1
|
Cha S, Jo JH, Lee JK, Park W, Moon M, Park GW, Kim MS, Hahn JS. Enhancing D-lactic acid production from methane through metabolic engineering of Methylomonas sp. DH-1. Microb Cell Fact 2025; 24:70. [PMID: 40128822 PMCID: PMC11934524 DOI: 10.1186/s12934-025-02695-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/13/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Methane is an abundant and low-cost carbon source with great potential for conversion into value-added chemicals. Methanotrophs, microorganisms that utilize methane as their sole carbon and energy source, present a promising platform for biotechnological applications. This study aimed to engineer Methylomonas sp. DH-1 to enhance D-LA production through metabolic pathway optimization during large-scale cultivation. RESULTS In this study, we regulated the expression of D-lactate dehydrogenase (D-LDH) using a Ptac promoter with IPTG induction to mitigate the toxic effects of lactate accumulation. To further optimize carbon flow away from glycogen, the glgA gene was deleted. However, this modification led to growth inhibition, especially during scale-up, likely due to the accumulation of ADP-glucose caused by the rewired carbon flux under carbon-excess conditions. Deleting the glgC gene, which encodes glucose 1-phosphate adenylyltransferase, alleviated this issue. The final optimized strain, JHM805, achieved a D-LA production of 6.17 g/L in a 5-L bioreactor, with a productivity of 0.057 g/L/h, marking a significant improvement in D-LA production from methane. CONCLUSIONS The metabolic engineering strategies employed in this study, including the use of an inducible promoter and alleviation of ADP-glucose accumulation toxicity, successfully enhanced the ability of the strain to produce D-LA from methane. Furthermore, optimizing the bioreactor fermentation process through methane and nitrate supplementation resulted in a significant increase in both the titer and productivity, exceeding previously reported values.
Collapse
Affiliation(s)
- Seungwoo Cha
- Department of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Jae-Hwan Jo
- Bioenergy and Resources Upcycling Research Laboratory, Korea Institute of Energy Research, 152 Gajeong-Ro, Yuseong-Gu, Daejeon, 34129, Republic of Korea
- Interdisciplinary Program for Agriculture and Life Sciences, Chonnam National University, 77 Yongbong-Ro, Buk-Gu, Gwangju, 61186, Republic of Korea
| | - Jong Kwan Lee
- Department of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Wooyoung Park
- Department of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Myounghoon Moon
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, 270 Samso-Ro, Buk-Gu, Gwangju, 61003, Republic of Korea
| | - Gwon Woo Park
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, 270 Samso-Ro, Buk-Gu, Gwangju, 61003, Republic of Korea
| | - Min-Sik Kim
- Bioenergy and Resources Upcycling Research Laboratory, Korea Institute of Energy Research, 152 Gajeong-Ro, Yuseong-Gu, Daejeon, 34129, Republic of Korea.
| | - Ji-Sook Hahn
- Department of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Lee OK, Lee JS, Yang Y, Hur M, Lee KJ, Lee EY. Advancements in the production of value-added products via methane biotransformation by methanotrophs: Current status and future perspectives. J Microbiol 2025; 63:e2412024. [PMID: 40195832 DOI: 10.71150/jm.2412024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 01/23/2025] [Indexed: 04/09/2025]
Abstract
Methane gas is recognized as a promising carbon substrate for the biosynthesis of value-added products due to its abundance and low price. Methanotrophs utilized methane as their sole source of carbon and energy, thus they can serve as efficient biocatalysts for methane bioconversion. Methanotrophs-catalyzed microbial bioconversion offer numerous advantages, compared to chemical processes. Current indirect chemical conversions of methane suffer from their energy-intensive processes and high capital expenditure. Methanotrophs can be cell factories capable of synthesizing various value-added products from methane such as methanol, organic acids, ectoine, polyhydroxyalkanoates, etc. However, the large-scale commercial implementation using methanotrophs remains a formidable challenge, primarily due to limitations in gas-liquid mass transfer and low metabolic capacity. This review explores recent advancements in methanotroph research, providing insights into their potential for enabling methane bioconversion.
Collapse
Affiliation(s)
- Ok Kyung Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering), Kyung Hee University, Gyeonggi-do 446-701, Republic of Korea
| | - Jong Seok Lee
- National Institute of Biological Resources(NIBR), Incheon 22689, Republic of Korea
| | - Yoonyong Yang
- National Institute of Biological Resources(NIBR), Incheon 22689, Republic of Korea
| | - Moonsuk Hur
- National Institute of Biological Resources(NIBR), Incheon 22689, Republic of Korea
| | - Kyung Jin Lee
- National Institute of Biological Resources(NIBR), Incheon 22689, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering), Kyung Hee University, Gyeonggi-do 446-701, Republic of Korea
| |
Collapse
|
3
|
Tan JN, Ratra K, Singer SW, Simmons BA, Goswami S, Awasthi D. Methane to bioproducts: unraveling the potential of methanotrophs for biomanufacturing. Curr Opin Biotechnol 2024; 90:103210. [PMID: 39368401 DOI: 10.1016/j.copbio.2024.103210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/24/2024] [Accepted: 09/11/2024] [Indexed: 10/07/2024]
Abstract
With the continuous increase in the world population, anthropogenic activities will generate more waste and create greenhouse gases such as methane, amplifying global warming. The biological conversion of methane into biochemicals is a sustainable solution to sequester and convert this greenhouse gas. Methanotrophic bacteria fulfill this role by utilizing methane as a feedstock while manufacturing various bioproducts. Recently, methanotrophs have made their mark in industrial biomanufacturing. However, unlike glucose-utilizing model organisms such as Escherichia coli and Saccharomyces cerevisiae, methanotrophs do not have established transformation methods and genetic tools, making these organisms challenging to engineer. Despite these challenges, recent advancements in methanotroph engineering demonstrate great promise, showcasing these C1-carbon-utilizing microbes as prospective hosts for bioproduction. This review discusses the recent developments and challenges in strain engineering, biomolecule production, and process development methodologies in the methanotroph field.
Collapse
Affiliation(s)
- Justin N Tan
- College of Arts and Sciences, University of California, Berkeley, CA 94720, USA
| | - Keshav Ratra
- College of Arts and Sciences, University of California, Berkeley, CA 94720, USA
| | - Steven W Singer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Joint BioEnergy Institute, Emeryville, CA 94608, USA
| | - Blake A Simmons
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Joint BioEnergy Institute, Emeryville, CA 94608, USA
| | - Shubhasish Goswami
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Deepika Awasthi
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Joint BioEnergy Institute, Emeryville, CA 94608, USA.
| |
Collapse
|
4
|
Hyun SW, Krishna S, Chau THT, Lee EY. Methanotrophs mediated biogas valorization: Sustainable route to polyhydroxybutyrate production. BIORESOURCE TECHNOLOGY 2024; 402:130759. [PMID: 38692375 DOI: 10.1016/j.biortech.2024.130759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/13/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
This study explores the ability of methanotrophs to convert biogas into biopolymers, addressing H2S as a limitation in the utilization of biogas as a carbon source for bioconversion. Transcriptomic analysis was conducted to understand the growth and changes in the expression patterns of Type I and II methanotrophs under varying H2S concentrations. Results suggested that Type II methanotrophs can possess a native H2S utilization pathway. Both Type I and II methanotrophs were evaluated for their growth and polyhydroxybutyrate (PHB) production from biogas. Methylocystis sp. MJC1 and Methylocystis sp. OK1 exhibited a maximum biomass production of 4.0 and 4.5 gDCW/L, respectively, in fed-batch culture, aligning with the transcriptome data. Furthermore, Methylocystis sp. MJC1 produced 2.9 g PHB/L from biogas through gas fermentation. These findings underscore biogas-based biotechnology as an innovative solution for environmental and industrial challenges with further optimization and productivity enhancement research expected to broaden the potential in this field.
Collapse
Affiliation(s)
- Seung Woon Hyun
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| | - Shyam Krishna
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Tin Hoang Trung Chau
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
5
|
Bedekar AA, Deewan A, Jagtap SS, Parker DA, Liu P, Mackie RI, Rao CV. Transcriptional and metabolomic responses of Methylococcus capsulatus Bath to nitrogen source and temperature downshift. Front Microbiol 2023; 14:1259015. [PMID: 37928661 PMCID: PMC10623323 DOI: 10.3389/fmicb.2023.1259015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
Methanotrophs play a significant role in methane oxidation, because they are the only biological methane sink present in nature. The methane monooxygenase enzyme oxidizes methane or ammonia into methanol or hydroxylamine, respectively. While much is known about central carbon metabolism in methanotrophs, far less is known about nitrogen metabolism. In this study, we investigated how Methylococcus capsulatus Bath, a methane-oxidizing bacterium, responds to nitrogen source and temperature. Batch culture experiments were conducted using nitrate or ammonium as nitrogen sources at both 37°C and 42°C. While growth rates with nitrate and ammonium were comparable at 42°C, a significant growth advantage was observed with ammonium at 37°C. Utilization of nitrate was higher at 42°C than at 37°C, especially in the first 24 h. Use of ammonium remained constant between 42°C and 37°C; however, nitrite buildup and conversion to ammonia were found to be temperature-dependent processes. We performed RNA-seq to understand the underlying molecular mechanisms, and the results revealed complex transcriptional changes in response to varying conditions. Different gene expression patterns connected to respiration, nitrate and ammonia metabolism, methane oxidation, and amino acid biosynthesis were identified using gene ontology analysis. Notably, key pathways with variable expression profiles included oxidative phosphorylation and methane and methanol oxidation. Additionally, there were transcription levels that varied for genes related to nitrogen metabolism, particularly for ammonia oxidation, nitrate reduction, and transporters. Quantitative PCR was used to validate these transcriptional changes. Analyses of intracellular metabolites revealed changes in fatty acids, amino acids, central carbon intermediates, and nitrogen bases in response to various nitrogen sources and temperatures. Overall, our results offer improved understanding of the intricate interactions between nitrogen availability, temperature, and gene expression in M. capsulatus Bath. This study enhances our understanding of microbial adaptation strategies, offering potential applications in biotechnological and environmental contexts.
Collapse
Affiliation(s)
- Ashwini Ashok Bedekar
- Energy and Biosciences Institute, Materials Research Laboratory, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Anshu Deewan
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Sujit S. Jagtap
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - David A. Parker
- Energy and Biosciences Institute, Materials Research Laboratory, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Shell Exploration and Production Inc., Westhollow Technology Center, Houston, TX, United States
| | - Ping Liu
- Energy and Biosciences Institute, Materials Research Laboratory, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Shell Exploration and Production Inc., Westhollow Technology Center, Houston, TX, United States
| | - Roderick I. Mackie
- Energy and Biosciences Institute, Materials Research Laboratory, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Christopher V. Rao
- Energy and Biosciences Institute, Materials Research Laboratory, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
6
|
Weng C, Peng X, Han Y. From methane to value-added bioproducts: microbial metabolism, enzymes, and metabolic engineering. ADVANCES IN APPLIED MICROBIOLOGY 2023; 124:119-146. [PMID: 37597946 DOI: 10.1016/bs.aambs.2023.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Methane is abundant in nature, and excessive emissions will cause the greenhouse effect. Methane is also an ideal carbon and energy feedstock for biosynthesis. In the review, the microorganisms, metabolism, and enzymes for methane utilization, and the advances of conversion to value-added bioproducts were summarized. First, the physiological characteristics, classification, and methane oxidation process of methanotrophs were introduced. The metabolic pathways for methane utilization and key intermediate metabolites of native and synthetic methanotrophs were summarized. Second, the enzymatic properties, crystal structures, and catalytic mechanisms of methane-oxidizing and metabolizing enzymes in methanotrophs were described. Third, challenges and prospects in metabolic pathways and enzymatic catalysis for methane utilization and conversion to value-added bioproducts were discussed. Finally, metabolic engineering of microorganisms for methane biooxidation and bioproducts synthesis based on different pathways were summarized. Understanding the metabolism and challenges of microbial methane utilization will provide insights into possible strategies for efficient methane-based synthesis.
Collapse
Affiliation(s)
- Caihong Weng
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P.R. China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Xiaowei Peng
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P.R. China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Yejun Han
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P.R. China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, P.R. China.
| |
Collapse
|
7
|
Thi Quynh Le H, Yeol Lee E. Methanotrophs: Metabolic versatility from utilization of methane to multi-carbon sources and perspectives on current and future applications. BIORESOURCE TECHNOLOGY 2023:129296. [PMID: 37302766 DOI: 10.1016/j.biortech.2023.129296] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/13/2023]
Abstract
The development of biorefineries for a sustainable bioeconomy has been driven by the concept of utilizing environmentally friendly and cost-effective renewable energy sources. Methanotrophic bacteria with a unique capacity to utilize methane as a carbon and energy source can serve as outstanding biocatalysts to develop C1 bioconversion technology. By establishing the utilization of diverse multi-carbon sources, integrated biorefinery platforms can be created for the concept of the circular bioeconomy. An understanding of physiology and metabolism could help to overcome challenges for biomanufacturing. This review summaries fundamental gaps for methane oxidation and the capability to utilize multi-carbon sources in methanotrophic bacteria. Subsequently, breakthroughs and challenges in harnessing methanotrophs as robust microbial chassis for industrial biotechnology were compiled and overviewed. Finally, capabilities to exploit the inherent advantages of methanotrophs to synthesize various target products in higher titers are proposed.
Collapse
Affiliation(s)
- Hoa Thi Quynh Le
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
8
|
Le HTQ, Lee EY. Insights into C1 and C3 assimilation pathways in type I methanotrophic bacterium from co-production of 1,2-propanediol and lactate. BIORESOURCE TECHNOLOGY 2022; 365:128172. [PMID: 36279980 DOI: 10.1016/j.biortech.2022.128172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Methanotrophic bacteria are attractive hosts for mining metabolic pathways of C1 assimilation to produce value-added products. Herein, the type I methanotroph Methylotuvimicrobium alcaliphilum 20Z was employed to explore the carbon flux from methane and methanol via the EMP pathway to produce 1,2-propanediol (1,2-PDO). The production of 1,2-PDO on methane was found to be mainly restricted by the lower carbon flux toward the EMP pathway. The co-utilization of C1 substrates and glycerol (C3) could contribute to enhance 1,2-PDO. Lactate was co-produced in much higher amounts than 1,2-PDO. This unexpected product was probably derived from lactaldehyde by inherent aldehyde dehydrogenases. The 1,2-PDO production without increased accumulation of lactate was observed via establishing the acetol-based pathway by propane utilization with the overexpression of pmoD. This is the first study to provide experimental insights into the operation of metabolic routes for 1,2-PDO and lactate co-production from C1 and C3 compounds in methanotrophs.
Collapse
Affiliation(s)
- Hoa Thi Quynh Le
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
9
|
Khmelenina VN, But SY, Rozova ON, Oshkin IY, Pimenov NV, Dedysh SN. Genome Editing in Methanotrophic Bacteria: Potential Targets and Available Tools. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722602196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
10
|
Sharma K, Park YK, Nadda AK, Banerjee P, Singh P, Raizada P, Banat F, Bharath G, Jeong SM, Lam SS. Emerging chemo-biocatalytic routes for valorization of major greenhouse gases (GHG) into industrial products: A comprehensive review. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Kulkarni PP, Chavan SB, Deshpande MS, Sagotra D, Kumbhar PS, Ghosalkar AR. Enrichment of Methylocystis dominant mixed culture from rice field for PHB production. J Biotechnol 2022; 343:62-70. [PMID: 34838616 DOI: 10.1016/j.jbiotec.2021.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022]
Abstract
Presence of methanotrophs in diverse environmental habitats helps to reduce emissions of greenhouse gas like methane. Isolation and culture of undiscovered wealth of methanotrophic organisms can help in exploitation of these organisms in value added products. The present study focuses on the enrichment of methanotroph dominated mixed microbial community by use of three stage strategy of revival, proliferation, and segregation. During the enrichment process amplicon sequencing of 16 s rRNA V3-V4 region showed relative abundance of mixed culture comprising single methanotrophic species of Methylocystis genus (88.92%) along with only three other species. Methylocystis dominant mixed culture (MMI-11) was observed to produce polyhydroxyalkanoates (PHA). During studies to identify favourable culture conditions, nitrate was found to be preferred nitrogen source for growth and PHA production. Cell growth ability to produce PHA was also evaluated at 14 L fermentor by supplying gas using continuous bubbling and through pressurization in the headspace. The mixed methanotrophic culture was found to accumulate maximum of 22.20% polyhydroxybutyrate (PHB) under nitrate limited condition. The molecular weight of PHB was found to be 2.221 × 105 g mol-1 with polydispersity of 1.82.
Collapse
Affiliation(s)
- Pranav P Kulkarni
- Department of Technology, Savitribai Phule Pune University, Pune, India; Praj Matrix - R&D Centre, division of Praj Industries Limited, Urawade, Pune, India
| | - Sambhaji B Chavan
- Praj Matrix - R&D Centre, division of Praj Industries Limited, Urawade, Pune, India
| | - Mandar S Deshpande
- Praj Matrix - R&D Centre, division of Praj Industries Limited, Urawade, Pune, India
| | - Dhanishta Sagotra
- Department of Technology, Savitribai Phule Pune University, Pune, India
| | - Pramod S Kumbhar
- Praj Matrix - R&D Centre, division of Praj Industries Limited, Urawade, Pune, India
| | - Anand R Ghosalkar
- Department of Technology, Savitribai Phule Pune University, Pune, India; Praj Matrix - R&D Centre, division of Praj Industries Limited, Urawade, Pune, India.
| |
Collapse
|
12
|
Systems Metabolic Engineering of Methanotrophic Bacteria for Biological Conversion of Methane to Value-Added Compounds. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 180:91-126. [DOI: 10.1007/10_2021_184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Jo SY, Son J, Sohn YJ, Lim SH, Lee JY, Yoo JI, Park SY, Na JG, Park SJ. A shortcut to carbon-neutral bioplastic production: Recent advances in microbial production of polyhydroxyalkanoates from C1 resources. Int J Biol Macromol 2021; 192:978-998. [PMID: 34656544 DOI: 10.1016/j.ijbiomac.2021.10.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 12/18/2022]
Abstract
Since the 20th century, plastics that are widely being used in general life and industries are causing enormous plastic waste problems since improperly discarded plastics barely degrade and decompose. Thus, the demand for polyhydroxyalkanoates (PHAs), biodegradable polymers with material properties similar to conventional petroleum-based plastics, has been increased so far. The microbial production of PHAs is an environment-friendly solution for the current plastic crisis, however, the carbon sources for the microbial PHA production is a crucial factor to be considered in terms of carbon-neutrality. One‑carbon (C1) resources, such as methane, carbon monoxide, and carbon dioxide, are greenhouse gases and are abundantly found in nature and industry. C1 resources as the carbon sources for PHA production have a completely closed carbon loop with much advances; i) fast carbon circulation with direct bioconversion process and ii) simple fermentation procedure without sterilization as non-preferable nutrients. This review discusses the biosynthesis of PHAs based on C1 resource utilization by wild-type and metabolically engineered microbial host strains via biorefinery processes.
Collapse
Affiliation(s)
- Seo Young Jo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Yu Jung Sohn
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seo Hyun Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Ji Yeon Lee
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jee In Yoo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Se Young Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jeong-Geol Na
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea.
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
14
|
Gęsicka A, Oleskowicz-Popiel P, Łężyk M. Recent trends in methane to bioproduct conversion by methanotrophs. Biotechnol Adv 2021; 53:107861. [PMID: 34710553 DOI: 10.1016/j.biotechadv.2021.107861] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 12/26/2022]
Abstract
Methane is an abundant and low-cost gas with high global warming potential and its use as a feedstock can help mitigate climate change. Variety of valuable products can be produced from methane by methanotrophs in gas fermentation processes. By using methane as a sole carbon source, methanotrophic bacteria can produce bioplastics, biofuels, feed additives, ectoine and variety of other high-value chemical compounds. A lot of studies have been conducted through the years for natural methanotrophs and engineered strains as well as methanotrophic consortia. These have focused on increasing yields of native products as well as proof of concept for the synthesis of new range of chemicals by metabolic engineering. This review shows trends in the research on key methanotrophic bioproducts since 2015. Despite certain limitations of the known production strategies that makes commercialization of methane-based products challenging, there is currently much attention placed on the promising further development.
Collapse
Affiliation(s)
- Aleksandra Gęsicka
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Piotr Oleskowicz-Popiel
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| | - Mateusz Łężyk
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| |
Collapse
|
15
|
Yang Z, Tsapekos P, Zhang Y, Zhang Y, Angelidaki I, Wang W. Bio-electrochemically extracted nitrogen from residual resources for microbial protein production. BIORESOURCE TECHNOLOGY 2021; 337:125353. [PMID: 34116279 DOI: 10.1016/j.biortech.2021.125353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Upcycling of nutrients from residual resources for producing microbial protein (MP) is an attractive method to valorize residues. In this study, we investigated bio-electrochemical methods to recover ammonia-N, for further production of MP. Reject water and digestate were used for ammonia-N recovery in microbial fuel cell (MFC) system. In one-stage process, ammonia-N recovery was 32 - 42% with 57 - 154 kJ/m3 waste stream of electricity generation. For further enhancing recovery efficiency, a two-stage process was developed, achieving efficiency of 53 - 61%. Subsequently, MP was grown with the extracted ammonia-N, and amino acid concentration was 421 and 272 mg/L under 25 °C and 35 °C, respectively. Similar essential amino acid content of MP (especially under 25 °C) with the one from fish demonstrated the attractiveness of upcycling residues to proteins. Based on simplified economic evaluation, the produced energy performed the potential to catch 1.63 - 6.54 €/m3 waste stream.
Collapse
Affiliation(s)
- Ziyi Yang
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing 100029, China; Department of Chemical and Biochemical Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark
| | - Panagiotis Tsapekos
- Department of Chemical and Biochemical Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark
| | - Yi Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Irini Angelidaki
- Department of Chemical and Biochemical Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark
| | - Wen Wang
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing 100029, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
16
|
Selection of methanotrophic platform for methanol production using methane and biogas. J Biosci Bioeng 2021; 132:460-468. [PMID: 34462232 DOI: 10.1016/j.jbiosc.2021.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022]
Abstract
To develop biotechnological process for methane to methanol conversion, selection of a suitable methanotrophic platform is an important aspect. Systematic approach based on literature and public databases was developed to select representative methanotrophs Methylotuvimicrobium alcaliphilum, Methylomonas methanica, Methylosinus trichosporium and Methylocella silvestris. Selected methanotrophs were further investigated for methanol tolerance and methanol production on pure methane as well as biogas along with key enzyme activities involved in methane utilization. Among selected methanotrophs M. alcaliphilum showed maximum methanol tolerance of 6% v/v along with maximum methanol production of 307.90 mg/L and 247.37 mg/L on pure methane and biogas respectively. Activity of methane monooxygenase and formate dehydrogenase enzymes in M.alcaliphilum was significantly higher up to 98.40 nmol/min/mg cells and 0.87 U/mg protein, respectively. Biotransformation trials in 14 L fermentor resulted in increased methanol production up to 418 and 331.20 mg/L, with yield coefficient 0.83 and 0.71 mg methanol/mg of pure methane and biogas respectively. The systematic selection resulted in haloalkaliphilic strain M. alcaliphilum as one of the potential methanotroph for bio-methanol production.
Collapse
|
17
|
Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (RubisCO) Is Essential for Growth of the Methanotroph Methylococcus capsulatus Strain Bath. Appl Environ Microbiol 2021; 87:e0088121. [PMID: 34288705 PMCID: PMC8388818 DOI: 10.1128/aem.00881-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) enzyme found in plants, algae, and an array of autotrophic bacteria is also encoded by a subset of methanotrophs, but its role in these microbes has largely remained elusive. In this study, we showed that CO2 was requisite for RubisCO-encoding Methylococcus capsulatus strain Bath growth in a bioreactor with continuous influent and effluent gas flow. RNA sequencing identified active transcription of several carboxylating enzymes, including key enzymes of the Calvin and serine cycles, that could mediate CO2 assimilation during cultivation with both CH4 and CO2 as carbon sources. Marker exchange mutagenesis of M. capsulatus Bath genes encoding key enzymes of potential CO2-assimilating metabolic pathways indicated that a complete serine cycle is not required, whereas RubisCO is essential for growth of this bacterium. 13CO2 tracer analysis showed that CH4 and CO2 enter overlapping anaplerotic pathways and implicated RubisCO as the primary enzyme mediating CO2 assimilation in M. capsulatus Bath. Notably, we quantified the relative abundance of 3-phosphoglycerate and ribulose-1,5-bisphosphate 13C isotopes, which supported that RubisCO-produced 3-phosphoglycerate is primarily converted to ribulose-1-5-bisphosphate via the oxidative pentose phosphate pathway in M. capsulatus Bath. Collectively, our data establish that RubisCO and CO2 play essential roles in M. capsulatus Bath metabolism. This study expands the known capacity of methanotrophs to fix CO2 via RubisCO, which may play a more pivotal role in the Earth's biogeochemical carbon cycling and greenhouse gas regulation than previously recognized. Further, M. capsulatus Bath and other CO2-assimilating methanotrophs represent excellent candidates for use in the bioconversion of biogas waste streams that consist of both CH4 and CO2. IMPORTANCE The importance of RubisCO and CO2 in M. capsulatus Bath metabolism is unclear. In this study, we demonstrated that both CO2 and RubisCO are essential for M. capsulatus Bath growth. 13CO2 tracing experiments supported that RubisCO mediates CO2 fixation and that a noncanonical Calvin cycle is active in this organism. Our study provides insights into the expanding knowledge of methanotroph metabolism and implicates dually CH4/CO2-utilizing bacteria as more important players in the biogeochemical carbon cycle than previously appreciated. In addition, M. capsulatus and other methanotrophs with CO2 assimilation capacity represent candidate organisms for the development of biotechnologies to mitigate the two most abundant greenhouse gases, CH4 and CO2.
Collapse
|
18
|
Augustiniene E, Valanciene E, Matulis P, Syrpas M, Jonuskiene I, Malys N. Bioproduction of l- and d-lactic acids: advances and trends in microbial strain application and engineering. Crit Rev Biotechnol 2021; 42:342-360. [PMID: 34412525 DOI: 10.1080/07388551.2021.1940088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lactic acid is an important platform chemical used in the food, agriculture, cosmetic, pharmaceutical, and chemical industries. It serves as a building block for the production of polylactic acid (PLA), a biodegradable polymer, which can replace traditional petroleum-based plastics and help to reduce environmental pollution. Cost-effective production of optically pure l- and d-lactic acids is necessary to achieve a quality and thermostable PLA product. This paper evaluates research advances in the bioproduction of l- and d-lactic acids using microbial fermentation. Special emphasis is given to the development of metabolically engineered microbial strains and processes tailored to alternative and flexible feedstock concepts such as: lignocellulose, glycerol, C1-gases, and agricultural-food industry byproducts. Alternative fermentation concepts that can improve lactic acid production are discussed. The potential use of inducible gene expression systems for the development of biosensors to facilitate the screening and engineering of lactic acid-producing microorganisms is discussed.
Collapse
Affiliation(s)
- Ernesta Augustiniene
- Faculty of Chemical Technology, Bioprocess Research Centre, Kaunas University of Technology, Kaunas, Lithuania
| | - Egle Valanciene
- Faculty of Chemical Technology, Bioprocess Research Centre, Kaunas University of Technology, Kaunas, Lithuania
| | - Paulius Matulis
- Faculty of Chemical Technology, Bioprocess Research Centre, Kaunas University of Technology, Kaunas, Lithuania
| | - Michail Syrpas
- Faculty of Chemical Technology, Bioprocess Research Centre, Kaunas University of Technology, Kaunas, Lithuania
| | - Ilona Jonuskiene
- Faculty of Chemical Technology, Bioprocess Research Centre, Kaunas University of Technology, Kaunas, Lithuania
| | - Naglis Malys
- Faculty of Chemical Technology, Bioprocess Research Centre, Kaunas University of Technology, Kaunas, Lithuania
| |
Collapse
|
19
|
Lee H, Baek JI, Lee JY, Jeong J, Kim H, Lee DH, Kim DM, Lee SG. Syntrophic co-culture of a methanotroph and heterotroph for the efficient conversion of methane to mevalonate. Metab Eng 2021; 67:285-292. [PMID: 34298134 DOI: 10.1016/j.ymben.2021.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/07/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Abstract
As the bioconversion of methane becomes increasingly important for bio-industrial and environmental applications, methanotrophs have received much attention for their ability to convert methane under ambient conditions. This includes the extensive reporting of methanotroph engineering for the conversion of methane to biochemicals. To further increase methane usability, we demonstrated a highly flexible and efficient modular approach based on a synthetic consortium of methanotrophs and heterotrophs mimicking the natural methane ecosystem to produce mevalonate (MVA) from methane. In the methane-conversion module, we used Methylococcus capsulatus Bath as a highly efficient methane biocatalyst and optimized the culture conditions for the production of high amounts of organic acids. In the MVA-synthesis module, we used Escherichia coli SBA01, an evolved strain with high organic acid tolerance and utilization ability, to convert organic acids to MVA. Using recombinant E. coli SBA01 possessing genes for the MVA pathway, 61 mg/L (0.4 mM) of MVA was successfully produced in 48 h without any addition of nutrients except methane. Our platform exhibited high stability and reproducibility with regard to cell growth and MVA production. We believe that this versatile system can be easily extended to many other value-added processes and has a variety of potential applications.
Collapse
Affiliation(s)
- Hyewon Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Ji In Baek
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, 34134, Republic of Korea
| | - Jin-Young Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Jiyeong Jeong
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Haseong Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Dae-Hee Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science & Technology (UST), Daejeon, 34113, Republic of Korea
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, 34134, Republic of Korea
| | - Seung-Goo Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science & Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
20
|
Sahoo KK, Goswami G, Das D. Biotransformation of Methane and Carbon Dioxide Into High-Value Products by Methanotrophs: Current State of Art and Future Prospects. Front Microbiol 2021; 12:636486. [PMID: 33776968 PMCID: PMC7987672 DOI: 10.3389/fmicb.2021.636486] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/22/2021] [Indexed: 01/16/2023] Open
Abstract
Conventional chemical methods to transform methane and carbon dioxide into useful chemicals are plagued by the requirement for extreme operating conditions and expensive catalysts. Exploitation of microorganisms as biocatalysts is an attractive alternative to sequester these C1 compounds and convert them into value-added chemicals through their inherent metabolic pathways. Microbial biocatalysts are advantageous over chemical processes as they require mild-operating conditions and do not release any toxic by-products. Methanotrophs are potential cell-factories for synthesizing a wide range of high-value products via utilizing methane as the sole source of carbon and energy, and hence, serve as excellent candidate for methane sequestration. Besides, methanotrophs are capable of capturing carbon dioxide and enzymatically hydrogenating it into methanol, and hence qualify to be suitable candidates for carbon dioxide sequestration. However, large-scale production of value-added products from methanotrophs still presents an overwhelming challenge, due to gas-liquid mass transfer limitations, low solubility of gases in liquid medium and low titer of products. This requires design and engineering of efficient reactors for scale-up of the process. The present review offers an overview of the metabolic architecture of methanotrophs and the range of product portfolio they can offer. Special emphasis is given on methanol biosynthesis as a potential biofuel molecule, through utilization of methane and alternate pathway of carbon dioxide sequestration. In view of the gas-liquid mass transfer and low solubility of gases, the key rate-limiting step in gas fermentation, emphasis is given toward reactor design consideration essential to achieve better process performance.
Collapse
Affiliation(s)
- Krishna Kalyani Sahoo
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Gargi Goswami
- Department of Biotechnology, Gandhi Institute of Technology and Management (GITAM) University, Visakhapatnam, India
| | - Debasish Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
21
|
Abstract
Methanotrophic bacteria represent a potential route to methane utilization and mitigation of methane emissions. In the first step of their metabolic pathway, aerobic methanotrophs use methane monooxygenases (MMOs) to activate methane, oxidizing it to methanol. There are two types of MMOs: a particulate, membrane-bound enzyme (pMMO) and a soluble, cytoplasmic enzyme (sMMO). The two MMOs are completely unrelated, with different architectures, metal cofactors, and mechanisms. The more prevalent of the two, pMMO, is copper-dependent, but the identity of its copper active site remains unclear. By contrast, sMMO uses a diiron active site, the catalytic cycle of which is well understood. Here we review the current state of knowledge for both MMOs, with an emphasis on recent developments and emerging hypotheses. In addition, we discuss obstacles to developing expression systems, which are needed to address outstanding questions and to facilitate future protein engineering efforts.
Collapse
Affiliation(s)
- Christopher W Koo
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, IL 60208, USA.
| | | |
Collapse
|
22
|
Zha X, Tsapekos P, Zhu X, Khoshnevisan B, Lu X, Angelidaki I. Bioconversion of wastewater to single cell protein by methanotrophic bacteria. BIORESOURCE TECHNOLOGY 2021; 320:124351. [PMID: 33161316 DOI: 10.1016/j.biortech.2020.124351] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 05/25/2023]
Abstract
Single cell protein (SCP) provides an alternative protein source to partially replace the conventional agricultural resources and support the increased nutritional needs. Inexpensive feeding source is one of the key limiting factors for the expansion of SCP production. The present study examined the valorization of biogas derived from the anaerobic digestion (AD) of sewage sludge and the discarded effluent as nutrients source to produce SCP using methanotrophic bacteria. Results indicated that the mixed methanotrophic culture can grow well on the pasteurized AD supernatant and biogas, succeeding in promising dry weight (DW) yield (0.66 ± 0.01 g-DW/g-CH4 and 11.54 ± 0.12 g-DW/g-NH4+). Methylomonas (56.26%) and Methylophilus (24.60%) spp. were the two main representatives of the mixed culture. The produced dried biomass had a protein content higher than 41% w/w, including essential amino acids like histidine, valine, phenylalanine, isoleucine, leucine, threonine and lysine. The cultivated SCP shows potential utilization as protein source for animal diets.
Collapse
Affiliation(s)
- Xiao Zha
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark; School of Energy and Environment, Southeast University, No. 2 Sipailou Road, Nanjing 210096, China
| | - Panagiotis Tsapekos
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark.
| | - Xinyu Zhu
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Benyamin Khoshnevisan
- Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiwu Lu
- School of Energy and Environment, Southeast University, No. 2 Sipailou Road, Nanjing 210096, China
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| |
Collapse
|
23
|
Jawaharraj K, Shrestha N, Chilkoor G, Dhiman SS, Islam J, Gadhamshetty V. Valorization of methane from environmental engineering applications: A critical review. WATER RESEARCH 2020; 187:116400. [PMID: 32979578 DOI: 10.1016/j.watres.2020.116400] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/29/2020] [Accepted: 09/05/2020] [Indexed: 05/09/2023]
Abstract
Wastewater and waste management sectors alone account for 18% of the anthropogenic methane (CH4) emissions. This study presents a critical overview of methanotrophs ("methane oxidizing microorganisms") for valorizing typically discarded CH4 from environmental engineering applications, focusing on wastewater treatment plants. Methanotrophs can convert CH4 into valuable bioproducts including chemicals, biodiesel, DC electricity, polymers, and S-layers, all under ambient conditions. As discarded CH4 and its oxidation products can also be used as a carbon source in nitrification and annamox processes. Here we discuss modes of CH4 assimilation by methanotrophs in both natural and engineered systems. We also highlight the technical challenges and technological breakthroughs needed to enable targeted CH4 oxidation in wastewater treatment plants.
Collapse
Affiliation(s)
- Kalimuthu Jawaharraj
- Civil and Environmental Engineering, South Dakota Mines, Rapid City 57701, SD, United States; BuG ReMeDEE consortium, South Dakota Mines, Rapid City 57701, SD, United States
| | - Namita Shrestha
- Civil and Environmental Engineering, Rose-Hulman Institute of Technology, Terre Haute 47803, IN, United States
| | - Govinda Chilkoor
- Civil and Environmental Engineering, South Dakota Mines, Rapid City 57701, SD, United States; 2-Dimensional Materials for Biofilm Engineering Science and Technology (2DBEST) Center, South Dakota School of Mines and Technology, Rapid City 57701, SD, United States
| | - Saurabh Sudha Dhiman
- BuG ReMeDEE consortium, South Dakota Mines, Rapid City 57701, SD, United States; Biological and Chemical Engineering, South Dakota School of Mines & Technology, Rapid City 57701, SD, United States
| | - Jamil Islam
- Civil and Environmental Engineering, South Dakota Mines, Rapid City 57701, SD, United States; BuG ReMeDEE consortium, South Dakota Mines, Rapid City 57701, SD, United States
| | - Venkataramana Gadhamshetty
- Civil and Environmental Engineering, South Dakota Mines, Rapid City 57701, SD, United States; BuG ReMeDEE consortium, South Dakota Mines, Rapid City 57701, SD, United States; 2-Dimensional Materials for Biofilm Engineering Science and Technology (2DBEST) Center, South Dakota School of Mines and Technology, Rapid City 57701, SD, United States.
| |
Collapse
|
24
|
Tsapekos P, Zhu X, Pallis E, Angelidaki I. Proteinaceous methanotrophs for feed additive using biowaste as carbon and nutrients source. BIORESOURCE TECHNOLOGY 2020; 313:123646. [PMID: 32535520 DOI: 10.1016/j.biortech.2020.123646] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
To achieve a sustainable production of food and feed production, inexpensive carbon and nutrient sources are needed. In the present study, biologically upgraded biogas is coupled with electrochemically extracted nitrogen from digested biowaste to cultivate mixed methanotrophs as protein source. Results showed that an increase from less than 5 μgCu2+/L to 100 μgCu2+/L increased the biomass production by 41%. Microbial analysis revealed that the dominated Methylomonas spp. followed by Methylophilus spp. created a specialized community for high CH4 assimilation. Moreover, duplicate semi-continuous fermenters run for 120 days validating the efficiency of alternative carbon and nitrogen feedstocks at long-term operation. As for dry cell weight (DCW) production, more than 2.5 g-DCW/L were produced using biologically upgraded biogas and electrochemically extracted nitrogen. Furthermore, the protein content and amino acid profile (>50% of DCW) demonstrated that the microbial biomass pose the characteristics to be used as animal feed additive.
Collapse
Affiliation(s)
- Panagiotis Tsapekos
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark.
| | - Xinyu Zhu
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Evangelos Pallis
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| |
Collapse
|
25
|
Nguyen AD, Kim D, Lee EY. Unlocking the biosynthesis of sesquiterpenoids from methane via the methylerythritol phosphate pathway in methanotrophic bacteria, using α-humulene as a model compound. Metab Eng 2020; 61:69-78. [PMID: 32387228 DOI: 10.1016/j.ymben.2020.04.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/21/2020] [Accepted: 04/25/2020] [Indexed: 11/22/2022]
Abstract
Isoprenoids are an abundant and diverse class of natural products with various applications in the pharmaceutical, cosmetics and biofuel industries. A methanotroph-based biorefinery is an attractive scenario for the production of a variety of value-added compounds from methane, because methane is a promising alternative feedstock for industrial biomanufacturing. In this study, we metabolically engineered Methylotuvimicrobium alcaliphilum 20Z for de novo synthesis of a sesquiterpenoid from methane, using α-humulene as a model compound, via optimization of the native methylerythritol phosphate (MEP) pathway. Expression of codon-optimized α-humulene synthase from Zingiber zerumbet in M. alcaliphilum 20Z resulted in an initial yield of 0.04 mg/g dry cell weight. Overexpressing key enzymes (IspA, IspG, and Dxs) for debottlenecking of the MEP pathway increased α-humulene production 5.2-fold compared with the initial strain. Subsequently, redirecting the carbon flux through the Embden-Meyerhof-Parnas pathway resulted in an additional 3-fold increase in α-humulene production. Additionally, a genome-scale model using flux scanning based on enforced objective flux method was used to identify potential overexpression targets to increase flux towards isoprenoid production. Several target reactions from cofactor synthesis pathways were probed and evaluated for their effects on α-humulene synthesis, resulting in α-humulene yield up to 0.75 mg/g DCW with 18.8-fold enhancement from initial yield. This study first demonstrates production of a sesquiterpenoid from methane using methanotrophs as the biocatalyst and proposes potential strategies to enhance production of sesquiterpenoid and related isoprenoid products in engineered methanotrophic bacteria.
Collapse
Affiliation(s)
- Anh Duc Nguyen
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, South Korea
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, South Korea.
| |
Collapse
|
26
|
Nguyen AD, Lee EY. Engineered Methanotrophy: A Sustainable Solution for Methane-Based Industrial Biomanufacturing. Trends Biotechnol 2020; 39:381-396. [PMID: 32828555 DOI: 10.1016/j.tibtech.2020.07.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/22/2022]
Abstract
Methane is a promising feedstock with high abundance and low cost for the sustainable production of biochemicals and biofuels. Methanotrophic bacteria are particularly interesting platforms for methane bioconversion as they can utilize methane as a carbon substrate. Recently, breakthroughs in the understanding of methane metabolism in methanotrophs as well as critical advances in systems metabolic engineering of methanotrophic bacteria have been reported. Here, we discuss the important gaps in the understanding of methanotrophic metabolism that have been uncovered recently and the current trends in systems metabolic engineering in both methanotrophic bacteria and non-native hosts to advance the potential of methane-based biomanufacturing.
Collapse
Affiliation(s)
- Anh Duc Nguyen
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea.
| |
Collapse
|
27
|
Khoshnevisan B, Dodds M, Tsapekos P, Torresi E, Smets BF, Angelidaki I, Zhang Y, Valverde-Pérez B. Coupling electrochemical ammonia extraction and cultivation of methane oxidizing bacteria for production of microbial protein. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 265:110560. [PMID: 32421560 DOI: 10.1016/j.jenvman.2020.110560] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/18/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Conventional treatment of residual resources relies on nutrient removal to limit pollution. Recently, nutrient recovery technologies have been proposed as more environmentally and energetically efficient strategies. Nevertheless, the upcycling of recovered resources is typically limited by their quality or purity. Specifically, nitrogen extracted from residual streams, such as anaerobic digestion (AD) effluents and wastewaters, could support microbial protein production. In this context, this study was performed as a proof-of-concept to combine nitrogen recovery via electrochemical reactors with the production of high quality microbial protein via cultivation of methanotrophs. Two types of AD effluents, i.e., cattle manure and organic fraction of municipal solid waste, and urine were tested to investigate the nitrogen extraction efficiency. The results showed that 31-51% of the nitrogen could be recovered free of trace chemicals from residual streams depending on the substrate and voltage used. Based on the results achieved, higher nitrogen concentration in the residual streams resulted in higher nitrogen flux between anodic and cathodic chambers. Results showed that the extraction process has an energy demand of 9.97 (±0.7) - 14.44 (±1.19) kWh/kg-N, depending on the substrate and operating conditions. Furthermore, a mixed-culture of methanotrophic bacteria could grow well with the extracted nitrogen producing a total dry weight of 0.49 ± 0.01 g/L. Produced biomass contained a wide range of essential amino acids making it comparable with conventional protein sources.
Collapse
Affiliation(s)
- Benyamin Khoshnevisan
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark; Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mark Dodds
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark
| | - Panagiotis Tsapekos
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark
| | - Elena Torresi
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark; Veolia Water Technologies AB, AnoxKaldnes, Klosterängsvägen 11A, SE-226 47, Lund, Sweden
| | - Barth F Smets
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark
| | - Borja Valverde-Pérez
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark.
| |
Collapse
|
28
|
Fei Q, Liang B, Tao L, Tan EC, Gonzalez R, Henard CA, Guarnieri MT. Biological valorization of natural gas for the production of lactic acid: Techno-economic analysis and life cycle assessment. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Kasprzycka A, Lalak-Kańczugowska J, Walkiewicz A, Bulak P, Proc K, Stępień Ł. Biocatalytic conversion of methane – selected aspects. Curr Opin Chem Eng 2019. [DOI: 10.1016/j.coche.2019.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
30
|
Lee JK, Kim S, Kim W, Kim S, Cha S, Moon H, Hur DH, Kim SY, Na JG, Lee JW, Lee EY, Hahn JS. Efficient production of d-lactate from methane in a lactate-tolerant strain of Methylomonas sp. DH-1 generated by adaptive laboratory evolution. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:234. [PMID: 31583020 PMCID: PMC6767647 DOI: 10.1186/s13068-019-1574-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/22/2019] [Indexed: 05/17/2023]
Abstract
BACKGROUND Methane, a main component of natural gas and biogas, has gained much attention as an abundant and low-cost carbon source. Methanotrophs, which can use methane as a sole carbon and energy source, are promising hosts to produce value-added chemicals from methane, but their metabolic engineering is still challenging. In previous attempts to produce lactic acid (LA) from methane, LA production levels were limited in part due to LA toxicity. We solved this problem by generating an LA-tolerant strain, which also contributes to understanding novel LA tolerance mechanisms. RESULTS In this study, we engineered a methanotroph strain Methylomonas sp. DH-1 to produce d-lactic acid (d-LA) from methane. LA toxicity is one of the limiting factors for high-level production of LA. Therefore, we first performed adaptive laboratory evolution of Methylomonas sp. DH-1, generating an LA-tolerant strain JHM80. Genome sequencing of JHM80 revealed the causal gene watR, encoding a LysR-type transcription factor, whose overexpression due to a 2-bp (TT) deletion in the promoter region is partly responsible for the LA tolerance of JHM80. Overexpression of the watR gene in wild-type strain also led to an increase in LA tolerance. When d form-specific lactate dehydrogenase gene from Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293 was introduced into the genome while deleting the glgA gene encoding glycogen synthase, JHM80 produced about 7.5-fold higher level of d-LA from methane than wild type, suggesting that LA tolerance is a critical limiting factor for LA production in this host. d-LA production was further enhanced by optimization of the medium, resulting in a titer of 1.19 g/L and a yield of 0.245 g/g CH4. CONCLUSIONS JHM80, an LA-tolerant strain of Methylomonas sp. DH-1, generated by adaptive laboratory evolution was effective in LA production from methane. Characterization of the mutated genes in JHM80 revealed that overexpression of the watR gene, encoding a LysR-type transcription factor, is responsible for LA tolerance. By introducing a heterologous lactate dehydrogenase gene into the genome of JHM80 strain while deleting the glgA gene, high d-LA production titer and yield were achieved from methane.
Collapse
Affiliation(s)
- Jong Kwan Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
| | - Sujin Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
| | - Wonsik Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
| | - Sungil Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107 Republic of Korea
| | - Seungwoo Cha
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
| | - Hankyeol Moon
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
| | - Dong Hoon Hur
- Department of Chemical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, 17104 Republic of Korea
| | - Seon-Young Kim
- Personalized Genomic Medicine Research Center, KRIBB, 125 Gwahag-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Jeong-Geol Na
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107 Republic of Korea
| | - Jin Won Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107 Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, 17104 Republic of Korea
| | - Ji-Sook Hahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
| |
Collapse
|