1
|
Sørensen AN, Woudstra C, Kalmar D, Poppeliers J, Lavigne R, Sørensen MCH, Brøndsted L. The branched receptor-binding complex of Ackermannviridae phages promotes adaptive host recognition. iScience 2024; 27:110813. [PMID: 39310758 PMCID: PMC11414711 DOI: 10.1016/j.isci.2024.110813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/02/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Bacteriophages can encode multiple receptor-binding proteins, allowing them to recognize diverse receptors for infecting different strains. Ackermannviridae phages recognize various polysaccharides as receptors by encoding multiple tail spike proteins (TSPs), forming a branched complex. We aimed to mimic the evolution of the TSP complex by studying the acquisition of TSPs without disrupting the complex's functionality. Using kuttervirus S117 as a backbone, we demonstrated that acquiring tsp genes from Kuttervirus and Agtrevirus phages within the Ackermannviridae family led to altered host recognition. A fifth TSP was designed to interact with the branched complex and expand host recognition even further. Interestingly, the acquisition of tsp5 resulted in a recombination event between tsp4 and tsp5 or deletion of tsp3 and truncation of tsp4 genes. Our study provides insight into the development of the branched TSP complex, enabling Ackermannviridae phages to adapt to different hosts.
Collapse
Affiliation(s)
- Anders Nørgaard Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Cedric Woudstra
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Dorottya Kalmar
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Jorien Poppeliers
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 Box 2462, 3001 Heverlee, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 Box 2462, 3001 Heverlee, Belgium
| | | | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| |
Collapse
|
2
|
Sørensen AN, Brøndsted L. Renewed insights into Ackermannviridae phage biology and applications. NPJ VIRUSES 2024; 2:37. [PMID: 40295767 PMCID: PMC11721090 DOI: 10.1038/s44298-024-00046-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/10/2024] [Indexed: 04/30/2025]
Abstract
The Ackermannviridae family was established in 2017, containing phages previously classified within the Myoviridae family under the Viunalikevirus genus. Ackermannviridae phages have been increasingly studied due to their broad range of hosts among Enterobacteriaceae, and currently, 174 complete genomes are available on NCBI. Instrumental for their wide host infectivity, Ackermannviridae phages display a branched complex of multiple Tail Spike Proteins (TSPs). These TSPs recognize diverse surface polysaccharide receptors, allowing the phages to target strains with distinct lipopolysaccharides or capsular polysaccharides. This review gives an updated overview of the taxonomy and hosts of the expanding Ackermannviridae family with significant emphasis on recent advances in structural and computational biology for elucidating TSP diversity, structural domains, and assembly of the branched TSP complex. Furthermore, we explore the potential of engineering Ackermannviridae phages and discuss the challenges of using transducing wildtype phages for biocontrol. Finally, this review identifies bottlenecks hindering further advances in understanding Ackermannviridae phage biology and applications.
Collapse
Affiliation(s)
- Anders Nørgaard Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|
3
|
Ranta K, Skurnik M, Kiljunen S. fENko-Kae01 is a flagellum-specific jumbo phage infecting Klebsiella aerogenes. BMC Microbiol 2024; 24:234. [PMID: 38951769 PMCID: PMC11218385 DOI: 10.1186/s12866-024-03387-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Klebsiella aerogenes is an opportunistic pathogen that causes a wide variety of infections. Due to the rising problem of antibiotic resistance, novel antibiotics and strategies to combat bacterial infections are needed. Host-specific bacteriophages are natural enemies of bacteria and can be used in phage therapy as an alternative form of treatment against bacterial infections. Jumbo phages are defined as phages with genomes larger than 200 kb. Relatively few studies have been done on jumbo phages compared to smaller phages. RESULTS A novel phage, fENko-Kae01, was isolated from a commercial phage cocktail. Genomic analysis revealed that fENko-Kae01 is a lytic jumbo phage with a 360 kb genome encoding 578 predicted genes. No highly similar phage genomes were identified and fENko-Kae01 may be a completely new genus representative. No known genes associated with lysogenic life cycle, bacterial virulence, or antibiotic resistance were identified. The phage had myovirus morphology and a narrow host range. Phage resistant bacterial mutants emerged under phage selection. Whole genome sequencing revealed that the biogenesis of the flagellum was affected in four mutants and the lack of functional flagellum was confirmed in motility assays. Furthermore, phage fENKo-Kae01 failed to adsorb on the non-motile mutants indicating that the bacterial flagellum is the phage-binding receptor. CONCLUSIONS fENko-Kae01 is a novel jumbo bacteriophage that is considered safe for phage therapy. fENko-Kae01 uses the flagellum as the phage-binding receptor and may represent a completely novel genus.
Collapse
Affiliation(s)
- Kira Ranta
- HUS Diagnostic Center, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Human Microbiome Research Program, Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikael Skurnik
- Human Microbiome Research Program, Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Saija Kiljunen
- Human Microbiome Research Program, Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
4
|
Nazir A, Ali A, Qing H, Tong Y. Emerging Aspects of Jumbo Bacteriophages. Infect Drug Resist 2021; 14:5041-5055. [PMID: 34876823 PMCID: PMC8643167 DOI: 10.2147/idr.s330560] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/30/2021] [Indexed: 01/21/2023] Open
Abstract
The bacteriophages have been explored at a huge scale as a model system for their applications in many biological-related fields. Jumbo phages with a large genome size from 200 to 500 kbp were not previously assigned a great value, and characterized by complex structures coupled with large virions with a wide variety of hosts. The origin of most of the jumbo phages was not well understood; however, many other prominent features have been discovered recently. In the current review, we strive to unearth the most advanced characteristics of jumbo phages, particularly their significance and structural organization that holds immense value to the viral life cycle. The unique characteristics of jumbo phages are the basis of variations in different types of phages concerning their organization at the genomic level, virion structure, evolution, and progeny propagation. The presence of tRNA and additional translation-related genes along with chaperonin genes mark the ability of these phages for being independent of host molecular machinery enabling them to have wide host options. A large number of jumbo phages have been isolated from various sources through advanced standard screening methods. The current review has summarized the available data on jumbo phages and discussed the genome orientation of jumbo phages, translational machinery, diversity and evolution of jumbo phages. In the studies conducted, jumbo phages possessed special additional genes that helps to reduce the dependence of jumbo phages on their hosts. Furthermore, their genomes might have evolved from smaller genome phages.
Collapse
Affiliation(s)
- Amina Nazir
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, People’s Republic of China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Azam Ali
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, People’s Republic of China
| | - Yigang Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Sørensen AN, Woudstra C, Sørensen MCH, Brøndsted L. Subtypes of tail spike proteins predicts the host range of Ackermannviridae phages. Comput Struct Biotechnol J 2021; 19:4854-4867. [PMID: 34527194 PMCID: PMC8432352 DOI: 10.1016/j.csbj.2021.08.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 12/01/2022] Open
Abstract
Phages belonging to the Ackermannviridae family encode up to four tail spike proteins (TSPs), each recognizing a specific receptor of their bacterial hosts. Here, we determined the TSPs diversity of 99 Ackermannviridae phages by performing a comprehensive in silico analysis. Based on sequence diversity, we assigned all TSPs into distinctive subtypes of TSP1, TSP2, TSP3 and TSP4, and found each TSP subtype to be specifically associated with the genera (Kuttervirus, Agtrevirus, Limestonevirus, Taipeivirus) of the Ackermannviridae family. Further analysis showed that the N-terminal XD1 and XD2 domains in TSP2 and TSP4, hinging the four TSPs together, are preserved. In contrast, the C-terminal receptor binding modules were only conserved within TSP subtypes, except for some Kuttervirus TSP1s and TSP3s that were similar to specific TSP4s. A conserved motif in TSP1, TSP3 and TSP4 of Kuttervirus phages may allow recombination between receptor binding modules, thus altering host recognition. The receptors for numerous uncharacterized phages expressing TSPs in the same subtypes were predicted using previous host range data. To validate our predictions, we experimentally determined the host recognition of three of the four TSPs expressed by kuttervirus S117. We confirmed that S117 TSP1 and TSP2 bind to their predicted host receptors, and identified the receptor for TSP3, which is shared by 51 other Kuttervirus phages. Kuttervirus phages were thus shown encode a vast genetic diversity of potentially exchangeable TSPs influencing host recognition. Overall, our study demonstrates that comprehensive in silico and host range analysis of TSPs can predict host recognition of Ackermannviridae phages.
Collapse
Key Words
- ANI, Average nucleotide identity
- Ackermannviridae family
- Bacteriophage
- CPS, Capsular polysaccharide
- EOP, Efficiency of plating
- Escherichia coli O:157
- Host range
- LB, Luria-Bertani
- LPS, Lipopolysaccharide
- NCBI, National Center for Biotechnology Information
- O-antigen
- ORF, Open reading frame
- PFU, Plaque formation unit
- RBP, Receptor binding protein
- Receptor-binding proteins
- Salmonella
- TSP, Tail spike protein
- Tail spike proteins
- VriC, Virulence-associated protein
Collapse
Affiliation(s)
- Anders Nørgaard Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Cedric Woudstra
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Martine C Holst Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| |
Collapse
|
6
|
Miroshnikov KA, Evseev PV, Lukianova AA, Ignatov AN. Tailed Lytic Bacteriophages of Soft Rot Pectobacteriaceae. Microorganisms 2021; 9:1819. [PMID: 34576713 PMCID: PMC8472413 DOI: 10.3390/microorganisms9091819] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
The study of the ecological and evolutionary traits of Soft Rot Pectobacteriaceae (SRP) comprising genera Pectobacterium and Dickeya often involves bacterial viruses (bacteriophages). Bacteriophages are considered to be a prospective tool for the ecologically safe and highly specific protection of plants and harvests from bacterial diseases. Information concerning bacteriophages has been growing rapidly in recent years, and this has included new genomics-based principles of taxonomic distribution. In this review, we summarise the data on phages infecting Pectobacterium and Dickeya that are available in publications and genomic databases. The analysis highlights not only major genomic properties that assign phages to taxonomic families and genera, but also the features that make them potentially suitable for phage control applications. Specifically, there is a discussion of the molecular mechanisms of receptor recognition by the phages and problems concerning the evolution of phage-resistant mutants.
Collapse
Affiliation(s)
- Konstantin A Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
- Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya Str., 49, 127434 Moscow, Russia
| | - Peter V Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
| | - Anna A Lukianova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
- Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya Str., 49, 127434 Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, bldg. 12, 119234 Moscow, Russia
| | - Alexander N Ignatov
- Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya Str., 49, 127434 Moscow, Russia
- Agrobiotechnology Department, Agrarian and Technological Institute, RUDN University, Miklukho-Maklaya Str., 6, 117198 Moscow, Russia
| |
Collapse
|
7
|
Sasaki R, Miyashita S, Ando S, Ito K, Fukuhara T, Takahashi H. Isolation and Characterization of a Novel Jumbo Phage from Leaf Litter Compost and Its Suppressive Effect on Rice Seedling Rot Diseases. Viruses 2021; 13:v13040591. [PMID: 33807245 PMCID: PMC8066314 DOI: 10.3390/v13040591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 11/16/2022] Open
Abstract
Jumbo phages have DNA genomes larger than 200 kbp in large virions composed of an icosahedral head, tail, and other adsorption structures, and they are known to be abundant biological substances in nature. In this study, phages in leaf litter compost were screened for their potential to suppress rice seedling rot disease caused by the bacterium Burkholderia glumae, and a novel phage was identified in a filtrate-enriched suspension of leaf litter compost. The phage particles consisted of a rigid tailed icosahedral head and contained a DNA genome of 227,105 bp. The phage could lyse five strains of B. glumae and six strains of Burkholderia plantarii. The phage was named jumbo Burkholderia phage FLC6. Proteomic tree analysis revealed that phage FLC6 belongs to the same clade as two jumbo Ralstonia phages, namely RSF1 and RSL2, which are members of the genus Chiangmaivirus (family: Myoviridae; order: Caudovirales). Interestingly, FLC6 could also lyse two strains of Ralstonia pseudosolanacearum, the causal agent of bacterial wilt, suggesting that FLC6 has a broad host range that may make it especially advantageous as a bio-control agent for several bacterial diseases in economically important crops. The novel jumbo phage FLC6 may enable leaf litter compost to suppress several bacterial diseases and may itself be useful for controlling plant diseases in crop cultivation.
Collapse
Affiliation(s)
- Ryota Sasaki
- Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki-Aza-Aoba, Sendai 980-0845, Japan; (R.S.); (S.M.); (S.A.); (K.I.)
| | - Shuhei Miyashita
- Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki-Aza-Aoba, Sendai 980-0845, Japan; (R.S.); (S.M.); (S.A.); (K.I.)
| | - Sugihiro Ando
- Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki-Aza-Aoba, Sendai 980-0845, Japan; (R.S.); (S.M.); (S.A.); (K.I.)
| | - Kumiko Ito
- Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki-Aza-Aoba, Sendai 980-0845, Japan; (R.S.); (S.M.); (S.A.); (K.I.)
| | - Toshiyuki Fukuhara
- Department of Applied Biological Sciences and Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8538, Japan;
| | - Hideki Takahashi
- Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki-Aza-Aoba, Sendai 980-0845, Japan; (R.S.); (S.M.); (S.A.); (K.I.)
- Correspondence: ; Tel.: +81-812-2757-4300
| |
Collapse
|
8
|
M. Iyer L, Anantharaman V, Krishnan A, Burroughs AM, Aravind L. Jumbo Phages: A Comparative Genomic Overview of Core Functions and Adaptions for Biological Conflicts. Viruses 2021; 13:v13010063. [PMID: 33466489 PMCID: PMC7824862 DOI: 10.3390/v13010063] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
Jumbo phages have attracted much attention by virtue of their extraordinary genome size and unusual aspects of biology. By performing a comparative genomics analysis of 224 jumbo phages, we suggest an objective inclusion criterion based on genome size distributions and present a synthetic overview of their manifold adaptations across major biological systems. By means of clustering and principal component analysis of the phyletic patterns of conserved genes, all known jumbo phages can be classified into three higher-order groups, which include both myoviral and siphoviral morphologies indicating multiple independent origins from smaller predecessors. Our study uncovers several under-appreciated or unreported aspects of the DNA replication, recombination, transcription and virion maturation systems. Leveraging sensitive sequence analysis methods, we identify novel protein-modifying enzymes that might help hijack the host-machinery. Focusing on host–virus conflicts, we detect strategies used to counter different wings of the bacterial immune system, such as cyclic nucleotide- and NAD+-dependent effector-activation, and prevention of superinfection during pseudolysogeny. We reconstruct the RNA-repair systems of jumbo phages that counter the consequences of RNA-targeting host effectors. These findings also suggest that several jumbo phage proteins provide a snapshot of the systems found in ancient replicons preceding the last universal ancestor of cellular life.
Collapse
Affiliation(s)
- Lakshminarayan M. Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
| | - Arunkumar Krishnan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Odisha 760010, India;
| | - A. Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
- Correspondence:
| |
Collapse
|
9
|
Evseev P, Sykilinda N, Gorshkova A, Kurochkina L, Ziganshin R, Drucker V, Miroshnikov K. Pseudomonas Phage PaBG-A Jumbo Member of an Old Parasite Family. Viruses 2020; 12:E721. [PMID: 32635178 PMCID: PMC7412058 DOI: 10.3390/v12070721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 11/17/2022] Open
Abstract
Bacteriophage PaBG is a jumbo Myoviridae phage isolated from water of Lake Baikal. This phage has limited diffusion ability and thermal stability and infects a narrow range of Pseudomonas aeruginosa strains. Therefore, it is hardly suitable for phage therapy applications. However, the analysis of the genome of PaBG presents a number of insights into the evolutionary history of this phage and jumbo phages in general. We suggest that PaBG represents an ancient group distantly related to all known classified families of phages.
Collapse
Affiliation(s)
- Peter Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.E.); (N.S.); (R.Z.)
| | - Nina Sykilinda
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.E.); (N.S.); (R.Z.)
| | - Anna Gorshkova
- Limnological Institute, Siberian Branch of Russian Academy of Sciences, 664033 Irkutsk, Russia; (A.G.); (V.D.)
| | - Lidia Kurochkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Rustam Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.E.); (N.S.); (R.Z.)
| | - Valentin Drucker
- Limnological Institute, Siberian Branch of Russian Academy of Sciences, 664033 Irkutsk, Russia; (A.G.); (V.D.)
| | - Konstantin Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.E.); (N.S.); (R.Z.)
| |
Collapse
|
10
|
Liu J, Gao S, Dong Y, Lu C, Liu Y. Isolation and characterization of bacteriophages against virulent Aeromonas hydrophila. BMC Microbiol 2020; 20:141. [PMID: 32487015 PMCID: PMC7268745 DOI: 10.1186/s12866-020-01811-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022] Open
Abstract
Background Aeromonas hydrophila is an important water-borne pathogen that leads to a great economic loss in aquaculture. Along with the abuse of antibiotics, drug-resistant strains rise rapidly. In addition, the biofilms formed by this bacterium limited the antibacterial effect of antibiotics. Bacteriophages have been attracting increasing attention as a potential alternative to antibiotics against bacterial infections. Results Five phages against pathogenic A. hydrophila, named N21, W3, G65, Y71 and Y81, were isolated. Morphological analysis by transmission electron microscopy revealed that phages N21, W3 and G65 belong to the family Myoviridae, while Y71 and Y81 belong to the Podoviridae. These phages were found to have broad host spectra, short latent periods and normal burst sizes. They were sensitive to high temperature but had a wide adaptability to the pH. In addition, the phages G65 and Y81 showed considerable bacterial killing effect and potential in preventing formation of A. hydrophila biofilm; and the phages G65, W3 and N21 were able to scavenge mature biofilm effectively. Phage treatments applied to the pathogenic A. hydrophila in mice model resulted in a significantly decreased bacterial loads in tissues. Conclusions Five A. hydrophila phages were isolated with broad host ranges, low latent periods, and wide pH and thermal tolerance. And the phages exhibited varying abilities in controlling A. hydrophila infection. This work presents promising data supporting the future use of phage therapy.
Collapse
Affiliation(s)
- Jin Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shanshan Gao
- Sucheng District Animal Husbandry and Veterinary Station, Suqian, 223800, China
| | - Yuhao Dong
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chengping Lu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongjie Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
11
|
Wagemans J, Tsonos J, Holtappels D, Fortuna K, Hernalsteens JP, De Greve H, Estrozi LF, Bacia-Verloop M, Moriscot C, Noben JP, Schoehn G, Lavigne R. Structural Analysis of Jumbo Coliphage phAPEC6. Int J Mol Sci 2020; 21:ijms21093119. [PMID: 32354127 PMCID: PMC7247149 DOI: 10.3390/ijms21093119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 01/24/2023] Open
Abstract
The phAPEC6 genome encodes 551 predicted gene products, with the vast majority (83%) of unknown function. Of these, 62 have been identified as virion-associated proteins by mass spectrometry (ESI-MS/MS), including the major capsid protein (Gp225; present in 1620 copies), which shows a HK97 capsid protein-based fold. Cryo-electron microscopy experiments showed that the 350-kbp DNA molecule of Escherichia coli virus phAPEC6 is packaged in at least 15 concentric layers in the phage capsid. A capsid inner body rod is also present, measuring about 91 nm by 18 nm and oriented along the portal axis. In the phAPEC6 contractile tail, 25 hexameric stacked rings can be distinguished, built of the identified tail sheath protein (Gp277). Cryo-EM reconstruction reveals the base of the unique hairy fibers observed during an initial transmission electron microscopy (TEM) analysis. These very unusual filaments are ordered at three annular positions along the contractile sheath, as well as around the capsid, and may be involved in host interaction.
Collapse
Affiliation(s)
- Jeroen Wagemans
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21—box 2462, 3001 Leuven, Belgium; (J.W.); (J.T.); (D.H.); (K.F.)
| | - Jessica Tsonos
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21—box 2462, 3001 Leuven, Belgium; (J.W.); (J.T.); (D.H.); (K.F.)
- Department of Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium;
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium;
| | - Dominique Holtappels
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21—box 2462, 3001 Leuven, Belgium; (J.W.); (J.T.); (D.H.); (K.F.)
| | - Kiandro Fortuna
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21—box 2462, 3001 Leuven, Belgium; (J.W.); (J.T.); (D.H.); (K.F.)
| | | | - Henri De Greve
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium;
- VIB Center for Structural Biology, Pleinlaan 2, 1050 Brussels, Belgium
| | - Leandro F. Estrozi
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France; (L.F.E.); (M.B.-V.)
| | - Maria Bacia-Verloop
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France; (L.F.E.); (M.B.-V.)
| | - Christine Moriscot
- Univ. Grenoble Alpes, CNRS, CEA, EMBL, Integrated Structural Biology Grenoble (ISBG), F-38042 Grenoble, France;
| | - Jean-Paul Noben
- Biomedical Research Institute and Transnational University Limburg, Hasselt University, Agoralaan D, 3590 Hasselt, Belgium;
| | - Guy Schoehn
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France; (L.F.E.); (M.B.-V.)
- Correspondence: (G.S.); (R.L.); Tel.: +33-4-5742-8568 (G.S.); +32-16-3795-24 (R.L.)
| | - Rob Lavigne
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21—box 2462, 3001 Leuven, Belgium; (J.W.); (J.T.); (D.H.); (K.F.)
- Correspondence: (G.S.); (R.L.); Tel.: +33-4-5742-8568 (G.S.); +32-16-3795-24 (R.L.)
| |
Collapse
|
12
|
Latka A, Leiman PG, Drulis-Kawa Z, Briers Y. Modeling the Architecture of Depolymerase-Containing Receptor Binding Proteins in Klebsiella Phages. Front Microbiol 2019; 10:2649. [PMID: 31803168 PMCID: PMC6872550 DOI: 10.3389/fmicb.2019.02649] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/30/2019] [Indexed: 11/30/2022] Open
Abstract
Klebsiella pneumoniae carries a thick polysaccharide capsule. This highly variable chemical structure plays an important role in its virulence. Many Klebsiella bacteriophages recognize this capsule with a receptor binding protein (RBP) that contains a depolymerase domain. This domain degrades the capsule to initiate phage infection. RBPs are highly specific and thus largely determine the host spectrum of the phage. A majority of known Klebsiella phages have only one or two RBPs, but phages with up to 11 RBPs with depolymerase activity and a broad host spectrum have been identified. A detailed bioinformatic analysis shows that similar RBP domains repeatedly occur in K. pneumoniae phages with structural RBP domains for attachment of an RBP to the phage tail (anchor domain) or for branching of RBPs (T4gp10-like domain). Structural domains determining the RBP architecture are located at the N-terminus, while the depolymerase is located in the center of protein. Occasionally, the RBP is complemented with an autocleavable chaperone domain at the distal end serving for folding and multimerization. The enzymatic domain is subjected to an intense horizontal transfer to rapidly shift the phage host spectrum without affecting the RBP architecture. These analyses allowed to model a set of conserved RBP architectures, indicating evolutionary linkages.
Collapse
Affiliation(s)
- Agnieszka Latka
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium.,Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wrocław, Wrocław, Poland
| | - Petr G Leiman
- Sealy Center for Structural Biology and Molecular Biophysics, Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wrocław, Wrocław, Poland
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium
| |
Collapse
|
13
|
Kering KK, Kibii BJ, Wei H. Biocontrol of phytobacteria with bacteriophage cocktails. PEST MANAGEMENT SCIENCE 2019; 75:1775-1781. [PMID: 30624034 DOI: 10.1002/ps.5324] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/01/2019] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Crop loss due to plant pathogens has provoked renewed interest in bacteriophages as a feasible biocontrol strategy of plant diseases. Phage cocktails in particular present a viable option for broadening the phage host range, limiting the emergence of bacterial resistance while maintaining the lytic activity of the phages. It is therefore important that the design used to formulate a phage cocktail should result in the most effective cocktail against the pathogen. It is also critical that certain factors are considered during the formulation and application of a phage cocktail: their stability, the production time and cost of complex cocktails, the potential impact on untargeted bacteria, the timing of phage application, and the persistence in the plant environment. Continuous monitoring is required to ensure that the efficacy of a cocktail is sustained due to the dynamic nature of phages. Although phage cocktails are considered as a plausible biocontrol strategy of phytobacteria, more research needs to be done to understand the complex interaction between phages and bacteria in the plant environment, and to overcome the technical obstacles. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kelvin K Kering
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Belindah J Kibii
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongping Wei
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
14
|
Thompson DW, Casjens SR, Sharma R, Grose JH. Genomic comparison of 60 completely sequenced bacteriophages that infect Erwinia and/or Pantoea bacteria. Virology 2019; 535:59-73. [PMID: 31276862 DOI: 10.1016/j.virol.2019.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 12/15/2022]
Abstract
Erwinia and Pantoea are closely related bacterial plant pathogens in the Gram negative Enterobacteriales order. Sixty tailed bacteriophages capable of infecting these pathogens have been completely sequenced by investigators around the world and are in the current databases, 30 of which were sequenced by our lab. These 60 were compared to 991 other Enterobacteriales bacteriophage genomes and found to be, on average, just over twice the overall average length. These Erwinia and Pantoea phages comprise 20 clusters based on nucleotide and protein sequences. Five clusters contain only phages that infect the Erwinia and Pantoea genera, the other 15 clusters are closely related to bacteriophages that infect other Enterobacteriales; however, within these clusters the Erwinia and Pantoea phages tend to be distinct, suggesting ecological niche may play a diversification role. The failure of many of their encoded proteins to have predicted functions highlights the need for further study of these phages.
Collapse
Affiliation(s)
- Daniel W Thompson
- Department of Microbiology and Molecular Biology, Brigham Young University, Utah, USA
| | - Sherwood R Casjens
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, 84112, USA; School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Ruchira Sharma
- Department of Microbiology and Molecular Biology, Brigham Young University, Utah, USA
| | - Julianne H Grose
- Department of Microbiology and Molecular Biology, Brigham Young University, Utah, USA.
| |
Collapse
|
15
|
Chen L, Guan G, Liu Q, Yuan S, Yan T, Tian L, Zhou Y, Zhao Y, Ma Y, Wei T, Fu X. Characterization and complete genomic analysis of two Salmonella phages, SenALZ1 and SenASZ3, new members of the genus Cba120virus. Arch Virol 2019; 164:1475-1478. [PMID: 30850860 DOI: 10.1007/s00705-019-04183-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/23/2019] [Indexed: 10/27/2022]
Abstract
Salmonella phages SenALZ1 and SenASZ3, two novel phages infecting Salmonella enterica, were isolated and analyzed. The genomes of these two phages consist of 154,811 and 157,630 base pairs (bp), with G+C contents of 44.56% and 44.74%, respectively. Fifty-nine of 199 open reading frames (ORFs) in the SenALZ1 genome, and 60 of the 204 in the SenASZ3 genome show similarity to reference sequences in the NCBI nr database that encode putative phage proteins with predicted functions. Based on the results of transmission electron microscopy (TEM) examination, complete genome sequence alignment, phylogenetic analysis, and gene annotation, we propose that these two phages are representative isolates of two new species of the genus Cba120virus, subfamily Cvivirinae, family Ackermannviridae.
Collapse
Affiliation(s)
- Ling Chen
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Guoye Guan
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Quan Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Shengjian Yuan
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tingwei Yan
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Linyu Tian
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yan Zhou
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yixuan Zhao
- Shenzhen College of International Education, Shenzhen, 518048, China
| | - Yingfei Ma
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ting Wei
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Xiongfei Fu
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|