1
|
Tarn MD, Shaw KJ, Foster PB, West JS, Johnston ID, McCluskey DK, Peyman SA, Murray BJ. Microfluidics for the biological analysis of atmospheric ice-nucleating particles: Perspectives and challenges. BIOMICROFLUIDICS 2025; 19:011502. [PMID: 40041008 PMCID: PMC11878220 DOI: 10.1063/5.0236911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/14/2024] [Indexed: 03/06/2025]
Abstract
Atmospheric ice-nucleating particles (INPs) make up a vanishingly small proportion of atmospheric aerosol but are key to triggering the freezing of supercooled liquid water droplets, altering the lifetime and radiative properties of clouds and having a substantial impact on weather and climate. However, INPs are notoriously difficult to model due to a lack of information on their global sources, sinks, concentrations, and activity, necessitating the development of new instrumentation for quantifying and characterizing INPs in a rapid and automated manner. Microfluidic technology has been increasingly adopted by ice nucleation research groups in recent years as a means of performing droplet freezing analysis of INPs, enabling the measurement of hundreds or thousands of droplets per experiment at temperatures down to the homogeneous freezing of water. The potential for microfluidics extends far beyond this, with an entire toolbox of bioanalytical separation and detection techniques developed over 30 years for medical applications. Such methods could easily be adapted to biological and biogenic INP analysis to revolutionize the field, for example, in the identification and quantification of ice-nucleating bacteria and fungi. Combined with miniaturized sampling techniques, we can envisage the development and deployment of microfluidic sample-to-answer platforms for automated, user-friendly sampling and analysis of biological INPs in the field that would enable a greater understanding of their global and seasonal activity. Here, we review the various components that such a platform would incorporate to highlight the feasibility, and the challenges, of such an endeavor, from sampling and droplet freezing assays to separations and bioanalysis.
Collapse
Affiliation(s)
- Mark D. Tarn
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Kirsty J. Shaw
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, United Kingdom
| | | | - Jon S. West
- Protecting Crops and Environment Department, Rothamsted Research, Harpenden AL5 2JQ, United Kingdom
| | - Ian D. Johnston
- School of Physics, Engineering and Computer Science, University of Hertfordshire, College Lane, Hatfield AL10 9AB, United Kingdom
| | - Daniel K. McCluskey
- School of Physics, Engineering and Computer Science, University of Hertfordshire, College Lane, Hatfield AL10 9AB, United Kingdom
| | | | - Benjamin J. Murray
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
2
|
Mahant S, Yadav S, Gilbert C, Kjærgaard ER, Jensen MM, Kessler T, Bilde M, Petters MD. An open-hardware community ice nucleation cold stage for research and teaching. HARDWAREX 2023; 16:e00491. [PMID: 38034102 PMCID: PMC10685009 DOI: 10.1016/j.ohx.2023.e00491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/15/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023]
Abstract
Aerosol particles with rare specific properties act as nuclei for ice formation. The presence of ice nucleating particles in the atmosphere leads to heterogeneous freezing at warm temperatures and thus these particles play an important role in modulating microphysical properties of clouds. This work presents an ice nucleation cold stage instrument for measuring the concentration of ice nucleating particles in liquids. The cost is ∼ $10 k including an external chiller. Using a lower cost heat sink reduces the cost to ∼ $6 k. The instrument is suitable for studying ambient ice nucleating particle concentrations and laboratory-based process-level studies of ice nucleation. The design plans allow individuals to self-manufacture the cold-stage using 3D printing, off-the-shelf parts, and a handful of standard tools. Software to operate the instrument and analyze the data is also provided. The design is intended to be simple enough that a graduate student can build it as part of a course or thesis project. Costs are kept to a minimum to facilitate use in classroom demonstrations and laboratory classes.
Collapse
Affiliation(s)
- Sunandan Mahant
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695-8208, USA
| | - Shweta Yadav
- Department of Environmental Sciences, Central University of Jammu, Samba, Jammu, J&K 181143, India
| | - Cameron Gilbert
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695-8208, USA
| | | | - Mads M. Jensen
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Tommy Kessler
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Merete Bilde
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Markus D. Petters
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695-8208, USA
| |
Collapse
|
3
|
Baloh P, Hanlon R, Anderson C, Dolan E, Pacholik G, Stinglmayr D, Burkart J, Felgitsch L, Schmale DG, Grothe H. Seasonal ice nucleation activity of water samples from alpine rivers and lakes in Obergurgl, Austria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149442. [PMID: 34426361 DOI: 10.1016/j.scitotenv.2021.149442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/29/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Heterogeneous ice nucleation plays an important role in many environmental processes such as ice cloud formation, freezing of water bodies or biological freeze protection in the cryosphere. New information is needed about the seasonal availability, nature, and activity of ice nucleating particles (INPs) in alpine environments. These INPs trigger the phase transition from liquid water to solid ice at elevated subzero temperatures. We collected water samples from a series of alpine rivers and lakes (two valleys and their rivers, an artificial pond, and a natural lake system) in Obergurgl, Austria in June 2016, July 2016, November 2016, and May 2017. Each alpine river and lake was sampled multiple times across different seasons, depending on site access during different times of the year. Water samples were filtered through a 0.22 μm membrane filter to separate microbial INPs from the water, and both fractions were analyzed for ice nucleation activity (INA) by an emulsion freezing method. Microorganisms were cultured from the filters, and the cultures then analyzed for INA. Portions of the filtered samples were concentrated by lyophilization to observe potential enhancement of INA. Two sediment samples were taken as reference points for inorganic INPs. Sub-micron INPs were observed in all of the alpine water sources studied, and a seasonal shift to a higher fraction of microbial ice nucleators cultured on selective media was observed during the winter collections. Particles larger than 0.22 μm showed INA, and microbes were cultured from this fraction. Results from 60 samples gave evidence of a seasonal change in INA, presence of submicrometer INPs, and show the abundance of culturable microorganisms, with late spring and early summer showing the most active biological INPs. With additional future research on this topic ski resorts could make use of such knowledge of geographical and seasonal trends of microbial INPs in freshwater habitats in order to improve the production of artificial snow.
Collapse
Affiliation(s)
- Philipp Baloh
- Institute of Materials Chemistry, TU Wien, Vienna, Austria
| | - Regina Hanlon
- School of Plant and Environmental Sciences, Blacksburg, VA, USA
| | | | - Eoin Dolan
- Institute of Materials Chemistry, TU Wien, Vienna, Austria
| | | | | | - Julia Burkart
- Institute of Materials Chemistry, TU Wien, Vienna, Austria; Faculty of Physics, University of Vienna, Vienna, Austria
| | | | - David G Schmale
- School of Plant and Environmental Sciences, Blacksburg, VA, USA
| | - Hinrich Grothe
- Institute of Materials Chemistry, TU Wien, Vienna, Austria.
| |
Collapse
|
4
|
Padder SA, Mansoor S, Bhat SA, Baba TR, Rather RA, Wani SM, Popescu SM, Sofi S, Aziz MA, Hefft DI, Alzahrani OM, Noureldeen A, Darwish H. Bacterial Endophyte Community Dynamics in Apple ( Malus domestica Borkh.) Germplasm and Their Evaluation for Scab Management Strategies. J Fungi (Basel) 2021; 7:jof7110923. [PMID: 34829212 PMCID: PMC8623955 DOI: 10.3390/jof7110923] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
The large genetic evolution due to the sexual reproduction-mediated gene assortments and propensities has made Venturia inaequalis (causing apple scab) unique with respect to its management strategies. The resistance in apple germplasm against the scab, being controlled for by more than fifteen genes, has limited gene alteration-based investigations. Therefore, a biological approach of bacterial endophyte community dynamics was envisioned across the apple germplasm in context to the fungistatic behavior against V. inaequalis. A total of 155 colonies of bacterial endophytes were isolated from various plant parts of the apple, comprising 19 varieties, and after screening for antifungal behavior followed by morphological, ARDRA, and sequence analysis, a total of 71 isolates were selected for this study. The alpha diversity indices were seen to fluctuate greatly among the isolation samples in context to microflora with antifungal behavior. As all the isolates were screened for the presence of various metabolites and some relevant genes that directly or indirectly influence the fungistatic behavior of the isolated microflora, a huge variation among the isolated microflora was observed. The outstanding isolates showing highest percentage growth inhibition of V. inaequalis were exploited to raise a bio-formulation, which was tested against the scab prevalence in eight apple varieties under controlled growth conditions. The formulation at all the concentrations caused considerable reductions in both the disease severity and disease incidence in all the tested apple varieties. Red Delicious being most important cultivar of the northwestern Himalayas was further investigated for its biochemical behavior in formulation and the investigation revealed different levels of enzyme production, chlorophyll, and sugars against the non-inoculated control.
Collapse
Affiliation(s)
- Shahid A. Padder
- Division of Basic Sciences and Humanities, FoH, Sher-e—Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar 190025, Jammu and Kashmir, India; (S.A.B.); (S.M.W.); (S.S.)
- Correspondence: (S.A.P.); (S.M.)
| | - Sheikh Mansoor
- Division of Biochemistry, FBSc, SKUAST-J, Jammu 180009, Jammu and Kashmir, India
- Correspondence: (S.A.P.); (S.M.)
| | - Sajad A. Bhat
- Division of Basic Sciences and Humanities, FoH, Sher-e—Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar 190025, Jammu and Kashmir, India; (S.A.B.); (S.M.W.); (S.S.)
| | - Tawseef Rehman Baba
- Division of Fruit Science, SKUAST-Kashmir, Srinagar 190025, Jammu and Kashmir, India;
| | - Rauoof Ahmad Rather
- Division of Environmental Sciences, FoH, Sher-e—Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar 190025, Jammu and Kashmir, India;
| | - Saima M. Wani
- Division of Basic Sciences and Humanities, FoH, Sher-e—Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar 190025, Jammu and Kashmir, India; (S.A.B.); (S.M.W.); (S.S.)
| | - Simona Mariana Popescu
- Department of Biology and Environmental Engineering, University of Craiova, 13, A.I. Cuza, 200585 Craiova, Romania;
| | - Shakeela Sofi
- Division of Basic Sciences and Humanities, FoH, Sher-e—Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar 190025, Jammu and Kashmir, India; (S.A.B.); (S.M.W.); (S.S.)
| | - Malik Asif Aziz
- Division of Basic Sciences and Humanities FoA, Sher-e—Kashmir University of Agricultural Sciences & Technology of Kashmir, Wadura Sopore 193201, Jammu and Kashmir, India;
| | - Daniel Ingo Hefft
- University Centre Reaseheath, Reaseheath College, Nantwich CW5 6DF, UK;
| | - Othman M. Alzahrani
- Department of Biology, College of Science, Taif University, P.O. Box 110099, Taif 21944, Saudi Arabia; (O.M.A.); (A.N.)
| | - Ahmed Noureldeen
- Department of Biology, College of Science, Taif University, P.O. Box 110099, Taif 21944, Saudi Arabia; (O.M.A.); (A.N.)
| | - Hadeer Darwish
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 110099, Taif 21944, Saudi Arabia;
| |
Collapse
|
5
|
Huang S, Hu W, Chen J, Wu Z, Zhang D, Fu P. Overview of biological ice nucleating particles in the atmosphere. ENVIRONMENT INTERNATIONAL 2021; 146:106197. [PMID: 33271442 DOI: 10.1016/j.envint.2020.106197] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 05/14/2023]
Abstract
Biological particles in the Earth's atmosphere are a distinctive category of ice nucleating particles (INPs) due to their capability of facilitating ice crystal formation in clouds at relatively warm temperatures. Field observations and model simulations have shown that biological INPs affect cloud and precipitation formation and regulate regional or even global climate, although there are considerable uncertainties in modeling and large gaps between observed and model simulated contribution of biological particles to atmospheric INPs. This paper overviews the latest researches about biological INPs in the atmosphere. Firstly, we describe the primary ice nucleation mechanisms, and measurements and model simulations of atmospheric biological INPs. Secondly, we summarize the ice nucleating properties of biological INPs from diverse sources such as soils or dust, vegetation (e.g., leaves and pollen grains), sea spray, and fresh waters, and controlling factors of biological INPs in the atmosphere. Then we review the abundance and distribution of atmospheric biological INPs in diverse ecosystems. Finally, we discuss the open questions in further studies on atmospheric biological INPs, including the requirements for developing novel detection techniques and simulation models, as well as the comprehensive investigation of characteristics and influencing factors of atmospheric biological INPs.
Collapse
Affiliation(s)
- Shu Huang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Wei Hu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| | - Jie Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhijun Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Daizhou Zhang
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
6
|
Woo C, Yamamoto N. Falling bacterial communities from the atmosphere. ENVIRONMENTAL MICROBIOME 2020; 15:22. [PMID: 33902752 PMCID: PMC8066439 DOI: 10.1186/s40793-020-00369-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 11/28/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Bacteria emitted into the atmosphere eventually settle to the pedosphere via sedimentation (dry deposition) or precipitation (wet deposition), constituting a part of the global cycling of substances on Earth, including the water cycle. In this study, we aim to investigate the taxonomic compositions and flux densities of bacterial deposition, for which little is known regarding the relative contributions of each mode of atmospheric deposition, the taxonomic structures and memberships, and the aerodynamic properties in the atmosphere. RESULTS Precipitation was found to dominate atmospheric bacterial deposition, contributing to 95% of the total flux density at our sampling site in Korea, while bacterial communities in precipitation were significantly different from those in sedimentation, in terms of both their structures and memberships. Large aerodynamic diameters of atmospheric bacteria were observed, with an annual mean of 8.84 μm, which appears to be related to their large sedimentation velocities, with an annual mean of 1.72 cm s- 1 for all bacterial taxa combined. The observed mean sedimentation velocity for atmospheric bacteria was larger than the previously reported mean sedimentation velocities for fungi and plants. CONCLUSIONS Large aerodynamic diameters of atmospheric bacteria, which are likely due to the aggregation and/or attachment to other larger particles, are thought to contribute to large sedimentation velocities, high efficiencies as cloud nuclei, and large amounts of precipitation of atmospheric bacteria. Moreover, the different microbiotas between precipitation and sedimentation might indicate specific bacterial involvement and/or selective bacterial growth in clouds. Overall, our findings add novel insight into how bacteria participate in atmospheric processes and material circulations, including hydrological circulation, on Earth.
Collapse
Affiliation(s)
- Cheolwoon Woo
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Naomichi Yamamoto
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea.
- Institute of Health and Environment, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
7
|
Vélez-Rodríguez Z, Torres-Pratts H, Maldonado-Ramírez SL. Use of Drones to Recover Fungal Spores and Pollen from the Lower Atmosphere. CARIBB J SCI 2020. [DOI: 10.18475/cjos.v50i1.a16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
A Drone-Based Bioaerosol Sampling System to Monitor Ice Nucleation Particles in the Lower Atmosphere. REMOTE SENSING 2020. [DOI: 10.3390/rs12030552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Terrestrial ecosystems can influence atmospheric processes by contributing a huge variety of biological aerosols (bioaerosols) to the environment. Several types of biological particles, such as pollen grains, fungal spores, and bacteria cells, trigger freezing processes in super-cooled cloud droplets, and as such can contribute to the hydrological cycle. Even though biogenic particles are known as the most active form of ice nucleation particles (INPs), the transport to high tropospheric altitudes, as well as the occurrence in clouds, remains understudied. Thus, transport processes from the land surface into the atmosphere need to be investigated to estimate weather phenomena and climate trends. To help fill this knowledge gap, we developed a drone-based aerosol particles sampling impinger/impactor (DAPSI) system for field studies to investigate sources and near surface transport of biological INPs. DAPSI was designed to attach to commercial rotary-wing drones to collect biological particles within about 100 m of the Earth’s surface. DAPSI provides information on particulate matter concentrations (PM10 & PM2.5), temperature, relative humidity, and air pressure at about 0.5 Hz, by controlling electrical sensors with an onboard computer (Raspberry Pi 3). Two remote-operated sampling systems (impinging and impacting) were integrated into DAPSI. Laboratory tests of the impinging system showed a 96% sampling efficiency for standardized aerosol particles (2 µm polystyrene latex spheres) and 84% for an aerosol containing biological INPs (Betula pendula). A series of sampling missions (12 flights) were performed using two Phantom 4 quadcopters with DAPSI onboard at a remote sampling site near Gosau, Austria. Fluorescence microscopy of impactor foils showed a significant number of auto-fluorescent particles < 0.5 µm at an excitation of 465–495 nm and an emission of 515–555 nm. A slight increase in ice nucleation activity (onset temperature between −27 °C and −31 °C) of sampled aerosol was measured by applying freezing experiments with a microscopic cooling technique. There are a number of unique opportunities for DAPSI to be used to study the transport of bioaerosols, particularly for investigations of biological INP emissions from natural sources such as birch or pine forests.
Collapse
|
9
|
Accessing the Life in Smoke: A New Application of Unmanned Aircraft Systems (UAS) to Sample Wildland Fire Bioaerosol Emissions and Their Environment. FIRE-SWITZERLAND 2019. [DOI: 10.3390/fire2040056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Wildland fire is a major producer of aerosols from combustion of vegetation and soils, but little is known about the abundance and composition of smoke’s biological content. Bioaerosols, or aerosols derived from biological sources, may be a significant component of the aerosol load vectored in wildland fire smoke. If bioaerosols are injected into the upper troposphere via high-intensity wildland fires and transported across continents, there may be consequences for the ecosystems they reach. Such transport would also alter the concept of a wildfire’s perimeter and the disturbance domain of its impact. Recent research has revealed that viable microorganisms are directly aerosolized during biomass combustion, but sampling systems and methodology for quantifying this phenomenon are poorly developed. Using a series of prescribed fires in frequently burned forest ecosystems, we report the results of employing a small rotary-wing unmanned aircraft system (UAS) to concurrently sample aerosolized bacteria and fungi, particulate matter, and micrometeorology in smoke plumes versus background conditions. Airborne impaction-based bioaerosol sampling indicated that microbial composition differed between background air and smoke, with seven unique organisms in smoke vs. three in background air. The air temperature was negatively correlated with the number of fungal colony-forming units detected. Our results demonstrate the utility of a UAS-based sampling platform for active sampling of viable aerosolized microbes in smoke arising from wildland fires. This methodology can be extended to sample viable microbes in a wide variety of emissions sampling pursuits, especially those in hazardous and inaccessible environments.
Collapse
|
10
|
Microorganisms Collected from the Surface of Freshwater Lakes Using a Drone Water Sampling System (DOWSE). WATER 2019. [DOI: 10.3390/w11010157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
New tools and technology are needed to study microorganisms in freshwater environments. Little is known about spatial distribution and ice nucleation activity (INA) of microorganisms in freshwater lakes. We developed a system to collect water samples from the surface of lakes using a 3D-printed sampling device tethered to a drone (DOWSE, DrOne Water Sampling SystEm). The DOWSE was used to collect surface water samples at different distances from the shore (1, 25, and 50 m) at eight different freshwater lakes in Austria in June 2018. Water samples were filtered, and microorganisms were cultured on two different media types, TSA (a general growth medium) and KBC (a medium semi-selective for bacteria in the genus Pseudomonas). Mean concentrations (colony forming units per mL, or CFU/mL) of bacteria cultured on TSA ranged from 19,800 (Wörthersee) to 210,500 (Gosaulacke) CFU/mL, and mean concentrations of bacteria cultured on KBC ranged from 2590 (Ossiachersee) to 11,000 (Vorderer Gosausee) CFU/mL. There was no significant difference in sampling distance from the shore for concentrations of microbes cultured on TSA (p = 0.28). A wireless bathymetry sensor was tethered to the drone to map temperature and depth across the sampling domain of each of the lakes. At the 50 m distance from the shore, temperature ranged from 17 (Hinterer Gosausee, and Gosaulacke) to 26 °C (Wörthersee), and depth ranged from 2.8 (Gosaulacke) to 11.1 m (Grundlsee). Contour maps of concentrations of culturable bacteria across the drone sampling domain revealed areas of high concentrations (hot spots) in some of the lakes. The percentage of ice-nucleation active (ice+) bacteria cultured on KBC ranged from 0% (0/64) (Wörthersee) to 58% (42/72) (Vorderer Gosausee), with a mean of 28% (153/544) for the entire sample set. Future work aims to elucidate the structure and function of entire microbial assemblages within and among the Austrian lakes.
Collapse
|
11
|
Powers CW, Hanlon R, Grothe H, Prussin AJ, Marr LC, Schmale DG. Coordinated Sampling of Microorganisms Over Freshwater and Saltwater Environments Using an Unmanned Surface Vehicle (USV) and a Small Unmanned Aircraft System (sUAS). Front Microbiol 2018; 9:1668. [PMID: 30158904 PMCID: PMC6104176 DOI: 10.3389/fmicb.2018.01668] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/04/2018] [Indexed: 11/13/2022] Open
Abstract
Biological aerosols (bioaerosols) are ubiquitous in terrestrial and aquatic environments and may influence cloud formation and precipitation processes. Little is known about the aerosolization and transport of bioaerosols from aquatic environments. We designed and deployed a bioaerosol-sampling system onboard an unmanned surface vehicle (USV; a remotely operated boat) to collect microbes and monitor particle sizes in the atmosphere above a salt pond in Falmouth, MA, United States and a freshwater lake in Dublin, VA, United States. The bioaerosol-sampling system included a series of 3D-printed impingers, two different optical particle counters, and a weather station. A small unmanned aircraft system (sUAS; a remotely operated airplane) was used in a coordinated effort with the USV to collect microorganisms on agar media 50 m above the surface of the water. Samples from the USV and sUAS were cultured on selective media to estimate concentrations of culturable microorganisms (bacteria and fungi). Concentrations of microbes from the sUAS ranged from 6 to 9 CFU/m3 over saltwater, and 12 to 16 CFU/m3 over freshwater (over 10-min sampling intervals) at 50 m above ground level (AGL). Concentrations from the USV ranged from 0 (LOD) to 42,411 CFU/m3 over saltwater, and 0 (LOD) to 56,809 CFU/m3 over freshwater (over 30-min sampling intervals) in air near the water surface. Particle concentrations recorded onboard the USV ranged from 0 (LOD) to 288 μg/m3 for PM1, 1 to 290 μg/m3 for PM2.5, and 1 to 290 μg/m3 for PM10. A general trend of increasing concentration with an increase in particle size was recorded by each sensor. Through laboratory testing, the collection efficiency of the 3D-printed impingers was determined to be 75% for 1 μm beads and 99% for 3 μm beads. Additional laboratory tests were conducted to determine the accuracy of the miniaturized optical particle counters used onboard the USV. Future work aims to understand the distribution of bioaerosols above aquatic environments and their potential association with cloud formation and precipitation processes.
Collapse
Affiliation(s)
- Craig W Powers
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Regina Hanlon
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, United States
| | - Hinrich Grothe
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, United States.,Institute of Materials Chemistry, Technische Universität Wien, Vienna, Austria
| | - Aaron J Prussin
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Linsey C Marr
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, United States
| | - David G Schmale
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|