1
|
Jiang Y, Meng F, Ge Z, Zhou Y, Fan Z, Du J. Bioinspired peptide/polyamino acid assemblies as quorum sensing inhibitors for the treatment of bacterial infections. J Mater Chem B 2024; 12:11596-11610. [PMID: 39436377 DOI: 10.1039/d4tb01685h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Insufficient development of new antibiotics and the rise in antimicrobial resistance are putting the world at risk of losing curative medicines against bacterial infection. Quorum sensing is a type of cellular signaling for cell-to-cell communication that plays critical roles in biofilm formation and antimicrobial resistance, and is expected to be a new type of effective target for drug resistant bacteria. In this review we highlight recent advances in bioinspired peptide/polyamino acid assemblies as quorum sensing inhibitors across various microbial communities. In addition, existing obstacles and future development directions of peptide/polyamino acid assemblies as quorum sensing inhibitors were proposed for broader clinical applications and translations. Overall, quorum sensing peptide/polyamino acid assemblies could be vital tools against bacterial infection and antimicrobial resistance.
Collapse
Affiliation(s)
- Yanan Jiang
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Fanying Meng
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Zhenghong Ge
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Yuxiao Zhou
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Zhen Fan
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Jianzhong Du
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Zhang Y, Wang X, Sun Y. A newly identified algicidal bacterium of Pseudomonas fragi YB2: Algicidal compounds and effects. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135490. [PMID: 39141946 DOI: 10.1016/j.jhazmat.2024.135490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/03/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Harmful algal bloom (HAB) is an unresolved existing problem worldwide. Here, we reported a novel algicidal bacterium, Pseudomonas fragi YB2, capable of lysing multiple algal species. To Chlorella vulgaris, YB2 exhibited a maximum algicidal rate of 95.02 % at 120 h. The uniqueness of YB2 lies in its ability to self-produce three algicidal compounds: 2-methyl-1, 3-cyclohexanedione (2-MECHD), N-phenyl-2-naphthylamine, and cyclo (Pro-Leu). The algicidal properties of 2-MECHD have not been previously reported. YB2 significantly affected the chloroplast and mitochondrion, thus decreasing in chlorophyll a by 4.74 times for 120 h and succinate dehydrogenase activity by 103 times for 36 h. These physiological damages disrupted reactive oxygen species and Ca2+ homeostasis at the cellular level, increasing cytosolic superoxide dismutase (23 %), catalase (35 %), and Ca2+ influx. Additionally, the disruption of Ca2+ homeostasis rarely reported in algicidal bacteria-algae interaction was observed using the non-invasive micro-test technology. We proposed a putative algicidal mechanism based on the algicidal outcomes and physiological algicidal effects and explored the potential of YB2 through an algicidal simulation test. Overall, this study is the first to report the algicidal bacterium P. fragi and identify a novel algicidal compound, 2-MECHD, providing new insights and a potent microbial resource for the biocontrol of HAB.
Collapse
Affiliation(s)
- Yini Zhang
- School of Environment, Northeast Normal University, Changchun 130117, Jilin, PR China.
| | - Xiaoyu Wang
- School of Environment, Northeast Normal University, Changchun 130117, Jilin, PR China.
| | - Yu Sun
- School of Environment, Northeast Normal University, Changchun 130117, Jilin, PR China.
| |
Collapse
|
3
|
Mohammed V, Arockiaraj J. Unveiling the trifecta of cyanobacterial quorum sensing: LuxI, LuxR and LuxS as the intricate machinery for harmful algal bloom formation in freshwater ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171644. [PMID: 38471587 DOI: 10.1016/j.scitotenv.2024.171644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/22/2024] [Accepted: 03/09/2024] [Indexed: 03/14/2024]
Abstract
Harmful algal blooms (HABs) are causing significant disruptions in freshwater ecosystems, primarily due to the proliferation of cyanobacteria. These blooms have a widespread impact on various lakes globally, leading to profound environmental and health consequences. Cyanobacteria, with their ability to produce diverse toxins, pose a particular concern as they negatively affect the well-being of humans and animals, exacerbating the situation. Notably, cyanobacteria utilize quorum sensing (QS) as a complex communication mechanism that facilitates coordinated growth and toxin production. QS plays a critical role in regulating the dynamics of HABs. However, recent advances in control and mitigation strategies have shown promising results in effectively managing and reducing the occurrence of HABs. This comprehensive review explores the intricate aspects of cyanobacteria development in freshwater ecosystems, explicitly focusing on deciphering the signaling molecules associated with QS and their corresponding genes. Furthermore, a concise overview of diverse measures implemented to efficiently control and mitigate the spread of these bacteria will be provided, shedding light on the ongoing global efforts to address this urgent environmental issue. By deepening our understanding of the mechanisms driving cyanobacteria growth and developing targeted control strategies, we hope to safeguard freshwater ecosystems and protect the health of humans and animals from the detrimental impacts of HABs.
Collapse
Affiliation(s)
- Vajagathali Mohammed
- Department of Forensic Science, Yenepoya Institute of Arts, Science, Commerce, and Management, Yenepoya (Deemed to be University), Mangaluru 575013, Karnataka, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
4
|
Mankiewicz-Boczek J, Morón-López J, Serwecińska L, Font-Nájera A, Gałęzowska G, Jurczak T, Kokociński M, Wolska L. Algicidal activity of Morganella morganii against axenic and environmental strains of Microcystis aeruginosa: Compound combination effects. CHEMOSPHERE 2022; 309:136609. [PMID: 36195129 DOI: 10.1016/j.chemosphere.2022.136609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Cyanobacterial harmful algal blooms (cyanoHABs) are a global problem with serious consequences for public health and many sectors of the economy. The use of algicidal bacteria as natural antagonists to control bloom-forming cyanobacteria is a topic of growing interest. However, there are still unresolved questions that need to be addressed to better understand their mode of action and to implement effective mitigation strategies. In this study, thirteen bacterial strains isolated from both scums and concentrated bloom samples exhibited algicidal activity on three Microcystis aeruginosa strains with different characteristics: the axenic microcystin (MC)-producing strain M. aeruginosa PCC7820 (MaPCC7820), and two environmental (non-axenic) M. aeruginosa strains isolated from two different water bodies in Poland, one MC-producer (MaSU) and another non-MC-producer (MaPN). The bacterial strain SU7S0818 exerted the highest average algicidal effect on the three cyanobacterial strains. This strain was identified as Morganella morganii (99.51% similarity) by the 16S rRNA gene analyses; hence, this is the first study that demonstrates the algicidal properties of these ubiquitous bacteria. Microscopic cell counting and qPCR analyses showed that M. morganii SU7S0818 removed 91%, 96%, and 98.5% of MaPCC7820, MaSU and MaPN cells after 6 days of co-culture, respectively. Interestingly, the ultra-high-performance liquid chromatography-tandem mass spectrometer (UHPLC-MS/MS) analyses showed that this bacterium was involved on the release of several substances with algicidal potential. It was remarkable how the profile of some compounds evolved over time, as in the case of cadaverine, tyramine, cyclo[Pro-Gly] and cyclo[Pro-Val]. These dynamic changes could be attributed to the action of M. morganii SU7S0818 and the presence of associated bacteria with environmental cyanobacterial strains. Therefore, this study sheds light on how algicidal bacteria may adapt their action on cyanobacterial cells by releasing a combination of compounds, which is a crucial insight to exploit them as effective biological tools in the control of cyanoHABs.
Collapse
Affiliation(s)
- J Mankiewicz-Boczek
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, 3 Tylna, 90-364, Łódź, Poland.
| | - J Morón-López
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, 3 Tylna, 90-364, Łódź, Poland.
| | - L Serwecińska
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, 3 Tylna, 90-364, Łódź, Poland.
| | - A Font-Nájera
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, 3 Tylna, 90-364, Łódź, Poland.
| | - G Gałęzowska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Debowa Str. 23A, 80-204, Gdańsk, Poland.
| | - T Jurczak
- UNESCO Chair on Ecohydrology and Applied Ecology, University of Lodz, 12/16 Banacha, 90-237, Łódź, Poland.
| | - M Kokociński
- Department of Hydrobiology, Adam Mickiewicz University, 6 Uniwersytetu Poznańskiego, 61-614, Poznań, Poland.
| | - L Wolska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Debowa Str. 23A, 80-204, Gdańsk, Poland.
| |
Collapse
|
5
|
Xu S, Lyu P, Zheng X, Yang H, Xia B, Li H, Zhang H, Ma S. Monitoring and control methods of harmful algal blooms in Chinese freshwater system: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56908-56927. [PMID: 35708805 DOI: 10.1007/s11356-022-21382-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Harmful algal blooms (HABs) are a worldwide problem with substantial adverse effects on the aquatic environment as well as human health, which have prompted researchers to study measures to stem and control them. Meanwhile, it is key to research and develop monitoring methods to establish early warning HABs. However, both the current monitoring methods and control methods have some shortcomings, making the field application limited. Thus, we need to improve current approaches for monitoring and controlling HABs efficiently. Based on the freshwater system features in China, we review various monitoring and control methods of HABs, summarize and discuss the problems with these methods, and propose the future development direction of monitoring and control HABs. Finally, we envision that it can combine physical, chemical, and biological methods to inhibit HAB expansion in the future, complementing each other with advantages. Further, we promise to establish a long-term strategy of controlling HABs with various algicidal bacteria co-cultivate for field applications in China. Efforts in studying algicidal bacteria must be increased to better control HABs and mitigate the risks of aquatic ecosystems and human health in China.
Collapse
Affiliation(s)
- Shengjun Xu
- Shenzhen BLY Landscape & Architecture Planning & Design Institute, Shenzhen, 518055, China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ping Lyu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiaoxu Zheng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Haijun Yang
- Shenzhen BLY Landscape & Architecture Planning & Design Institute, Shenzhen, 518055, China
| | - Bing Xia
- Shenzhen BLY Landscape & Architecture Planning & Design Institute, Shenzhen, 518055, China
| | - Hui Li
- Shenzhen BLY Landscape & Architecture Planning & Design Institute, Shenzhen, 518055, China
| | - Hao Zhang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Shuanglong Ma
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
6
|
The Effect of Algicidal and Denitrifying Bacteria on the Vertical Distribution of Cyanobacteria and Nutrients. WATER 2022. [DOI: 10.3390/w14132129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Algicidal bacteria combined with the ability of aerobic denitrification is considered to be a promising way to control harmful cyanobacterial bloom and remove nitrogen. However, the effect of these bacteria on the vertical distribution of colonial cyanobacteria and nutrients remained unknown. In this study, two algicidal and denitrifying bacteria were respectively co-cultured with the colonial Microcystis aeruginosa to construct the microcosm systems, and then the cyanobacteria number, the ratio of bacterial to cyanobacterial abundance, the content of dissolved nitrogen, phosphorus and organic carbon in different water layers were investigated. The results showed that the distribution difference of Microcystis among the vertical water layers was further enlarged due to the short-term influence of algicidal bacteria Brevundimonas diminuta and Pseudomonas stutzeri. The number of Microcystis in the lower layer was further reduced by the inhibitory effect of the algicidal bacteria. However, there was a dramatic increase in the number of Microcystis in the upper layer, even when the ratio of algicidal bacteria to cyanobacteria increased significantly. B. diminuta and P. stutzeri both greatly promoted the removal of dissolved total nitrogen in the upper and middle layers of cyanobacteria blooming water, but they also boosted the release of dissolved phosphorus in all layers. These results enable us to better understand the possible limitations of algicidal bacteria in their application to control cyanobacteria blooms.
Collapse
|
7
|
Zhang B, Yang Y, Xie W, He W, Xie J, Liu W. Identifying Algicides of Enterobacter hormaechei F2 for Control of the Harmful Alga Microcystis aeruginosa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137556. [PMID: 35805215 PMCID: PMC9265343 DOI: 10.3390/ijerph19137556] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 01/27/2023]
Abstract
Eutrophication has become an increasingly serious environmental issue and has contributed towards an explosion in harmful algal blooms (HABs) affecting local development. HABs can cause serious threats to ecosystems and human health. A newly isolated algicidal strain, Enterobacter hormaechei F2, showed high algicidal activity against the typical HAB species Microcystis aeruginosa. Potential algicides were detected through liquid chromatograph–mass spectrometer analysis, revealing that prodigiosin is an algicide and PQS is a quorum sensing molecule. RNA-seq was used to understand the algicidal mechanisms and the related pathways. We concluded that the metabolism of prodigiosin and PQS are active at the transcriptional level. The findings indicate that E. hormaechei F2 can be used as a potential biological agent to control harmful algal blooms to prevent the deterioration of the ecological and economic value of water bodies.
Collapse
Affiliation(s)
- Bin Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; (B.Z.); (W.X.); (W.H.); (J.X.)
| | - Ying Yang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China;
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Wenjia Xie
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; (B.Z.); (W.X.); (W.H.); (J.X.)
| | - Wei He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; (B.Z.); (W.X.); (W.H.); (J.X.)
| | - Jia Xie
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; (B.Z.); (W.X.); (W.H.); (J.X.)
| | - Wei Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; (B.Z.); (W.X.); (W.H.); (J.X.)
- Guangdong Provincial Key Laboratory of Environmental Pollution and Remediation Technology, Guangzhou 510006, China
- Correspondence:
| |
Collapse
|
8
|
Kong Y, Wang Y, Miao L, Mo S, Li J, Zheng X. Recent Advances in the Research on the Anticyanobacterial Effects and Biodegradation Mechanisms of Microcystis aeruginosa with Microorganisms. Microorganisms 2022; 10:microorganisms10061136. [PMID: 35744654 PMCID: PMC9229865 DOI: 10.3390/microorganisms10061136] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 02/04/2023] Open
Abstract
Harmful algal blooms (HABs) have attracted great attention around the world due to the numerous negative effects such as algal organic matters and cyanobacterial toxins in drinking water treatments. As an economic and environmentally friendly technology, microorganisms have been widely used for pollution control and remediation, especially in the inhibition/biodegradation of the toxic cyanobacterium Microcystis aeruginosa in eutrophic water; moreover, some certain anticyanobacterial microorganisms can degrade microcystins at the same time. Therefore, this review aims to provide information regarding the current status of M. aeruginosa inhibition/biodegradation microorganisms and the acute toxicities of anticyanobacterial substances secreted by microorganisms. Based on the available literature, the anticyanobacterial modes and mechanisms, as well as the in situ application of anticyanobacterial microorganisms are elucidated in this review. This review aims to enhance understanding the anticyanobacterial microorganisms and provides a rational approach towards the future applications.
Collapse
Affiliation(s)
- Yun Kong
- College of Resources and Environment, Yangtze University, Wuhan 430100, China;
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China; (S.M.); (J.L.); (X.Z.)
- Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310058, China
- Correspondence: ; Tel./Fax: +86-27-69111182
| | - Yue Wang
- College of Resources and Environment, Yangtze University, Wuhan 430100, China;
| | - Lihong Miao
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Shuhong Mo
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China; (S.M.); (J.L.); (X.Z.)
| | - Jiake Li
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China; (S.M.); (J.L.); (X.Z.)
| | - Xing Zheng
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China; (S.M.); (J.L.); (X.Z.)
| |
Collapse
|
9
|
Coyne KJ, Wang Y, Johnson G. Algicidal Bacteria: A Review of Current Knowledge and Applications to Control Harmful Algal Blooms. Front Microbiol 2022; 13:871177. [PMID: 35464927 PMCID: PMC9022068 DOI: 10.3389/fmicb.2022.871177] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Interactions between bacteria and phytoplankton in aqueous ecosystems are both complex and dynamic, with associations that range from mutualism to parasitism. This review focuses on algicidal interactions, in which bacteria are capable of controlling algal growth through physical association or the production of algicidal compounds. While there is some evidence for bacterial control of algal growth in the field, our understanding of these interactions is largely based on laboratory culture experiments. Here, the range of these algicidal interactions is discussed, including specificity of bacterial control, mechanisms for activity, and insights into the chemical and biochemical analysis of these interactions. The development of algicidal bacteria or compounds derived from bacteria for control of harmful algal blooms is reviewed with a focus on environmentally friendly or sustainable methods of application. Potential avenues for future research and further development and application of bacterial algicides for the control of algal blooms are presented.
Collapse
Affiliation(s)
- Kathryn J. Coyne
- College of Earth, Ocean, and Environment, University of Delaware, Lewes, DE, United States
| | | | | |
Collapse
|
10
|
Cho KH, Wolny J, Kase JA, Unno T, Pachepsky Y. Interactions of E. coli with algae and aquatic vegetation in natural waters. WATER RESEARCH 2022; 209:117952. [PMID: 34965489 DOI: 10.1016/j.watres.2021.117952] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/27/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Both algae and bacteria are essential inhabitants of surface waters. Their presence is of ecological significance and sometimes of public health concern triggering various control actions. Interactions of microalgae, macroalgae, submerged aquatic vegetation, and bacteria appear to be important phenomena necessitating a deeper understanding by those involved in research and management of microbial water quality. Given the long-standing reliance on Escherichia coli as an indicator of the potential presence of pathogens in natural waters, understanding its biology in aquatic systems is necessary. The major effects of algae and aquatic vegetation on E. coli growth and survival, including changes in the nutrient supply, modification of water properties and constituents, impact on sunlight radiation penetration, survival as related to substrate attachment, algal mediation of secondary habitats, and survival inhibition due to the release of toxic substances and antibiotics, are discussed in this review. An examination of horizontal gene transfer and antibiotic resistance potential, strain-specific interactions, effects on the microbial, microalgae, and grazer community structure, and hydrodynamic controls is given. Outlooks due to existing and expected consequences of climate change and advances in observation technologies via high-resolution satellite imaging, unmanned aerial vehicles (drones), and mathematical modeling are additionally covered. The multiplicity of interactions among bacteria, algae, and aquatic vegetation as well as multifaceted impacts of these interactions, create a wide spectrum of research opportunities and technology developments.
Collapse
Affiliation(s)
- Kyung Hwa Cho
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jennifer Wolny
- Division of Microbiology, Office of Regulatory Science, Center of Food Safety and Applied Nutrition, U.S. Food and Drug Administration, USA
| | - Julie A Kase
- Division of Microbiology, Office of Regulatory Science, Center of Food Safety and Applied Nutrition, U.S. Food and Drug Administration, USA
| | - Tatsui Unno
- College of Applied Life Science, Jeju National University, Republic of Korea
| | - Yakov Pachepsky
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, U.S. Department of Agriculture, USA.
| |
Collapse
|
11
|
Liu J, Liu K, Zhao Z, Wang Z, Wang F, Xin Y, Qu J, Song F, Li Z. The LuxS/AI-2 Quorum-Sensing System Regulates the Algicidal Activity of Shewanella xiamenensis Lzh-2. Front Microbiol 2022; 12:814929. [PMID: 35154040 PMCID: PMC8831721 DOI: 10.3389/fmicb.2021.814929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Cyanobacterial blooming is an increasing environmental issue all over the world. Algicidal bacteria are potential tools for the control of algal blooms. The algicidal activity in many bacteria exhibits quorum-sensing (QS) dynamics and the regulatory mechanism of this activity in these bacteria is unclear. In this study, combining genomic sequencing and genome editing, we have identified that the primary quorum-sensing system in the isolated algicidal strain Shewanella xiamenensis Lzh-2 is the LuxS/AI-2 signaling pathway. Disruption of the QS system through recombination deletion of the LuxS gene led to a loss of algicides production and algicidal activity. Restoration of the LuxS gene in the deletion mutant compensated the QS system and recovered the algicidal activity. Consequently, we proved that Lzh-2 regulates the algicidal activity through LuxS/AI-2 quorum-sensing system.
Collapse
Affiliation(s)
- Jian Liu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Kaiquan Liu
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Zhe Zhao
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Zheng Wang
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Fengchao Wang
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Yuxiu Xin
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Jie Qu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Feng Song
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
- *Correspondence: Feng Song,
| | - Zhenghua Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
- Zhenghua Li,
| |
Collapse
|
12
|
Yu H, Wang J, Li X, Quan C. Effect of the environmental factors on diketopiperazine cyclo(Pro-Phe) production and antifungal activity of Bacillus amyloliquefaciens Q-426. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00722-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Liu F, Giometto A, Wu M. Microfluidic and mathematical modeling of aquatic microbial communities. Anal Bioanal Chem 2021; 413:2331-2344. [PMID: 33244684 PMCID: PMC7990691 DOI: 10.1007/s00216-020-03085-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/05/2020] [Accepted: 11/19/2020] [Indexed: 01/27/2023]
Abstract
Aquatic microbial communities contribute fundamentally to biogeochemical transformations in natural ecosystems, and disruption of these communities can lead to ecological disasters such as harmful algal blooms. Microbial communities are highly dynamic, and their composition and function are tightly controlled by the biophysical (e.g., light, fluid flow, and temperature) and biochemical (e.g., chemical gradients and cell concentration) parameters of the surrounding environment. Due to the large number of environmental factors involved, a systematic understanding of the microbial community-environment interactions is lacking. In this article, we show that microfluidic platforms present a unique opportunity to recreate well-defined environmental factors in a laboratory setting in a high throughput way, enabling quantitative studies of microbial communities that are amenable to theoretical modeling. The focus of this article is on aquatic microbial communities, but the microfluidic and mathematical models discussed here can be readily applied to investigate other microbiomes.
Collapse
Affiliation(s)
- Fangchen Liu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Andrea Giometto
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
14
|
Wang Y, Jiang N, Wang B, Tao H, Zhang X, Guan Q, Liu C. Integrated Transcriptomic and Proteomic Analyses Reveal the Role of NprR in Bacillus anthracis Extracellular Protease Expression Regulation and Oxidative Stress Responses. Front Microbiol 2020; 11:590851. [PMID: 33362738 PMCID: PMC7756075 DOI: 10.3389/fmicb.2020.590851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/18/2020] [Indexed: 12/18/2022] Open
Abstract
NprR is a protein of Bacillus anthracis that exhibits moonlighting functions as either a phosphatase or a neutral protease regulator that belongs to the RNPP family. We previously observed that the extracellular protease activity of an nprR deletion mutant significantly decreased within in vitro cultures. To identify the genes within the regulatory network of nprR that contribute to its protease activity, integrated transcriptomic and proteomic analyses were conducted here by comparing the nprR deletion mutant and parent strains. A total of 366 differentially expressed genes (DEGs) between the strains were observed via RNA-seq analysis. In addition, label-free LC-MS/MS analysis revealed 503 differentially expressed proteins (DEPs) within the intracellular protein fraction and 213 extracellular DEPs with significant expressional differences between the strains. The majority of DEGs and DEPs were involved in environmental information processing and metabolism. Integrated transcriptomic and proteomic analyses indicated that oxidation-reduction-related GO terms for intracellular DEPs and endopeptidase-related GO terms for extracellular DEPs were significantly enriched in the mutant strain. Notably, many genes involved in protease activity were largely downregulated in the nprR deletion mutant cultures. Moreover, western blot analysis revealed that the major extracellular neutral protease Npr599 was barely expressed in the nprR deletion mutant strain. The mutant also exhibited impaired degradation of protective antigen, which is a major B. anthracis toxin component, thereby resulting in higher protein yields. Concomitantly, another global transcriptional regulator, SpxA1, was also dramatically downregulated in the nprR deletion mutant, resulting in higher sensitivity to oxidative and disulfide stress. These data consequently indicate that NprR is a transcriptional regulator that controls genes whose products function as extracellular proteases and also is involved in oxidative stress responses. This study thus contributes to a more comprehensive understanding of the biological function of NprR, and especially in the middle growth stages of B. anthracis.
Collapse
Affiliation(s)
- Yanchun Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Na Jiang
- Beijing Fisheries Research Institute, Beijing, China
| | - Bowen Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Haoxia Tao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Xin Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Qing Guan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Chunjie Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
15
|
Kim HS, Park YH, Kim S, Choi YE. Application of a polyethylenimine-modified polyacrylonitrile-biomass waste composite fiber sorbent for the removal of a harmful cyanobacterial species from an aqueous solution. ENVIRONMENTAL RESEARCH 2020; 190:109997. [PMID: 32739269 DOI: 10.1016/j.envres.2020.109997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/03/2020] [Accepted: 07/23/2020] [Indexed: 05/27/2023]
Abstract
Cyanobacterial harmful algal blooms (Cyano-HABs) in water resources involving algal species such as Microcystis aeruginosa have become a serious environmental issue due to their severely negative effects. In the present study, an adsorption-based strategy was employed to control M. aeruginosa, with industrial waste-derived Escherichia coli biomass valorized to produce polyethylenimine-modified polyacrylonitrile-E. coli biomass composite fiber (PEI-PANBF). PEI-PANBF removed approximately 80% of M. aeruginosa cells from an aqueous solution without causing any cell damage. Interestingly, the thickness of PEI-PANBF had a strong influence on the efficiency of M. aeruginosa cell removal. In addition, PEI-PANBF simultaneously removed M. aeruginosa cells and their toxic secondary metabolite, microcystin-LR, from aqueous media. Thus, our proposed fiber represents a feasible utilization method of industrial waste biomass as a biosorbent for the control of Cyano-HABs.
Collapse
Affiliation(s)
- Ho Seon Kim
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yun Hwan Park
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sok Kim
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea; BK21 Plus Eco-Leader Education Center, Korea University, Seoul, 02841, Republic of Korea.
| | - Yoon-E Choi
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
16
|
McBrayer DN, Cameron CD, Tal-Gan Y. Development and utilization of peptide-based quorum sensing modulators in Gram-positive bacteria. Org Biomol Chem 2020; 18:7273-7290. [PMID: 32914160 PMCID: PMC7530124 DOI: 10.1039/d0ob01421d] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Quorum sensing (QS) is a mechanism by which bacteria regulate cell density-dependent group behaviors. Gram-positive bacteria generally rely on auto-inducing peptide (AIP)-based QS signaling to regulate their group behaviors. To develop synthetic modulators of these behaviors, the natural peptide needs to be identified and its structure-activity relationships (SARs) with its cognate receptor (either membrane-bound or cytosolic) need to be understood. SAR information allows for the rational design of peptides or peptide mimics with enhanced characteristics, which in turn can be utilized in studies to understand species-specific QS mechanisms and as lead scaffolds for the development of therapeutic candidates that target QS. In this review, we discuss recent work associated with the approaches used towards forwarding each of these steps in Gram-positive bacteria, with a focus on species that have received less attention.
Collapse
Affiliation(s)
- Dominic N McBrayer
- Department of Chemistry, SUNY New Paltz, 1 Hawk Drive, New Paltz, NY 12561, USA. and Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV 89557, USA.
| | - Crissey D Cameron
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV 89557, USA.
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV 89557, USA.
| |
Collapse
|
17
|
Zhang C, Li Y, Meng CX, Yang MJ, Wang YG, Cai ZH, Zuo P, Zhou J. Complete genome sequence of Acinetobacter baumanni J1, a quorum sensing-producing algicidal bacterium, isolated from Eastern Pacific Ocean. Mar Genomics 2020; 52:100719. [DOI: 10.1016/j.margen.2019.100719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/03/2019] [Accepted: 10/17/2019] [Indexed: 11/15/2022]
|
18
|
Weiss G, Kovalerchick D, Lieman-Hurwitz J, Murik O, De Philippis R, Carmeli S, Sukenik A, Kaplan A. Increased algicidal activity of Aeromonas veronii in response to Microcystis aeruginosa: interspecies crosstalk and secondary metabolites synergism. Environ Microbiol 2020; 21:1140-1150. [PMID: 30761715 DOI: 10.1111/1462-2920.14561] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 01/31/2019] [Accepted: 02/09/2019] [Indexed: 12/16/2022]
Abstract
Toxic Microcystis spp. blooms constitute a serious threat to water quality worldwide. Aeromonas veronii was isolated from Microcystis sp. colonies collected in Lake Kinneret. Spent Aeromonas media inhibits the growth of Microcystis aeruginosa MGK isolated from Lake Kinneret. The inhibition was much stronger when Aeromonas growth medium contained spent media from MGK suggesting that Aeromonas recognized its presence and produced secondary metabolites that inhibit Microcystis growth. Fractionations of the crude extract and analyses of the active fractions identified several secondary metabolites including lumichrome in Aeromonas media. Application of lumichrome at concentrations as low as 4 nM severely inhibited Microcystis growth. Inactivation of aviH in the lumichrome biosynthetic pathway altered the lumichrome level in Aeromonas and the extent of MGK growth inhibition. Conversely, the initial lag in Aeromonas growth was significantly longer when provided with Microcystis spent media but Aeromonas was able to resume normal growth. The longer was pre-exposure to Microcystis spent media the shorter was the lag phase in Aeromonas growth indicating the presence of, and acclimation to, secondary MGK metabolite(s) the nature of which was not revealed. Our study may help to control toxic Microcystis blooms taking advantage of chemical languages used in the interspecies communication.
Collapse
Affiliation(s)
- Gad Weiss
- Plants and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Dimitry Kovalerchick
- Raymond and Beverly Sackler School of Chemistry and Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.,Plants and Environmental Sciences, Metabomed Ltd, Yavne, 81220, Israel
| | - Judy Lieman-Hurwitz
- Plants and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Omer Murik
- Plants and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Roberto De Philippis
- Department of Agricultural, Food, Environmental and Forestry Sciences and Technologies (DAGRI), University of Florence, 50144, Florence, Italy
| | - Shmuel Carmeli
- Raymond and Beverly Sackler School of Chemistry and Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Assaf Sukenik
- Plants and Environmental Sciences, The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, Israel
| | - Aaron Kaplan
- Plants and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| |
Collapse
|
19
|
Lee J, Kim M, Jeong SE, Park HY, Jeon CO, Park W. Amentoflavone, a novel cyanobacterial killing agent from Selaginella tamariscina. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121312. [PMID: 31699478 DOI: 10.1016/j.jhazmat.2019.121312] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 05/10/2023]
Abstract
Harmful cyanobacterial bloom (HCB) by Microcystis aeruginosa is increasingly becoming a serious concern to the environment and human health alike. Currently, many physical, chemical, and biological controls are underway to eliminate HCB, but natural chemicals are rarely used. To find a control agent with low environmental toxicity and high potential for practical use, 60 plant extracts were screened. Only Selaginella tamariscina extract killed all four Microcystis aeruginosa strains, but not the other tested bacteria. Chloroform fraction of S. tamariscina extract (CSE) showed the highest killing activity. The effects of CSE on M. aeruginosa were monitored using differential interference contrast microscopy and flow-cytometry analysis, scanning electron microscopy, and transmission electron microscopy. The images showed that CSE-treated cells were abnormally altered, with damaged cell membranes, peptidoglycan layers, and cytoplasm. Quadrupole time-of-flight liquid chromatography-mass spectrometry was used to identify amentoflavone as a major active compound. Pure amentoflavone, even at low concentrations showed a powerful killing effect on M. aeruginosa, but not on other non-cyanobacteria. Overall, in this study, we have highlighted the potentials of S. tamariscina extracts and amentoflavone as selective HCB control agents.
Collapse
Affiliation(s)
- Jaebok Lee
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Minkyung Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sang Eun Jeong
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hye Yoon Park
- National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
20
|
Zhang SJ, Du XP, Zhu JM, Meng CX, Zhou J, Zuo P. The complete genome sequence of the algicidal bacterium Bacillus subtilis strain JA and the use of quorum sensing to evaluate its antialgal ability. ACTA ACUST UNITED AC 2020; 25:e00421. [PMID: 31956522 PMCID: PMC6961068 DOI: 10.1016/j.btre.2020.e00421] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/17/2019] [Accepted: 01/09/2020] [Indexed: 11/25/2022]
Abstract
B. subtilis strain JA exhibit strong algicidal effects on algae with the inhibition rate exceeding 80 % within 48 h. The algicidal activity is regulated by AI-2 type quorum sensing. The complete genome information is provided for developing novel chemical-ecological methods to control harmful algae.
We describe the isolation of Bacillus subtilis strain JA and demonstrate that this bacterium exhibited strong algicidal effects on the algae Alexandrium minutum with an inhibition rate exceeding 80 % within 48 h. B. subtilis JA significantly reduced the photosynthetic efficiency of A. minutum and caused extensive morphological damage to the algae. Genomic analysis of B. subtilis JA demonstrated that a putative AI-2 type quorum sensing (QS) gene (LuxS) is present in its genome cluster, which is regulate pheromone biosynthesis. Interestingly, the exogenous addition of a QS-oligopeptide (ComX-pheromone) improved the algicidal efficiency of B. subtilis JA, thus indicating that the algicidal activity of this bacterium is potentially regulated by QS. Collectively, our data describe a potential antialgal bacterium and speculated that its behavior can be modulated by QS signal. B. subtilis JA may therefore represent a valuable tool for the development of novel chemical-ecological methods with which to control harmful algae.
Collapse
Affiliation(s)
- Sheng-Jie Zhang
- The Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Xiao-Peng Du
- The Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Jian-Ming Zhu
- The Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China.,School of Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang Province, PR China
| | - Chen-Xu Meng
- Second Institute of Oceanography, Ministry of Natural Resources, Hanzhou, 310000, Zhejiang Province, PR China
| | - Jin Zhou
- The Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Ping Zuo
- The School of Geography and Ocean Science, Nanjing University, Nanjing, 210093, Jiangsu Province, PR China
| |
Collapse
|
21
|
Liu J, Yang C, Chi Y, Wu D, Dai X, Zhang X, Igarashi Y, Luo F. Algicidal characterization and mechanism of Bacillus licheniformis
Sp34 against Microcystis aeruginosa
in Dianchi Lake. J Basic Microbiol 2019; 59:1112-1124. [DOI: 10.1002/jobm.201900112] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/26/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Jinyu Liu
- Chongqing Key Laboratory, Research Center of Bioenergy and Bioremediation, College of Resources and Environment; Southwest University; Chongqing China
| | - Caiyun Yang
- Chongqing Key Laboratory, Research Center of Bioenergy and Bioremediation, College of Resources and Environment; Southwest University; Chongqing China
| | - Yuxin Chi
- Chongqing Key Laboratory, Research Center of Bioenergy and Bioremediation, College of Resources and Environment; Southwest University; Chongqing China
| | - Donghao Wu
- Chongqing Key Laboratory, Research Center of Bioenergy and Bioremediation, College of Resources and Environment; Southwest University; Chongqing China
| | - Xianzhu Dai
- Chongqing Key Laboratory, Research Center of Bioenergy and Bioremediation, College of Resources and Environment; Southwest University; Chongqing China
| | - Xiaohui Zhang
- Chongqing Key Laboratory, Research Center of Bioenergy and Bioremediation, College of Resources and Environment; Southwest University; Chongqing China
| | - Yasuo Igarashi
- Chongqing Key Laboratory, Research Center of Bioenergy and Bioremediation, College of Resources and Environment; Southwest University; Chongqing China
| | - Feng Luo
- Chongqing Key Laboratory, Research Center of Bioenergy and Bioremediation, College of Resources and Environment; Southwest University; Chongqing China
| |
Collapse
|
22
|
Cao JY, Kong ZY, Zhang YF, Ling T, Xu JL, Liao K, Zhou CX, Yan XJ. Bacterial Community Diversity and Screening of Growth-Affecting Bacteria From Isochrysis galbana Following Antibiotic Treatment. Front Microbiol 2019; 10:994. [PMID: 31134030 PMCID: PMC6513876 DOI: 10.3389/fmicb.2019.00994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
Algal cultures are generally co-cultures of algae and bacteria, especially when considering outdoor cultivation. However, the effects of associated bacteria on algal growth remain largely unexplored, particularly in the context of Isochrysis galbana. In the present study, we investigated the effects of antibiotic on the growth of I. galbana and its associated bacterial community. We found advantageous responses of I. galbana to antibiotic exposure, evidenced by the increased growth, and the maximal photochemical efficiency of PSII (Fv/Fm). Since antibiotics can cause major disturbances within bacterial community, we further conducted 16S rDNA amplicon sequencing to determine the changes of bacterial community diversity following antibiotic treatment. We found that antibiotic treatment considerably and negatively affected the abundance and diversity of bacterial community, and 17 significantly decreased bacterial species in the antibiotic-treated medium, including Pseudomonas stutzeri, were identified. Further co-culture experiments revealed that P. stutzeri inhibited the growth of I. galbana, and the inhibitory activity was retained in the cell-free bacterial filtrate. These results indicated that the negative effect of bacteria was not exclusively transmitted through contact with I. galbana but could be also mediated via secretory compounds. Taken together, our findings not only fully characterized the bacterial community associated with I. galbana and how the bacterial community changed in response to antibiotic perturbations, but also provided a valuable information about the interactions between I. galbana and its associated bacteria, which might help improve the yield, and quality of I. galbana during its cultivation processes.
Collapse
Affiliation(s)
- Jia-Yi Cao
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education of China, Ningbo, China
| | - Zhou-Yan Kong
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education of China, Ningbo, China
| | - Yu-Fan Zhang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education of China, Ningbo, China
| | - Ting Ling
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education of China, Ningbo, China
| | - Ji-Lin Xu
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education of China, Ningbo, China
| | - Kai Liao
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education of China, Ningbo, China
| | - Cheng-Xu Zhou
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education of China, Ningbo, China
| | - Xiao-Jun Yan
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| |
Collapse
|