1
|
Dong Y, Zhang S, Wang H, Jia X, Yu C, Li W, Ma X, Yu X, Li D, Shu J, Cai C. Delayed Diagnosis of Spinal Muscular Atrophy in Two Chinese Families due to Novel SMN1 Deletions. Am J Med Genet A 2025; 197:e63917. [PMID: 39497486 DOI: 10.1002/ajmg.a.63917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 09/20/2024] [Accepted: 10/12/2024] [Indexed: 02/13/2025]
Abstract
Autosomal recessive spinal muscular atrophy (SMA) is a leading cause of infant and child mortality, with homozygous deletion in exon 7 of the SMN1 gene being a major genetic cause. However, routine genetic testing methods may overlook structural variants outside of exon 7, potentially leading to misdiagnosis of SMA patients. Here, we reported two Chinese SMA patients who primarily exhibited developmental delays. Physical examinations revealed markedly reduced muscle strength and tone in their extremities, and electromyography suggested extensive neurogenic damage in the anterior horn of the spinal cord. The MLPA results indicated a single copy number of SMN1 in both patients, which is inconsistent with the typical genetic pattern of SMA. Through RNA sequencing and ultra-long read sequencing, we ultimately identified a rare structural variant involving the deletion of exons 2a-5 in both unrelated patients. This confirmed the presence of compound heterozygous variants in the SMN1 gene as the actual genetic cause. To our knowledge, this is the first case where a combination of RNA sequencing and ultra-long read sequencing has been used to diagnose SMA. We demonstrated the significant value of RNA sequencing in cases where children are highly suspected of having SMA but present negative results in routine genetic testing. This underscores the crucial role of accurate genetic testing methods in achieving early diagnosis of SMA.
Collapse
Affiliation(s)
- Yan Dong
- Graduate College, Tianjin Medical University, Tianjin, China
- Tianjin Children's Hospital, Children's Hospital of Tianjin University, Tianjin, China
| | - Shuyue Zhang
- Graduate College, Tianjin Medical University, Tianjin, China
- Tianjin Children's Hospital, Children's Hospital of Tianjin University, Tianjin, China
| | - Hong Wang
- Tianjin Children's Hospital, Children's Hospital of Tianjin University, Tianjin, China
- Department of Neurology, Tianjin Children's Hospital, Tianjin, China
| | - Xiaodong Jia
- Key Laboratory of Multi-Omics Precision Diagnosis Technology for Neurological Diseases in Tianjin, Tianjin Kingmed Center for Clinical Laboratory, Tianjin, China
- Tianjin Kingmed Center for Clinical Laboratory, Tianjin, China
| | - Changshun Yu
- Key Laboratory of Multi-Omics Precision Diagnosis Technology for Neurological Diseases in Tianjin, Tianjin Kingmed Center for Clinical Laboratory, Tianjin, China
- Tianjin Kingmed Center for Clinical Laboratory, Tianjin, China
| | - Weiran Li
- Graduate College, Tianjin Medical University, Tianjin, China
- Tianjin Children's Hospital, Children's Hospital of Tianjin University, Tianjin, China
| | - Ximeng Ma
- Graduate College, Tianjin Medical University, Tianjin, China
- Tianjin Children's Hospital, Children's Hospital of Tianjin University, Tianjin, China
| | - Xiaoli Yu
- Tianjin Children's Hospital, Children's Hospital of Tianjin University, Tianjin, China
- Department of Neurology, Tianjin Children's Hospital, Tianjin, China
| | - Dong Li
- Tianjin Children's Hospital, Children's Hospital of Tianjin University, Tianjin, China
- Department of Neurology, Tianjin Children's Hospital, Tianjin, China
| | - Jianbo Shu
- Tianjin Children's Hospital, Children's Hospital of Tianjin University, Tianjin, China
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital, Tianjin, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| | - Chunquan Cai
- Tianjin Children's Hospital, Children's Hospital of Tianjin University, Tianjin, China
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital, Tianjin, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| |
Collapse
|
2
|
Kato T, Yokomura M, Osawa Y, Matsuo K, Kubo Y, Homma T, Saito K. Genomic analysis of the SMN1 gene region in patients with clinically diagnosed spinal muscular atrophy: a retrospective observational study. Orphanet J Rare Dis 2025; 20:55. [PMID: 39920747 PMCID: PMC11803984 DOI: 10.1186/s13023-025-03568-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/21/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease. Most patients with SMA have a mutation in the survival motor neuron 1 (SMN1) gene on chromosome 5q. With current genetic testing, SMN1 copy number is determined; a diagnosis is reached when the copy number is zero. When the SMN1 copy number is 1, exons and intron/exon boundaries of the allele are examined for single-nucleotide variants (SNVs). Genetically undiagnosed cases of SMA exist when 2 copies of SMN1 exist or when a SNV is in the deep intron. Furthermore, SMN1 is highly homologous to SMN2; therefore, it is expected that many SNVs have not been elucidated. METHODS This retrospective observational study conducted in Japan used pre-collected DNA samples from patients with clinically diagnosed SMA. Enrollment period was January 28, 2020 to September 30, 2021. SNV analysis of SMN1 (exon 1-8 and intron 1-7) was conducted by long-range polymerase chain reaction and next-generation sequencing. RESULTS From 336 DNA samples collected from patients, 62 patient samples were included in the SNV analysis. Two patients have been genetically diagnosed (a heterozygous variant in intron 6 with 1 copy of SMN1; a homozygous missense mutation in exon 3 with 2 copies of SMN1). Three SNVs in intron 6, c.834+1506A>G (n = 9), c.834+1751G>A (n = 2), and c.835-367C>A (n = 5) were identified; all were numerically, and c.834+1506A>G and c.835-367C>A were significantly, more frequent in patients with 0 copies versus those with ≥ 1 copy of exon 7 in SMN1. We confirmed 3 hybrid SMN gene types in 5 patients that contained SMN2 gene sequence (aaTgg) flanked by upstream "t" and downstream "G" SMN1 sequence. CONCLUSIONS In this study of patients with clinically diagnosed SMA, 2 cases with genetic SMN types were identified that would not have been identified through current genetic testing, which examines SMN1 deletions only. Furthermore, for 1 patient with a homozygous SMN1 missense mutation, SMA was not suspected by the current copy number screening method. This study demonstrated the importance of performing full-length sequencing for clinically diagnosed SMA to complement current screening methods. TRIAL REGISTRATION University Hospital Medical Information Network Clinical Trials Registry (Number: UMIN000040095).
Collapse
Affiliation(s)
- Tamaki Kato
- Institute of Medical Genetics, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Mamoru Yokomura
- Institute of Medical Genetics, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Yutaka Osawa
- Department of Neurology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Kensuke Matsuo
- Division of Pediatrics, Kyoto Tanabe Central Hospital, Kyoto, Japan
| | - Yuji Kubo
- Institute of Medical Genetics, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | | | - Kayoko Saito
- Institute of Medical Genetics, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| |
Collapse
|
3
|
Ottesen EW, Singh NN, Seo J, Singh RN. U1 snRNA interactions with deep intronic sequences regulate splicing of multiple exons of spinal muscular atrophy genes. Front Neurosci 2024; 18:1412893. [PMID: 39086841 PMCID: PMC11289892 DOI: 10.3389/fnins.2024.1412893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction The U1 small nuclear RNA (snRNA) forms ribonucleoprotein particles (RNPs) such as U1 snRNP and U1-TAF15 snRNP. U1 snRNP is one of the most studied RNPs due to its critical role in pre-mRNA splicing in defining the 5' splice site (5'ss) of every exon through direct interactions with sequences at exon/intron junctions. Recent reports support the role of U1 snRNP in all steps of transcription, namely initiation, elongation, and termination. Functions of U1-TAF15 snRNP are less understood, though it associates with the transcription machinery and may modulate pre-mRNA splicing by interacting with the 5'ss and/or 5'ss-like sequences within the pre-mRNA. An anti-U1 antisense oligonucleotide (ASO) that sequesters the 5' end of U1 snRNA inhibits the functions of U1 snRNP, including transcription and splicing. However, it is not known if the inhibition of U1 snRNP influences post-transcriptional regulation of pre-mRNA splicing through deep intronic sequences. Methods We examined the effect of an anti-U1 ASO that sequesters the 5' end of U1 snRNA on transcription and splicing of all internal exons of the spinal muscular atrophy (SMA) genes, SMN1 and SMN2. Our study was enabled by the employment of a multi-exon-skipping detection assay (MESDA) that discriminates against prematurely terminated transcripts. We employed an SMN2 super minigene to determine if anti-U1 ASO differently affects splicing in the context of truncated introns. Results We observed substantial skipping of multiple internal exons of SMN1 and SMN2 triggered by anti-U1 treatment. Suggesting a role for U1 snRNP in interacting with deep intronic sequences, early exons of the SMN2 super minigene with truncated introns were resistant to anti-U1 induced skipping. Consistently, overexpression of engineered U1 snRNAs targeting the 5'ss of early SMN1 and SMN2 exons did not prevent exon skipping caused by anti-U1 treatment. Discussion Our results uncover a unique role of the U1 snRNA-associated RNPs in splicing regulation executed through deep intronic sequences. Findings are significant for developing novel therapies for SMA based on deep intronic targets.
Collapse
Affiliation(s)
| | | | | | - Ravindra N. Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| |
Collapse
|
4
|
Lee K, Ku J, Ku D, Kim Y. Inverted Alu repeats: friends or foes in the human transcriptome. Exp Mol Med 2024; 56:1250-1262. [PMID: 38871814 PMCID: PMC11263572 DOI: 10.1038/s12276-024-01177-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 06/15/2024] Open
Abstract
Alu elements are highly abundant primate-specific short interspersed nuclear elements that account for ~10% of the human genome. Due to their preferential location in gene-rich regions, especially in introns and 3' UTRs, Alu elements can exert regulatory effects on the expression of both host and neighboring genes. When two Alu elements with inverse orientations are positioned in close proximity, their transcription results in the generation of distinct double-stranded RNAs (dsRNAs), known as inverted Alu repeats (IRAlus). IRAlus are key immunogenic self-dsRNAs and post-transcriptional cis-regulatory elements that play a role in circular RNA biogenesis, as well as RNA transport and stability. Recently, IRAlus dsRNAs have emerged as regulators of transcription and activators of Z-DNA-binding proteins. The formation and activity of IRAlus can be modulated through RNA editing and interactions with RNA-binding proteins, and misregulation of IRAlus has been implicated in several immune-associated disorders. In this review, we summarize the emerging functions of IRAlus dsRNAs, the regulatory mechanisms governing IRAlus activity, and their relevance in the pathogenesis of human diseases.
Collapse
Affiliation(s)
- Keonyong Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jayoung Ku
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Doyeong Ku
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yoosik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Graduate School of Engineering Biology, KAIST, Daejeon, 34141, Republic of Korea.
- KAIST Institute for BioCentury (KIB), Daejeon, 34141, Republic of Korea.
- KAIST Institute for Health Science and Technology (KIHST), Daejeon, 34141, Republic of Korea.
- BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
5
|
Luo D, Ottesen EW, Lee JH, Singh RN. Transcriptome- and proteome-wide effects of a circular RNA encompassing four early exons of the spinal muscular atrophy genes. Sci Rep 2024; 14:10442. [PMID: 38714739 PMCID: PMC11076517 DOI: 10.1038/s41598-024-60593-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/25/2024] [Indexed: 05/10/2024] Open
Abstract
Spinal muscular atrophy (SMA) genes, SMN1 and SMN2 (hereinafter referred to as SMN1/2), produce multiple circular RNAs (circRNAs), including C2A-2B-3-4 that encompasses early exons 2A, 2B, 3 and 4. C2A-2B-3-4 is a universally and abundantly expressed circRNA of SMN1/2. Here we report the transcriptome- and proteome-wide effects of overexpression of C2A-2B-3-4 in inducible HEK293 cells. Our RNA-Seq analysis revealed altered expression of ~ 15% genes (4172 genes) by C2A-2B-3-4. About half of the affected genes by C2A-2B-3-4 remained unaffected by L2A-2B-3-4, a linear transcript encompassing exons 2A, 2B, 3 and 4 of SMN1/2. These findings underscore the unique role of the structural context of C2A-2B-3-4 in gene regulation. A surprisingly high number of upregulated genes by C2A-2B-3-4 were located on chromosomes 4 and 7, whereas many of the downregulated genes were located on chromosomes 10 and X. Supporting a cross-regulation of SMN1/2 transcripts, C2A-2B-3-4 and L2A-2B-3-4 upregulated and downregulated SMN1/2 mRNAs, respectively. Proteome analysis revealed 61 upregulated and 57 downregulated proteins by C2A-2B-3-4 with very limited overlap with those affected by L2A-2B-3-4. Independent validations confirmed the effect of C2A-2B-3-4 on expression of genes associated with chromatin remodeling, transcription, spliceosome function, ribosome biogenesis, lipid metabolism, cytoskeletal formation, cell proliferation and neuromuscular junction formation. Our findings reveal a broad role of C2A-2B-3-4, and expands our understanding of functions of SMN1/2 genes.
Collapse
Affiliation(s)
- Diou Luo
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Eric W Ottesen
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Ji Heon Lee
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Ravindra N Singh
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
6
|
Wang N, Jiao K, He J, Zhu B, Cheng N, Sun J, Chen L, Chen W, Gong L, Qiao K, Xi J, Wu Q, Zhao C, Zhu W. Diagnosis of Challenging Spinal Muscular Atrophy Cases with Long-Read Sequencing. J Mol Diagn 2024; 26:364-373. [PMID: 38490302 DOI: 10.1016/j.jmoldx.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 03/17/2024] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder primarily caused by the deletion or mutation of the survival motor neuron 1 (SMN1) gene. This study assesses the diagnostic potential of long-read sequencing (LRS) in three patients with SMA. For Patient 1, who has a heterozygous SMN1 deletion, LRS unveiled a missense mutation in SMN1 exon 5. In Patient 2, an Alu/Alu-mediated rearrangement covering the SMN1 promoter and exon 1 was identified through a blend of multiplex ligation-dependent probe amplification, LRS, and PCR across the breakpoint. The third patient, born to a consanguineous family, bore four copies of hybrid SMN genes. LRS determined the genomic structures, indicating two distinct hybrids of SMN2 exon 7 and SMN1 exon 8. However, a discrepancy was found between the SMN1/SMN2 ratio interpretations by LRS (0:2) and multiplex ligation-dependent probe amplification (0:4), which suggested a limitation of LRS in SMA diagnosis. In conclusion, this newly adapted long PCR-based third-generation sequencing introduces an additional avenue for SMA diagnosis.
Collapse
Affiliation(s)
- Ningning Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kexin Jiao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin He
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Bochen Zhu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Nachuan Cheng
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Sun
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Chen
- Department of Neurology, Nantong First People's Hospital, Nantong, China
| | - Wanjin Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Lingyun Gong
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kai Qiao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianying Xi
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qihan Wu
- Shanghai Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Chongbo Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenhua Zhu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Ottesen EW, Seo J, Luo D, Singh NN, Singh RN. A super minigene with a short promoter and truncated introns recapitulates essential features of transcription and splicing regulation of the SMN1 and SMN2 genes. Nucleic Acids Res 2024; 52:3547-3571. [PMID: 38214229 DOI: 10.1093/nar/gkad1259] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 01/13/2024] Open
Abstract
Here we report a Survival Motor Neuron 2 (SMN2) super minigene, SMN2Sup, encompassing its own promoter, all exons, their flanking intronic sequences and the entire 3'-untranslated region. We confirm that the pre-mRNA generated from SMN2Sup undergoes splicing to produce a translation-competent mRNA. We demonstrate that mRNA generated from SMN2Sup produces more SMN than an identical mRNA generated from a cDNA clone. We uncover that overexpression of SMN triggers skipping of exon 3 of SMN1/SMN2. We define the minimal promoter and regulatory elements associated with the initiation and elongation of transcription of SMN2. The shortened introns within SMN2Sup preserved the ability of camptothecin, a transcription elongation inhibitor, to induce skipping of exons 3 and 7 of SMN2. We show that intron 1-retained transcripts undergo nonsense-mediated decay. We demonstrate that splicing factor SRSF3 and DNA/RNA helicase DHX9 regulate splicing of multiple exons in the context of both SMN2Sup and endogenous SMN1/SMN2. Prevention of SMN2 exon 7 skipping has implications for the treatment of spinal muscular atrophy (SMA). We validate the utility of the super minigene in monitoring SMN levels upon splicing correction. Finally, we demonstrate how the super minigene could be employed to capture the cell type-specific effects of a pathogenic SMN1 mutation.
Collapse
Affiliation(s)
- Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Joonbae Seo
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Diou Luo
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
8
|
Luo D, Ottesen E, Lee JH, Singh R. Transcriptome- and proteome-wide effects of a circular RNA encompassing four early exons of the spinal muscular atrophy genes. RESEARCH SQUARE 2024:rs.3.rs-3818622. [PMID: 38464174 PMCID: PMC10925445 DOI: 10.21203/rs.3.rs-3818622/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Spinal muscular atrophy (SMA) genes, SMN1 and SMN2, produce multiple circular RNAs (circRNAs), including C2A-2B-3-4 that encompasses early exons 2A, 2B, 3 and 4. Here we report the transcriptome- and proteome-wide effects of overexpression of C2A-2B-3-4 in inducible HEK293 cells. Our RNA-Seq analysis revealed altered expression of ~ 15% genes (4,172 genes) by C2A-2B-3-4. About half of the affected genes by C2A-2B-3-4 remained unaffected by L2A-2B-3-4, a linear transcript encompassing exons 2A, 2B, 3 and 4 of SMN1/SMN2. These fifindings underscore the unique role of the structural context of C2A-2B-3-4 in gene regulation. A surprisingly high number of upregulated genes by C2A-2B-3-4 were located on chromosomes 4 and 7, whereas many of the downregulated genes were located on chromosomes 10 and X. Supporting a cross-regulation of SMN1/SMN2 transcripts, C2A-2B-3-4 and L2A-2B-3-4 upregulated and downregulated SMN1/SMN2 mRNAs, respectively. Proteome analysis revealed 61 upregulated and 57 downregulated proteins by C2A-2B-3-4 with very limited overlap with those affected by L2A-2B-3-4. Independent validations confirmed the effect of C2A-2B-3-4 on expression of genes associated with chromatin remodeling, transcription, spliceosome function, ribosome biogenesis, lipid metabolism, cytoskeletal formation, cell proliferation and neuromuscular junction formation. Our findings reveal a broad role of C2A-2B-3-4, a universally expressed circRNA produced by SMN1/SMN2.
Collapse
|
9
|
Zhou M, Li S, Huang C. Physiological and pathological functions of circular RNAs in the nervous system. Neural Regen Res 2024; 19:342-349. [PMID: 37488888 PMCID: PMC10503630 DOI: 10.4103/1673-5374.379017] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/20/2023] [Accepted: 05/29/2023] [Indexed: 07/26/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of covalently closed single-stranded RNAs that are expressed during the development of specific cells and tissues. CircRNAs play crucial roles in physiological and pathological processes by sponging microRNAs, modulating gene transcription, controlling the activity of certain RNA-binding proteins, and producing functional peptides. A key focus of research at present is the functionality of circRNAs in the nervous system and several advances have emerged over the last 2 years. However, the precise role of circRNAs in the nervous system has yet to be comprehensively reviewed. In this review, we first summarize the recently described roles of circRNAs in brain development, maturity, and aging. Then, we focus on the involvement of circRNAs in various diseases of the central nervous system, such as brain cancer, chronic neurodegenerative diseases, acute injuries of the nervous system, and neuropathic pain. A better understanding of the functionality of circRNAs will help us to develop potential diagnostic, prognostic, and therapeutic strategies to treat diseases of the nervous system.
Collapse
Affiliation(s)
- Min Zhou
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Shi Li
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Chuan Huang
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
10
|
Saeliw T, Kanlayaprasit S, Thongkorn S, Songsritaya K, Sanannam B, Sae-Lee C, Jindatip D, Hu VW, Sarachana T. Epigenetic Gene-Regulatory Loci in Alu Elements Associated with Autism Susceptibility in the Prefrontal Cortex of ASD. Int J Mol Sci 2023; 24:ijms24087518. [PMID: 37108679 PMCID: PMC10139202 DOI: 10.3390/ijms24087518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Alu elements are transposable elements that can influence gene regulation through several mechanisms; nevertheless, it remains unclear whether dysregulation of Alu elements contributes to the neuropathology of autism spectrum disorder (ASD). In this study, we characterized transposable element expression profiles and their sequence characteristics in the prefrontal cortex tissues of ASD and unaffected individuals using RNA-sequencing data. Our results showed that most of the differentially expressed transposable elements belong to the Alu family, with 659 loci of Alu elements corresponding to 456 differentially expressed genes in the prefrontal cortex of ASD individuals. We predicted cis- and trans-regulation of Alu elements to host/distant genes by conducting correlation analyses. The expression level of Alu elements correlated significantly with 133 host genes (cis-regulation, adjusted p < 0.05) associated with ASD as well as the cell survival and cell death of neuronal cells. Transcription factor binding sites in the promoter regions of differentially expressed Alu elements are conserved and associated with autism candidate genes, including RORA. COBRA analyses of postmortem brain tissues showed significant hypomethylation in global methylation analyses of Alu elements in ASD subphenotypes as well as DNA methylation of Alu elements located near the RNF-135 gene (p < 0.05). In addition, we found that neuronal cell density, which was significantly increased (p = 0.042), correlated with the expression of genes associated with Alu elements in the prefrontal cortex of ASD. Finally, we determined a relationship between these findings and the ASD severity (i.e., ADI-R scores) of individuals with ASD. Our findings provide a better understanding of the impact of Alu elements on gene regulation and molecular neuropathology in the brain tissues of ASD individuals, which deserves further investigation.
Collapse
Affiliation(s)
- Thanit Saeliw
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Songphon Kanlayaprasit
- Systems Neuroscience of Autism and Psychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Surangrat Thongkorn
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Kwanjira Songsritaya
- The M.Sc. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bumpenporn Sanannam
- Division of Anatomy, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Chanachai Sae-Lee
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Depicha Jindatip
- Systems Neuroscience of Autism and Psychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Valerie W Hu
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Tewarit Sarachana
- Systems Neuroscience of Autism and Psychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
11
|
Bai J, Qu Y, OuYang S, Jiao H, Wang Y, Li J, Huang W, Zhao Y, Peng X, Wang D, Jin Y, Wang H, Song F. Novel Alu-mediated deletions of the SMN1 gene were identified by ultra-long read sequencing technology in patients with spinal muscular atrophy. Neuromuscul Disord 2023; 33:382-390. [PMID: 37023488 DOI: 10.1016/j.nmd.2023.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023]
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disease caused by biallelic variants of the survival motor neuron 1 (SMN1) gene. In this study, our aim was to make a molecular diagnosis in two patients with SMA carrying only one SMN1 copy number. Using ultra-long read sequencing (Ultra-LRS), 1415 bp deletion and 3348 bp deletion of the SMN1 gene were identified in patient 1 and the father of patient 2, respectively. Ultra-LRS revealed two novel deletions, starting from the SMN1 promoter to intron 1. It also accurately provided the location of the deletion breakpoints in the SMN1 gene: chr5 g.70,924,798-70,926,212 for a 1415 bp deletion; chr5 g.70,922,695-70,926,042 for a 3348 bp deletion. By analyzing the breakpoint junctions, we identified that these genomic sequences were composed of Alu sequences, including AluJb, AluYm1, AluSq, and AluYm1, indicating that Alu-mediated rearrangements are a mechanism of SMN1 deletion events. In addition, full-length SMN1 transcripts and SMN protein in patient 1 were significantly decreased (p < 0.01), suggesting that a 1415 bp deletion that included the transcription and translation initiation sites of the SMN1 gene had severe consequences for SMN expression. Ultra-LRS can easily distinguish highly homozygous genes compared to other detection technologies, which is useful for detecting SMN1 intragenic mutations, to quickly discover structural rearrangements and to precisely present the breakpoint positions.
Collapse
|
12
|
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disorder caused by mutations in SMN1 (encoding survival motor neuron protein (SMN)). Reduced expression of SMN leads to loss of α-motor neurons, severe muscle weakness and often early death. Standard-of-care recommendations for multidisciplinary supportive care of SMA were established in the past few decades. However, improved understanding of the pathogenetic mechanisms of SMA has led to the development of different therapeutic approaches. Three treatments that increase SMN expression by distinct molecular mechanisms, administration routes and tissue biodistributions have received regulatory approval with others in clinical development. The advent of the new therapies is redefining standards of care as in many countries most patients are treated with one of the new therapies, leading to the identification of emerging new phenotypes of SMA and a renewed characterization of demographics owing to improved patient survival.
Collapse
|
13
|
Singh NN, O'Leary CA, Eich T, Moss WN, Singh RN. Structural Context of a Critical Exon of Spinal Muscular Atrophy Gene. Front Mol Biosci 2022; 9:928581. [PMID: 35847983 PMCID: PMC9283826 DOI: 10.3389/fmolb.2022.928581] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Humans contain two nearly identical copies of Survival Motor Neuron genes, SMN1 and SMN2. Deletion or mutation of SMN1 causes spinal muscular atrophy (SMA), one of the leading genetic diseases associated with infant mortality. SMN2 is unable to compensate for the loss of SMN1 due to predominant exon 7 skipping, leading to the production of a truncated protein. Antisense oligonucleotide and small molecule-based strategies aimed at the restoration of SMN2 exon 7 inclusion are approved therapies of SMA. Many cis-elements and transacting factors have been implicated in regulation of SMN exon 7 splicing. Also, several structural elements, including those formed by a long-distance interaction, have been implicated in the modulation of SMN exon 7 splicing. Several of these structures have been confirmed by enzymatic and chemical structure-probing methods. Additional structures formed by inter-intronic interactions have been predicted by computational algorithms. SMN genes generate a vast repertoire of circular RNAs through inter-intronic secondary structures formed by inverted Alu repeats present in large number in SMN genes. Here, we review the structural context of the exonic and intronic cis-elements that promote or prevent exon 7 recognition. We discuss how structural rearrangements triggered by single nucleotide substitutions could bring drastic changes in SMN2 exon 7 splicing. We also propose potential mechanisms by which inter-intronic structures might impact the splicing outcomes.
Collapse
Affiliation(s)
- Natalia N. Singh
- Department of Biomedical Science, Iowa State University, Ames, IA, United States
| | - Collin A. O'Leary
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Taylor Eich
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Walter N. Moss
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| | | |
Collapse
|
14
|
Luo D, Singh NN, Singh RN. Internal Introns Promote Backsplicing to Generate Circular RNAs from Spinal Muscular Atrophy Gene. Genes (Basel) 2022; 13:1145. [PMID: 35885927 PMCID: PMC9323214 DOI: 10.3390/genes13071145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
Human survival motor neuron 1 (SMN1) codes for SMN, an essential housekeeping protein involved in most aspects of RNA metabolism. Deletions or mutations of SMN1 lead to spinal muscular atrophy (SMA), a devastating neurodegenerative disease linked to a high rate of infant mortality. SMN2, a near identical copy of SMN1 present in humans, cannot compensate for the loss of SMN1 due to predominant skipping of SMN2 exon 7. Restoration of SMN by splicing modulation of SMN2 exon 7 or gene replacement are currently approved therapies of SMA. Human SMN genes produce a vast repertoire of circular RNAs (circRNAs). However, the mechanism of SMN circRNA generation has not yet been examined in detail. For example, it remains unknown if forward splicing impacts backsplicing that generates circRNAs containing multiple exons. Here, we employed SMN as a model system to examine the impact of intronic sequences on the generation of circRNAs. We performed our experiments in HeLa cells transiently transfected with minigenes expressing three abundantly represented circRNAs containing two or more SMN exons. We observed an enhanced rate of circRNA generation when introns joining exons to be incorporated into circRNAs were present as compared to the intronless context. These results underscore the stimulatory effect of forward splicing in the generation of circRNAs containing multiple exons. These findings are consistent with the reported low abundance of SMN circRNAs comprised of single exons. We confirmed our findings using inducible HEK 293 cells stably expressing the SMN circRNAs. Our results support the role of the exon junction complex in the generation of the exon-only-containing circRNAs. We showed that SMN circRNAs were preferentially localized in the cytoplasm. These findings provide new insights regarding our understanding of circRNA generation and open avenues to uncover novel functions of the SMN genes.
Collapse
Affiliation(s)
| | | | - Ravindra Narayan Singh
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.L.); (N.N.S.)
| |
Collapse
|
15
|
Pinto A, Cunha C, Chaves R, Butchbach MER, Adega F. Comprehensive In Silico Analysis of Retrotransposon Insertions within the Survival Motor Neuron Genes Involved in Spinal Muscular Atrophy. BIOLOGY 2022; 11:824. [PMID: 35741345 PMCID: PMC9219815 DOI: 10.3390/biology11060824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022]
Abstract
Transposable elements (TEs) are interspersed repetitive and mobile DNA sequences within the genome. Better tools for evaluating TE-derived sequences have provided insights into the contribution of TEs to human development and disease. Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease that is caused by deletions or mutations in the Survival Motor Neuron 1 (SMN1) gene but retention of its nearly perfect orthologue SMN2. Both genes are highly enriched in TEs. To establish a link between TEs and SMA, we conducted a comprehensive, in silico analysis of TE insertions within the SMN1/2 loci of SMA, carrier and healthy genomes. We found an Alu insertion in the promoter region and one L1 element in the 3'UTR that may play an important role in alternative promoter as well as in alternative transcriptional termination. Additionally, several intronic Alu repeats may influence alternative splicing via RNA circularization and causes the presence of new alternative exons. These Alu repeats present throughout the genes are also prone to recombination events that could lead to SMN1 exons deletions and, ultimately, SMA. TE characterization of the SMA genomic region could provide for a better understanding of the implications of TEs on human disease and genomic evolution.
Collapse
Affiliation(s)
- Albano Pinto
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Catarina Cunha
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Raquel Chaves
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Matthew E. R. Butchbach
- Division of Neurology, Nemours Children’s Hospital Delaware, Wilmington, DE 19803, USA;
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Filomena Adega
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| |
Collapse
|
16
|
Dai M, Xu Y, Sun Y, Xiao B, Ying X, Liu Y, Jiang W, Zhang J, Liu X, Ji X. Revealing diverse alternative splicing variants of the highly homologous SMN1 and SMN2 genes by targeted long-read sequencing. Mol Genet Genomics 2022; 297:1039-1048. [PMID: 35612622 DOI: 10.1007/s00438-022-01874-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022]
Abstract
The survival of motor neuron (SMN) genes, SMN1 and SMN2, are two highly homologous genes related to spinal muscular atrophy (SMA). Different patterns of alternative splicing have been observed in the SMN genes. In this study, the long-read sequencing technique for distinguishing SMN1 and SMN2 without any assembly were developed and applied to reveal multiple alternative splicing patterns and to comprehensively identify transcript variants of the SMN genes. In total, 36 types of transcript variants were identified, with an equal number of variants generated from both SMN1 and SMN2. Of these, 18 were novel SMN transcripts that have never been reported. The structures of SMN transcripts were revealed to be much more complicated and diverse than previously discovered. These novel transcripts were derived from diverse splicing events, including skipping of one or more exons, intron retention, and exon shortening or addition. SMN1 mainly produces FL-SMN1, SMN1Δ7, SMN1Δ5 and SMN1Δ3. The distribution of SMN2 transcripts was significantly different from those of SMN1, with the majority transcripts to be SMN2Δ7, followed by FL-SMN2, SMN2Δ3,5 and SMN2Δ5,7. Targeted long-read sequencing approach could accurately distinguish sequences of SMN1 from those of SMN2. Our study comprehensively addressed naturally occurring SMN1 and SMN2 transcript variants and splicing patterns in peripheral blood mononuclear cells (PBMCs). The novel transcripts identified in our study expanded knowledge of the diversity of transcript variants generated from the SMN genes and showed a much more comprehensive profile of the SMN splicing spectrum. Results in our study will provide valuable information for the study of low expression level of SMN proteins and SMA pathogenesis based on transcript levels.
Collapse
Affiliation(s)
- Mengyao Dai
- Department of Paediatric Endocrinology/Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Molecular Genetics Group, Shanghai Institute for Paediatric Research, Shanghai, China
- National Research Center for Translational Medicine, National Key Scientific Infrastructure for Translational Medicine (Shanghai), Shanghai Jiaotong University, Shanghai, China
- National Clinical Research Centre for Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yan Xu
- Department of Paediatric Endocrinology/Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Molecular Genetics Group, Shanghai Institute for Paediatric Research, Shanghai, China
- Department of Reproductive Genetics, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Sun
- Department of Paediatric Endocrinology/Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Molecular Genetics Group, Shanghai Institute for Paediatric Research, Shanghai, China
| | - Bing Xiao
- Department of Paediatric Endocrinology/Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Molecular Genetics Group, Shanghai Institute for Paediatric Research, Shanghai, China
| | - Xiaomin Ying
- Department of Paediatric Endocrinology/Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Molecular Genetics Group, Shanghai Institute for Paediatric Research, Shanghai, China
| | - Yu Liu
- Department of Paediatric Endocrinology/Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Molecular Genetics Group, Shanghai Institute for Paediatric Research, Shanghai, China
| | - Wenting Jiang
- Department of Paediatric Endocrinology/Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Molecular Genetics Group, Shanghai Institute for Paediatric Research, Shanghai, China
| | - Jingmin Zhang
- Department of Paediatric Endocrinology/Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Molecular Genetics Group, Shanghai Institute for Paediatric Research, Shanghai, China
| | - Xiaoqing Liu
- Department of Paediatric Endocrinology/Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Molecular Genetics Group, Shanghai Institute for Paediatric Research, Shanghai, China
| | - Xing Ji
- Department of Paediatric Endocrinology/Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Molecular Genetics Group, Shanghai Institute for Paediatric Research, Shanghai, China.
| |
Collapse
|
17
|
Chesnokova E, Beletskiy A, Kolosov P. The Role of Transposable Elements of the Human Genome in Neuronal Function and Pathology. Int J Mol Sci 2022; 23:5847. [PMID: 35628657 PMCID: PMC9148063 DOI: 10.3390/ijms23105847] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
Transposable elements (TEs) have been extensively studied for decades. In recent years, the introduction of whole-genome and whole-transcriptome approaches, as well as single-cell resolution techniques, provided a breakthrough that uncovered TE involvement in host gene expression regulation underlying multiple normal and pathological processes. Of particular interest is increased TE activity in neuronal tissue, and specifically in the hippocampus, that was repeatedly demonstrated in multiple experiments. On the other hand, numerous neuropathologies are associated with TE dysregulation. Here, we provide a comprehensive review of literature about the role of TEs in neurons published over the last three decades. The first chapter of the present review describes known mechanisms of TE interaction with host genomes in general, with the focus on mammalian and human TEs; the second chapter provides examples of TE exaptation in normal neuronal tissue, including TE involvement in neuronal differentiation and plasticity; and the last chapter lists TE-related neuropathologies. We sought to provide specific molecular mechanisms of TE involvement in neuron-specific processes whenever possible; however, in many cases, only phenomenological reports were available. This underscores the importance of further studies in this area.
Collapse
Affiliation(s)
- Ekaterina Chesnokova
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (P.K.)
| | | | | |
Collapse
|
18
|
Lejman J, Zieliński G, Gawda P, Lejman M. Alternative Splicing Role in New Therapies of Spinal Muscular Atrophy. Genes (Basel) 2021; 12:1346. [PMID: 34573328 PMCID: PMC8468182 DOI: 10.3390/genes12091346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
It has been estimated that 80% of the pre-mRNA undergoes alternative splicing, which exponentially increases the flow of biological information in cellular processes and can be an attractive therapeutic target. It is a crucial mechanism to increase genetic diversity. Disturbed alternative splicing is observed in many disorders, including neuromuscular diseases and carcinomas. Spinal Muscular Atrophy (SMA) is an autosomal recessive neurodegenerative disease. Homozygous deletion in 5q13 (the region coding for the motor neuron survival gene (SMN1)) is responsible for 95% of SMA cases. The nearly identical SMN2 gene does not compensate for SMN loss caused by SMN1 gene mutation due to different splicing of exon 7. A pathologically low level of survival motor neuron protein (SMN) causes degeneration of the anterior horn cells in the spinal cord with associated destruction of α-motor cells and manifested by muscle weakness and loss. Understanding the regulation of the SMN2 pre-mRNA splicing process has allowed for innovative treatment and the introduction of new medicines for SMA. After describing the concept of splicing modulation, this review will cover the progress achieved in this field, by highlighting the breakthrough accomplished recently for the treatment of SMA using the mechanism of alternative splicing.
Collapse
Affiliation(s)
- Jan Lejman
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Grzegorz Zieliński
- Department of Sports Medicine, Medical University of Lublin, 20-093 Lublin, Poland; (G.Z.); (P.G.)
| | - Piotr Gawda
- Department of Sports Medicine, Medical University of Lublin, 20-093 Lublin, Poland; (G.Z.); (P.G.)
| | - Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
19
|
Ottesen EW, Luo D, Singh NN, Singh RN. High Concentration of an ISS-N1-Targeting Antisense Oligonucleotide Causes Massive Perturbation of the Transcriptome. Int J Mol Sci 2021; 22:ijms22168378. [PMID: 34445083 PMCID: PMC8395096 DOI: 10.3390/ijms22168378] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/14/2021] [Accepted: 07/31/2021] [Indexed: 12/17/2022] Open
Abstract
Intronic splicing silencer N1 (ISS-N1) located within Survival Motor Neuron 2 (SMN2) intron 7 is the target of a therapeutic antisense oligonucleotide (ASO), nusinersen (Spinraza), which is currently being used for the treatment of spinal muscular atrophy (SMA), a leading genetic disease associated with infant mortality. The discovery of ISS-N1 as a promising therapeutic target was enabled in part by Anti-N1, a 20-mer ASO that restored SMN2 exon 7 inclusion by annealing to ISS-N1. Here, we analyzed the transcriptome of SMA patient cells treated with 100 nM of Anti-N1 for 30 h. Such concentrations are routinely used to demonstrate the efficacy of an ASO. While 100 nM of Anti-N1 substantially stimulated SMN2 exon 7 inclusion, it also caused massive perturbations in the transcriptome and triggered widespread aberrant splicing, affecting expression of essential genes associated with multiple cellular processes such as transcription, splicing, translation, cell signaling, cell cycle, macromolecular trafficking, cytoskeletal dynamics, and innate immunity. We validated our findings with quantitative and semiquantitative PCR of 39 candidate genes associated with diverse pathways. We also showed a substantial reduction in off-target effects with shorter ISS-N1-targeting ASOs. Our findings are significant for implementing better ASO design and dosing regimens of ASO-based drugs.
Collapse
|
20
|
Butchbach MER. Genomic Variability in the Survival Motor Neuron Genes ( SMN1 and SMN2): Implications for Spinal Muscular Atrophy Phenotype and Therapeutics Development. Int J Mol Sci 2021; 22:ijms22157896. [PMID: 34360669 PMCID: PMC8348669 DOI: 10.3390/ijms22157896] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a leading genetic cause of infant death worldwide that is characterized by loss of spinal motor neurons leading to muscle weakness and atrophy. SMA results from the loss of survival motor neuron 1 (SMN1) gene but retention of its paralog SMN2. The copy numbers of SMN1 and SMN2 are variable within the human population with SMN2 copy number inversely correlating with SMA severity. Current therapeutic options for SMA focus on increasing SMN2 expression and alternative splicing so as to increase the amount of SMN protein. Recent work has demonstrated that not all SMN2, or SMN1, genes are equivalent and there is a high degree of genomic heterogeneity with respect to the SMN genes. Because SMA is now an actionable disease with SMN2 being the primary target, it is imperative to have a comprehensive understanding of this genomic heterogeneity with respect to hybrid SMN1–SMN2 genes generated by gene conversion events as well as partial deletions of the SMN genes. This review will describe this genetic heterogeneity in SMA and its impact on disease phenotype as well as therapeutic efficacy.
Collapse
Affiliation(s)
- Matthew E. R. Butchbach
- Center for Applied Clinical Genomics, Nemours Children’s Health Delaware, Wilmington, DE 19803, USA;
- Center for Pediatric Research, Nemours Children’s Health Delaware, Wilmington, DE 19803, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
21
|
Niba ETE, Nishio H, Wijaya YOS, Lai PS, Tozawa T, Chiyonobu T, Yamadera M, Okamoto K, Awano H, Takeshima Y, Saito T, Shinohara M. Clinical phenotypes of spinal muscular atrophy patients with hybrid SMN gene. Brain Dev 2021; 43:294-302. [PMID: 33036822 DOI: 10.1016/j.braindev.2020.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/26/2020] [Accepted: 09/08/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a neuromuscular disease caused by homozygous deletion of SMN1 exons 7 and 8. However, exon 8 is retained in some cases, where SMN2 exon 7 recombines with SMN1 exon 8, forming a hybrid SMN gene. It remains unknown how the hybrid SMN gene contribute to the SMA phenotype. METHOD We analyzed 515 patients with clinical suspicion for SMA. SMN1 exons 7 and 8 deletion was detected by PCR followed by enzyme digestion. Hybrid SMN genes were further analyzed by nucleotide sequencing. SMN2 copy number was determined by real-time PCR. RESULTS SMN1 exon 7 was deleted in 228 out of 515 patients, and SMN1 exon 8 was also deleted in 204 out of the 228 patients. The remaining 24 patients were judged to carry a hybrid SMN gene. In the patients with SMN1 exon 7 deletion, the frequency of the severe phenotype was significantly lower in the patients with hybrid SMN gene than in the patients without hybrid SMN gene. However, as for the distribution of SMN2 exon 7 copy number among the clinical phenotypes, there was no significant difference between both groups of SMA patients with or without hybrid SMN gene. CONCLUSION Hybrid SMN genes are not rare in Japanese SMA patients, and it appears to be associated with a less severe phenotype. The phenotype of patients with hybrid SMN gene was determined by the copy number of SMN2 exon 7, as similarly for the patients without hybrid SMN gene.
Collapse
Affiliation(s)
- Emma Tabe Eko Niba
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Hisahide Nishio
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan; Faculty of Medical Rehabilitation, Kobe Gakuin University, Kobe, Japan.
| | - Yogik Onky Silvana Wijaya
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Poh San Lai
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Takenori Tozawa
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Tomohiro Chiyonobu
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Misaki Yamadera
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Japan.
| | - Kentaro Okamoto
- Department of Pediatrics, Ehime Prefectural Imabari Hospital, Ehime, Japan.
| | - Hiroyuki Awano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Yasuhiro Takeshima
- Department of Pediatrics, Hyogo College of Medicine, Nishinomiya, Japan.
| | - Toshio Saito
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Japan.
| | - Masakazu Shinohara
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
22
|
Spinal muscular atrophy: Broad disease spectrum and sex-specific phenotypes. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166063. [PMID: 33412266 DOI: 10.1016/j.bbadis.2020.166063] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022]
Abstract
Spinal muscular atrophy (SMA) is one of the major genetic disorders associated with infant mortality. More than 90% of cases of SMA result from deletions of or mutations in the Survival Motor Neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, does not compensate for the loss of SMN1 due to predominant skipping of exon 7. The spectrum of SMA is broad, ranging from prenatal death to infant mortality to survival into adulthood. All tissues, including brain, spinal cord, bone, skeletal muscle, heart, lung, liver, pancreas, gastrointestinal tract, kidney, spleen, ovary and testis, are directly and/or indirectly affected in SMA. Accumulating evidence on impaired mitochondrial biogenesis and defects in X chromosome-linked modifying factors, coupled with the sexual dimorphic nature of many tissues, point to sex-specific vulnerabilities in SMA. Here we review the role of sex in the pathogenesis of SMA.
Collapse
|
23
|
Ahmadi A, De Toma I, Vilor-Tejedor N, Eftekhariyan Ghamsari MR, Sadeghi I. Transposable elements in brain health and disease. Ageing Res Rev 2020; 64:101153. [PMID: 32977057 DOI: 10.1016/j.arr.2020.101153] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 07/22/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022]
Abstract
Transposable elements (TEs) occupy a large fraction of the human genome but only a small proportion of these elements are still active today. Recent works have suggested that TEs are expressed and active in the brain, challenging the dogma that neuronal genomes are static and revealing that they are susceptible to somatic genomic alterations. These new findings have major implications for understanding the neuroplasticity of the brain, which could hypothetically have a role in behavior and cognition, and contribute to vulnerability to disease. As active TEs could induce genetic diversity and mutagenesis, their influences on human brain development and diseases are of great interest. In this review, we will focus on the active TEs in the human genome and discuss in detail their impacts on human brain development. Furthermore, the association between TEs and brain-related diseases is discussed.
Collapse
|
24
|
Singh RN, Ottesen EW, Singh NN. The First Orally Deliverable Small Molecule for the Treatment of Spinal Muscular Atrophy. Neurosci Insights 2020; 15:2633105520973985. [PMID: 33283185 PMCID: PMC7691903 DOI: 10.1177/2633105520973985] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is 1 of the leading causes of infant mortality. SMA
is mostly caused by low levels of Survival Motor Neuron (SMN) protein due to
deletion of or mutation in the SMN1 gene. Its nearly identical
copy, SMN2, fails to compensate for the loss of
SMN1 due to predominant skipping of exon 7. Correction of
SMN2 exon 7 splicing by an antisense oligonucleotide (ASO),
nusinersen (Spinraza™), that targets the intronic splicing silencer N1 (ISS-N1)
became the first approved therapy for SMA. Restoration of SMN levels using gene
therapy was the next. Very recently, an orally deliverable small molecule,
risdiplam (Evrysdi™), became the third approved therapy for SMA. Here we discuss
how these therapies are positioned to meet the needs of the broad phenotypic
spectrum of SMA patients.
Collapse
Affiliation(s)
- Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| |
Collapse
|
25
|
Ottesen EW, Singh RN. Characteristics of circular RNAs generated by human Survival Motor Neuron genes. Cell Signal 2020; 73:109696. [PMID: 32553550 PMCID: PMC7387165 DOI: 10.1016/j.cellsig.2020.109696] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023]
Abstract
Circular RNAs (circRNAs) belong to a diverse class of stable RNAs expressed in all cell types. Their proposed functions include sponging of microRNAs (miRNAs), sequestration and trafficking of proteins, assembly of multimeric complexes, production of peptides, and regulation of transcription. Backsplicing due to RNA structures formed by an exceptionally high number of Alu repeats lead to the production of a vast repertoire of circRNAs by human Survival Motor Neuron genes, SMN1 and SMN2, that code for SMN, an essential multifunctional protein. Low levels of SMN due to deletion or mutation of SMN1 result in spinal muscular atrophy (SMA), a major genetic disease of infants and children. Mild SMA is also recorded in adult population, expanding the spectrum of the disease. Here we review SMN circRNAs with respect to their biogenesis, sequence features, and potential functions. We also discuss how SMN circRNAs could be exploited for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America.
| |
Collapse
|
26
|
Kannan A, Jiang X, He L, Ahmad S, Gangwani L. ZPR1 prevents R-loop accumulation, upregulates SMN2 expression and rescues spinal muscular atrophy. Brain 2020; 143:69-93. [PMID: 31828288 PMCID: PMC6935747 DOI: 10.1093/brain/awz373] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/08/2019] [Accepted: 10/07/2019] [Indexed: 12/21/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by homozygous mutation or deletion of the survival motor neuron 1 (SMN1) gene. A second copy, SMN2, is similar to SMN1 but produces ∼10% SMN protein because of a single-point mutation that causes splicing defects. Chronic low levels of SMN cause accumulation of co-transcriptional R-loops and DNA damage leading to genomic instability and neurodegeneration in SMA. Severity of SMA disease correlates inversely with SMN levels. SMN2 is a promising target to produce higher levels of SMN by enhancing its expression. Mechanisms that regulate expression of SMN genes are largely unknown. We report that zinc finger protein ZPR1 binds to RNA polymerase II, interacts in vivo with SMN locus and upregulates SMN2 expression in SMA mice and patient cells. Modulation of ZPR1 levels directly correlates and influences SMN2 expression levels in SMA patient cells. ZPR1 overexpression in vivo results in a systemic increase of SMN levels and rescues severe to moderate disease in SMA mice. ZPR1-dependent rescue improves growth and motor function and increases the lifespan of male and female SMA mice. ZPR1 reduces neurodegeneration in SMA mice and prevents degeneration of cultured primary spinal cord neurons derived from SMA mice. Further, we show that the low levels of ZPR1 associated with SMA pathogenesis cause accumulation of co-transcriptional RNA-DNA hybrids (R-loops) and DNA damage leading to genomic instability in SMA mice and patient cells. Complementation with ZPR1 elevates senataxin levels, reduces R-loop accumulation and rescues DNA damage in SMA mice, motor neurons and patient cells. In conclusion, ZPR1 is critical for preventing accumulation of co-transcriptional R-loops and DNA damage to avert genomic instability and neurodegeneration in SMA. ZPR1 enhances SMN2 expression and leads to SMN-dependent rescue of SMA. ZPR1 represents a protective modifier and a therapeutic target for developing a new method for the treatment of SMA.
Collapse
Affiliation(s)
- Annapoorna Kannan
- Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.,Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Xiaoting Jiang
- Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.,Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Lan He
- Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.,Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Saif Ahmad
- Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.,Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Laxman Gangwani
- Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.,Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.,Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| |
Collapse
|
27
|
Singh NN, Ottesen EW, Singh RN. A survey of transcripts generated by spinal muscular atrophy genes. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2020; 1863:194562. [PMID: 32387331 PMCID: PMC7302838 DOI: 10.1016/j.bbagrm.2020.194562] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/01/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023]
Abstract
Human Survival Motor Neuron (SMN) genes code for SMN, an essential multifunctional protein. Complete loss of SMN is embryonic lethal, while low levels of SMN lead to spinal muscular atrophy (SMA), a major genetic disease of children and infants. Reduced levels of SMN are associated with the abnormal development of heart, lung, muscle, gastro-intestinal system and testis. The SMN loci have been shown to generate a vast repertoire of transcripts, including linear, back- and trans-spliced RNAs as well as antisense long noncoding RNAs. However, functions of the majority of these transcripts remain unknown. Here we review the nature of RNAs generated from the SMN loci and discuss their potential functions in cellular metabolism.
Collapse
Affiliation(s)
- Natalia N Singh
- Department of Biomedical Science, Iowa State University, Ames, IA, 50011, United States of America
| | - Eric W Ottesen
- Department of Biomedical Science, Iowa State University, Ames, IA, 50011, United States of America
| | - Ravindra N Singh
- Department of Biomedical Science, Iowa State University, Ames, IA, 50011, United States of America.
| |
Collapse
|
28
|
Singh RN, Seo J, Singh NN. RNA in spinal muscular atrophy: therapeutic implications of targeting. Expert Opin Ther Targets 2020; 24:731-743. [PMID: 32538213 DOI: 10.1080/14728222.2020.1783241] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Spinal muscular atrophy (SMA) is caused by low levels of the Survival Motor Neuron (SMN) protein due to deletions of or mutations in the SMN1 gene. Humans carry another nearly identical gene, SMN2, which mostly produces a truncated and less stable protein SMNΔ7 due to predominant skipping of exon 7. Elevation of SMN upon correction of SMN2 exon 7 splicing and gene therapy have been proven to be the effective treatment strategies for SMA. AREAS COVERED This review summarizes existing and potential SMA therapies that are based on RNA targeting.We also discuss the mechanistic basis of RNA-targeting molecules. EXPERT OPINION The discovery of intronic splicing silencer N1 (ISS-N1) was the first major step towards developing the currently approved antisense-oligonucleotide (ASO)-directed therapy (SpinrazaTM) based on the correction of exon 7 splicing of the endogenous SMN2pre-mRNA. Recently, gene therapy (Zolgensma) has become the second approved treatment for SMA. Small compounds (currently in clinical trials) capable of restoring SMN2 exon 7 inclusion further expand the class of the RNA targeting molecules for SMA therapy. Endogenous RNA targets, such as long non-coding RNAs, circular RNAs, microRNAs and ribonucleoproteins, could be potentially exploited for developing additional SMA therapies.
Collapse
Affiliation(s)
- Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University , Ames, IA, USA
| | - Joonbae Seo
- Department of Biomedical Sciences, Iowa State University , Ames, IA, USA
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University , Ames, IA, USA
| |
Collapse
|
29
|
Jedličková I, Přistoupilová A, Nosková L, Majer F, Stránecký V, Hartmannová H, Hodaňová K, Trešlová H, Hýblová M, Solár P, Minárik G, Giertlová M, Kmoch S. Spinal muscular atrophy caused by a novel Alu-mediated deletion of exons 2a-5 in SMN1 undetectable with routine genetic testing. Mol Genet Genomic Med 2020; 8:e1238. [PMID: 32337852 PMCID: PMC7336725 DOI: 10.1002/mgg3.1238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/26/2022] Open
Abstract
Background Spinal muscular atrophy (SMA) is an inherited neuromuscular disease affecting 1 in 8,000 newborns. The majority of patients carry bi‐allelic variants in the survival of motor neuron 1 gene (SMN1). SMN1 is located in a duplicated region on chromosome 5q13 that contains Alu elements and is predisposed to genomic rearrangements. Due to the genomic complexity of the SMN region and genetic heterogeneity, approximately 50% of SMA patients remain without genetic diagnosis that is a prerequisite for genetic treatments. In this work we describe the diagnostic odyssey of one SMA patient in whom routine diagnostics identified only a maternal heterozygous SMN1Δ(7–8) deletion. Methods We characterized SMN transcripts, assessed SMN protein content in peripheral blood mononuclear cells (PBMC), estimated SMN genes dosage, and mapped genomic rearrangement in the SMN region. Results We identified an Alu‐mediated deletion encompassing exons 2a‐5 of SMN1 on the paternal allele and a complete deletion of SMN1 on the maternal allele as the cause of SMA in this patient. Conclusion Alu‐mediated rearrangements in SMN1 can escape routine diagnostic testing. Parallel analysis of SMN gene dosage, SMN transcripts, and total SMN protein levels in PBMC can identify genomic rearrangements and should be considered in genetically undefined SMA cases.
Collapse
Affiliation(s)
- Ivana Jedličková
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Anna Přistoupilová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lenka Nosková
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Filip Majer
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Viktor Stránecký
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Hana Hartmannová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kateřina Hodaňová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Helena Trešlová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Peter Solár
- Department of Medical Biology, Faculty of Medicine, P.J. Safarik University, Kosice, Slovakia
| | - Gabriel Minárik
- Department of Clinical Genetics, Medirex A.S., Kosice, Slovakia
| | - Mária Giertlová
- Department of Clinical Genetics, Medirex A.S., Kosice, Slovakia
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
30
|
Pagliarini V, Jolly A, Bielli P, Di Rosa V, De la Grange P, Sette C. Sam68 binds Alu-rich introns in SMN and promotes pre-mRNA circularization. Nucleic Acids Res 2020; 48:633-645. [PMID: 31777926 PMCID: PMC6954450 DOI: 10.1093/nar/gkz1117] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 11/12/2019] [Accepted: 11/22/2019] [Indexed: 01/01/2023] Open
Abstract
The Spinal Muscular Atrophy (SMA) gene SMN was recently duplicated (SMN1 and SMN2) in higher primates. Furthermore, invasion of the locus by repetitive elements almost doubled its size with respect to mouse Smn, in spite of an almost identical protein-coding sequence. Herein, we found that SMN ranks among the human genes with highest density of Alus, which are evolutionary conserved in primates and often occur in inverted orientation. Inverted repeat Alus (IRAlus) negatively regulate splicing of long introns within SMN, while promoting widespread alternative circular RNA (circRNA) biogenesis. Bioinformatics analyses revealed the presence of ultra-conserved Sam68 binding sites in SMN IRAlus. Cross-link-immunoprecipitation (CLIP), mutagenesis and silencing experiments showed that Sam68 binds in proximity of intronic Alus in the SMN pre-mRNA, thus favouring circRNA biogenesis in vitro and in vivo. These findings highlight a novel layer of regulation in SMN expression, uncover the crucial impact exerted by IRAlus and reveal a role for Sam68 in SMN circRNA biogenesis.
Collapse
Affiliation(s)
- Vittoria Pagliarini
- Institute of Human Anatomy and Cell Biology, Catholic University of the Sacred Heart, Rome 00168, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy
| | - Ariane Jolly
- GenoSplice Technology, iPEPS-ICM, Hôpital de la Pitié Salpêtrière, Paris 75013, France
| | - Pamela Bielli
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, Rome 00143, Italy.,Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy
| | - Valentina Di Rosa
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, Rome 00143, Italy.,Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy
| | - Pierre De la Grange
- GenoSplice Technology, iPEPS-ICM, Hôpital de la Pitié Salpêtrière, Paris 75013, France
| | - Claudio Sette
- Institute of Human Anatomy and Cell Biology, Catholic University of the Sacred Heart, Rome 00168, Italy.,Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, Rome 00143, Italy
| |
Collapse
|
31
|
Ottesen EW, Luo D, Seo J, Singh NN, Singh RN. Human Survival Motor Neuron genes generate a vast repertoire of circular RNAs. Nucleic Acids Res 2019; 47:2884-2905. [PMID: 30698797 PMCID: PMC6451121 DOI: 10.1093/nar/gkz034] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 01/08/2019] [Accepted: 01/14/2019] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNAs) perform diverse functions, including the regulation of transcription, translation, peptide synthesis, macromolecular sequestration and trafficking. Inverted Alu repeats capable of forming RNA:RNA duplexes that bring splice sites together for backsplicing are known to facilitate circRNA generation. However, higher limits of circRNAs produced by a single Alu-rich gene are currently not predictable due to limitations of amplification and analyses. Here, using a tailored approach, we report a surprising diversity of exon-containing circRNAs generated by the Alu-rich Survival Motor Neuron (SMN) genes that code for SMN, an essential multifunctional protein in humans. We show that expression of the vast repertoire of SMN circRNAs is universal. Several of the identified circRNAs harbor novel exons derived from both intronic and intergenic sequences. A comparison with mouse Smn circRNAs underscored a clear impact of primate-specific Alu elements on shaping the overall repertoire of human SMN circRNAs. We show the role of DHX9, an RNA helicase, in splicing regulation of several SMN exons that are preferentially incorporated into circRNAs. Our results suggest self- and cross-regulation of biogenesis of various SMN circRNAs. These findings bring a novel perspective towards a better understanding of SMN gene function.
Collapse
Affiliation(s)
- Eric W Ottesen
- Iowa State University, Biomedical Sciences, Ames, IA 50011, USA
| | - Diou Luo
- Iowa State University, Biomedical Sciences, Ames, IA 50011, USA
| | - Joonbae Seo
- Iowa State University, Biomedical Sciences, Ames, IA 50011, USA
| | - Natalia N Singh
- Iowa State University, Biomedical Sciences, Ames, IA 50011, USA
| | | |
Collapse
|
32
|
Lopez Soto EJ, Gandal MJ, Gonatopoulos-Pournatzis T, Heller EA, Luo D, Zheng S. Mechanisms of Neuronal Alternative Splicing and Strategies for Therapeutic Interventions. J Neurosci 2019; 39:8193-8199. [PMID: 31619487 PMCID: PMC6794923 DOI: 10.1523/jneurosci.1149-19.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 01/15/2023] Open
Abstract
Many cellular and physiological processes are coordinated by regulatory networks that produce a remarkable complexity of transcript isoforms. In the mammalian nervous system, alternative pre-mRNA splicing generates functionally distinct isoforms that play key roles in normal physiology, supporting development, plasticity, complex behaviors, and cognition. Neuronal splicing programs controlled by RNA-binding proteins, are influenced by chromatin modifications and can exhibit neuronal subtype specificity. As highlighted in recent publications, aberrant alternative splicing is a major contributor to disease phenotypes. Therefore, understanding the underlying mechanisms of alternative splicing regulation and identifying functional splicing isoforms with critical phenotypic roles are expected to provide a comprehensive resource for therapeutic development, as illuminated by recent successful interventions of spinal muscular atrophy. Here, we discuss the latest progress in the study of the emerging complexity of alternative splicing mechanisms in neurons, and how these findings inform new therapies to correct and control splicing defects.
Collapse
Affiliation(s)
| | - Michael J Gandal
- Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095
| | | | - Elizabeth A Heller
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-5158
| | - Diou Luo
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, and
| | - Sika Zheng
- Division of Biomedical Sciences, University of California at Riverside, Riverside, California 92521
| |
Collapse
|
33
|
Singh NN, Singh RN. How RNA structure dictates the usage of a critical exon of spinal muscular atrophy gene. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194403. [PMID: 31323435 DOI: 10.1016/j.bbagrm.2019.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022]
Abstract
Role of RNA structure in pre-mRNA splicing has been implicated for several critical exons associated with genetic disorders. However, much of the structural studies linked to pre-mRNA splicing regulation are limited to terminal stem-loop structures (hairpins) sequestering splice sites. In few instances, role of long-distance interactions is implicated as the major determinant of splicing regulation. With the recent surge of reports of circular RNA (circRNAs) generated by backsplicing, role of Alu-associated RNA structures formed by long-range interactions are taking central stage. Humans contain two nearly identical copies of Survival Motor Neuron (SMN) genes, SMN1 and SMN2. Deletion or mutation of SMN1 coupled with the inability of SMN2 to compensate for the loss of SMN1 due to exon 7 skipping causes spinal muscular atrophy (SMA), one of the leading genetic diseases of children. In this review, we describe how structural elements formed by both local and long-distance interactions are being exploited to modulate SMN2 exon 7 splicing as a potential therapy for SMA. We also discuss how Alu-associated secondary structure modulates generation of a vast repertoire of SMN circRNAs. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Natalia N Singh
- Department of Biomedical Science, Iowa State University, Ames, IA 50011, United States of America
| | - Ravindra N Singh
- Department of Biomedical Science, Iowa State University, Ames, IA 50011, United States of America.
| |
Collapse
|
34
|
Larsen PA, Hunnicutt KE, Larsen RJ, Yoder AD, Saunders AM. Warning SINEs: Alu elements, evolution of the human brain, and the spectrum of neurological disease. Chromosome Res 2018; 26:93-111. [PMID: 29460123 PMCID: PMC5857278 DOI: 10.1007/s10577-018-9573-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/14/2018] [Accepted: 01/15/2018] [Indexed: 12/28/2022]
Abstract
Alu elements are a highly successful family of primate-specific retrotransposons that have fundamentally shaped primate evolution, including the evolution of our own species. Alus play critical roles in the formation of neurological networks and the epigenetic regulation of biochemical processes throughout the central nervous system (CNS), and thus are hypothesized to have contributed to the origin of human cognition. Despite the benefits that Alus provide, deleterious Alu activity is associated with a number of neurological and neurodegenerative disorders. In particular, neurological networks are potentially vulnerable to the epigenetic dysregulation of Alu elements operating across the suite of nuclear-encoded mitochondrial genes that are critical for both mitochondrial and CNS function. Here, we highlight the beneficial neurological aspects of Alu elements as well as their potential to cause disease by disrupting key cellular processes across the CNS. We identify at least 37 neurological and neurodegenerative disorders wherein deleterious Alu activity has been implicated as a contributing factor for the manifestation of disease, and for many of these disorders, this activity is operating on genes that are essential for proper mitochondrial function. We conclude that the epigenetic dysregulation of Alu elements can ultimately disrupt mitochondrial homeostasis within the CNS. This mechanism is a plausible source for the incipient neuronal stress that is consistently observed across a spectrum of sporadic neurological and neurodegenerative disorders.
Collapse
Affiliation(s)
- Peter A Larsen
- Department of Biology, Duke University, Durham, NC, 27708, USA.
- Duke Lemur Center, Duke University, Durham, NC, 27708, USA.
- Department of Biology, Duke University, 130 Science Drive, Box 90338, Durham, NC, 27708, USA.
| | | | - Roxanne J Larsen
- Duke University School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC, 27708, USA
- Duke Lemur Center, Duke University, Durham, NC, 27708, USA
| | - Ann M Saunders
- Zinfandel Pharmaceuticals Inc, Chapel Hill, NC, 27709, USA
| |
Collapse
|
35
|
Singh RN, Singh NN. Mechanism of Splicing Regulation of Spinal Muscular Atrophy Genes. ADVANCES IN NEUROBIOLOGY 2018; 20:31-61. [PMID: 29916015 DOI: 10.1007/978-3-319-89689-2_2] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spinal muscular atrophy (SMA) is one of the major genetic disorders associated with infant mortality. More than 90% cases of SMA result from deletions or mutations of Survival Motor Neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, does not compensate for the loss of SMN1 due to predominant skipping of exon 7. However, correction of SMN2 exon 7 splicing has proven to confer therapeutic benefits in SMA patients. The only approved drug for SMA is an antisense oligonucleotide (Spinraza™/Nusinersen), which corrects SMN2 exon 7 splicing by blocking intronic splicing silencer N1 (ISS-N1) located immediately downstream of exon 7. ISS-N1 is a complex regulatory element encompassing overlapping negative motifs and sequestering a cryptic splice site. More than 40 protein factors have been implicated in the regulation of SMN exon 7 splicing. There is evidence to support that multiple exons of SMN are alternatively spliced during oxidative stress, which is associated with a growing number of pathological conditions. Here, we provide the most up to date account of the mechanism of splicing regulation of the SMN genes.
Collapse
Affiliation(s)
- Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA.
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| |
Collapse
|