1
|
Pires L, González-Paramás AM, Heleno SA, Calhelha RC. Exploring Therapeutic Advances: A Comprehensive Review of Intestinal Microbiota Modulators. Antibiotics (Basel) 2024; 13:720. [PMID: 39200020 PMCID: PMC11350912 DOI: 10.3390/antibiotics13080720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
The gut microbiota establishes a mutually beneficial relationship with the host starting from birth, impacting diverse metabolic and immunological processes. Dysbiosis, characterized by an imbalance of microorganisms, is linked to numerous medical conditions, including gastrointestinal disorders, cardiovascular diseases, and autoimmune disorders. This imbalance promotes the proliferation of toxin-producing bacteria, disrupts the host's equilibrium, and initiates inflammation. Genetic factors, dietary choices, and drug use can modify the gut microbiota. However, there is optimism. Several therapeutic approaches, such as probiotics, prebiotics, synbiotics, postbiotics, microbe-derived products, and microbial substrates, aim to alter the microbiome. This review thoroughly explores the therapeutic potential of these microbiota modulators, analysing recent studies to evaluate their efficacy and limitations. It underscores the promise of microbiota-based therapies for treating dysbiosis-related conditions. This article aims to ensure practitioners feel well-informed and up to date on the most influential methods in this evolving field by providing a comprehensive review of current research.
Collapse
Affiliation(s)
- Lara Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (R.C.C.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Investigación en Polifenoles, Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain;
| | - Ana M. González-Paramás
- Grupo de Investigación en Polifenoles, Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain;
| | - Sandrina A. Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (R.C.C.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (R.C.C.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
2
|
Luo C, Duan J, Zhong R, Liu L, Gao Q, Liu X, Chen L, Zhang H. In vitro fermentation characteristics of different types of fiber-rich ingredients by pig fecal inoculum. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5296-5304. [PMID: 38308576 DOI: 10.1002/jsfa.13355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/12/2023] [Accepted: 02/01/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND Dietary fibers with varying physicochemical properties have different fermentation characteristics, which may differently impact host health. The present study aimed to determine the fermentation characteristics including gas production kinetics, short-chain fatty acids (SCFAs) production and microbial composition of different fibrous ingredients using in vitro fermentation by fecal microbiota. RESULTS Sugar beet pule (SBP), wheat bran (WB), dried corn distillers grains with solubles (DDGS), rice bran (RB) and alfalfa meal (AM) were selected to fermentation in vitro for 36 h. The results showed that SBP had the greatest gas production. SBP had the highest in vitro dry matter fermentability (IVDMF) and production of acetate, propionate and total SCFAs, followed by WB, which were all greater than DDGS, AM and RB. The alpha-diversity was higher in the DDGS, AM and RB groups than in the WB and SBP groups. Differences in microbial community composition were observed among groups. The relative abundance of Treponema was highest in WB group. RB group showed lower Prevotella abundance than other groups but had higher Succinivibrio abundance. Interestingly, the Lactobacillus reached the highest abundances in the DDGS group. Correlation analysis indicated that the relative abundance of Treponema and Prevotella was positively associated with the gas production, IVDMF and SCFAs, whereas norank_f_Muribaculaceae, Rikenellaceae_RC9_gut_group, Lysinibacillus and Succinivibrio were the opposite. CONCLUSION Collectively, WB and SBP were fermented rapidly by fecal microbiota compared to DDGS, AM and RB. Different fiber sources have different fiber compositions and fermentation properties that affect the microbial compositins and SCFAs production. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chengzeng Luo
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Jiujun Duan
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Liu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingtao Gao
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuelan Liu
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Knobloch S, Skirnisdóttir S, Dubois M, Mayolle L, Kolypczuk L, Leroi F, Leeper A, Passerini D, Marteinsson VÞ. The gut microbiome of farmed Arctic char ( Salvelinus alpinus) is shaped by feeding stage and nutrient presence. FEMS MICROBES 2024; 5:xtae011. [PMID: 38745980 PMCID: PMC11092275 DOI: 10.1093/femsmc/xtae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/06/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
The gut microbiome plays an important role in maintaining health and productivity of farmed fish. However, the functional role of most gut microorganisms remains unknown. Identifying the stable members of the gut microbiota and understanding their functional roles could aid in the selection of positive traits or act as a proxy for fish health in aquaculture. Here, we analyse the gut microbial community of farmed juvenile Arctic char (Salvelinus alpinus) and reconstruct the metabolic potential of its main symbionts. The gut microbiota of Arctic char undergoes a succession in community composition during the first weeks post-hatch, with a decrease in Shannon diversity and the establishment of three dominant bacterial taxa. The genome of the most abundant bacterium, a Mycoplasma sp., shows adaptation to rapid growth in the nutrient-rich gut environment. The second most abundant taxon, a Brevinema sp., has versatile metabolic potential, including genes involved in host mucin degradation and utilization. However, during periods of absent gut content, a Ruminococcaceae bacterium becomes dominant, possibly outgrowing all other bacteria through the production of secondary metabolites involved in quorum sensing and cross-inhibition while benefiting the host through short-chain fatty acid production. Whereas Mycoplasma is often present as a symbiont in farmed salmonids, we show that the Ruminococcaceae species is also detected in wild Arctic char, suggesting a close evolutionary relationship between the host and this symbiotic bacterium.
Collapse
Affiliation(s)
- Stephen Knobloch
- Matís ohf., Microbiology Research Group, Vínlandsleið 12, 113 Reykjavík, Iceland
- Department of Food Technology, University of Applied Sciences Fulda, Leipziger Strasse 123, 36037 Fulda, Germany
| | | | - Marianne Dubois
- ESBS/University of Strasbourg, 300 Bd Sébastien Brant, 67085 Strasbourg, France
| | - Lucie Mayolle
- University of Technology of Compiègne, Rue Roger Couttolenc, 60203 Compiègne, France
| | - Laetitia Kolypczuk
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, BP 21105, F-44000 Nantes, France
| | - Françoise Leroi
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, BP 21105, F-44000 Nantes, France
| | - Alexandra Leeper
- Matís ohf., Microbiology Research Group, Vínlandsleið 12, 113 Reykjavík, Iceland
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Arboretveien 6, 1430 Ås, Norway
- Iceland Ocean Cluster, Department of Research and Innovation, Grandagarður 16, 101 Reykjavík, Iceland
| | - Delphine Passerini
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, BP 21105, F-44000 Nantes, France
| | - Viggó Þ Marteinsson
- Matís ohf., Microbiology Research Group, Vínlandsleið 12, 113 Reykjavík, Iceland
- Faculty of Food Science and Nutrition, University of Iceland, Sæmundargata 2, 101 Reykjavik, Iceland
| |
Collapse
|
4
|
Tang X. Probiotic Roles of Clostridium butyricum in Piglets: Considering Aspects of Intestinal Barrier Function. Animals (Basel) 2024; 14:1069. [PMID: 38612308 PMCID: PMC11010893 DOI: 10.3390/ani14071069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
China, as the global leader in pork production and consumption, is faced with challenges in ensuring sustainable and wholesome growth of the pig industry while also guaranteeing meat food safety amidst the ban on antibiotics usage in animal feed. The focus of the pig industry lies in guaranteeing piglet health and enhancing overall production performance through nutrition regulation. Clostridium butyricum (C. butyricum), a new type of probiotic, possesses characteristics such as heat resistance, acid resistance, and bile-salt tolerance, meaning it has potential as a feed additive. Previous studies have demonstrated that C. butyricum has a probiotic effect on piglets and can serve as a substitute for antibiotics. The objective of this study was to review the probiotic role of C. butyricum in the production of piglets, specifically focusing on intestinal barrier function. Through this review, we explored the probiotic effects of C. butyricum on piglets from the perspective of intestinal health. That is, C. butyricum promotes intestinal health by regulating the functions of the mechanical barrier, chemical barrier, immune barrier, and microbial barrier of piglets, thereby improving the growth of piglets. This review can provide a reference for the rational utilization and application of C. butyricum in swine production.
Collapse
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertification Control, School of Karst Science, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|
5
|
Cheng Y, Liu S, Wang F, Wang T, Yin L, Chen J, Fu C. Effects of Dietary Terminalia chebula Extract on Growth Performance, Immune Function, Antioxidant Capacity, and Intestinal Health of Broilers. Animals (Basel) 2024; 14:746. [PMID: 38473130 DOI: 10.3390/ani14050746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Terminalia chebula extract (TCE) has many physiological functions and is potentially helpful in maintaining poultry health, but its specific effect on the growth of broilers is not yet known. This research investigated the effects of dietary Terminalia chebula extract (TCE) supplementation on growth performance, immune function, antioxidant capacity, and intestinal health in yellow-feathered broilers. A total of 288 one-day-old yellow-feathered broilers were divided into four treatment groups (72 broilers/group), each with six replicates of 12 broilers. The broilers were given a basal diet of corn-soybean meal supplemented with 0 (control), 200, 400, and 600 mg/kg TCE for 56 d. The results demonstrated that, compared with the basal diet, the addition of TCE significantly increased (linear and quadratic, p < 0.05) the final body weight and overall weight gain and performance and decreased (linear and quadratic, p < 0.05) the feed-to-gain ratio in the overall period. Dietary TCE increased (linear, p < 0.05) the levels of IgM, IL-4, and IL-10 and decreased (linear and quadratic, p < 0.05) the level of IL-6 in the serum. Dietary TCE increased (linear and quadratic, p < 0.05) the levels of IL-2 and IL-4, decreased (linear and quadratic, p < 0.05) the level of IL-1β, and decreased (linear, p < 0.05) the level of IL-6 in the liver. Dietary TCE increased (linear and quadratic, p < 0.05) the level of IgM and IL-10, increased (linear, p < 0.05) the level of IgG, and decreased (linear and quadratic, p < 0.05) the levels of IL-1β and IL-6 in the spleen. Supplementation with TCE linearly and quadratically increased (p < 0.05) the catalase, superoxide dismutase, glutathione peroxidase, and total antioxidant capacity activities while decreasing (p < 0.05) the malonic dialdehyde concentrations in the serum, liver, and spleen. TCE-containing diets for broilers resulted in a higher (linear and quadratic, p < 0.05) villus height, a higher (linear and quadratic, p < 0.05) ratio of villus height to crypt depth, and a lower (linear and quadratic, p < 0.05) crypt depth compared with the basal diet. TCE significantly increased (linear, p < 0.05) the acetic and butyric acid concentrations and decreased (quadratic, p < 0.05) the isovaleric acid concentration. Bacteroidaceae and Bacteroides, which regulate the richness and diversity of microorganisms, were more abundant and contained when TCE was added to the diet. In conclusion, these findings demonstrate that supplementing broilers with TCE could boost their immune function, antioxidant capacity, and gut health, improving their growth performance; they could also provide a reference for future research on TCE.
Collapse
Affiliation(s)
- Ying Cheng
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Shida Liu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Fang Wang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Tao Wang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Lichen Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jiashun Chen
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Chenxing Fu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
6
|
Apalowo OE, Adegoye GA, Obuotor TM. Microbial-Based Bioactive Compounds to Alleviate Inflammation in Obesity. Curr Issues Mol Biol 2024; 46:1810-1831. [PMID: 38534735 DOI: 10.3390/cimb46030119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024] Open
Abstract
The increased prevalence of obesity with several other metabolic disorders, including diabetes and non-alcoholic fatty liver disease, has reached global pandemic proportions. Lifestyle changes may result in a persistent positive energy balance, hastening the onset of these age-related disorders and consequently leading to a diminished lifespan. Although suggestions have been raised on the possible link between obesity and the gut microbiota, progress has been hampered due to the extensive diversity and complexities of the gut microbiota. Being recognized as a potential biomarker owing to its pivotal role in metabolic activities, the dysregulation of the gut microbiota can give rise to a persistent low-grade inflammatory state associated with chronic diseases during aging. This chronic inflammatory state, also known as inflammaging, induced by the chronic activation of the innate immune system via the macrophage, is controlled by the gut microbiota, which links nutrition, metabolism, and the innate immune response. Here, we present the functional roles of prebiotics, probiotics, synbiotics, and postbiotics as bioactive compounds by underscoring their putative contributions to (1) the reduction in gut hyperpermeability due to lipopolysaccharide (LPS) inactivation, (2) increased intestinal barrier function as a consequence of the upregulation of tight junction proteins, and (3) inhibition of proinflammatory pathways, overall leading to the alleviation of chronic inflammation in the management of obesity.
Collapse
Affiliation(s)
- Oladayo Emmanuel Apalowo
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Starkville, MS 39762, USA
| | - Grace Adeola Adegoye
- Department of Nutrition and Health Science, Ball State University, Muncie, IN 47306, USA
| | | |
Collapse
|
7
|
Zhang A, Yang Y, Li Y, Zheng Y, Wang H, Cui H, Yin W, Lv M, Liang Y, Chen W. Effects of wheat-based fermented liquid feed on growth performance, nutrient digestibility, gut microbiota, intestinal morphology, and barrier function in grower-finisher pigs. J Anim Sci 2024; 102:skae229. [PMID: 39155623 PMCID: PMC11495224 DOI: 10.1093/jas/skae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024] Open
Abstract
Fermented liquid feed (FLF) can improve dietary nutrient absorption levels, degrade antinutrient factors in diets, and increase beneficial bacteria abundance in animal guts. However, few systematic studies have been conducted on wheat-based fermented liquid feed (WFLF) in pigs. The present study evaluates the effects of WFLF on the growth performance, nutrient digestibility, gastric volume, intestinal morphology, intestinal health, intestinal barrier function, serum biochemical immunity, gut microbiota, and intestinal microbial diversity of grower-finisher pigs. In total, 80 weaned pigs were randomly allocated to two treatment groups based on their initial body weight: a basal diet with pellet dry feeding (CON) and a basal diet with WFLF, with four replicate pens per group. The experiment lasted 82 d. Compared with CON pigs, those fed WFLF were significantly heavier at 60 to 82 d and had significantly higher average daily feed intake, average daily gain, and gain: feed ratio at 60 to 82 d and 1 to 82 d. WFLF pigs had significantly greater jejunum, total tract, and ileal digestibility for all nutrients and amino acids, excluding arginine, than CON pigs. WFLF intake influenced villus height, villus height:crypt depth ratio of the anterior segment of the jejunum (A-jejunum), crypt depth, and redox potential of the posterior segment of the jejunum (P-jejunum) while significantly affecting body weight. Additionally, FLF improved gastric capacity significantly. Furthermore, mRNA expression of occludin and claudin-1 in the mucosa of the ileum and jejunum was significantly higher in WFLF pigs than in CON pigs. WFLF increased serum concentrations of alanine transaminase and reduced low-density lipoprotein cholesterol, total cholesterol, and total bile acid content. The alpha diversity (Shannon and Simpson indices) in the stomachs of WFLF pigs was significantly higher than in CON pigs. Microbial diversity in the stomach, ileum, and cecum, as well as the abundance of lactic acid bacteria, were increased in WFLF pigs compared to CON pigs. In conclusion, WFLF intake may positively influence intestinal ecology by improving digestive tract structure, upregulating intestinal barrier-related genes, and improving intestinal morphology to enhance intestinal digestive function and health. Collectively, the present study shows that WFLF intake can increase growth performance while maintaining beneficial nutrient digestibility in grower-finisher pigs.
Collapse
Affiliation(s)
- Aoran Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- New Hope Liuhe Co., Ltd, Key Laboratory of Feed and Livestock and Poultry Products Quality & Safety Control, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Yanyi Yang
- New Hope Liuhe Co., Ltd, Key Laboratory of Feed and Livestock and Poultry Products Quality & Safety Control, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Yong Li
- New Hope Liuhe Co., Ltd, Key Laboratory of Feed and Livestock and Poultry Products Quality & Safety Control, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Yunfan Zheng
- New Hope Liuhe Co., Ltd, Key Laboratory of Feed and Livestock and Poultry Products Quality & Safety Control, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Hongmei Wang
- New Hope Liuhe Co., Ltd, Key Laboratory of Feed and Livestock and Poultry Products Quality & Safety Control, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Hongxiao Cui
- New Hope Liuhe Co., Ltd, Key Laboratory of Feed and Livestock and Poultry Products Quality & Safety Control, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Wang Yin
- New Hope Liuhe Co., Ltd, Key Laboratory of Feed and Livestock and Poultry Products Quality & Safety Control, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Mei Lv
- Henan Heshun Automation Equipment Co. Ltd., Zhengzhou, Henan, China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
8
|
Zhang L, Chen N, Zhan L, Bi T, Zhou W, Zhang L, Zhu L. Erchen Decoction alleviates obesity-related hepatic steatosis via modulating gut microbiota-drived butyric acid contents and promoting fatty acid β-oxidation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116811. [PMID: 37336336 DOI: 10.1016/j.jep.2023.116811] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Erchen decoction (ECD) is a traditional Chinese medicine formula comprising six distinct herbs and has been documented to possess a protective effect against obesity. The study conducted previously demonstrated that ECD has the potential to effectively modulate the composition of gut microbiota and levels of short-chain fatty acids (SCFAs) in obese rat. However, the regulatory mechanism of ECD on gut microbiota and SCFAs and further improvement of obesity have not been thoroughly explained. AIM OF THE STUDY The objective of this study was to examine the therapeutic effect and molecular mechanism of ECD in a rat model of high-fat diet (HFD) feeding. MATERIALS AND METHODS Rats with HFD-induced obesity were treated with ECD. Upon completion of the study, serum and liver samples were procured to conduct biochemical, pathological, and Western blotting analyses. The investigation of alterations in the gut microbiota subsequent to ECD treatment was conducted through the utilization of 16S rRNA sequencing. The metabolic alterations in the cecal contents were examined through the utilization of mass spectrometry-ultraperformance liquid chromatography. RESULTS ECD treatment improved lipid metabolic disorders and reduced hepatic steatosis in HFD-induced obese rats. Obese rat treated with ECD showed a higher abundance of SCFA-producing bacteria, including Lactobacillus, Bifidobacterium, and Butyricicoccus, and lower abundance of disease-related bacteria, such as Bacteroides, Parabacteroides, and Sediminibacterium. Additionally, ECD caused an increase in total SCFAs levels; in particular, butyric acid was dramatically increased in the HFD group. Rats treated with ECD also exhibited significantly increased butyric acid concentrations in the serum and liver. The subsequent reduction in histone deacetylase 1 expression and increase in acetyl-histone 3-lysine 9 (H3K9ac) levels contributed to the promotion of fatty acid β-oxidation (FAO) in liver by ECD. CONCLUSION This study demonstrates that ECD regulates the gut microbiota and promotes butyric acid production to ameliorate obesity-related hepatic steatosis. The mechanism might be related to the promotion of FAO via a butyric acid-mediated increase in H3K9ac levels in the liver.
Collapse
Affiliation(s)
- Ling Zhang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ning Chen
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Libin Zhan
- Center for Innovative Engineering Technology in Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China; Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China; Key Laboratory of Liaoning Province for TCM Spleen-Viscera-State Modern Research, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China.
| | - Tingting Bi
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Wen Zhou
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lijing Zhang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lianlian Zhu
- Center for Innovative Engineering Technology in Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China; Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China; Key Laboratory of Liaoning Province for TCM Spleen-Viscera-State Modern Research, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China.
| |
Collapse
|
9
|
Ren T, Su W, Mu Y, Qi Q, Zhang D. Study on the correlation between microbial communities with physicochemical properties and flavor substances in the Xiasha round of cave-brewed sauce-flavor Baijiu. Front Microbiol 2023; 14:1124817. [PMID: 36937267 PMCID: PMC10014610 DOI: 10.3389/fmicb.2023.1124817] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/30/2023] [Indexed: 03/05/2023] Open
Abstract
The Chishui River basin is the main production area of the sauce-flavor Baijiu. Due to the particularity of sauce-flavor Baijiu technology, a large site of workshops needs to be built for brewing and storage. Therefore, used the natural karst caves of Guizhou province to manufacture the sauce-flavor Baijiu, which has enriched the connotation of sauce-flavor Baijiu and saved valuable land resources. In this study, the fermentation grains in the seven stages during the Xiasha round of the cave-brewed sauce-flavor Baijiu (CBSB) were detected using a combination of physicochemical analysis, Headspace solid-phase microextraction gas chromatography-mass detection, and Illumina HiSeq sequencing methods. The results showed Unspecified_Leuconostocaceae, Weissella, Unspecified_Bacillaceae, Saccharomycopsis, Thermomyces, and Unspecified_Phaffomycetaceae were the main bacterial and fungal genera in the stacking fermentation (SF). In the cellar fermentation (CF), the Lactobacillus, Unspecified_Lactobacillaceae, Thermoactinomyces, Saccharomycopsis, Unspecified_Phaffomycetaceae, and Wickerhamomyces were the main bacterial and fungal genera. A total of 72 volatiles were detected in the fermented grains. Linear discriminant analysis Effect Size (LEfSe) identified 23 significantly different volatile metabolites in the fermentation process, including 7 esters, 6 alcohols, 4 acids, 3 phenols, 1 hydrocarbon, and 2 other compounds. Redundancy analysis was used to explore the correlation between dominant microbial genera and physicochemical properties. Starch was the main physicochemical property affecting microbial succession in the SF. Acidity, moisture, and reducing sugar were the main driving factors of microbial succession in the CF. The Pearson correlation coefficient revealed the correlation between dominant microbial genera and significantly different volatile flavor substances. A total of 18 dominant microbial genera were associated with significantly different volatile metabolites, Lactobacillus, Weissella, Wickerhamomyces, and Aspergillus were shown to play crucial roles in metabolite synthesis. On this basis, a metabolic map of the dominant microbial genera was established. This study provides a theoretical basis for the production and quality control of sauce-flavor Baijiu brewed in natural karst caves and lays a foundation for studying the link between flavor formation and microorganisms.
Collapse
Affiliation(s)
- Tingting Ren
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Fermentation Engineering and Biological Pharmacy, Guizhou University, Guiyang, China
| | - Wei Su
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Fermentation Engineering and Biological Pharmacy, Guizhou University, Guiyang, China
- *Correspondence: Wei Su
| | - Yingchun Mu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Qi Qi
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Dangwei Zhang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Fermentation Engineering and Biological Pharmacy, Guizhou University, Guiyang, China
| |
Collapse
|
10
|
Tao P, Ji J, Wang Q, Cui M, Cao M, Xu Y. The role and mechanism of gut microbiota-derived short-chain fatty in the prevention and treatment of diabetic kidney disease. Front Immunol 2022; 13:1080456. [PMID: 36601125 PMCID: PMC9806165 DOI: 10.3389/fimmu.2022.1080456] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Diabetic kidney disease (DKD), an emerging global health issue, is one of the most severe microvascular complications derived from diabetes and a primary pathology contributing to end-stage renal disease. The currently available treatment provides only symptomatic relief and has failed to delay the progression of DKD into chronic kidney disease. Recently, multiple studies have proposed a strong link between intestinal dysbiosis and the occurrence of DKD. The gut microbiota-derived short-chain fatty acids (SCFAs) capable of regulating inflammation, oxidative stress, fibrosis, and energy metabolism have been considered versatile players in the prevention and treatment of DKD. However, the underlying molecular mechanism of the intervention of the gut microbiota-kidney axis in the development of DKD still remains to be explored. This review provides insight into the contributory role of gut microbiota-derived SCFAs in DKD.
Collapse
Affiliation(s)
- Pengyu Tao
- Department of Nephrology, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Ji
- Department of Endocrinology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Wang
- Postdoctoral Workstation, Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Mengmeng Cui
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Mingfeng Cao
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University Taian, Taian, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| |
Collapse
|
11
|
Su W, Jiang Z, Wang C, Zhang Y, Gong T, Wang F, Jin M, Wang Y, Lu Z. Co-fermented defatted rice bran alters gut microbiota and improves growth performance, antioxidant capacity, immune status and intestinal permeability of finishing pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 11:413-424. [PMID: 36382202 PMCID: PMC9640948 DOI: 10.1016/j.aninu.2022.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/15/2022] [Accepted: 07/25/2022] [Indexed: 05/19/2023]
Abstract
Based on preparation of co-fermented defatted rice bran (DFRB) using Bacillus subtilis, Saccharomyces cerevisiae, Lactobacillus plantarum and phytase, the present study aimed to evaluate the effects of co-fermented DFRB on growth performance, antioxidant capacity, immune status, gut microbiota and permeability in finishing pigs. Ninety finishing pigs (85.30 ± 0.97 kg) were randomly assigned to 3 treatments (3 replicates/treatment) with a basal diet (Ctrl), a basal diet supplemented with 10% unfermented DFRB (UFR), and a basal diet supplemented with 10% fermented DFRB (FR) for 30 d. Results revealed that the diet supplemented with FR notably (P < 0.05) improved the average daily gain (ADG), gain to feed ratio (G:F) and the digestibility of crude protein, amino acids and dietary fiber of finishing pigs compared with UFR. Additionally, FR supplementation significantly (P < 0.05) increased total antioxidant capacity, the activities of superoxide dismutase and catalase, and decreased the content of malonaldehyde in serum. Furthermore, FR remarkably (P < 0.05) increased serum levels of IgG, anti-inflammatory cytokines (IL-22 and IL-23) and reduced pro-inflammatory cytokines (TNF-α, IL-1β and INF-γ). The decrease of serum diamine oxidase activity and serum D-lactate content in the FR group (P < 0.05) suggested an improvement in intestinal permeability. Supplementation of FR also elevated the content of acetate and butyrate in feces (P < 0.05). Moreover, FR enhanced gut microbial richness and the abundance of fiber-degrading bacteria such as Clostridium butyricum and Lactobacillus amylovorus. Correlation analyses indicated dietary fiber in FR was associated with improvements in immune status, intestinal permeability and the level of butyrate-producing microbe C. butyricum, which was also verified by the in vitro fermentation analysis. These findings provided an experimental and theoretical basis for the application of fermented DFRB in finishing pigs.
Collapse
Affiliation(s)
- Weifa Su
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Zipeng Jiang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Cheng Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Yu Zhang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Tao Gong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Fengqin Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Zeqing Lu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Corresponding author.
| |
Collapse
|
12
|
Corrie L, Gulati M, Awasthi A, Vishwas S, Kaur J, Khursheed R, Porwal O, Alam A, Parveen SR, Singh H, Chellappan DK, Gupta G, Kumbhar P, Disouza J, Patravale V, Adams J, Dua K, Singh SK. Harnessing the dual role of polysaccharides in treating gastrointestinal diseases: As therapeutics and polymers for drug delivery. Chem Biol Interact 2022; 368:110238. [DOI: 10.1016/j.cbi.2022.110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/27/2022] [Accepted: 10/21/2022] [Indexed: 12/01/2022]
|
13
|
Song Y, Chen K, Lv L, Xiang Y, Du X, Zhang X, Zhao G, Xiao Y. Uncovering the biogeography of the microbial commmunity and its association with nutrient metabolism in the intestinal tract using a pig model. Front Nutr 2022; 9:1003763. [PMID: 36238459 PMCID: PMC9552906 DOI: 10.3389/fnut.2022.1003763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
The gut microbiota is a complex ecosystem that is essential for the metabolism, immunity and health of the host. The gut microbiota also plays a critical role in nutrient absorption and metabolism, and nutrients can influence the growth and composition of the gut microbiota. To gain a better understanding of the relationship between the gut microbial composition and nutrient metabolism, we used a pig model by collecting the contents of the different intestinal locations from six pigs to investigate microbial composition in different intestinal locations based on 16S rRNA gene sequencing and the concentrations of short-chain fatty acids (SCFAs), amino acids, fat, and crude ash in different intestinal locations using gas chromatography and chemical analysis. The results showed that the richness and diversity of intestinal microbial communities gradually increased from the small intestine to the large intestine. The relative abundance of Proteobacteria was higher in the jejunum and ileum, whereas the proportion of Firmicutes was higher in the cecum and colon. The concentrations of SCFAs were higher in the cecum and colon (P < 0.05). The concentrations of amino acids were higher in the small intestine than in the large intestine, while the amino acid content was significantly higher in the ascending colon than in the transverse colon and descending colon. The correlation analysis revealed that Ruminococcaceae UCG-005, Coriobacteriaceae_uncultured, [Eubacterium] hallii group, Mogibacterium and Lachnospiraceae AC2044 group had a higher positive correlation with SCFAs, crude ash and fat but had a negative correlation with amino acids in different gut locations of pigs. These findings may serve as fundamental data for using nutrient metabolism to regulate human and animal gut microbes and health and provide guidance for exploring host-microbe bidirectional interaction mechanisms and driving pathways.
Collapse
Affiliation(s)
- Yuanyuan Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou, China
| | - Kai Chen
- Quality and Safety of Animal Products Group, Zhejiang Center of Animal Disease Control, Hangzhou, China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yun Xiang
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua, China
| | - Xizhong Du
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua, China
| | - Xiaojun Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua, China
| | - Guangmin Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Yingping Xiao
| |
Collapse
|
14
|
Effects of Replacing Fishmeal and Soybean Protein Concentrate with Degossypolized Cottonseed Protein in Diets on Growth Performance, Nutrient Digestibility, Intestinal Morphology, Cecum Microbiome and Fermentation of Weaned Piglets. Animals (Basel) 2022; 12:ani12131667. [PMID: 35804565 PMCID: PMC9264811 DOI: 10.3390/ani12131667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/16/2022] [Accepted: 06/26/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Highly digestible and high-quality proteins are especially needed in weaned pigs to alleviate weaning stress in piglets. Fishmeal (FM) and soybean protein (SPC) are two commonly used protein supplements in the diets of weaned pigs, but the high prices of those two kinds of ingredients have prompted a search for an alternative cost-effective protein source. After the removal of anti-nutritional factors, degossypolized cottonseed protein (DCP) shows potential as an alternative to FM and SPC. In this study, the effects on weaned piglets of replacing FM and SPC with DCP in diets were evaluated. The results showed that replacing FM with DCP weakens the small intestinal morphology and decreases nutrient digestibility, but improves the community structures of cecum microbiota that relieve these negative effects without impairing the growth performance of weaned piglets. Abstract The inclusion of high-quality proteins is commonly used in swine production, especially in weaned pigs. Our research investigated the effects of replacing fishmeal (FM) and soybean protein concentrate (SPC) with degossypolized cottonseed protein (DCP) on the growth performance, nutrient digestibility, intestinal morphology, cecum microbiota and fermentation in weaned pigs. A total of 90 pigs were used in a 4-week trial. Pigs were randomly assigned to three dietary treatments (initial BW 8.06 ± 0.26 kg; six pigs per pen; five pens per treatment), including a basal diet group (CON) with a 6% SPC and 6% FM; two experimental diets group (SPCr and FMr) were formulated by replacing SPC or FM with 6% DCP, respectively. There were no differences in growth performance and diarrhea rate among three treatments except for the ADFI during day 14 to day 28. Using the DCP to replace FM would weaken the jejunum morphology and decrease the nutrient digestibility of pigs during day 0 to day 14. However, replacing FM with DCP can improve the community structure of cecum microbiota, and may relieve these negative effects. In conclusion, DCP can be used as a cost-effective alternative protein supplement.
Collapse
|
15
|
Sun Y, Ma N, Qi Z, Han M, Ma X. Coated Zinc Oxide Improves Growth Performance of Weaned Piglets via Gut Microbiota. Front Nutr 2022; 9:819722. [PMID: 35284437 PMCID: PMC8916703 DOI: 10.3389/fnut.2022.819722] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Weaned piglets stayed in transitional stages of internal organ development and external environment change. The dual stresses commonly caused intestinal disorders followed by damaged growth performance and severe diarrhea. High dose of zinc oxide could improve production efficiency and alleviate disease status whereas caused serious environmental pollution. This research investigated if coated ZnO (C_ZnO) in low dose could replace the traditional dose of ZnO to improve the growth performance, intestinal function, and gut microbiota structures in the weaned piglets. A total of 126 cross-bred piglets (7.0 ± 0.5 kg body weight) were randomly allocated into three groups and fed a basal diet or a basal diet supplemented with ZnO (2,000 mg Zn/kg) or C_ZnO (500 mg Zn/kg), respectively. The test lasted for 6 weeks. C_ZnO improved average daily gain (ADG) and feed efficiency, alleviated diarrhea, decreased the lactulose/mannitol ratio (L/M) in the urine, increased the ileal villus height, and upregulated the expression of Occludin in the ileal tissue and the effect was even better than a high concentration of ZnO. Importantly, C_ZnO also regulated the intestinal flora, enriching Streptococcus and Lactobacillus and removing Bacillus and intestinal disease-associated pathogens, including Clostridium_sensu_stricto_1 and Cronobacter in the ileal lumen. Although, colonic microbiota remained relatively stable, the marked rise of Blautia, a potential probiotic related to body health, could still be found. In addition, C_ZnO also led to a significant increase of acetate and propionate in both foregut and hindgut. Collectively, a low concentration of C_ZnO could effectively promote growth performance and reduce diarrhea through improving small intestinal morphology and permeability, enhancing the barrier function, adjusting the structure of gut microbiota, and raising the concentration of short-chain fatty acids (SCFAs) in the weaned piglets.
Collapse
|
16
|
Cai L, Hartanto R, Zhang J, Qi D. Clostridium butyricum Improves Rumen Fermentation and Growth Performance of Heat-Stressed Goats In Vitro and In Vivo. Animals (Basel) 2021; 11:3261. [PMID: 34827993 PMCID: PMC8614545 DOI: 10.3390/ani11113261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 02/05/2023] Open
Abstract
This study aimed to evaluate the effects of Clostridium butyricum on rumen fermentation and the growth performance of heat-stressed goats. The in vitro fermentation was carried out using Clostridium butyricum supplement at 0% (CG), 0.025% (CB1), 0.05% (CB2), 0.10% (CB3), and 0.20% (CB4) of the dry matter (DM) weight of basal diet. Results showed that ruminal pH and the concentrations of ammonia nitrogen, total volatile fatty acids, acetic acid, propionic acid, as well as the acetic acid to propionic acid ratio were significantly increased (p < 0.05) in CB2 and CB3 compared with the CG group. Additionally, significant increases (p < 0.05) in the degradability of DM, neutral detergent fiber, and acid detergent fiber were observed in CB2 and CB3 compared with the CG group. For the in vivo study, 12 heat-stressed goats were divided equally into three groups: the control (HS1) was fed the basal diet, and groups HS2 and HS3 were fed with 0.05% and 0.10% Clostridium butyricum added to the basal diet, respectively. The experiment was designed as a 3 × 3 Latin square. Similar effects on rumen fermentation and digestibility parameters were obtained with 0.05% of Clostridium butyricum supplement compared to the in vitro study. Moreover, the dry matter intake and average daily gain were significantly increased (p < 0.05) in HS2 compared with other groups. These results indicated that an effective dose of Clostridium butyricum supplement (0.05%) could improve the rumen fermentation and growth performance of heat-stressed goats.
Collapse
Affiliation(s)
- Liyuan Cai
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.C.); (R.H.); (J.Z.)
| | - Rudy Hartanto
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.C.); (R.H.); (J.Z.)
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Diponegoro University, Semarang 50275, Indonesia
| | - Ji Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.C.); (R.H.); (J.Z.)
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.C.); (R.H.); (J.Z.)
| |
Collapse
|
17
|
Li HY, Zhou DD, Gan RY, Huang SY, Zhao CN, Shang A, Xu XY, Li HB. Effects and Mechanisms of Probiotics, Prebiotics, Synbiotics, and Postbiotics on Metabolic Diseases Targeting Gut Microbiota: A Narrative Review. Nutrients 2021; 13:nu13093211. [PMID: 34579087 PMCID: PMC8470858 DOI: 10.3390/nu13093211] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolic diseases are serious threats to public health and related to gut microbiota. Probiotics, prebiotics, synbiotics, and postbiotics (PPSP) are powerful regulators of gut microbiota, thus possessing prospects for preventing metabolic diseases. Therefore, the effects and mechanisms of PPSP on metabolic diseases targeting gut microbiota are worth discussing and clarifying. Generally, PPSP benefit metabolic diseases management, especially obesity and type 2 diabetes mellitus. The underlying gut microbial-related mechanisms are mainly the modulation of gut microbiota composition, regulation of gut microbial metabolites, and improvement of intestinal barrier function. Moreover, clinical trials showed the benefits of PPSP on patients with metabolic diseases, while the clinical strategies for gestational diabetes mellitus, optimal formula of synbiotics and health benefits of postbiotics need further study. This review fully summarizes the relationship between probiotics, prebiotics, synbiotics, postbiotics, and metabolic diseases, presents promising results and the one in dispute, and especially attention is paid to illustrates potential mechanisms and clinical effects, which could contribute to the next research and development of PPSP.
Collapse
Affiliation(s)
- Hang-Yu Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (H.-Y.L.); (D.-D.Z.); (S.-Y.H.); (A.S.); (X.-Y.X.)
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (H.-Y.L.); (D.-D.Z.); (S.-Y.H.); (A.S.); (X.-Y.X.)
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China;
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (H.-Y.L.); (D.-D.Z.); (S.-Y.H.); (A.S.); (X.-Y.X.)
| | - Cai-Ning Zhao
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China;
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (H.-Y.L.); (D.-D.Z.); (S.-Y.H.); (A.S.); (X.-Y.X.)
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (H.-Y.L.); (D.-D.Z.); (S.-Y.H.); (A.S.); (X.-Y.X.)
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (H.-Y.L.); (D.-D.Z.); (S.-Y.H.); (A.S.); (X.-Y.X.)
- Correspondence: ; Tel.: +86-20-8733-2391
| |
Collapse
|
18
|
Physiological Functions of Threonine in Animals: Beyond Nutrition Metabolism. Nutrients 2021; 13:nu13082592. [PMID: 34444752 PMCID: PMC8399342 DOI: 10.3390/nu13082592] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 01/03/2023] Open
Abstract
Threonine (Thr), an essential amino acid for animals and the limiting amino acid in swine and poultry diets, which plays a vital role in the modulation of nutritional metabolism, macromolecular biosynthesis, and gut homeostasis. Current evidence supports that the supplementation of Thr leads to benefits in terms of energy metabolism. Threonine is not only an important component of gastrointestinal mucin, but also acts as a nutritional modulator that influences the intestinal immune system via complex signaling networks, particularly mitogen-activated protein kinase (MAPK) and the target of the rapamycin (TOR) signal pathway. Threonine is also recognized as an indispensable nutrient for cell growth and proliferation. Hence, optimization of Thr requirement may exert a favorable impact on the factors linked to health and diseases in animals. This review focuses on the latest reports of Thr in metabolic pathways and nutritional regulation, as well as the relationship between Thr and relevant physiological functions.
Collapse
|
19
|
Isolation and characterization of anaerobic bacteria with fiber degradation potential from faeces of Boselaphus tragocamelus grazing on semi arid Indian conditions. Arch Microbiol 2021; 203:5105-5116. [PMID: 34304303 DOI: 10.1007/s00203-021-02477-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/14/2021] [Accepted: 07/04/2021] [Indexed: 10/20/2022]
Abstract
Hindgut of wild ruminants harbours diversified anaerobic bacteria with promising fiber degrading ability. Fibrolytic enzyme activity is strongly influenced by diet and host species which till date remains unexplored for harnessing their optimum benefits. The present study was conducted to isolate and characterize fiber degrading anaerobic bacteria from faeces of wild blue bull (Boselaphus tragocamelus) inhabiting in semiarid regions. A total of 167 isolates were obtained from 85 faecal samples using M-10 medium, on the basis of clear zones formed on Congo red plates 20 isolates were selected and designated as NLG1-20 for microscopic and biochemical characterization. Further, molecular confirmation was done by PCR analysis with universal 16S rDNA primers. All isolates were obligatory anaerobes except, NLG4, NLG19 and NLG20. Majority of the sugars tested were utilized by most of the isolates except arabinose. Fibrolytic enzyme activities revealed that NLG1 had highest endoglucanase activity, NLG13 had highest exoglucanase activity while NLG8 showed maximum xylanase activity. In case of FPase assay, highest and lowest values were observed in isolate NLG11 (8.96 U/mL) and NLG8 (5.58 U/mL), respectively. Phylogenetic analysis of the isolates revealed a highly diverse group of microbes mainly belonging to the family Paenibacillaceae which have not been previously characterized in ruminants for fiber degradation. Therefore, results obtained in the present study indicated that the screened isolates showed promising fiber degrading potential in terms of filter paper assay and fibrolytic enzyme activity which can be explored further for improving lignocellulose digestibility in ruminants as an additive.
Collapse
|
20
|
Sobrino OJ, Alba C, Arroyo R, Pérez I, Sariego L, Delgado S, Fernández L, de María J, Fumanal P, Fumanal A, Rodríguez JM. Replacement of Metaphylactic Antimicrobial Therapy by Oral Administration of Ligilactobacillus salivarius MP100 in a Pig Farm. Front Vet Sci 2021; 8:666887. [PMID: 34136556 PMCID: PMC8200559 DOI: 10.3389/fvets.2021.666887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/06/2021] [Indexed: 01/04/2023] Open
Abstract
Antibiotic use in swine production contributes to the emergence and spread of resistant bacteria, which poses a threat on human health. Therefore, alternative approaches must be developed. The objective of this work was the characterization of the probiotic properties of a Ligilactobacillus salivarius strain isolated from sow's milk and its application as an inoculated fermented feed to pregnant sows and piglets. The study was carried in a farm in which metaphylactic use of antimicrobials (including zinc oxide) was eliminated at the time of starting the probiotic intervention, which lasted for 2 years. Feces from 8-week-old piglets were collected before and after the treatment and microbiological and biochemical analyses were performed. The procedure led to an increase in the concentrations of clostridia and lactobacilli-related bacteria. Parallel, an increase in the concentration of butyrate, propionate and acetate was observed and a notable reduction in the presence of antibiotic resistant lactobacilli became apparent. In conclusion, replacement of antimicrobials by a microbiota-friendly approach was feasible and led to positive microbiological and biochemical changes in the enteric environment.
Collapse
Affiliation(s)
- Odón J. Sobrino
- Scientific Society of Veterinary Public and Community Health (SOCIVESC), Madrid, Spain
| | - Claudio Alba
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Rebeca Arroyo
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Inés Pérez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Lydia Sariego
- Department of Microbiology and Biochemistry, Dairy Research Institute of Asturias, Villaviciosa, Spain
| | - Susana Delgado
- Department of Microbiology and Biochemistry, Dairy Research Institute of Asturias, Villaviciosa, Spain
| | - Leónides Fernández
- Department of Galenic Pharmacy and Food Technology, Complutense University of Madrid, Madrid, Spain
| | | | | | | | - Juan M. Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
21
|
Du H, Ji M, Xing M, Wang X, Xu Y. The effects of dynamic bacterial succession on the flavor metabolites during Baijiu fermentation. Food Res Int 2021; 140:109860. [PMID: 33648178 DOI: 10.1016/j.foodres.2020.109860] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/14/2020] [Accepted: 10/27/2020] [Indexed: 11/18/2022]
Abstract
The succession of microbial community significantly affect the flavor formation of traditional fermented foods and beverages. Chinese liquor (Baijiu) fermentation is a typical spontaneous solid-state fermentation process driven by natural microbiota. The type of process used to make liquor-craft or industrial-alters the operational environment and the aromatic qualities of the product contributed by various microbial consortia. But differences in microbial community assembly and temporal succession are often overlooked. In this study, we investigated bacterial community dynamics, substrate consumption, and metabolite production during both craft and industrial liquor-making processes (CLP and ILP, respectively). We found that the compositions of bacterial communities were different, even though no significant difference (p > 0.05) was observed in bacterial species between CLP and ILP at the beginning of fermentation. During ILP, glucose was used more rapidly by microflora, leading in turn to a higher ethanol production rate during the early stage of fermentation. The higher rate of ethanol production in ILP shortened the lifetime of bacteria such as Weissella, Pediococcus, Leuconostoc, and Bacillus during the early stage of fermentation. Lactobacillus sp. became dominant earlier in ILP than in CLP. Finally, the change in bacterial community dynamics led to changes in aroma compounds. Using CLP and ILP as a model system, our results illustrate the dynamic nature of Baijiu fermentations and microbial succession patterns therein. This can be applied to optimize the fermentation processes and flavors attributes of this and other fermented foods.
Collapse
Affiliation(s)
- Hai Du
- Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Mei Ji
- Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Minyu Xing
- Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xueshan Wang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
22
|
Zheng L, Duarte ME, Sevarolli Loftus A, Kim SW. Intestinal Health of Pigs Upon Weaning: Challenges and Nutritional Intervention. Front Vet Sci 2021; 8:628258. [PMID: 33644153 PMCID: PMC7906973 DOI: 10.3389/fvets.2021.628258] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/21/2021] [Indexed: 12/22/2022] Open
Abstract
The primary goal of nursery pig management is making a smooth weaning transition to minimize weaning associated depressed growth and diseases. Weaning causes morphological and functional changes of the small intestine of pigs, where most of the nutrients are being digested and absorbed. While various stressors induce post-weaning growth depression, the abrupt change from milk to solid feed is one of the most apparent challenges to pigs. Feeding functional feed additives may be viable solutions to promote the growth of nursery pigs by enhancing nutrient digestion, intestinal morphology, immune status, and by restoring intestinal balance. The aim of this review was to provide available scientific information on the roles of functional feed additives in enhancing intestinal health and growth during nursery phase. Among many potential functional feed additives, the palatability of the ingredient and the optimum supplemental level are varied, and these should be considered when applying into nursery pig diets. Considering different stressors pigs deal with in the post-weaning period, research on nutritional intervention using a single feed additive or a combination of different additives that can enhance feed intake, increase weight gain, and reduce mortality and morbidity are needed to provide viable solutions for pig producers. Further research in relation to the feed palatability, supplemental level, as well as interactions between different ingredients are needed.
Collapse
Affiliation(s)
| | | | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
23
|
Wang X, Tian Z, Azad MAK, Zhang W, Blachier F, Wang Z, Kong X. Dietary supplementation with Bacillus mixture modifies the intestinal ecosystem of weaned piglets in an overall beneficial way. J Appl Microbiol 2020; 130:233-246. [PMID: 32654235 DOI: 10.1111/jam.14782] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/27/2020] [Accepted: 07/07/2020] [Indexed: 01/22/2023]
Abstract
AIMS This study was conducted to investigate the effects of dietary supplementation with a mixture of Bacillus, which serves as an alternative of antibiotics on the intestinal ecosystem of weaned piglets. METHODS AND RESULTS We randomly assigned 120 piglets to three groups: a control group (a basal diet), a probiotics group (a basal diet supplemented with 4 × 109 CFU per gram Bacillus licheniformis-Bacillus subtilis mixture; BLS mix), and an antibiotics group (a basal diet supplemented with 0·04 kg t-1 virginiamycin, 0·2 kg t-1 colistin and 3000 mg kg-1 zinc oxide). All groups had five replicates with eight piglets per replicate. On days 7, 21 and 42 of the trial, intestine tissue and digesta samples were collected to determine intestinal morphology, gut microbiota and bacterial metabolite composition, and the expression of genes related to the gut barrier function and inflammatory status. The results showed that the BLS mix decreased the jejunum crypt depth, while increased the ileum villus height and the jejunum and ileum villus height to crypt depth ratio. The BLS mix increased Simpson's diversity index in the gut microbiota and the relative abundances of o_Bacteroidetes and f_Ruminococcaceae, but decreased the relative abundances of Blautia and Clostridium. Dietary BLS mix supplementation also modified the concentration of several bacterial metabolites compared to the control group. In addition, BLS mix upregulated the expression level of E-cadherin in the colon and pro-inflammatory cytokines and TLR-4 in ileum and colon. Lastly, Spearman's rank-order correlation revealed a potential link between alterations in gut microbiota and health parameters of the weaned piglets. CONCLUSION These findings suggest that dietary BLS mix supplementation modifies the gut ecosystem in weaned piglets. The potential advantages of such modifications in terms of intestinal health are discussed. SIGNIFICANCE AND IMPACT OF THE STUDY Weaning is the most important transition period of piglet growth and development. This study showed that dietary supplementation of a probiotic mixture of Bacillus, an effective alternative of antibiotics, was beneficial in improving the intestinal ecosystem of weaned piglets.
Collapse
Affiliation(s)
- X Wang
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Z Tian
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - M A K Azad
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - W Zhang
- Evonik Degussa (China) Co. Ltd, Beijing, China
| | - F Blachier
- AgroParisTech, Université Paris-Saclay, INRAE, UMR PNCA, Paris, France
| | - Z Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - X Kong
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| |
Collapse
|
24
|
Qiao J, Li H, Li Y. Dietary Clostridium butyricum supplementation modifies significantly the liver transcriptomic profile in weaned piglets. J Anim Physiol Anim Nutr (Berl) 2020; 104:1410-1423. [PMID: 32207194 DOI: 10.1111/jpn.13326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/20/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022]
Abstract
The addition of probiotics in swine nutrition is known to positively influence both health and growth. The current study investigates differences in the hepatic transcriptome profiles between weaned piglets supplemented with Clostridium butyricum (C. butyricum) and control animals that received no probiotic. The liver is an important metabolic organ that plays a critical role in oxidizing triglycerides for energy production, lipid synthesis and degradation, as well as immune regulation in animals. RNA-Seq analysis was carried out on total RNA harvested from the liver of piglets fed with (n = 3) or without (n = 3) 5 × 105 C. butyricum CFU/g. Compared to the control piglets, 588 of the genes examined (352 up-regulated and 236 down-regulated) were significantly differentially expressed at a fold change > 2 and p < .05 in animals fed with C. butyricum. Quantitative real-time reverse transcription PCR (qRT-PCR) analysis was further used to validate the microarray expression results for 28 genes tested. The functional annotation analyses revealed several genes, processes and pathways with putative involvement in piglet growth and performance. Feeding swine with 5 × 105 C. butyricum CFU/g appears to reinforce their immune status as well as foster the cell cycle and improve the metabolism of carbohydrates, lipids and amino acids. This study provides valuable information about the expression profiles of mRNAs in piglet liver and in-depth functional investigations of these mRNAs that could provide new insights into the molecular networks of growth, immune responses and nutrient metabolism in the porcine liver.
Collapse
Affiliation(s)
- Jiayun Qiao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Haihua Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Yupeng Li
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin, China
| |
Collapse
|
25
|
Wang K, Chen G, Cao G, Xu Y, Wang Y, Yang C. Effects of Clostridium butyricum and Enterococcus faecalis on growth performance, intestinal structure, and inflammation in lipopolysaccharide-challenged weaned piglets. J Anim Sci 2019; 97:4140-4151. [PMID: 31310662 PMCID: PMC6776315 DOI: 10.1093/jas/skz235] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/15/2019] [Indexed: 12/29/2022] Open
Abstract
This study was conducted to investigate the effects of Clostridium butyricum and Enterococcus faecalis on growth performance, immune function, inflammation-related pathways, and microflora community in weaned piglets challenged with lipopolysaccharide (LPS). One hundred and eighty 28-d-old weaned piglets were randomly divided into 3 treatments groups: piglets fed with a basal diet (Con), piglets fed with a basal diet containing 6 × 109 CFU C. butyricum·kg-1 (CB), and piglets fed with a basal diet containing 2 × 1010 CFU E. faecali·kg-1 (EF). At the end of trial, 1 pig was randomly selected from for each pen (6 pigs per treatment group) and these 18 piglets were orally challenged with LPS 25 μg·kg-1 body weight. The result showed that piglets fed C. butyricum and E. faecalis had greater final BW compared with the control piglets (P < 0.05). The C. butyricum and E. faecalis fed piglets had lower levels of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), IL-1β, tumor inflammatory factor-α (TNF-α), and had greater level of serum interferon-γ (IFN-γ) than control piglets at 1.5 and 3 h after injection with LPS (P < 0.05). Furthermore, piglets in the C. butyricum or E. faecalis treatment groups had a greater ratio of jejunal villus height to crypt depth (V/C) compared with control piglets after challenge with LPS for 3 h (P < 0.05). Compared with the control treatment, the CB and EF treatments significantly decreased the expression of inflammation-related pathway factors (TLR4, MyD88, and NF-κB) after challenge with LPS for 3 h (P < 0.05). High-throughput sequencing revealed that C. butyricum and E. faecalis modulated bacterial diversity in the colon. The species richness and alpha diversity (Shannon) of bacterial samples in CB or EF piglets challenged with LPS were higher than those in LPS-challenged control piglets. Furthermore, the relative abundance of Bacteroidales-Rikenellanceae in the CB group was higher than that in the control group (P < 0.05), whereas EF piglets had a higher relative abundance of Lactobacillus amylovorus and Lactobacillus gasseri (P < 0.05). In conclusion, dietary supplementation with C. butyricum or E. faecalis promoted growth performance, improved immunity, relieved intestinal villus damage and inflammation, and optimized the intestinal flora in LPS-challenged weaned piglets.
Collapse
Affiliation(s)
- Kangli Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| | - Guangyong Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| | - Guangtian Cao
- College of Standardisation, China Jiliang University, Hangzhou, China
| | - Yinglei Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| | - Yongxia Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|