variations in the employed assay than by actual differences in cell surface composition or architecture. The two L. reuteri strains studied responded differently to changes in assay conditions showing 40 and 70% method-dependent variation for strain ATCC 53609 and 55730, respectively. These results highlight the need to properly standardize the MATH test to enable comparison of PoAtH values produced by independent research teams.
Collapse
Affiliation(s)
- Jesús A Salas-Tovar
- Centro de Investigación en Alimentación y Desarrollo, Av. Río Conchos S/N, Parque Industrial, Cd. Cuauhtémoc, Chihuahua 31570, Mexico
| | - Sarai Escobedo-García
- Centro de Investigación en Alimentación y Desarrollo, Av. Río Conchos S/N, Parque Industrial, Cd. Cuauhtémoc, Chihuahua 31570, Mexico
| | - Guadalupe I Olivas
- Centro de Investigación en Alimentación y Desarrollo, Av. Río Conchos S/N, Parque Industrial, Cd. Cuauhtémoc, Chihuahua 31570, Mexico
| | - Carlos H Acosta-Muñiz
- Centro de Investigación en Alimentación y Desarrollo, Av. Río Conchos S/N, Parque Industrial, Cd. Cuauhtémoc, Chihuahua 31570, Mexico
| | - Federico Harte
- Department of Food Science, The Pennsylvania State University, University Park, USA
| | - David R Sepulveda
- Centro de Investigación en Alimentación y Desarrollo, Av. Río Conchos S/N, Parque Industrial, Cd. Cuauhtémoc, Chihuahua 31570, Mexico.
| |
Collapse
|
6
|
van Tatenhove-Pel RJ, Rijavec T, Lapanje A, van Swam I, Zwering E, Hernandez-Valdes JA, Kuipers OP, Picioreanu C, Teusink B, Bachmann H. Microbial competition reduces metabolic interaction distances to the low µm-range. THE ISME JOURNAL 2021; 15:688-701. [PMID: 33077887 PMCID: PMC8027890 DOI: 10.1038/s41396-020-00806-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/21/2020] [Accepted: 10/02/2020] [Indexed: 01/12/2023]
Abstract
Metabolic interactions between cells affect microbial community compositions and hence their function in ecosystems. It is well-known that under competition for the exchanged metabolite, concentration gradients constrain the distances over which interactions can occur. However, interaction distances are typically quantified in two-dimensional systems or without accounting for competition or other metabolite-removal, conditions which may not very often match natural ecosystems. We here analyze the impact of cell-to-cell distance on unidirectional cross-feeding in a three-dimensional aqueous system with competition for the exchanged metabolite. Effective interaction distances were computed with a reaction-diffusion model and experimentally verified by growing a synthetic consortium of 1 µm-sized metabolite producer, receiver, and competitor cells in different spatial structures. We show that receivers cannot interact with producers located on average 15 µm away from them, as product concentration gradients flatten close to producer cells. We developed an aggregation protocol and varied the receiver cells' product affinity, to show that within producer-receiver aggregates even low-affinity receiver cells could interact with producers. These results show that competition or other metabolite-removal of a public good in a three-dimensional system reduces metabolic interaction distances to the low µm-range, highlighting the importance of concentration gradients as physical constraint for cellular interactions.
Collapse
Affiliation(s)
- Rinke J van Tatenhove-Pel
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences, VU University Amsterdam, de Boelelaan 1108, 1081HV, Amsterdam, The Netherlands
| | - Tomaž Rijavec
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Aleš Lapanje
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Iris van Swam
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences, VU University Amsterdam, de Boelelaan 1108, 1081HV, Amsterdam, The Netherlands
| | - Emile Zwering
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences, VU University Amsterdam, de Boelelaan 1108, 1081HV, Amsterdam, The Netherlands
| | - Jhonatan A Hernandez-Valdes
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | - Cristian Picioreanu
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, The Netherlands
| | - Bas Teusink
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences, VU University Amsterdam, de Boelelaan 1108, 1081HV, Amsterdam, The Netherlands
| | - Herwig Bachmann
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences, VU University Amsterdam, de Boelelaan 1108, 1081HV, Amsterdam, The Netherlands.
- NIZO Food Research, Kernhemseweg 2, 6718ZB, Ede, The Netherlands.
| |
Collapse
|
7
|
Nachtigall C, Vogel C, Rohm H, Jaros D. How Capsular Exopolysaccharides Affect Cell Surface Properties of Lactic Acid Bacteria. Microorganisms 2020; 8:E1904. [PMID: 33266168 PMCID: PMC7759885 DOI: 10.3390/microorganisms8121904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
Some lactic acid bacteria are able to produce exopolysaccharides that, based on localization, can be distinguished in free and capsular or cell-bound exopolysaccharides (CPS). Up to now, the former were the focus of current research, mainly because of the technofunctional benefits they exhibit on fermented dairy products. On the other hand, CPS affect the surface properties of bacteria cells and thus also the textural properties of fermented foods, but data are very scarce. As the cell surface properties are strongly strain dependent, we present a new approach to investigate the impact of CPS on cell surface hydrophobicity and moisture load. CPS positive and negative Streptococcus thermophilus and Weissella cibaria were subjected to ultrasonication suitable to detach CPS without cell damage. The success of the method was verified by scanning electron and light microscopy as well as by cultivation experiments. Before applying ultrasonication cells with CPS exhibiting an increased hydrophilic character, enhanced moisture load, and faster water adsorption compared to the cells after CPS removal, emphasizing the importance of CPS on the textural properties of fermented products. The ultrasonic treatment did not alter the cell surface properties of the CPS negative strains.
Collapse
Affiliation(s)
- Carsten Nachtigall
- Institute of Natural Materials Technology, Technische Universität Dresden, 01062 Dresden, Germany; (H.R.); (D.J.)
| | - Cordula Vogel
- Institute of Soil Science and Site Ecology, Technische Universität Dresden, 01062 Dresden, Germany;
| | - Harald Rohm
- Institute of Natural Materials Technology, Technische Universität Dresden, 01062 Dresden, Germany; (H.R.); (D.J.)
| | - Doris Jaros
- Institute of Natural Materials Technology, Technische Universität Dresden, 01062 Dresden, Germany; (H.R.); (D.J.)
| |
Collapse
|
8
|
Siroli L, Patrignani F, D’Alessandro M, Salvetti E, Torriani S, Lanciotti R. Suitability of the Nisin Z-producer Lactococcus lactis subsp. lactis CBM 21 to be Used as an Adjunct Culture for Squacquerone Cheese Production. Animals (Basel) 2020; 10:E782. [PMID: 32365951 PMCID: PMC7277329 DOI: 10.3390/ani10050782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
This research investigated the technological and safety effects of the nisin Z producer Lactococcus lactis subsp. lactis CBM 21, tested as an adjunct culture for the making of Squacquerone cheese in a pilot-scale plant. The biocontrol agent remained at a high level throughout the cheese refrigerated storage, without having a negative influence on the viability of the conventional Streptococcus thermophilus starter. The inclusion of CBM 21 in Squacquerone cheesemaking proved to be more effective compared to the traditional one, to reduce total coliforms and Pseudomonas spp. Moreover, the novel/innovative adjunct culture tested did not negatively modify the proteolytic patterns of Squacquerone cheese, but it gave rise to products with specific volatile and texture profiles. The cheese produced with CBM 21 was more appreciated by the panelists with respect to the traditional one.
Collapse
Affiliation(s)
- Lorenzo Siroli
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (L.S.); (M.D.); (R.L.)
| | - Francesca Patrignani
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (L.S.); (M.D.); (R.L.)
- Interdepartmental Center for Industrial Agri-food Research, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Margherita D’Alessandro
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (L.S.); (M.D.); (R.L.)
| | - Elisa Salvetti
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (E.S.); (S.T.)
| | - Sandra Torriani
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (E.S.); (S.T.)
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (L.S.); (M.D.); (R.L.)
- Interdepartmental Center for Industrial Agri-food Research, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| |
Collapse
|
9
|
Tarazanova M, Huppertz T, Starrenburg M, Todt T, van Hijum S, Kok J, Bachmann H. Transcriptional response of Lactococcus lactis during bacterial emulsification. PLoS One 2019; 14:e0220048. [PMID: 31344087 PMCID: PMC6657864 DOI: 10.1371/journal.pone.0220048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022] Open
Abstract
Microbial surface properties are important for interactions with the environment in which cells reside. Surface properties of lactic acid bacteria significantly vary and some strains can form strong emulsions when mixed with a hydrocarbon. Lactococcus lactis NCDO712 forms oil-in-water emulsions upon mixing of a cell suspension with petroleum. In the emulsion the bacteria locate at the oil-water interphase which is consistent with Pickering stabilization. Cells of strain NCDO712 mixed with sunflower seed oil did not stabilize the oil droplets. This study shows that the addition of either ethanol or ammonium sulfate led to cell aggregation, which subsequently allowed stabilizing oil-in-water emulsions. From this, we conclude that bacterial cell aggregation is important for emulsion droplet stabilization. To determine how bacterial emulsification influences the microbial transcriptome RNAseq analysis was performed on lactococci taken from the oil-water interphase. In comparison to cells in suspension 72 genes were significantly differentially expressed with a more than 4-fold difference. The majority of these genes encode proteins involved in transport processes and the metabolism of amino acids, carbohydrates and ions. Especially the proportion of genes belonging to the CodY regulon was high. Our results also point out that in a complex environment such as food fermentations a heterogeneous response of microbes might be caused by microbe-matrix interactions. In addition, microdroplet technologies are increasingly used in research. The understanding of interactions between bacterial cells and oil-water interphases is of importance for conducting and interpreting such experiments.
Collapse
Affiliation(s)
- Mariya Tarazanova
- TI Food and Nutrition, AN Wageningen, The Netherlands
- NIZO, Ede BA, The Netherlands
- Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Thom Huppertz
- TI Food and Nutrition, AN Wageningen, The Netherlands
- NIZO, Ede BA, The Netherlands
| | - Marjo Starrenburg
- TI Food and Nutrition, AN Wageningen, The Netherlands
- NIZO, Ede BA, The Netherlands
- Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Tilman Todt
- Radboud University Medical Centre CMBI, Geert Grooteplein Nijmegen, The Netherlands
- HAN, University of Applied Sciences, PGL Nijmegen, The Netherlands
| | - Sacha van Hijum
- TI Food and Nutrition, AN Wageningen, The Netherlands
- NIZO, Ede BA, The Netherlands
- Radboud University Medical Centre CMBI, Geert Grooteplein Nijmegen, The Netherlands
| | - Jan Kok
- TI Food and Nutrition, AN Wageningen, The Netherlands
- Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Herwig Bachmann
- TI Food and Nutrition, AN Wageningen, The Netherlands
- NIZO, Ede BA, The Netherlands
- * E-mail:
| |
Collapse
|
10
|
Nachtigall C, Weber C, Rothenburger S, Jaros D, Rohm H. Test parameters and cell chain length of Streptococcus thermophilus affect the microbial adhesion to hydrocarbons assay: a methodical approach. FEMS Microbiol Lett 2019; 366:5528314. [DOI: 10.1093/femsle/fnz150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/01/2019] [Indexed: 01/01/2023] Open
Abstract
ABSTRACTThe microbial adhesion to hydrocarbons (MATH) test is one of the most common method to determine the hydrophobicity of cell surfaces. Despite its prevalence, no standard test parameters are used in literature, making a direct comparison of data almost impossible. Criticism also focuses on test parameters that may mask hydrophobic interactions and hence lead to erroneous test results. We methodically investigated the impact of different MATH test parameters on the calculation of the cell surface hydrophobicity of Streptococcus thermophilus, a widespread exopolysaccharide-producing lactic acid bacterium used in the production of fermented milk products. Besides composition and ionic strength of the buffer used for cell re-suspension, we observed a pronounced time dependency of the turbidity of the cell suspension during phase separation due to sedimentation and/or cell lysis. A new modification of the MATH assay was applied to enable the determination of cell surface hydrophobicity of long chain-forming bacteria. As the cell surface hydrophobicity was not altered during exponential growth phase, we assume that the cell surface and its capsular exopolysaccharide layer are not changed during cultivation.
Collapse
Affiliation(s)
- Carsten Nachtigall
- Chair of Food Engineering, Institute of Natural Materials Technology, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Carmen Weber
- Chair of Food Engineering, Institute of Natural Materials Technology, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Sandra Rothenburger
- Chair of Food Engineering, Institute of Natural Materials Technology, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Doris Jaros
- Chair of Food Engineering, Institute of Natural Materials Technology, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Harald Rohm
- Chair of Food Engineering, Institute of Natural Materials Technology, Technische Universität Dresden, D-01062 Dresden, Germany
| |
Collapse
|
11
|
Gomand F, Borges F, Guerin J, El-Kirat-Chatel S, Francius G, Dumas D, Burgain J, Gaiani C. Adhesive Interactions Between Lactic Acid Bacteria and β-Lactoglobulin: Specificity and Impact on Bacterial Location in Whey Protein Isolate. Front Microbiol 2019; 10:1512. [PMID: 31333617 PMCID: PMC6617547 DOI: 10.3389/fmicb.2019.01512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/17/2019] [Indexed: 12/11/2022] Open
Abstract
In the last decade, there has been an increasing interest in the potential health effects associated with the consumption of lactic acid bacteria (LAB) in foods. Some of these bacteria such as Lactobacillus rhamnosus GG (LGG) are known to adhere to milk components, which may impact their distribution and protection within dairy matrices and therefore is likely to modulate the efficiency of their delivery. However, the adhesive behavior of most LAB, as well as its effect on food structuration and on the final bacterial distribution within the food matrix remain very poorly studied. Using a recently developed high-throughput approach, we have screened a collection of 73 LAB strains for their adhesive behavior toward the major whey protein β-lactoglobulin. Adhesion was then studied by genomics in relation to common bacterial surface characteristics such as pili and adhesion-related domain containing proteins. Representative adhesive and non-adhesive strains have been studied in further depth through biophysical measurement using atomic force microscopy (AFM) and a relation with bacterial distribution in whey protein isolate (WPI) solution has been established. AFM measurements have revealed that bacterial adhesion to β-lactoglobulin is highly specific and cannot be predicted accurately using only genomic information. Non-adhesive strains were found to remain homogeneously distributed in solution whereas adhesive strains gathered in flocs. These findings show that several LAB strains are able to adhere to β-lactoglobulin, whereas this had only been previously observed on LGG. We also show that these adhesive interactions present similar characteristics and are likely to impact bacterial location and distribution in dairy matrices containing β-lactoglobulin. This may help with designing more efficient dairy food matrices for optimized LAB delivery.
Collapse
Affiliation(s)
- Faustine Gomand
- Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Frédéric Borges
- Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Justine Guerin
- Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Sofiane El-Kirat-Chatel
- CNRS, Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, Université de Lorraine, Villers-lès-Nancy, France
| | - Gregory Francius
- CNRS, Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, Université de Lorraine, Villers-lès-Nancy, France
| | - Dominique Dumas
- Plateforme d'Imagerie et de Biophysique Cellulaire de Nancy (PTIBC IBISA-NANCY), UMS 2008, IMOPA UMR 7365 - Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Jennifer Burgain
- Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Claire Gaiani
- Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine, Vandœuvre-lès-Nancy, France
| |
Collapse
|
12
|
Zoumpourtikoudi V, Pyrgelis N, Chatzigrigoriou M, Tasakis RN, Touraki M. Interactions among yeast and probiotic bacteria enhance probiotic properties and metabolism offering augmented protection to Artemia franciscana against Vibrio anguillarum. Microb Pathog 2018; 125:497-506. [PMID: 30347259 DOI: 10.1016/j.micpath.2018.10.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/08/2018] [Accepted: 10/18/2018] [Indexed: 11/29/2022]
Abstract
The interactions of the probiotics Bacillus subtilis, Lactococcus lactis and Lactobacillus plantarum with the yeast Saccharomyces cerevisiae were examined in terms of probiotic and biochemical characteristics. Yeast supernatant had a positive effect on the aggregation biofilm formation capacity and hydrophobicity of probiotics, and resulted in increased lactic acid levels, reduced pH values as well as lower RS and FAN levels of probiotics. The effect of probiotics supernatants on yeast was more complex but best results were obtained in the yeast: probiotic CFS ratio of 1:2 for B. subtilis and of 2:1 for the other probiotics. The observed effects depended on the volume ratio of the cell free supernatant to the culture it was applied on. Best results were obtained by the volume ratio probiotic: yeast of (2:1) for B. subtilis and of (1:2) probiotic: yeast for L. plantarum and L. lactis. These ratios were used for further evaluation in vitro against V. anguillarum, resulting in reduced survival and attachment properties of the pathogen. Moreover, the administration of the corresponding combination of bacteria and yeast to Artemia nauplii greatly improved their survival following a challenge with the pathogen. Our results demonstrate that yeast enhances the protective effect of probiotics in a strain specific manner.
Collapse
Affiliation(s)
- V Zoumpourtikoudi
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54 124, Thessaloniki, Greece
| | - N Pyrgelis
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54 124, Thessaloniki, Greece
| | - M Chatzigrigoriou
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54 124, Thessaloniki, Greece
| | - R N Tasakis
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54 124, Thessaloniki, Greece
| | - M Touraki
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54 124, Thessaloniki, Greece.
| |
Collapse
|
13
|
Tarazanova M, Huppertz T, Kok J, Bachmann H. Influence of lactococcal surface properties on cell retention and distribution in cheese curd. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Tarazanova M, Huppertz T, Kok J, Bachmann H. Altering textural properties of fermented milk by using surface-engineered Lactococcus lactis. Microb Biotechnol 2018; 11:770-780. [PMID: 29745037 PMCID: PMC6011991 DOI: 10.1111/1751-7915.13278] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/20/2018] [Accepted: 03/30/2018] [Indexed: 01/23/2023] Open
Abstract
Lactic acid bacteria are widely used for the fermentation of dairy products. While bacterial acidification rates, proteolytic activity and the production of exopolysaccharides are known to influence textural properties of fermented milk products, little is known about the role of the microbial surface on microbe-matrix interactions in dairy products. To investigate how alterations of the bacterial cell surface affect fermented milk properties, 25 isogenic Lactococcus lactis strains that differed with respect to surface charge, hydrophobicity, cell chaining, cell-clumping, attachment to milk proteins, pili expression and EPS production were used to produce fermented milk. We show that overexpression of pili increases surface hydrophobicity of various strains from 3-19% to 94-99%. A profound effect of different cell surface properties was an altered spatial distribution of the cells in the fermented product. Aggregated cells tightly fill the cavities of the protein matrix, while chaining cells seem to be localized randomly. A positive correlation was found between pili overexpression and viscosity and gel hardness of fermented milk. Gel hardness also positively correlated with clumping of cells in the fermented milk. Viscosity of fermented milk was also higher when it was produced with cells with a chaining phenotype or with cells that overexpress exopolysaccharides. Our results show that alteration of cell surface morphology affects textural parameters of fermented milk and cell localization in the product. This is indicative of a cell surface-dependent potential of bacterial cells as structure elements in fermented foods.
Collapse
Affiliation(s)
- Mariya Tarazanova
- NIZO B.V.P.O. Box 206710 BAEdeThe Netherlands
- TiFNP.O. Box 5576700 ANWageningenThe Netherlands
- Molecular GeneticsUniversity of GroningenNijenborgh 79747AGGroningenThe Netherlands
| | - Thom Huppertz
- NIZO B.V.P.O. Box 206710 BAEdeThe Netherlands
- TiFNP.O. Box 5576700 ANWageningenThe Netherlands
- Present address:
FrieslandCampinaStationsplein 43818 LE AmersfoortThe Netherlands
| | - Jan Kok
- TiFNP.O. Box 5576700 ANWageningenThe Netherlands
- Molecular GeneticsUniversity of GroningenNijenborgh 79747AGGroningenThe Netherlands
| | - Herwig Bachmann
- NIZO B.V.P.O. Box 206710 BAEdeThe Netherlands
- TiFNP.O. Box 5576700 ANWageningenThe Netherlands
| |
Collapse
|
15
|
Talebi S, Makhdoumi A, Bahreini M, Matin M, Moradi H. Three novelBacillusstrains from a traditional lacto-fermented pickle as potential probiotics. J Appl Microbiol 2018; 125:888-896. [DOI: 10.1111/jam.13901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 12/20/2022]
Affiliation(s)
- S. Talebi
- Department of Biology; Faculty of Science; Ferdowsi University of Mashhad; Mashhad Iran
| | - A. Makhdoumi
- Department of Biology; Faculty of Science; Ferdowsi University of Mashhad; Mashhad Iran
| | - M. Bahreini
- Department of Biology; Faculty of Science; Ferdowsi University of Mashhad; Mashhad Iran
| | - M.M. Matin
- Department of Biology; Faculty of Science; Ferdowsi University of Mashhad; Mashhad Iran
- Cell and Molecular Biotechnology Research Group; Institute of Biotechnology; Ferdowsi University of Mashhad; Mashhad Iran
| | - H.S. Moradi
- Department of Biology; Faculty of Science; Ferdowsi University of Mashhad; Mashhad Iran
| |
Collapse
|