1
|
Tao G, Ahrendt S, Miyauchi S, Zhu X, Peng H, Labutti K, Clum A, Hayes R, Chain PSG, Grigoriev IV, Bonito G, Martin FM. Characterisation and comparative analysis of mitochondrial genomes of false, yellow, black and blushing morels provide insights on their structure and evolution. IMA Fungus 2025; 16:e138363. [PMID: 40052075 PMCID: PMC11881001 DOI: 10.3897/imafungus.16.138363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/07/2025] [Indexed: 03/09/2025] Open
Abstract
Morchella species have considerable significance in terrestrial ecosystems, exhibiting a range of ecological lifestyles along the saprotrophism-to-symbiosis continuum. However, the mitochondrial genomes of these ascomycetous fungi have not been thoroughly studied, thereby impeding a comprehensive understanding of their genetic makeup and ecological role. In this study, we analysed the mitogenomes of 30 Morchellaceae species, including yellow, black, blushing and false morels. These mitogenomes are either circular or linear DNA molecules with lengths ranging from 217 to 565 kbp and GC content ranging from 38% to 48%. Fifteen core protein-coding genes, 28-37 tRNA genes and 3-8 rRNA genes were identified in these Morchellaceae mitogenomes. The gene order demonstrated a high level of conservation, with the cox1 gene consistently positioned adjacent to the rnS gene and cob gene flanked by apt genes. Some exceptions were observed, such as the rearrangement of atp6 and rps3 in Morchellaimportuna and the reversed order of atp6 and atp8 in certain morel mitogenomes. However, the arrangement of the tRNA genes remains conserved. We additionally investigated the distribution and phylogeny of homing endonuclease genes (HEGs) of the LAGLIDADG (LAGs) and GIY-YIG (GIYs) families. A total of 925 LAG and GIY sequences were detected, with individual species containing 19-48HEGs. These HEGs were primarily located in the cox1, cob, cox2 and nad5 introns and their presence and distribution displayed significant diversity amongst morel species. These elements significantly contribute to shaping their mitogenome diversity. Overall, this study provides novel insights into the phylogeny and evolution of the Morchellaceae.
Collapse
Affiliation(s)
- Gang Tao
- College of Eco-Environmental Engineering, Guizhou Minzu University, 550025, Guiyang, ChinaUniversité de LorraineChampenouxFrance
- Université de Lorraine, INRAE, UnitéMixte de Recherche Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, 54280 Champenoux, FranceGuizhou Minzu UniversityGuiyangChina
| | - Steven Ahrendt
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USAU.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National LaboratoryBerkeleyUnited States of America
| | - Shingo Miyauchi
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, JapanOkinawa Institute of Science and Technology Graduate UniversityOnna, OkinawaJapan
| | - XiaoJie Zhu
- College of Eco-Environmental Engineering, Guizhou Minzu University, 550025, Guiyang, ChinaUniversité de LorraineChampenouxFrance
| | - Hao Peng
- College of Eco-Environmental Engineering, Guizhou Minzu University, 550025, Guiyang, ChinaUniversité de LorraineChampenouxFrance
| | - Kurt Labutti
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USAU.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National LaboratoryBerkeleyUnited States of America
| | - Alicia Clum
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USAU.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National LaboratoryBerkeleyUnited States of America
| | - Richard Hayes
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USAU.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National LaboratoryBerkeleyUnited States of America
| | - Patrick S. G. Chain
- Los Alamos National Laboratory (LANL), Los Alamos, NM 87545, USALos Alamos National LaboratoryLos AlamosUnited States of America
| | - Igor V. Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USAU.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National LaboratoryBerkeleyUnited States of America
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USAUniversity of California BerkeleyBerkeleyUnited States of America
| | - Gregory Bonito
- Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USAMichigan State UniversityEast LansingUnited States of America
| | - Francis M. Martin
- Université de Lorraine, INRAE, UnitéMixte de Recherche Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, 54280 Champenoux, FranceGuizhou Minzu UniversityGuiyangChina
| |
Collapse
|
2
|
Yu Y, Liu T, Wang Y, Liu L, He X, Li J, Martin FM, Peng W, Tan H. Comparative analyses of Pleurotus pulmonarius mitochondrial genomes reveal two major lineages of mini oyster mushroom cultivars. Comput Struct Biotechnol J 2024; 23:905-917. [PMID: 38370975 PMCID: PMC10869244 DOI: 10.1016/j.csbj.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
Pleurotus pulmonarius, commonly known as the mini oyster mushroom, is highly esteemed for its crisp texture and umami flavor. Limited genetic diversity among P. pulmonarius cultivars raises concerns regarding its sustainable industrial production. To delve into the maternal genetic diversity of the principal P. pulmonarius cultivars, 36 cultivars and five wild isolates were subjected to de novo sequencing and assembly to generate high-quality mitogenome sequences. The P. pulmonarius mitogenomes had lengths ranging from 69,096 to 72,905 base pairs. The mitogenome sizes of P. pulmonarius and those of other mushroom species in the Pleurotus genus showed a significant positive correlation with the counts of LAGLIDAG and GIY-YIG homing endonucleases encoded by intronic open reading frames. A comparison of gene arrangements revealed an inversion of a fragment containing atp9-nad3-nad2 between P. pulmonarius and P. ostreatus. The mitogenomes of P. pulmonarius were clustered into three distinct clades, two of which were crowded with commercial cultivars. Clade I, all of which possess an inserted dpo gene, shared a maternal origin linked to an ancestral cultivar from Taiwan. Primers were designed to target the dpo gene, potentially safeguarding intellectual property rights. The wild isolates in Clade III exhibited more divergent mitogenomes, rendering them valuable for breeding.
Collapse
Affiliation(s)
- Yang Yu
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610000, China
| | - Tianhai Liu
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610000, China
- Sichuan Agricultural University, Chengdu 610000, China
| | - Yong Wang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610000, China
| | - Lixu Liu
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610000, China
| | - Xiaolan He
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610000, China
| | - Jianwei Li
- Sichuan Academy of Agricultural Sciences, Chengdu 610000, China
| | - Francis M. Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est, Nancy, Champenoux 54280, France
| | - Weihong Peng
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610000, China
| | - Hao Tan
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610000, China
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
3
|
van der Nest MA, Steenkamp ET, De Vos L, Wienk R, Swart V, van den Berg N. Complete mitochondrial genome sequence of the white root rot pathogen Dematophora necatrix (Xylariaceae: Xylariales). Mitochondrial DNA B Resour 2024; 9:1207-1212. [PMID: 39286473 PMCID: PMC11404375 DOI: 10.1080/23802359.2024.2403411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024] Open
Abstract
The mitochondrial genome of Dematophora necatrix is 121,350 base pairs in length with a G + C content of 30.19%. Phylogenetic analysis showed that D. necatrix grouped with other members of the Xylariaceae, with which its mitogenome also shares a broadly similar architecture and gene content. The D. necatrix mitogenome contains 14 protein-coding and 26 tRNA-encoding genes, as well as one copy each of the rnl, rns, rps3 and nat1 genes. However, as much as 80% of this genome is intronic or non-coding. This is likely due to expansions and rearrangements caused by the large number of group I introns and the homing endonucleases and reverse-transcriptases they encode. Our study thus provides a valuable foundation from which to explore the mitochondrion's role in the biology of D. necatrix, and also serves as a resource for investigating the pathogen's population biology and general ecology.
Collapse
Affiliation(s)
- Magriet A van der Nest
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Lieschen De Vos
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Raven Wienk
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Velushka Swart
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Noëlani van den Berg
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
4
|
Tang J, Zhang L, Su J, Ye Q, Li Y, Liu D, Cui H, Zhang Y, Ye Z. Insights into Fungal Mitochondrial Genomes and Inheritance Based on Current Findings from Yeast-like Fungi. J Fungi (Basel) 2024; 10:441. [PMID: 39057326 PMCID: PMC11277600 DOI: 10.3390/jof10070441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The primary functions of mitochondria are to produce energy and participate in the apoptosis of cells, with them being highly conserved among eukaryotes. However, the composition of mitochondrial genomes, mitochondrial DNA (mtDNA) replication, and mitochondrial inheritance varies significantly among animals, plants, and fungi. Especially in fungi, there exists a rich diversity of mitochondrial genomes, as well as various replication and inheritance mechanisms. Therefore, a comprehensive understanding of fungal mitochondria is crucial for unraveling the evolutionary history of mitochondria in eukaryotes. In this review, we have organized existing reports to systematically describe and summarize the composition of yeast-like fungal mitochondrial genomes from three perspectives: mitochondrial genome structure, encoded genes, and mobile elements. We have also provided a systematic overview of the mechanisms in mtDNA replication and mitochondrial inheritance during bisexual mating. Additionally, we have discussed and proposed open questions that require further investigation for clarification.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (J.T.)
| |
Collapse
|
5
|
Tong Q, Yang L, Zhang J, Zhang Y, Jiang Y, Liu X, Deng Y. Comprehensive investigations of 2-phenylethanol production by the filamentous fungus Annulohypoxylon stygium. Appl Microbiol Biotechnol 2024; 108:374. [PMID: 38878128 PMCID: PMC11180157 DOI: 10.1007/s00253-024-13226-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/19/2024]
Abstract
2-Phenylethanol (2-PE) is an aromatic compound with a rose-like fragrance that is widely used in food and other industries. Yeasts have been implicated in the biosynthesis of 2-PE; however, few studies have reported the involvement of filamentous fungi. In this study, 2-PE was detected in Annulohypoxylon stygium mycelia grown in both potato dextrose broth (PDB) and sawdust medium. Among the 27 A. stygium strains investigated in this study, the strain "Jinjiling" (strain S20) showed the highest production of 2-PE. Under optimal culture conditions, the concentration of 2-PE was 2.33 g/L. Each of the key genes in Saccharomyces cerevisiae shikimate and Ehrlich pathways was found to have homologous genes in A. stygium. Upon the addition of L-phenylalanine to the medium, there was an upregulation of all key genes in the Ehrlich pathway of A. stygium, which was consistent with that of S. cerevisiae. A. stygium as an associated fungus provides nutrition for the growth of Tremella fuciformis and most spent composts of T. fuciformis contain pure A. stygium mycelium. Our study on the high-efficiency biosynthesis of 2-PE in A. stygium offers a sustainable solution by utilizing the spent compost of T. fuciformis and provides an alternative option for the production of natural 2-PE. KEY POINTS: • Annulohypoxylon stygium can produce high concentration of 2-phenylethanol. • The pathways of 2-PE biosynthesis in Annulohypoxylon stygium were analyzed. • Spent compost of Tremella fuciformis is a potential source for 2-phenylethanol.
Collapse
Affiliation(s)
- Qianwen Tong
- Mycological Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lizhi Yang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinxiang Zhang
- Mycological Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yue Zhang
- Mycological Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuji Jiang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinrui Liu
- Mycological Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Youjin Deng
- Mycological Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
6
|
Mukhopadhyay J, Wai A, Hausner G. The mitogenomes of Leptographium aureum, Leptographium sp., and Grosmannia fruticeta: expansion by introns. Front Microbiol 2023; 14:1240407. [PMID: 37637121 PMCID: PMC10448965 DOI: 10.3389/fmicb.2023.1240407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Many members of the Ophiostomatales are of economic importance as they are bark-beetle associates and causative agents for blue stain on timber and in some instances contribute towards tree mortality. The taxonomy of these fungi has been challenging due to the convergent evolution of many traits associated with insect dispersal and a limited number of morphological characters that happen to be highly pleomorphic. This study examines the mitochondrial genomes for three members of Leptographium sensu lato [Leptographium aureum (also known as Grosmannia aurea), Grosmannia fruticeta (also known as Leptographium fruticetum), and Leptographium sp. WIN(M)1376)]. Methods Illumina sequencing combined with gene and intron annotations and phylogenetic analysis were performed. Results Sequence analysis showed that gene content and gene synteny are conserved but mitochondrial genome sizes were variable: G. fruticeta at 63,821 bp, Leptographium sp. WIN(M)1376 at 81,823 bp and L. aureum at 104,547 bp. The variation in size is due to the number of introns and intron-associated open reading frames. Phylogenetic analysis of currently available mitochondrial genomes for members of the Ophiostomatales supports currently accepted generic arrangements within this order and specifically supports the separation of members with Leptographium-like conidiophores into two genera, with L. aureum grouping with Leptographium and G. fruticeta aligning with Grosmannia. Discussion Mitochondrial genomes are promising sequences for resolving evolutionary relationships within the Ophiostomatales.
Collapse
Affiliation(s)
| | | | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
7
|
Himmelstrand K, Brandström Durling M, Karlsson M, Stenlid J, Olson Å. Multiple rearrangements and low inter- and intra-species mitogenome sequence variation in the Heterobasidion annosum s.l. species complex. Front Microbiol 2023; 14:1159811. [PMID: 37275157 PMCID: PMC10234125 DOI: 10.3389/fmicb.2023.1159811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/16/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Mitochondria are essential organelles in the eukaryotic cells and responsible for the energy production but are also involved in many other functions including virulence of some fungal species. Although the evolution of fungal mitogenomes have been studied at some taxonomic levels there are still many things to be learned from studies of closely related species. Methods In this study, we have analyzed 60 mitogenomes in the five species of the Heterobasidion annosum sensu lato complex that all are necrotrophic pathogens on conifers. Results and Discussion Compared to other fungal genera the genomic and genetic variation between and within species in the complex was low except for multiple rearrangements. Several translocations of large blocks with core genes have occurred between the five species and rearrangements were frequent in intergenic areas. Mitogenome lengths ranged between 108 878 to 116 176 bp, mostly as a result of intron variation. There was a high degree of homology of introns, homing endonuclease genes, and intergenic ORFs among the five Heterobasidion species. Three intergenic ORFs with unknown function (uORF6, uORF8 and uORF9) were found in all five species and was located in conserved synteny blocks. A 13 bp long GC-containing self-complementary palindrome was discovered in many places in the five species that were optional in presence/absence. The within species variation is very low, among 48 H. parviporum mitogenomes, there was only one single intron exchange, and SNP frequency was 0.28% and indel frequency 0.043%. The overall low variation in the Heterobasidion annosum sensu lato complex suggests a slow evolution of the mitogenome.
Collapse
Affiliation(s)
| | | | | | | | - Åke Olson
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
8
|
Li Q, Xiao W, Wu P, Zhang T, Xiang P, Wu Q, Zou L, Gui M. The first two mitochondrial genomes from Apiotrichum reveal mitochondrial evolution and different taxonomic assignment of Trichosporonales. IMA Fungus 2023; 14:7. [PMID: 37004131 PMCID: PMC10064765 DOI: 10.1186/s43008-023-00112-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Apiotrichum is a diverse anamorphic basidiomycetous yeast genus, and its mitogenome characterization has not been revealed. In this study, we assembled two Apiotrichum mitogenomes and compared them with mitogenomes from Agaricomycotina, Pucciniomycotina and Ustilaginomycotina. The mitogenomes of Apiotrichum gracile and A. gamsii comprised circular DNA molecules, with sizes of 34,648 bp and 38,096 bp, respectively. Intronic regions were found contributed the most to the size expansion of A. gamsii mitogenome. Comparative mitogenomic analysis revealed that 6.85-38.89% of nucleotides varied between tRNAs shared by the two Apiotrichum mitogenomes. The GC content of all core PCGs in A. gamsii was lower than that of A. gracile, with an average low value of 4.97%. The rps3 gene differentiated the most among Agaricomycotina, Pucciniomycotina and Ustilaginomycotina species, while nad4L gene was the most conserved in evolution. The Ka/Ks values for cob and rps3 genes were > 1, indicating the two genes may be subjected to positive selection in Agaricomycotina, Pucciniomycotina and Ustilaginomycotina. Frequent intron loss/gain events and potential intron transfer events have been detected in evolution of Agaricomycotina, Pucciniomycotina and Ustilaginomycotina. We further detected large-scale gene rearrangements between the 19 mitogenomes from Agaricomycotina, Pucciniomycotina and Ustilaginomycotina, and fifteen of the 17 mitochondrial genes shared by Apiotrichum varied in gene arrangements. Phylogenetic analyses based on maximum likelihood and Bayesian inference methods using a combined mitochondrial gene dataset revealed different taxonomic assignment of two Apiotrichum species, wherein A. gamsii had a more closely relationship with Trichosporon asahii. This study served as the first report on mitogenomes from the genus Apiotrichum, which promotes the understanding of evolution, genomics, and phylogeny of Apiotrichum.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Wenqi Xiao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Peng Wu
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
- School of Food and Biological Engineering, Chengdu University, 2025 # Chengluo Avenue, Chengdu, 610106, Sichuan, China.
| | - Mingying Gui
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, Yunnan, China.
- School of Food and Biological Engineering, Chengdu University, 2025 # Chengluo Avenue, Chengdu, 610106, Sichuan, China.
| |
Collapse
|
9
|
Tan H, Yu Y, Fu Y, Liu T, Wang Y, Peng W, Wang B, Chen J. Comparative analyses of Flammulina filiformis mitochondrial genomes reveal high length polymorphism in intergenic regions and multiple intron gain/loss in cox1. Int J Biol Macromol 2022; 221:1593-1605. [PMID: 36116598 DOI: 10.1016/j.ijbiomac.2022.09.110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/23/2022] [Accepted: 09/10/2022] [Indexed: 11/30/2022]
Abstract
The golden-needle mushroom Flammulina filiformis is one of the bulk mushroom products in the world. This study obtained complete mitogenomes of 44 wild isolates collected from nine provinces and two artificially bred cultivars of F. filiformis, together with three Flammulina rossica isolates and one Flammulina fennae isolate for comparison. The mitogenome of F. filiformis ranged from 83,540 bp to 90,938 bp, consisting of 14 conserved protein-coding genes (PCGs), two rRNA genes, and 25 tRNA genes. To the best of our knowledge, it contained the highest proportion of intergenic regions compared to the other known Basidiomycota mitogenomes. Introns and intergenic regions were two major contributing factors to the total size of the F. filiformis mitogenome. The conserved PCG cox3 is located in an intron of another conserved PCG, nad5. This is a unique phenomenon in all known fungal mitogenomes. Gain/loss of introns was observed in cox1, nad5, and rnl. Length polymorphism was widely observed in intergenic regions. Accordingly, primers were designed as useful markers for rapid identification of F. filiformis isolates with differentiated mitogenomes. Our findings provide a basis for further studies related to variety identification and population genetics of this economically important mushroom.
Collapse
Affiliation(s)
- Hao Tan
- School of Bioengineering, Jiangnan University, Wuxi, China; Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yang Yu
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yu Fu
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, China; College of Life Sciences, Sichuan University, Chengdu, China
| | - Tianhai Liu
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yong Wang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Weihong Peng
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Bo Wang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, China.
| | - Jian Chen
- School of Bioengineering, Jiangnan University, Wuxi, China.
| |
Collapse
|
10
|
Intraspecific comparison of mitochondrial genomes reveals the evolution in medicinal fungus Ganoderma lingzhi. J Biosci Bioeng 2022; 134:374-383. [PMID: 36075811 DOI: 10.1016/j.jbiosc.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022]
Abstract
Several mitogenomes of the genus Ganoderma have been assembled, but intraspecific comparisons of mitogenomes in Ganoderma lingzhi have not been reported. In this study, 19 G. lingzhi mitogenomes were assembled and analyzed combined with three mitogenomes of G. lingzhi from GenBank in term of the characteristics, evolution, and phylogeny. The results showed that the mitogenomes of the G. lingzhi strains are closed circular ranging from 49.23 kb to 68.37 kb. The genetic distance, selective pressure, and base variation indicate that the 14 common protein coding genes were highly conserved. The differences in introns, open reading frames, and repetitive sequences in the mitogenome were the main factors leaded to the variations in mitogenome. The introns were horizontally transferred in mitogenomes, and the differences between introns in the same insertion, which were primarily caused by the repetitive sequence, showed that the introns may be under degeneration. Besides, the frequent insertion and deletion of introns showed an evolutionary rate faster than protein coding genes. Phylogenetic analysis showed that the G. lingzhi strains gathered with high support, and those with the same intron distribution law had closer clustering relationships.
Collapse
|
11
|
Li Q, Zhang T, Li L, Bao Z, Tu W, Xiang P, Wu Q, Li P, Cao M, Huang W. Comparative Mitogenomic Analysis Reveals Intraspecific, Interspecific Variations and Genetic Diversity of Medical Fungus Ganoderma. J Fungi (Basel) 2022; 8:781. [PMID: 35893149 PMCID: PMC9394262 DOI: 10.3390/jof8080781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Ganoderma species are widely distributed in the world with high diversity. Some species are considered to be pathogenic fungi while others are used as traditional medicine in Asia. In this study, we sequenced and assembled four Ganoderma complete mitogenomes, including G. subamboinense s118, G. lucidum s37, G. lingzhi s62, and G. lingzhi s74. The sizes of the four mitogenomes ranged from 50,603 to 73,416 bp. All Ganoderma specimens had a full set of core protein-coding genes (PCGs), and the rps3 gene of Ganoderma species was detected to be under positive or relaxed selection. We found that the non-conserved PCGs, which encode RNA polymerases, DNA polymerases, homing endonucleases, and unknown functional proteins, are dynamic within and between Ganoderma species. Introns were thought to be the main contributing factor in Ganoderma mitogenome size variation (p < 0.01). Frequent intron loss/gain events were detected within and between Ganoderma species. The mitogenome of G. lucidum s26 gained intron P637 in the cox3 gene compared with the other two G. lucidum mitogenomes. In addition, some rare introns in Ganoderma were detected in distinct Basidiomycetes, indicating potential gene transfer events. Comparative mitogenomic analysis revealed that gene arrangements also varied within and between Ganoderma mitogenomes. Using maximum likelihood and Bayesian inference methods with a combined mitochondrial gene dataset, phylogenetic analyses generated identical, well-supported tree topologies for 71 Agaricomycetes species. This study reveals intraspecific and interspecific variations of the Ganoderma mitogenomes, which promotes the understanding of the origin, evolution, and genetic diversity of Ganoderma species.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Q.L.); (T.Z.); (L.L.); (Z.B.); (W.T.); (P.X.); (Q.W.)
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Q.L.); (T.Z.); (L.L.); (Z.B.); (W.T.); (P.X.); (Q.W.)
| | - Lijiao Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Q.L.); (T.Z.); (L.L.); (Z.B.); (W.T.); (P.X.); (Q.W.)
| | - Zhijie Bao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Q.L.); (T.Z.); (L.L.); (Z.B.); (W.T.); (P.X.); (Q.W.)
| | - Wenying Tu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Q.L.); (T.Z.); (L.L.); (Z.B.); (W.T.); (P.X.); (Q.W.)
| | - Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Q.L.); (T.Z.); (L.L.); (Z.B.); (W.T.); (P.X.); (Q.W.)
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Q.L.); (T.Z.); (L.L.); (Z.B.); (W.T.); (P.X.); (Q.W.)
| | - Ping Li
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, 106 # Shizishan Rd., Chengdu 610061, China;
| | - Mei Cao
- Core Laboratory, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Wenli Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, 106 # Shizishan Rd., Chengdu 610061, China;
| |
Collapse
|
12
|
Mukhopadhyay J, Wai A, Hutchison LJ, Hausner G. The mitogenome of Urnula craterium. Can J Microbiol 2022; 68:561-568. [PMID: 35623096 DOI: 10.1139/cjm-2022-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Urnula craterium (Schwein.) Fr. (1851) has been reported from North America, Europe, and Asia, and can be a pathogen on various hardwood species. In this study we investigated the mitochondrial genome of U. craterium. The biology and taxonomy of this fungus is poorly studied and there are no mitogenomes currently available for any member of the Sarcosomataceae (Order Pezizales). The complete mitogenome of U. craterium comprises 43 967 bps and encodes 14 protein-coding genes, a complete set of tRNAs and rRNA genes. A novel feature of the mitogenome is the presence of a single subunit DNA polymerase coding region that is typically associated with linear invertron-type plasmids. The mitogenome may offer insights into the evolution of mitogenomes among members of the Pezizales with regards to gene content and order, mobile elements, and genome sizes.
Collapse
Affiliation(s)
| | - Alvan Wai
- University of Manitoba, 8664, Winnipeg, Canada;
| | - Leonard J Hutchison
- Lakehead University Faculty of Natural Resources Management, 157776, Thunder Bay, Ontario, Canada;
| | - Georg Hausner
- University of Manitoba, 8664, Buller Building 213, Winnipeg, Manitoba, Canada;
| |
Collapse
|
13
|
Christinaki AC, Kanellopoulos SG, Kortsinoglou AM, Andrikopoulos MΑ, Theelen B, Boekhout T, Kouvelis VN. Mitogenomics and mitochondrial gene phylogeny decipher the evolution of Saccharomycotina yeasts. Genome Biol Evol 2022; 14:6586520. [PMID: 35576568 PMCID: PMC9154068 DOI: 10.1093/gbe/evac073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Saccharomycotina yeasts belong to diverse clades within the kingdom of fungi and are important to human everyday life. This work investigates the evolutionary relationships among these yeasts from a mitochondrial (mt) genomic perspective. A comparative study of 155 yeast mt genomes representing all major phylogenetic lineages of Saccharomycotina was performed, including genome size and content variability, intron and intergenic regions’ diversity, genetic code alterations, and syntenic variation. Findings from this study suggest that mt genome size diversity is the result of a ceaseless random process, mainly based on genetic recombination and intron mobility. Gene order analysis revealed conserved syntenic units and many occurring rearrangements, which can be correlated with major evolutionary events as shown by the phylogenetic analysis of the concatenated mt protein matrix. For the first time, molecular dating indicated a slower mt genome divergence rate in the early stages of yeast evolution, in contrast with a faster rate in the late evolutionary stages, compared to their nuclear time divergence. Genetic code reassignments of mt genomes are a perpetual process happening in many different parallel evolutionary steps throughout the evolution of Saccharomycotina. Overall, this work shows that phylogenetic studies based on the mt genome of yeasts highlight major evolutionary events.
Collapse
Affiliation(s)
- Anastasia C Christinaki
- National and Kapodistrian University of Athens, Faculty of Biology, Department of Genetics and Biotechnology, Athens, Greece
| | - Spyros G Kanellopoulos
- National and Kapodistrian University of Athens, Faculty of Biology, Department of Genetics and Biotechnology, Athens, Greece
| | - Alexandra M Kortsinoglou
- National and Kapodistrian University of Athens, Faculty of Biology, Department of Genetics and Biotechnology, Athens, Greece
| | - Marios Α Andrikopoulos
- National and Kapodistrian University of Athens, Faculty of Biology, Department of Genetics and Biotechnology, Athens, Greece
| | - Bart Theelen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,University of Amsterdam, Institute of Biodiversity and Ecosystem Dynamics (IBED), Amsterdam, The Netherlands
| | - Vassili N Kouvelis
- National and Kapodistrian University of Athens, Faculty of Biology, Department of Genetics and Biotechnology, Athens, Greece
| |
Collapse
|
14
|
Li Q, Bao Z, Tang K, Feng H, Tu W, Li L, Han Y, Cao M, Zhao C. First two mitochondrial genomes for the order Filobasidiales reveal novel gene rearrangements and intron dynamics of Tremellomycetes. IMA Fungus 2022; 13:7. [PMID: 35501936 PMCID: PMC9059411 DOI: 10.1186/s43008-022-00094-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 04/22/2022] [Indexed: 02/03/2023] Open
Abstract
In the present study, two mitogenomes from the Filobasidium genus were assembled and compared with other Tremellomycetes mitogenomes. The mitogenomes of F. wieringae and F. globisporum both comprised circular DNA molecules, with sizes of 27,861 bp and 71,783 bp, respectively. Comparative mitogenomic analysis revealed that the genetic contents, tRNAs, and codon usages of the two Filobasidium species differed greatly. The sizes of the two Filobasidium mitogenomes varied greatly with the introns being the main factor contributing to mitogenome expansion in F. globisporum. Positive selection was observed in several protein-coding genes (PCGs) in the Agaricomycotina, Pucciniomycotina, and Ustilaginomycotina species, including cob, cox2, nad2, and rps3 genes. Frequent intron loss/gain events were detected to have occurred during the evolution of the Tremellomycetes mitogenomes, and the mitogenomes of 17 species from Agaricomycotina, Pucciniomycotina, and Ustilaginomycotina have undergone large-scale gene rearrangements. Phylogenetic analyses based on Bayesian inference and the maximum likelihood methods using a combined mitochondrial gene set generated identical and well-supported phylogenetic trees, wherein Filobasidium species had close relationships with Trichosporonales species. This study, which is the first report on mitogenomes from the order Filobasidiales, provides a basis for understanding the genomics, evolution, and taxonomy of this important fungal group.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Zhijie Bao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ke Tang
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
| | - Huiyu Feng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Wenying Tu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lijiao Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Yunlei Han
- Department of Pathogenic Biology, Chengdu Medical College, Chengdu, Sichuan, China
| | - Mei Cao
- Core Laboratory, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China. .,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan, China.
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China.
| |
Collapse
|
15
|
Kobayashi G, Itoh H, Kojima S. Mitogenome of a stink worm (Annelida: Travisiidae) includes degenerate group II intron that is also found in five congeneric species. Sci Rep 2022; 12:4449. [PMID: 35292662 PMCID: PMC8924214 DOI: 10.1038/s41598-022-08103-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/25/2022] [Indexed: 12/05/2022] Open
Abstract
Mitogenomes are useful for inferring phylogenetic relationships between organisms. Although the mitogenomes of Annelida, one of the most morphologically and ecologically diverse metazoan groups have been well sequenced, those of several families remain unexamined. This study determined the first mitogenome from the family Travisiidae (Travisia sanrikuensis), analyzed its mitogenomic features, and reconstructed a phylogeny of Sedentaria. The monophyly of the Terebellida + Arenicolida + Travisiidae clade is supported by molecular phylogenetic analysis. The placement of Travisiidae is unclear because of the lack of mitogenomes from closely related lineages. An unexpected intron appeared within the cox1 gene of T. sanrikuensis and in the same positions of five undescribed Travisia spp. Although the introns are shorter (790–1386 bp) than other group II introns, they can be considered degenerate group II introns due to type II intron maturase open reading frames, found in two of the examined species, and motifs characteristic of group II introns. This is likely the first known case in metazoans where mitochondrial group II introns obtained by a common ancestor are conserved in several descendants. Insufficient evolutionary time for intron loss in Travisiidae, or undetermined mechanisms may have helped maintain the degenerate introns.
Collapse
Affiliation(s)
- Genki Kobayashi
- Seto Marine Biological Laboratory, Field Science Education and Research Center, Kyoto University, 459 Shirahama, Nishimuro, Wakayama, 649-2211, Japan.
| | - Hajime Itoh
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Shigeaki Kojima
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan
| |
Collapse
|
16
|
Valenti I, Degradi L, Kunova A, Cortesi P, Pasquali M, Saracchi M. The First Mitochondrial Genome of Ciborinia camelliae and Its Position in the Sclerotiniaceae Family. FRONTIERS IN FUNGAL BIOLOGY 2022; 2:802511. [PMID: 37744111 PMCID: PMC10512376 DOI: 10.3389/ffunb.2021.802511] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 09/26/2023]
Abstract
Ciborinia camelliae is the causal agent of camellia flower blight (CFB). It is a hemibiotrophic pathogen, inoperculate Discomycete of the family Sclerotiniaceae. It shows host and organ specificity infecting only flowers of species belonging to the genus Camellia, causing serious damage to the ornamental component of the plant. In this work, the first mitochondrial genome of Ciborinia camellia is reported. The mitogenome was obtained by combining Illumina short read and Nanopore long read technology. To resolve repetitive elements, specific primers were designed and used for Sanger sequencing. The manually curated mitochondrial DNA (mtDNA) of the Italian strain DSM 112729 is a circular sequence of 114,660 bp, with 29.6% of GC content. It contains two ribosomal RNA genes, 33 transfer RNAs, one RNase P gene, and 62 protein-coding genes. The latter include one gene coding for a ribosomal protein (rps3) and the 14 typical proteins involved in the oxidative metabolism. Moreover, a partial mtDNA assembled from a contig list was obtained from the deposited genome assembly of a New Zealand strain of C. camelliae. The present study contributes to understanding the mitogenome arrangement and the evolution of this phytopathogenic fungus in comparison to other Sclerotiniaceae species and confirms the usefulness of mitochondrial analysis to define phylogenetic positioning of this newly sequenced species.
Collapse
Affiliation(s)
| | | | | | | | - Matias Pasquali
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | | |
Collapse
|
17
|
Alternative oxidase is involved in oxidative stress resistance and melanin synthesis in Annulohypoxylon stygium, a companion fungus of Tremella fuciformis. Antonie van Leeuwenhoek 2022; 115:365-374. [DOI: 10.1007/s10482-021-01705-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/23/2021] [Indexed: 01/24/2023]
|
18
|
Zaccaron AZ, Stergiopoulos I. Characterization of the mitochondrial genomes of three powdery mildew pathogens reveals remarkable variation in size and nucleotide composition. Microb Genom 2021; 7. [PMID: 34890311 PMCID: PMC8767329 DOI: 10.1099/mgen.0.000720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Powdery mildews comprise a large group of economically important phytopathogenic fungi. However, limited information exists on their mitochondrial genomes. Here, we assembled and compared the mitochondrial genomes of the powdery mildew pathogens Blumeria graminis f. sp. tritici, Erysiphe pisi, and Golovinomyces cichoracearum. Included in the comparative analysis was also the mitochondrial genome of Erysiphe necator that was previously analysed. The mitochondrial genomes of the four Erysiphales exhibit a similar gene content and organization but a large variation in size, with sizes ranging from 109800 bp in B. graminis f. sp. tritici to 332165 bp in G. cichoracearum, which is the largest mitochondrial genome of a fungal pathogen reported to date. Further comparative analysis revealed an unusual bimodal GC distribution in the mitochondrial genomes of B. graminis f. sp. tritici and G. cichoracearum that was not previously observed in fungi. The cytochrome b (cob) genes of E. necator, E. pisi, and G. cichoracearum were also exceptionally rich in introns, which in turn harboured rare open reading frames encoding reverse transcriptases that were likely acquired horizontally. Golovinomyces cichoracearum had also the longest cob gene (45 kb) among 703 fungal cob genes analysed. Collectively, these results provide novel insights into the organization of mitochondrial genomes of powdery mildew pathogens and represent valuable resources for population genetics and evolutionary studies.
Collapse
Affiliation(s)
- Alex Z Zaccaron
- Department of Plant Pathology, University of California Davis, Davis, CA, USA
| | | |
Collapse
|
19
|
Theelen B, Christinaki AC, Dawson TL, Boekhout T, Kouvelis VN. Comparative analysis of Malassezia furfur mitogenomes and the development of a mitochondria-based typing approach. FEMS Yeast Res 2021; 21:6375414. [PMID: 34562093 PMCID: PMC8510979 DOI: 10.1093/femsyr/foab051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/29/2021] [Indexed: 12/24/2022] Open
Abstract
Malassezia furfur is a yeast species belonging to Malasseziomycetes, Ustilaginomycotina and Basidiomycota that is found on healthy warm-blooded animal skin, but also involved in various skin disorders like seborrheic dermatitis/dandruff and pityriasis versicolor. Moreover, Malassezia are associated with bloodstream infections, Crohn's disease and pancreatic carcinoma. Recent advances in Malassezia genomics and genetics have focused on the nuclear genome. In this work, we present the M. furfur mitochondrial (mt) genetic heterogenicity with full analysis of 14 novel and six available M. furfur mt genomes. The mitogenome analysis reveals a mt gene content typical for fungi, including identification of variable mt regions suitable for intra-species discrimination. Three of them, namely the trnK–atp6 and cox3–nad3 intergenic regions and intron 2 of the cob gene, were selected for primer design to identify strain differences. Malassezia furfur strains belonging to known genetic variable clusters, based on AFLP and nuclear loci, were assessed for their mt variation using PCR amplification and sequencing. The results suggest that these mt regions are excellent molecular markers for the typing of M. furfur strains and may provide added value to nuclear regions when assessing evolutionary relationships at the intraspecies level.
Collapse
Affiliation(s)
- Bart Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Anastasia C Christinaki
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.,Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15701, Greece
| | - Thomas L Dawson
- Agency for Science, Technology, and Research (A∗STAR), Skin Research Institute of Singapore (SRIS), 11 Mandalay Rd, #17-01, Singapore 308232, Singapore.,Center for Cell Death, Injury and Regeneration, Departments of Drug Discovery and Biomedical Sciences and Biochemistry and Molecular Biology, Medical University of South Carolina, 280 Calhoun St, Charleston, SC, 29425, USA
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.,Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Vassili N Kouvelis
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15701, Greece
| |
Collapse
|
20
|
Mukhopadhyay J, Hausner G. Organellar Introns in Fungi, Algae, and Plants. Cells 2021; 10:cells10082001. [PMID: 34440770 PMCID: PMC8393795 DOI: 10.3390/cells10082001] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/31/2021] [Accepted: 08/05/2021] [Indexed: 12/16/2022] Open
Abstract
Introns are ubiquitous in eukaryotic genomes and have long been considered as ‘junk RNA’ but the huge energy expenditure in their transcription, removal, and degradation indicate that they may have functional significance and can offer evolutionary advantages. In fungi, plants and algae introns make a significant contribution to the size of the organellar genomes. Organellar introns are classified as catalytic self-splicing introns that can be categorized as either Group I or Group II introns. There are some biases, with Group I introns being more frequently encountered in fungal mitochondrial genomes, whereas among plants Group II introns dominate within the mitochondrial and chloroplast genomes. Organellar introns can encode a variety of proteins, such as maturases, homing endonucleases, reverse transcriptases, and, in some cases, ribosomal proteins, along with other novel open reading frames. Although organellar introns are viewed to be ribozymes, they do interact with various intron- or nuclear genome-encoded protein factors that assist in the intron RNA to fold into competent splicing structures, or facilitate the turn-over of intron RNAs to prevent reverse splicing. Organellar introns are also known to be involved in non-canonical splicing, such as backsplicing and trans-splicing which can result in novel splicing products or, in some instances, compensate for the fragmentation of genes by recombination events. In organellar genomes, Group I and II introns may exist in nested intronic arrangements, such as introns within introns, referred to as twintrons, where splicing of the external intron may be dependent on splicing of the internal intron. These nested or complex introns, with two or three-component intron modules, are being explored as platforms for alternative splicing and their possible function as molecular switches for modulating gene expression which could be potentially applied towards heterologous gene expression. This review explores recent findings on organellar Group I and II introns, focusing on splicing and mobility mechanisms aided by associated intron/nuclear encoded proteins and their potential roles in organellar gene expression and cross talk between nuclear and organellar genomes. Potential application for these types of elements in biotechnology are also discussed.
Collapse
MESH Headings
- Evolution, Molecular
- Gene Expression Regulation, Fungal
- Gene Expression Regulation, Plant
- Genome, Fungal
- Genome, Plant
- Introns
- Organelles/genetics
- Organelles/metabolism
- RNA Splicing
- RNA Stability
- RNA, Algal/genetics
- RNA, Algal/metabolism
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Transcription, Genetic
Collapse
|
21
|
Kwak Y. An Update on Trichoderma Mitogenomes: Complete De Novo Mitochondrial Genome of the Fungal Biocontrol Agent Trichoderma harzianum (Hypocreales, Sordariomycetes), an Ex-Neotype Strain CBS 226.95, and Tracing the Evolutionary Divergences of Mitogenomes in Trichoderma. Microorganisms 2021; 9:1564. [PMID: 34442643 PMCID: PMC8401334 DOI: 10.3390/microorganisms9081564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Members of the genus Trichoderma (Hypocreales), widely used as biofungicides, biofertilizers, and as model fungi for the industrial production of CAZymes, have actively been studied for the applications of their biological functions. Recently, the study of the nuclear genomes of Trichoderma has expanded in the directions of adaptation and evolution to gain a better understanding of their ecological traits. However, Trichoderma's mitochondria have received much less attention despite mitochondria being the most necessary element for sustaining cell life. In this study, a mitogenome of the fungus Trichoderma harzianum CBS 226.95 was assembled de novo. A 27,632 bp circular DNA molecule was revealed with specific features, such as the intronless of all core PCGs, one homing endonuclease, and a putative overlapping tRNA, on a closer phylogenetic relationship with T. reesei among hypocrealean fungi. Interestingly, the mitogenome of T. harzianum CBS 226.95 was predicted to have evolved earlier than those of other Trichoderma species and also assumed with a selection pressure in the cox3. Considering the bioavailability, both for the ex-neotype strain of the T. harzianum species complex and the most globally representative commercial fungal biocontrol agent, our results on the T. harzianum CBS 226.95 mitogenome provide crucial information which will be helpful criteria in future studies on Trichoderma.
Collapse
Affiliation(s)
- Yunyoung Kwak
- Écologie, Systématique et Évolution, CNRS, Université Paris Sud (Paris XI), Université Paris Saclay, AgroParisTech, 91400 Orsay, France;
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
- Institute for Quality and Safety Assessment of Agricultural Products, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
22
|
Megarioti AH, Kouvelis VN. The Coevolution of Fungal Mitochondrial Introns and Their Homing Endonucleases (GIY-YIG and LAGLIDADG). Genome Biol Evol 2021; 12:1337-1354. [PMID: 32585032 PMCID: PMC7487136 DOI: 10.1093/gbe/evaa126] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2020] [Indexed: 12/21/2022] Open
Abstract
Fungal mitochondrial (mt) genomes exhibit great diversity in size which is partially attributed to their variable intergenic regions and most importantly to the inclusion of introns within their genes. These introns belong to group I or II, and both of them are self-splicing. The majority of them carry genes encoding homing endonucleases, either LAGLIDADG or GIY-YIG. In this study, it was found that these intronic homing endonucleases genes (HEGs) may originate from mt free-standing open reading frames which can be found nowadays in species belonging to Early Diverging Fungi as “living fossils.” A total of 487 introns carrying HEGs which were located in the publicly available mt genomes of representative species belonging to orders from all fungal phyla was analyzed. Their distribution in the mt genes, their insertion target sequence, and the phylogenetic analyses of the HEGs showed that these introns along with their HEGs form a composite structure in which both selfish elements coevolved. The invasion of the ancestral free-standing HEGs in the introns occurred through a perpetual mechanism, called in this study as “aenaon” hypothesis. It is based on recombination, transpositions, and horizontal gene transfer events throughout evolution. HEGs phylogenetically clustered primarily according to their intron hosts and secondarily to the mt genes carrying the introns and their HEGs. The evolutionary models created revealed an “intron-early” evolution which was enriched by “intron-late” events through many different independent recombinational events which resulted from both vertical and horizontal gene transfers.
Collapse
Affiliation(s)
- Amalia H Megarioti
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Greece
| | - Vassili N Kouvelis
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
23
|
Wu P, Yao T, Ren Y, Ye J, Qing Y, Li Q, Gui M. Evolutionary Insights Into Two Widespread Ectomycorrhizal Fungi ( Pisolithus) From Comparative Analysis of Mitochondrial Genomes. Front Microbiol 2021; 12:583129. [PMID: 34290675 PMCID: PMC8287656 DOI: 10.3389/fmicb.2021.583129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 06/16/2021] [Indexed: 11/18/2022] Open
Abstract
The genus Pisolithus is a group of global ectomycorrhizal fungi. The characterizations of Pisolithus mitochondrial genomes have still been unknown. In the present study, the complete mitogenomes of two Pisolithus species, Pisolithus microcarpus, and Pisolithus tinctorius, were assembled and compared with other Boletales mitogenomes. Both Pisolithus mitogenomes comprised circular DNA molecules with sizes of 43,990 and 44,054 bp, respectively. Comparative mitogenomic analysis showed that the rps3 gene differentiated greatly between Boletales species, and this gene may be subjected to strong pressure of positive selection between some Boletales species. Several plasmid-derived genes and genes with unknown functions were detected in the two Pisolithus mitogenomes, which needs further analysis. The two Pisolithus species show a high degree of collinearity, which may represent the gene arrangement of the ancestors of ectomycorrhizal Boletales species. Frequent intron loss/gain events were detected in Boletales and basidiomycetes, and intron P717 was only detected in P. tinctorius out of the eight Boletales mitogenomes tested. We reconstructed phylogeny of 79 basidiomycetes based on combined mitochondrial gene dataset, and obtained well-supported phylogenetic topologies. This study served as the first report on the mitogenomes of the family Pisolithaceae, which will promote the understanding of the evolution of Pisolithus species.
Collapse
Affiliation(s)
- Peng Wu
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, China
| | - Tian Yao
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yuanhang Ren
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jinghua Ye
- College of Information Science and Engineering, Chengdu University, Chengdu, China
| | - Yuan Qing
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang, China
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Mingying Gui
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
24
|
Deng Y, Wu X, Wen D, Huang H, Chen Y, Mukhtar I, Yue L, Wang L, Wen Z. Intraspecific Mitochondrial DNA Comparison of Mycopathogen Mycogone perniciosa Provides Insight Into Mitochondrial Transfer RNA Introns. PHYTOPATHOLOGY 2021; 111:639-648. [PMID: 32886023 DOI: 10.1094/phyto-07-20-0281-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mycogone perniciosa is the main causative agent of wet bubble disease, which causes severe damage to the production of the cultivated mushroom Agaricus bisporus around the world. Whole-genome sequencing of 12 isolates of M. perniciosa was performed using the Illumina sequencing platform, and the obtained paired-end reads were used to assemble complete mitochondrial genomes. Intraspecific comparisons of conserved protein-coding genes, transfer RNA (tRNA) and ribosomal RNA (rRNA) genes, introns, and intergenic regions were conducted. Five different mitochondrial DNA (mtDNA) haplotypes were detected among the tested isolates, ranging from 89,080 to 93,199 bp in length. All of the mtDNAs contained the same set of 14 protein-coding genes and 2 rRNA and 27 tRNA genes, which shared high sequence similarity. In contrast, the number, insertion sites, and sequences of introns varied greatly among the mtDNAs. Eighteen of 43 intergenic regions differed among the isolates, reflecting 65 single nucleotide polymorphisms, 76 indels, and the gain/loss of nine long fragments. Intraspecific comparison revealed that two introns were located within tRNA genes, which is the first detailed description of mitochondrial tRNA introns. Intronic sequence comparison within the same insertion sites revealed the formation process of two introns, which also illustrated a fast evolutionary rate of introns among M. perniciosa isolates. Based on the intron distribution pattern, a pair of universal primers and four pairs of isolate-specific primers were designed and were used to identify the five mtDNA types. In summary, the rapid gain or loss of mitochondrial introns could be an ideal marker for population genetics analysis.
Collapse
Affiliation(s)
- Youjin Deng
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Wu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Die Wen
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haichen Huang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yilei Chen
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Irum Mukhtar
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Liyun Yue
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li Wang
- Shandong Key Laboratory of Microbiology, College of Plant Protection, Shandong Agricultural University, Taian 271000, China
| | - Zhiqiang Wen
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
25
|
Huang W, Feng H, Tu W, Xiong C, Jin X, Li P, Wang X, Li Q. Comparative Mitogenomic Analysis Reveals Dynamics of Intron Within and Between Tricholoma Species and Phylogeny of Basidiomycota. Front Genet 2021; 12:534871. [PMID: 33659021 PMCID: PMC7917209 DOI: 10.3389/fgene.2021.534871] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/18/2021] [Indexed: 01/28/2023] Open
Abstract
The genus of Tricholoma is a group of important ectomycorrhizal fungi. The overlapping of morphological characteristics often leads to the confusion of Tricholoma species classification. In this study, the mitogenomes of five Tricholoma species were sequenced based on the next-generation sequencing technology, including T. matsutake SCYJ1, T. bakamatsutake, T. terreum, T. flavovirens, and T. saponaceum. These five mitogenomes were all composed of circular DNA molecules, with sizes ranging from 49,480 to 103,090 bp. Intergenic sequences were considered to be the main factor contributing to size variations of Tricholoma mitogenomes. Comparative mitogenomic analysis showed that the introns of the Agaricales mitogenome experienced frequent loss/gain events. In addition, potential gene transfer was detected between the mitochondrial and nuclear genomes of the five species of Tricholoma. Evolutionary analysis showed that the rps3 gene of the Tricholoma species was under positive selection or relaxed selection in the evolutionary process. In addition, large-scale gene rearrangements were detected between some Tricholoma species. Phylogenetic analysis using the Bayesian inference and maximum likelihood methods based on a combined mitochondrial gene set yielded identical and well-supported tree topologies. This study promoted the understanding of the genetics, evolution, and phylogeny of the Tricholoma genus and related species.
Collapse
Affiliation(s)
- Wenli Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Huiyu Feng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Wenying Tu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Chuan Xiong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xin Jin
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Ping Li
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xu Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
26
|
Wai A, Hausner G. The mitochondrial genome of Ophiostoma himal-ulmi and comparison with other fungi causing Dutch elm disease. Can J Microbiol 2021; 67:584-598. [PMID: 33566742 DOI: 10.1139/cjm-2020-0589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The mitochondrial genome of Ophiostoma himal-ulmi, a species endemic to the Western Himalayas and one of the fungi that cause Dutch elm disease, has been sequenced and characterized. The mitochondrial genome was compared with other available genomes for members of the Ophiostomatales, including other agents of Dutch elm disease (Ophiostoma ulmi, Ophiostoma novo-ulmi subspecies novo-ulmi, and Ophiostoma novo-ulmi subspecies americana), and it was observed that gene synteny is highly conserved, and variability among members of the fungi that cause Dutch-elm disease is primarily due to the number of intron insertions. Among the fungi that cause Dutch elm disease that we examined, O. himal-ulmi has the largest mitochondrial genomes (ranging from 94 934 to 111 712 bp), owing to the expansion of the number of introns.
Collapse
Affiliation(s)
- Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
27
|
Zubaer A, Wai A, Patel N, Perillo J, Hausner G. The Mitogenomes of Ophiostoma minus and Ophiostoma piliferum and Comparisons With Other Members of the Ophiostomatales. Front Microbiol 2021; 12:618649. [PMID: 33643245 PMCID: PMC7902536 DOI: 10.3389/fmicb.2021.618649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022] Open
Abstract
Fungi assigned to the Ophiostomatales are of economic concern as many are blue-stain fungi and some are plant pathogens. The mitogenomes of two blue-stain fungi, Ophiostoma minus and Ophiostoma piliferum, were sequenced and compared with currently available mitogenomes for other members of the Ophiostomatales. Species representing various genera within the Ophiostomatales have been examined for gene content, gene order, phylogenetic relationships, and the distribution of mobile elements. Gene synteny is conserved among the Ophiostomatales but some members were missing the atp9 gene. A genome wide intron landscape has been prepared to demonstrate the distribution of the mobile genetic elements (group I and II introns and homing endonucleases) and to provide insight into the evolutionary dynamics of introns among members of this group of fungi. Examples of complex introns or nested introns composed of two or three intron modules have been observed in some species. The size variation among the mitogenomes (from 23.7 kb to about 150 kb) is mostly due to the presence and absence of introns. Members of the genus Sporothrix sensu stricto appear to have the smallest mitogenomes due to loss of introns. The taxonomy of the Ophiostomatales has recently undergone considerable revisions; however, some lineages remain unresolved. The data showed that genera such as Raffaelea appear to be polyphyletic and the separation of Sporothrix sensu stricto from Ophiostoma is justified.
Collapse
Affiliation(s)
- Abdullah Zubaer
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Nikita Patel
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Jordan Perillo
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
28
|
Chen C, Li Q, Fu R, Wang J, Deng G, Chen X, Lu D. Comparative mitochondrial genome analysis reveals intron dynamics and gene rearrangements in two Trametes species. Sci Rep 2021; 11:2569. [PMID: 33510299 PMCID: PMC7843977 DOI: 10.1038/s41598-021-82040-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
Trametes species are efficient wood decomposers that are widespread throughout the world. Mitogenomes have been widely used to understand the phylogeny and evolution of fungi. Up to now, two mitogenomes from the Trametes genus have been revealed. In the present study, the complete mitogenomes of two novel Trametes species, Trametes versicolor and T. coccinea, were assembled and compared with other Polyporales mitogenomes. Both species contained circular DNA molecules, with sizes of 67,318 bp and 99,976 bp, respectively. Comparative mitogenomic analysis indicated that the gene number, length and base composition varied between the four Trametes mitogenomes we tested. In addition, all of the core protein coding genes in Trametes species were identified and subjected to purifying selection. The mitogenome of T. coccinea contained the largest number of introns among the four Trametes species tested, and introns were considered the main factors contributing to size variations of Polyporales. Several novel introns were detected in the Trametes species we assembled, and introns identified in Polyporales were found to undergo frequent loss/gain events. Large-scale gene rearrangements were detected between closely related Trametes species, including gene inversions, insertions, and migrations. A well-supported phylogenetic tree for 77 Basidiomycetes was obtained based on the combined mitochondrial gene set using 2 phylogenetic inference methods. The results showed that mitochondrial genes are effective molecular markers for understanding the phylogeny of Basidiomycetes. This study is the first to report the mitogenome rearrangement and intron dynamics of Trametes species, which shed light on the evolution of Trametes and other related species.
Collapse
Affiliation(s)
- Cheng Chen
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management On Crops in Southwest, Ministry of Agriculture, Chengdu, People's Republic of China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, People's Republic of China
| | - Rongtao Fu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management On Crops in Southwest, Ministry of Agriculture, Chengdu, People's Republic of China
| | - Jian Wang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management On Crops in Southwest, Ministry of Agriculture, Chengdu, People's Republic of China
| | - Guangmin Deng
- Sichuan Academy of Agricultural Sciences, 20 # Jingjusi Rd, Chengdu, 610066, Sichuan, People's Republic of China
| | - Xiaojuan Chen
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management On Crops in Southwest, Ministry of Agriculture, Chengdu, People's Republic of China
| | - Daihua Lu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management On Crops in Southwest, Ministry of Agriculture, Chengdu, People's Republic of China.
- Sichuan Academy of Agricultural Sciences, 20 # Jingjusi Rd, Chengdu, 610066, Sichuan, People's Republic of China.
| |
Collapse
|
29
|
Wu P, Bao Z, Tu W, Li L, Xiong C, Jin X, Li P, Gui M, Huang W, Li Q. The mitogenomes of two saprophytic Boletales species ( Coniophora) reveals intron dynamics and accumulation of plasmid-derived and non-conserved genes. Comput Struct Biotechnol J 2020; 19:401-414. [PMID: 33489009 PMCID: PMC7804350 DOI: 10.1016/j.csbj.2020.12.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 02/02/2023] Open
Abstract
The order Boletales is a group of fungi with complex life styles, which include saprophytic and ectomycorrhizal mushroom-forming fungi. In the present study, the complete mitogenomes of two saprophytic Boletales species, Coniophora olivacea, and C. puteana, were assembled and compared with mitogenomes of ectomycorrhizal Boletales. Both mitogenomes comprised circular DNA molecules with sizes of 78,350 bp and 79,655 bp, respectively. Comparative mitogenomic analysis indicated that the two saprophytic Boletales species contained more plasmid-derived (7 on average) and unknown functional genes (12 on average) than the four ectomycorrhizal Boletales species previously reported. In addition, the core protein coding genes, nad2 and rps3, were found to be subjected to positive selection pressure between some Boletales species. Frequent intron gain/loss events were detected in Boletales and Basidiomycetes, and several novel intron classes were found in two Coniophora species. A total of 33 introns were detected in C. olivacea, and most were found to have undergone contraction in the C. olivacea mitogenome. Mitochondrial genes of Coniophora species were found to have undergone large-scale gene rearrangements, and the accumulation of intra-genomic repeats in the mitogenome was considered as one of the main contributing factors. Based on combined mitochondrial gene sets, we obtained a well-supported phylogenetic tree for 76 Basidiomycetes, demonstrating the utility of mitochondrial gene analysis for inferring Basidiomycetes phylogeny. The study served as the first report on the mitogenomes of the family Coniophorineae, which will help to understand the origin and evolution patterns of Boletales species with complex lifestyles.
Collapse
Affiliation(s)
- Peng Wu
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunan Agricultural University, Kunming, Yunnan, China
| | - Zhijie Bao
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Wenying Tu
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lijiao Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Chuan Xiong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Xin Jin
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Ping Li
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Mingying Gui
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunan Agricultural University, Kunming, Yunnan, China
| | - Wenli Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
30
|
Glare T, Campbell M, Biggs P, Winter D, Durrant A, McKinnon A, Cox M. Mitochondrial evolution in the entomopathogenic fungal genus Beauveria. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 105:e21754. [PMID: 33124702 DOI: 10.1002/arch.21754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Species in the fungal genus Beauveria are pathogens of invertebrates and have been commonly used as the active agent in biopesticides. After many decades with few species described, recent molecular approaches to classification have led to over 25 species now delimited. Little attention has been given to the mitochondrial genomes of Beauveria but better understanding may led to insights into the nature of species and evolution in this important genus. In this study, we sequenced the mitochondrial genomes of four new strains belonging to Beauveria bassiana, Beauveria caledonica and Beauveria malawiensis, and compared them to existing mitochondrial sequences of related fungi. The mitochondrial genomes of Beauveria ranged widely from 28,806 to 44,135 base pairs, with intron insertions accounting for most size variation and up to 39% (B. malawiensis) of the mitochondrial length due to introns in genes. Gene order of the common mitochondrial genes did not vary among the Beauveria sequences, but variation was observed in the number of transfer ribonucleic acid genes. Although phylogenetic analysis using whole mitochondrial genomes showed, unsurprisingly, that B. bassiana isolates were the most closely related to each other, mitochondrial codon usage suggested that some B. bassiana isolates were more similar to B. malawiensis and B. caledonica than the other B. bassiana isolates analyzed.
Collapse
Affiliation(s)
- Travis Glare
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
| | - Matt Campbell
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Patrick Biggs
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - David Winter
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Abigail Durrant
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
| | - Aimee McKinnon
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
| | - Murray Cox
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
31
|
Chen C, Wang J, Li Q, Fu R, Jin X, Huang W, Lu D. Mitogenomes of Two Phallus Mushroom Species Reveal Gene Rearrangement, Intron Dynamics, and Basidiomycete Phylogeny. Front Microbiol 2020; 11:573064. [PMID: 33193177 PMCID: PMC7644776 DOI: 10.3389/fmicb.2020.573064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/05/2020] [Indexed: 11/13/2022] Open
Abstract
Phallus indusiatus and Phallus echinovolvatus are edible bamboo mushrooms with pharmacological properties. We sequenced, assembled, annotated, and compared the mitogenomes of these species. Both mitogenomes were composed of circular DNA molecules, with sizes of 89,139 and 50,098 bp, respectively. Introns were the most important factor in mitogenome size variation within the genus Phallus. Phallus indusiatus, P. echinovolvatus, and Turbinellus floccosus in the subclass Phallomycetidae have conservative gene arrangements. Large-scale gene rearrangements were observed in species representing 42 different genera of Basidiomycetes. A variety of intron position classes were found in the 44 Basidiomycete species analyzed. A novel group II intron from the P. indusiatus mitogenome was compared with other fungus species containing the same intron, and we demonstrated that the insertion sites of the intron had a base preference. Phylogenetic analyses based on combined gene datasets yielded well-supported Bayesian posterior probability (BPP = 1) topologies. This indicated that mitochondrial genes are reliable molecular markers for analyzing the phylogenetic relationships of the Basidiomycetes. This is the first study of the mitogenome of the genus Phallus, and it increases our understanding of the population genetics and evolution of bamboo mushrooms and related species.
Collapse
Affiliation(s)
- Cheng Chen
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China.,Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, China
| | - Jian Wang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China.,Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, China
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Rongtao Fu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China.,Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, China
| | - Xin Jin
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Wenli Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Daihua Lu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China.,Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, China
| |
Collapse
|
32
|
Wang X, Wang Y, Yao W, Shen J, Chen M, Gao M, Ren J, Li Q, Liu N. The 256 kb mitochondrial genome of Clavaria fumosa is the largest among phylum Basidiomycota and is rich in introns and intronic ORFs. IMA Fungus 2020; 11:26. [PMID: 33292749 PMCID: PMC7666478 DOI: 10.1186/s43008-020-00047-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/22/2020] [Indexed: 11/10/2022] Open
Abstract
In the present study, the complete mitogenome of Clavaria fumosa, was sequenced, assembled, and compared. The complete mitogenome of C. fumosa is 256,807 bp in length and is the largest mitogenomes among all Basidiomycota mitogenomes reported. Comparative mitogenomic analysis indicated that the C. fumosa mitogenome contained the most introns and intronic ORFs among all fungal mitogenomes. Large intergenic regions, intronic regions, accumulation of repeat sequences and plasmid-derived genes together promoted the size expansion of the C. fumosa mitogenome. In addition, the rps3 gene was found subjected to positive selection between some Agaricales species. We found frequent intron gain/loss events in Agaricales mitogenomes, and four novel intron classes were detected in the C. fumosa mitogenome. Large-scale gene rearrangements were found occurred in Agaricales species and the C. fumosa mitogenome had a unique gene arrangement which differed from other Agaricales species. Phylogenetic analysis for 76 Basidiomycetes based on combined mitochondrial gene sets indicated that mitochondrial genes could be used as effective molecular markers for reconstructing evolution of Basidiomycota. The study served as the first report on the mitogenomes of the family Clavariaceae, which will promote the understanding of the genetics, evolution and taxonomy of C. fumosa and related species.
Collapse
Affiliation(s)
- Xu Wang
- Present Address: College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Yajie Wang
- Present Address: College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Wen Yao
- Present Address: College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Jinwen Shen
- Present Address: College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Mingyue Chen
- Present Address: College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Ming Gao
- Present Address: College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Jiening Ren
- Present Address: College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, China.
| | - Na Liu
- Present Address: College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
33
|
The 206 kbp mitochondrial genome of Phanerochaete carnosa reveals dynamics of introns, accumulation of repeat sequences and plasmid-derived genes. Int J Biol Macromol 2020; 162:209-219. [DOI: 10.1016/j.ijbiomac.2020.06.142] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 01/14/2023]
|
34
|
Wang X, Jia L, Wang M, Yang H, Chen M, Li X, Liu H, Li Q, Liu N. The complete mitochondrial genome of medicinal fungus Taiwanofungus camphoratus reveals gene rearrangements and intron dynamics of Polyporales. Sci Rep 2020; 10:16500. [PMID: 33020532 PMCID: PMC7536210 DOI: 10.1038/s41598-020-73461-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 09/08/2020] [Indexed: 12/31/2022] Open
Abstract
Taiwanofungus camphoratus is a highly valued medicinal mushroom that is endemic to Taiwan, China. In the present study, the mitogenome of T. camphoratus was assembled and compared with other published Polyporales mitogenomes. The T. camphoratus mitogenome was composed of circular DNA molecules, with a total size of 114,922 bp. Genome collinearity analysis revealed large-scale gene rearrangements between the mitogenomes of Polyporales, and T. camphoratus contained a unique gene order. The number and classes of introns were highly variable in 12 Polyporales species we examined, which proved that numerous intron loss or gain events occurred in the evolution of Polyporales. The Ka/Ks values for most core protein coding genes in Polyporales species were less than 1, indicating that these genes were subject to purifying selection. However, the rps3 gene was found under positive or relaxed selection between some Polyporales species. Phylogenetic analysis based on the combined mitochondrial gene set obtained a well-supported topology, and T. camphoratus was identified as a sister species to Laetiporus sulphureus. This study served as the first report on the mitogenome in the Taiwanofungus genus, which will provide a basis for understanding the phylogeny and evolution of this important fungus.
Collapse
Affiliation(s)
- Xu Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Lihua Jia
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Mingdao Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Hao Yang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Mingyue Chen
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Xiao Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Hanyu Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, China.
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| | - Na Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
35
|
Chen M, Chen N, Wu T, Bian Y, Deng Y, Xu Z. Characterization of Two Mitochondrial Genomes and Gene Expression Analysis Reveal Clues for Variations, Evolution, and Large-Sclerotium Formation in Medical Fungus Wolfiporia cocos. Front Microbiol 2020; 11:1804. [PMID: 32849413 PMCID: PMC7417453 DOI: 10.3389/fmicb.2020.01804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/09/2020] [Indexed: 12/05/2022] Open
Abstract
Wolfiporia cocos, a precious mushroom with a long history as an edible food and Asian traditional medicine, remains unclear in the genetic mechanism underlying the formation of large sclerotia. Here, two complete circular mitogenomes (BL16, 135,686 bp and MD-104 SS10, 124,842 bp, respectively) were presented in detail first. The salient features in the mitogenomes of W. cocos include an intron in the tRNA (trnQ-UUG2), and an obvious gene rearrangement identified between the two mitogenomes from the widely geographically separated W. cocos strains. Genome comparison and phylogenetic analyses reveal some variations and evolutional characteristics in W. cocos. Whether the mitochondrion is functional in W. cocos sclerotium development was investigated by analyzing the mitogenome synteny of 10 sclerotium-forming fungi and mitochondrial gene expression patterns in different W. cocos sclerotium-developmental stages. Three common homologous genes identified across ten sclerotium-forming fungi were also found to exhibit significant differential expression levels during W. cocos sclerotium development. Most of the mitogenomic genes are not expressed in the mycelial stage but highly expressed in the sclerotium initial or developmental stage. These results indicate that some of mitochondrial genes may play a role in the development of sclerotium in W. cocos, which needs to be further elucidated in future studies. This study will stimulate new ideas on cytoplasmic inheritance of W. cocos and facilitate the research on the role of mitochondria in large sclerotium formation.
Collapse
Affiliation(s)
- Mengting Chen
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Naiyao Chen
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ting Wu
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yinbing Bian
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Youjin Deng
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhangyi Xu
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
36
|
Ye J, Cheng J, Ren Y, Liao W, Li Q. The First Mitochondrial Genome for Geastrales ( Sphaerobolus stellatus) Reveals Intron Dynamics and Large-Scale Gene Rearrangements of Basidiomycota. Front Microbiol 2020; 11:1970. [PMID: 32849488 PMCID: PMC7432440 DOI: 10.3389/fmicb.2020.01970] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/24/2020] [Indexed: 12/19/2022] Open
Abstract
In this study, the mitogenome of artillery fungus, Sphaerobolus stellatus, was assembled and compared with other Basidiomycota mitogenomes. The Sphaerobolus stellatus mitogenome was composed of circular DNA molecules, with a total size of 152,722 bp. Accumulation of intergenic and intronic sequences contributed to the Sphaerobolus stellatus mitogenome becoming the fourth largest mitogenome among Basidiomycota. We detected large-scale gene rearrangements in Basidiomycota mitogenomes, and the Sphaerobolus stellatus mitogenome contains a unique gene order. The quantity and position classes of intron varied between 75 Basidiomycota species we tested, indicating frequent intron loss/gain events occurred in the evolution of Basidiomycota. A novel intron position classes (P1281) was detected in the Sphaerobolus stellatus mitogenome, without any homologous introns from other Basidiomycota species. A pair of fragments with a total length of 9.12 kb in both the nuclear and mitochondrial genomes of Sphaerobolus stellatus was detected, indicating possible gene transferring events. Phylogenetic analysis based on the combined mitochondrial gene set obtained well-supported tree topologies (Bayesian posterior probabilities ≥ 0.99; bootstrap values ≥98). This study served as the first report on the mitogenome from the order Geastrales, which will promote the understanding of the phylogeny, population genetics, and evolution of the artillery fungus, Sphaerobolus stellatus.
Collapse
Affiliation(s)
- Jinghua Ye
- College of Information Science & Technology, Chengdu University, Chengdu, China
| | - Jie Cheng
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yuanhang Ren
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Wenlong Liao
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qiang Li
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
37
|
Li Q, Ren Y, Xiang D, Shi X, Zhao J, Peng L, Zhao G. Comparative mitogenome analysis of two ectomycorrhizal fungi ( Paxillus) reveals gene rearrangement, intron dynamics, and phylogeny of basidiomycetes. IMA Fungus 2020; 11:12. [PMID: 32670777 PMCID: PMC7333402 DOI: 10.1186/s43008-020-00038-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
In this study, the mitogenomes of two Paxillus species were assembled, annotated and compared. The two mitogenomes of Paxillus involutus and P. rubicundulus comprised circular DNA molecules, with the size of 39,109 bp and 41,061 bp, respectively. Evolutionary analysis revealed that the nad4L gene had undergone strong positive selection in the two Paxillus species. In addition, 10.64 and 36.50% of the repetitive sequences were detected in the mitogenomes of P. involutus and P. rubicundulus, respectively, which might transfer between mitochondrial and nuclear genomes. Large-scale gene rearrangements and frequent intron gain/loss events were detected in 61 basidiomycete species, which revealed large variations in mitochondrial organization and size in Basidiomycota. In addition, the insertion sites of the basidiomycete introns were found to have a base preference. Phylogenetic analysis of the combined mitochondrial gene set gave identical and well-supported tree topologies, indicating that mitochondrial genes were reliable molecular markers for analyzing the phylogenetic relationships of Basidiomycota. This study is the first report on the mitogenomes of Paxillus, which will promote a better understanding of their contrasted ecological strategies, molecular evolution and phylogeny of these important ectomycorrhizal fungi and related basidiomycete species.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106 Sichuan China
| | - Yuanhang Ren
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106 Sichuan China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106 Sichuan China
| | - Xiaodong Shi
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106 Sichuan China
| | - Jianglin Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106 Sichuan China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106 Sichuan China
- Present address: Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, 2025 # Chengluo Avenue, Chengdu, 610106 Sichuan China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106 Sichuan China
| |
Collapse
|
38
|
Li Q, He X, Ren Y, Xiong C, Jin X, Peng L, Huang W. Comparative Mitogenome Analysis Reveals Mitochondrial Genome Differentiation in Ectomycorrhizal and Asymbiotic Amanita Species. Front Microbiol 2020; 11:1382. [PMID: 32636830 PMCID: PMC7318869 DOI: 10.3389/fmicb.2020.01382] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/28/2020] [Indexed: 11/19/2022] Open
Abstract
In this present study, we assembled and analyzed the mitogenomes of two asymbiotic and six ectomycorrhizal Amanita species based on next-generation sequencing data. The size of the eight Amanita mitogenomes ranged from 37,341 to 137,428 bp, and we considered introns to be one of the main factors contributing to the size variation of Amanita. The introns of the cox1 gene experienced frequent gain/loss events in Amanita; and the intron position class cox1P386 was lost in the six ectomycorrhizal Amanita species. In addition, ectomycorrhizal Amanita species had more repetitive sequences and fewer intergenic sequences than asymbiotic Amanita species in their mitogenomes. Large-scale gene rearrangements were detected in the Amanita species we tested, including gene displacements and inversions. On the basis of the combined mitochondrial gene set, we reconstructed the phylogenetic relationships of 66 Basidiomycetes. The six ectomycorrhizal Amanita species were of single origin, and the two saprophytic Amanita species formed two distinct clades. This study is the first to elucidate the functions of the mitogenome in the evolution and ecological adaptation of Amanita species.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiaohui He
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Yuanhang Ren
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Chuan Xiong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xin Jin
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Wenli Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
39
|
Medina R, Franco MEE, Bartel LC, Martinez Alcántara V, Saparrat MCN, Balatti PA. Fungal Mitogenomes: Relevant Features to Planning Plant Disease Management. Front Microbiol 2020; 11:978. [PMID: 32547508 PMCID: PMC7272585 DOI: 10.3389/fmicb.2020.00978] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/23/2020] [Indexed: 01/18/2023] Open
Abstract
Mitochondrial genomes (mt-genomes) are characterized by a distinct codon usage and their autonomous replication. Mt-genomes encode highly conserved genes (mt-genes), like proteins involved in electron transport and oxidative phosphorylation but they also carry highly variable regions that are in part responsible for their high plasticity. The degree of conservation of their genes is such that they allow the establishment of phylogenetic relationships even across distantly related species. Here, we describe the mechanisms that generate changes along mt-genomes, which play key roles at enlarging the ability of fungi to adapt to changing environments. Within mt-genomes of fungal pathogens, there are dispensable as well as indispensable genes for survival, virulence and/or pathogenicity. We also describe the different complexes or mechanisms targeted by fungicides, thus addressing a relevant issue regarding disease management. Despite the controversial origin and evolution of fungal mt-genomes, the intrinsic mechanisms and molecular biology involved in their evolution will help to understand, at the molecular level, the strategies for fungal disease management.
Collapse
Affiliation(s)
- Rocio Medina
- Centro de Investigaciones de Fitopatología, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIDEFI-CICPBA), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | | | - Laura Cecilia Bartel
- Centro de Investigaciones de Fitopatología, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIDEFI-CICPBA), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | - Virginia Martinez Alcántara
- Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mario Carlos Nazareno Saparrat
- Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
- Instituto de Fisiología Vegetal (INFIVE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata, La Plata, Argentina
| | - Pedro Alberto Balatti
- Centro de Investigaciones de Fitopatología, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIDEFI-CICPBA), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
40
|
Zumkeller S, Gerke P, Knoop V. A functional twintron, 'zombie' twintrons and a hypermobile group II intron invading itself in plant mitochondria. Nucleic Acids Res 2020; 48:2661-2675. [PMID: 31915815 PMCID: PMC7049729 DOI: 10.1093/nar/gkz1194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/26/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
The occurrence of group II introns in plant mitochondrial genomes is strikingly different between the six major land plant clades, contrasting their highly conserved counterparts in chloroplast DNA. Their present distribution likely reflects numerous ancient intron gains and losses during early plant evolution before the emergence of seed plants. As a novelty for plant organelles, we here report on five cases of twintrons, introns-within-introns, in the mitogenomes of lycophytes and hornworts. An internal group II intron interrupts an intron-borne maturase of an atp9 intron in Lycopodiaceae, whose splicing precedes splicing of the external intron. An invasive, hypermobile group II intron in cox1, has conquered nine further locations including a previously overlooked sdh3 intron and, most surprisingly, also itself. In those cases, splicing of the external introns does not depend on splicing of the internal introns. Similar cases are identified in the mtDNAs of hornworts. Although disrupting a group I intron-encoded protein in one case, we could not detect splicing of the internal group II intron in this ‘mixed’ group I/II twintron. We suggest the name ‘zombie’ twintrons (half-dead, half-alive) for such cases where splicing of external introns does not depend any more on prior splicing of fossilized internal introns.
Collapse
Affiliation(s)
- Simon Zumkeller
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Philipp Gerke
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Volker Knoop
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115 Bonn, Germany
| |
Collapse
|
41
|
Song N, Geng Y, Li X. The Mitochondrial Genome of the Phytopathogenic Fungus Bipolaris sorokiniana and the Utility of Mitochondrial Genome to Infer Phylogeny of Dothideomycetes. Front Microbiol 2020; 11:863. [PMID: 32457727 PMCID: PMC7225605 DOI: 10.3389/fmicb.2020.00863] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/09/2020] [Indexed: 12/01/2022] Open
Abstract
A number of species in Bipolaris are important plant pathogens. Due to a limited number of synapomorphic characters, it is difficult to perform species identification and to estimate phylogeny of Bipolaris based solely on morphology. In this study, we sequenced the complete mitochondrial genome of Bipolaris sorokiniana, and presented the detailed annotation of the genome. The B. sorokiniana mitochondrial genome is 137,775 bp long, and contains two ribosomal RNA genes, 12 core protein-coding genes, 38 tRNA genes. In addition, two ribosomal protein genes (rps3 gene and rps5 gene) and the fungal mitochondrial RNase P gene (rnpB) are identified. The large genome size is mostly determined by the presence of numerous intronic and intergenic regions. A total of 28 introns are inserted in eight core protein-coding genes. Together with the published mitochondrial genome sequences, we conducted a preliminary phylogenetic inference of Dothideomycetes under various datasets and substitution models. The monophyly of Capnodiales, Botryosphaeriales and Pleosporales are consistently supported in all analyses. The Venturiaceae forms an independent lineage, with a distant phylogenetic relationship to Pleosporales. At the family level, the Mycosphaerellaceae, Botryosphaeriaceae. Phaeosphaeriaceae, and Pleosporaceae are recognized in the majority of trees.
Collapse
Affiliation(s)
- Nan Song
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yuehua Geng
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | | |
Collapse
|
42
|
Hu C, Wang S, Huang B, Liu H, Xu L, Zhigang Hu, Liu Y. The complete mitochondrial genome sequence of Scolopendra mutilans L. Koch, 1878 (Scolopendromorpha, Scolopendridae), with a comparative analysis of other centipede genomes. Zookeys 2020; 925:73-88. [PMID: 32390741 PMCID: PMC7197263 DOI: 10.3897/zookeys.925.47820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Scolopendramutilans L. Koch, 1878 is an important Chinese animal with thousands of years of medicinal history. However, the genomic information of this species is limited, which hinders its further application. Here, the complete mitochondrial genome (mitogenome) of S.mutilans was sequenced and assembled by next-generation sequencing. The genome is 15,011 bp in length, consisting of 13 protein-coding genes (PCGs), 14 tRNA genes, and two rRNA genes. Most PCGs start with the ATN initiation codon, and all PCGs have the conventional stop codons TAA and TAG. The S.mutilans mitogenome revealed nine simple sequence repeats (SSRs), and an obviously lower GC content compared with other seven centipede mitogenomes previously sequenced. After analysis of homologous regions between the eight centipede mitogenomes, the S.mutilans mitogenome further showed clear genomic rearrangements. The phylogenetic analysis of eight centipedes using 13 conserved PCG genes was finally performed. The phylogenetic reconstructions showed Scutigeromorpha as a separate group, and Scolopendromorpha in a sister-group relationship with Lithobiomorpha and Geophilomorpha. Collectively, the S.mutilans mitogenome provided new genomic resources, which will improve its medicinal research and applications in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhigang Hu
- College of Pharmacy.,Hubei University of Chinese Medicine, No. 1 Huangjiahu West Road, Hongshan District, Wuhan, China
| | | |
Collapse
|
43
|
Lee HH, Ke HM, Lin CYI, Lee TJ, Chung CL, Tsai IJ. Evidence of Extensive Intraspecific Noncoding Reshuffling in a 169-kb Mitochondrial Genome of a Basidiomycetous Fungus. Genome Biol Evol 2020; 11:2774-2788. [PMID: 31418013 PMCID: PMC6786477 DOI: 10.1093/gbe/evz181] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2019] [Indexed: 12/19/2022] Open
Abstract
Comparative genomics of fungal mitochondrial genomes (mitogenomes) have revealed a remarkable pattern of rearrangement between and within major phyla owing to horizontal gene transfer and recombination. The role of recombination was exemplified at a finer evolutionary time scale in basidiomycetes group of fungi as they display a diversity of mitochondrial DNA inheritance patterns. Here, we assembled mitogenomes of six species from the Hymenochaetales order of basidiomycetes and examined 59 mitogenomes from 2 genetic lineages of Phellinus noxius. Gene order is largely collinear, while intergene regions are major determinants of mitogenome size variation. Substantial sequence divergence was found in shared introns consistent with high horizontal gene transfer frequency observed in yeasts, but we also identified a rare case where an intron was retained in five species since speciation. In contrast to the hyperdiversity observed in nuclear genomes of Phellinus noxius, mitogenomes’ intraspecific polymorphisms at protein-coding sequences are extremely low. Phylogeny network based on introns revealed turnover as well as exchange of introns between two lineages. Strikingly, some strains harbor a mosaic origin of introns from both lineages. Analysis of intergenic sequence indicated substantial differences between and within lineages, and an expansion may be ongoing as a result of exchange between distal intergenes. These findings suggest that the evolution in mitochondrial DNAs is usually lineage specific but chimeric mitotypes are frequently observed, thus capturing the possible evolutionary processes shaping mitogenomes in a basidiomycete. The large mitogenome sizes reported in various basidiomycetes appear to be a result of interspecific reshuffling of intergenes.
Collapse
Affiliation(s)
- Hsin-Han Lee
- Biodiversity Research Center, Academia Sinica, Taipei City, Taiwan
| | - Huei-Mien Ke
- Biodiversity Research Center, Academia Sinica, Taipei City, Taiwan
| | - Chan-Yi Ivy Lin
- Biodiversity Research Center, Academia Sinica, Taipei City, Taiwan
| | - Tracy J Lee
- Biodiversity Research Center, Academia Sinica, Taipei City, Taiwan.,Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei City, Taiwan.,Department of Life Science, National Taiwan Normal University, Taipei City, Taiwan
| | - Chia-Lin Chung
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei City, Taiwan
| | - Isheng J Tsai
- Biodiversity Research Center, Academia Sinica, Taipei City, Taiwan
| |
Collapse
|
44
|
Yang CT, Vidal-Diez de Ulzurrun G, Gonçalves AP, Lin HC, Chang CW, Huang TY, Chen SA, Lai CK, Tsai IJ, Schroeder FC, Stajich JE, Hsueh YP. Natural diversity in the predatory behavior facilitates the establishment of a robust model strain for nematode-trapping fungi. Proc Natl Acad Sci U S A 2020; 117:6762-6770. [PMID: 32161129 PMCID: PMC7104180 DOI: 10.1073/pnas.1919726117] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nematode-trapping fungi (NTF) are a group of specialized microbial predators that consume nematodes when food sources are limited. Predation is initiated when conserved nematode ascaroside pheromones are sensed, followed by the development of complex trapping devices. To gain insights into the coevolution of this interkingdom predator-prey relationship, we investigated natural populations of nematodes and NTF that we found to be ubiquitous in soils. Arthrobotrys species were sympatric with various nematode species and behaved as generalist predators. The ability to sense prey among wild isolates of Arthrobotrys oligospora varied greatly, as determined by the number of traps after exposure to Caenorhabditis elegans While some strains were highly sensitive to C. elegans and the nematode pheromone ascarosides, others responded only weakly. Furthermore, strains that were highly sensitive to the nematode prey also developed traps faster. The polymorphic nature of trap formation correlated with competency in prey killing, as well as with the phylogeny of A. oligospora natural strains, calculated after assembly and annotation of the genomes of 20 isolates. A chromosome-level genome assembly and annotation were established for one of the most sensitive wild isolates, and deletion of the only G-protein β-subunit-encoding gene of A. oligospora nearly abolished trap formation. In summary, our study establishes a highly responsive A. oligospora wild isolate as a model strain for the study of fungus-nematode interactions and demonstrates that trap formation is a fitness character in generalist predators of the nematode-trapping fungus family.
Collapse
Affiliation(s)
- Ching-Ting Yang
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei 115, Taiwan
| | | | - A Pedro Gonçalves
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei 115, Taiwan
| | - Hung-Che Lin
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei 115, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 106, Taiwan
| | - Ching-Wen Chang
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei 115, Taiwan
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan
| | - Tsung-Yu Huang
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei 115, Taiwan
| | - Sheng-An Chen
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei 115, Taiwan
| | - Cheng-Kuo Lai
- Biodiversity Research Center, Academia Sinica, Nangang, Taipei 115, Taiwan
| | - Isheng J Tsai
- Biodiversity Research Center, Academia Sinica, Nangang, Taipei 115, Taiwan
| | - Frank C Schroeder
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521
| | - Yen-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei 115, Taiwan;
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 106, Taiwan
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
45
|
Cloning and functional characterization of gpd and α-tubulin promoters from Annulohypoxylon stygium, a companion fungus of Tremella fuciformis. MYCOSCIENCE 2020. [DOI: 10.1016/j.myc.2019.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Liu W, Cai Y, Zhang Q, Chen L, Shu F, Ma X, Bian Y. The mitochondrial genome of Morchella importuna (272.2 kb) is the largest among fungi and contains numerous introns, mitochondrial non-conserved open reading frames and repetitive sequences. Int J Biol Macromol 2019; 143:373-381. [PMID: 31830457 DOI: 10.1016/j.ijbiomac.2019.12.056] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 12/11/2022]
Abstract
The complete mitochondrial genome of Morchella importuna, the famous edible and medicinal mushroom, was assembled as a 272,238 bp single circular dsDNA. As the largest mitogenome among fungi, it exhibits several distinct characteristics. The mitogenome of M. importuna encoded 14 core conserved mitochondrial protein-coding genes and 151 mitochondrial non-conserved open reading frames (ncORFs) were predicted, of which 61 were annotated as homing endonuclease genes, and 108 were confirmed to be expressed during the vegetative growth stages of M. importuna. In addition, 34 introns were identified in seven core genes (cob, cox1, cox2, cox3, nad1, nad4 and nad5) and two rRNA genes (rrnS and rrnL) with a length from 383 bp to 7453 bp, and eight large introns with a length range of 2340 bp to 7453 bp contained multiple intronic mtORFs. Moreover, 34 group I (IA, IB, IC1, IC2, ID and derived group I introns) and four group II intron domains were identified for the 34 introns, including five hybrid ones. Furthermore, the M. importuna mitogenome showed the presence of about 18.7% mitogenomic interspersed repeats. These and the aforementioned ncORFs and introns, contributed to the enlarged size of the mitogenome.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingli Cai
- Institute of Vegetable, Wuhan Academy of Agricultural Sciences, Wuhan 430070, China
| | - Qianqian Zhang
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lianfu Chen
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Shu
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaolong Ma
- Institute of Vegetable, Wuhan Academy of Agricultural Sciences, Wuhan 430070, China
| | - Yinbing Bian
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
47
|
Zubaer A, Wai A, Hausner G. The fungal mitochondrial Nad5 pan-genic intron landscape. Mitochondrial DNA A DNA Mapp Seq Anal 2019; 30:835-842. [PMID: 31698975 DOI: 10.1080/24701394.2019.1687691] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An intron landscape was prepared for the fungal mitochondrial nad5 gene. A hundred and eighty-eight fungal species were examined and a total of 265 introns were noted to be located in 29 intron insertion sites within the examined nad5 genes. Two hundred and sixty-three introns could be classified as group I types and two group II introns were noted. One additional group II intron module was identified nested within a composite group I intron. Based on features related to RNA secondary structures, introns can be classified into different subtypes and it was observed that intron insertion-sites are biased towards phase 0 and they appear to be specific to an intron type. Intron landscapes could be used as a guide map to predict the location of fungal mtDNA mobile introns, which are composite elements that include a ribozyme component and in some instances open reading frames encoding homing endonucleases or reverse transcriptases and all of these have applications in biotechnology.
Collapse
Affiliation(s)
- Abdullah Zubaer
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
48
|
Li Q, Yang L, Xiang D, Wan Y, Wu Q, Huang W, Zhao G. The complete mitochondrial genomes of two model ectomycorrhizal fungi (Laccaria): features, intron dynamics and phylogenetic implications. Int J Biol Macromol 2019; 145:974-984. [PMID: 31669472 DOI: 10.1016/j.ijbiomac.2019.09.188] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/10/2019] [Accepted: 09/20/2019] [Indexed: 10/25/2022]
Abstract
Laccaria amethystine and L. bicolor have served as model species for studying the life history and genetics of ectomycorrhizal fungi. However, the characterizations and variations of their mitogenomes are still unknown. In the present study, the mitogenomes of the two Laccaria species were assembled, annotated, and compared. The two mitogenomes of L. amethystine and L. bicolor comprised circular DNA molecules, with the sizes of 65,156 bp and 95,304 bp, respectively. Genome collinearity analysis revealed large-scale gene rearrangements between the two Laccaria species. Comparative mitogenome analysis indicated the introns of cox1 genes in Agaricales experienced frequent lost/gain eveants, which promoted the organization and size variations in Agaricales mitogenomes. Evolutionary analysis indicated the core protein-coding genes in the two mitogenomes were subject to strong pressure of purifying selection. Phylogenetic analysis using the Bayesian inference (BI) and Maximum likelihood (ML) methods based on a combined mitochondrial gene set resulted in identical and well-supported tree topologies, wherein the two Laccaria species were most closely related to Coprinopsis cinerea. This study severed as the first study on the mitogenomes of Laccaria species, which promoted a comprehensive understanding of the genetics and evolution of the model ectomycorrhizal fungi.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, Sichuan, China; Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Luxi Yang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Wenli Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China.
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
| |
Collapse
|
49
|
Li Q, Ren Y, Shi X, Peng L, Zhao J, Song Y, Zhao G. Comparative Mitochondrial Genome Analysis of Two Ectomycorrhizal Fungi ( Rhizopogon) Reveals Dynamic Changes of Intron and Phylogenetic Relationships of the Subphylum Agaricomycotina. Int J Mol Sci 2019; 20:E5167. [PMID: 31635252 PMCID: PMC6829451 DOI: 10.3390/ijms20205167] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/12/2019] [Accepted: 10/17/2019] [Indexed: 01/12/2023] Open
Abstract
In the present study, we assembled and compared two mitogenomes from the Rhizopogon genus. The two mitogenomes of R. salebrosus and R. vinicolor comprised circular DNA molecules, with the sizes of 66,704 bp and 77,109 bp, respectively. Comparative mitogenome analysis indicated that the length and base composition of protein coding genes (PCGs), rRNA genes and tRNA genes varied between the two species. Large fragments aligned between the mitochondrial and nuclear genomes of both R. salebrosus (43.41 kb) and R. vinicolor (12.83 kb) indicated that genetic transfer between mitochondrial and nuclear genomes has occurred over evolutionary time of Rhizopogon species. Intronic regions were found to be the main factors contributing to mitogenome expansion in R. vinicolor. Variations in the number and type of introns in the two mitogenomes indicated that frequent intron loss/gain events occurred during the evolution of Rhizopogon species. Phylogenetic analyses based on Bayesian inference (BI) and Maximum likelihood (ML) methods using a combined mitochondrial gene set yielded identical and well-supported tree topologies, wherein Rhizopogon species showed close relationships with Agaricales species. This is the first study of mitogenomes within the genus Rhizopogon, and it provides a basis for understanding the evolution and differentiation of mitogenomes from the ectomycorrhizal fungal genus.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Yuanhang Ren
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Xiaodong Shi
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Jianglin Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Yu Song
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China.
| |
Collapse
|
50
|
Comparative transcriptomic analysis identified differentially expressed genes and pathways involved in the interaction between Tremella fuciformis and Annulohypoxylon stygium. Antonie van Leeuwenhoek 2019; 112:1675-1689. [PMID: 31263999 DOI: 10.1007/s10482-019-01294-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/22/2019] [Indexed: 01/24/2023]
Abstract
Tremella fuciformis is an edible and medicinal white jelly mushroom. It has a life cycle that interacts with its companion fungus Annulohypoxylon stygium, both in natural conditions and artificial cultivation. RNA sequencing (RNA-Seq) was used to study the interaction between T. fuciformis and A. stygium by constructing 5 libraries, including the individual T. fuciformis mycelium (1), the T. fuciformis mycelium after interaction with A. stygium (2), the dual mycelia after interaction (3), the A. stygium mycelium after interaction with T. fuciformis (4), and the individual A. stygium mycelium (5). 33.4 G data and 46,871 Unigenes were generated from de novo splicing. For identification of differentially expressed genes (DEGs) related to interaction, we analyzed the expression data of DEGs1-vs-2 ∩ DEGs1-vs-3, and DEGs5-vs-4 ∩ DEGs5-vs-3. DEGs1-vs-2 ∩ DEGs1-vs-3, and DEGs5-vs-4 ∩ DEGs5-vs-3 data showed 614 DEGs and 1537 DEGs, respectively. The 614 DEGs for T. fuciformis and 1537 DEGs for A. stygium were analyzed by GO annotation and were assigned to biology process, cell composition, and molecular functions. The DEGs were used to match the KEGG database. In T. fuciformis, the pathways are primarily enriched various amino acids metabolism, pentose and glucuronate interconversions. In A. stygium, the pathways are primarily enriched in the biosynthesis of secondary metabolites, biosynthesis of antibiotics, starch and sucrose metabolism. The expression patterns of DEGs determined by qRT-PCR were consistent with those obtained by RNA-Seq, thus validating the reliability of our RNA-Seq data. Future studies of the functions of these interesting genes will be helpful to understand the mechanisms by which T. fuciformis interacts with A. stygium. This will also provide a reference for other research on interacting microorganisms.
Collapse
|