1
|
Chelliah DS, Ray AE, Zhang E, Terauds A, Ferrari BC. The Vestfold Hills are alive: characterising microbial and environmental dynamics in Old Wallow, eastern Antarctica. Front Microbiol 2024; 15:1443491. [PMID: 39376700 PMCID: PMC11457671 DOI: 10.3389/fmicb.2024.1443491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/09/2024] [Indexed: 10/09/2024] Open
Abstract
Old Wallow is an underexplored, hyper-arid coastal desert in Antarctica's Vestfold Hills. Situated near an elephant seal wallow, we examined how stochastic nutrient inputs from the seal wallow affect soil communities amid environmental changes along a spatially explicit sampling transect. We hypothesized that nutrient levels would be elevated due to proximity to the seal wallow, influencing community distributions. While the soil bacterial and eukaryotic communities at the phylum level were similar to other terrestrial environments, analysis at class and family levels revealed a dominance of unclassified taxa that are often linked to marine environments. Elevated nutrient concentrations (NO3 -, SO4 2-, SO3) were found at Old Wallow, with conductivity and Cl- levels up to 10-fold higher at the lowest elevation soils, correlating with significantly (p < 0.05) higher abundances of halophilic (Halomonadaceace) and uncultivated lineages (Ca Actinomarinales, unclassified Bacillariophyta and unclassified Opisthonkonta). An improved Gradient Forest model was used to quantify microbial responses to 26 soil gradients at OW, revealing variable responses to environmental predictors and identifying critical environmental thresholds or drivers of community turnover. Major tipping points were projected for eukaryotes with SO4 2-, pH, and SO3, and for bacteria with moisture, Na2O, and Cl-. Thus, the Old Wallow ecosystem is primarily shaped by salt, sulphate, and moisture and is dominated by uncultivated taxa, which may be sensitive to environmental changes once critical tipping points are reached. This study provides critical baseline data for future regional monitoring under threats of environmental change.
Collapse
Affiliation(s)
- Devan S. Chelliah
- School of Biotechnology and Biomolecular Sciences, The University of NSW, Kensington, NSW, Australia
| | - Angelique E. Ray
- School of Biotechnology and Biomolecular Sciences, The University of NSW, Kensington, NSW, Australia
| | - Eden Zhang
- School of Biotechnology and Biomolecular Sciences, The University of NSW, Kensington, NSW, Australia
- Sydney Informatics Hub, Core Research Facility, University of Sydney, Sydney, NSW, Australia
| | - Aleks Terauds
- Australian Antarctic Division, Department of Climate Change, Energy, the Environment and Water, Kingston, TAS, Australia
| | - Belinda C. Ferrari
- School of Biotechnology and Biomolecular Sciences, The University of NSW, Kensington, NSW, Australia
- Evolution and Ecology Research Centre, The University of NSW, Kensington, NSW, Australia
| |
Collapse
|
2
|
Moreno-Pino M, Manrique-de-la-Cuba MF, López-Rodríguez M, Parada-Pozo G, Rodríguez-Marconi S, Ribeiro CG, Flores-Herrera P, Guajardo M, Trefault N. Unveiling microbial guilds and symbiotic relationships in Antarctic sponge microbiomes. Sci Rep 2024; 14:6371. [PMID: 38493232 PMCID: PMC10944490 DOI: 10.1038/s41598-024-56480-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
Marine sponges host diverse microbial communities. Although we know many of its ecological patterns, a deeper understanding of the polar sponge holobiont is still needed. We combine high-throughput sequencing of ribosomal genes, including the largest taxonomic repertoire of Antarctic sponge species analyzed to date, functional metagenomics, and metagenome-assembled genomes (MAGs). Our findings show that sponges harbor more exclusive bacterial and archaeal communities than seawater, while microbial eukaryotes are mostly shared. Furthermore, bacteria in Antarctic sponge holobionts establish more cooperative interactions than in sponge holobionts from other environments. The bacterial classes that established more positive relations were Bacteroidia, Gamma- and Alphaproteobacteria. Antarctic sponge microbiomes contain microbial guilds that encompass ammonia-oxidizing archaea, ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, and sulfur-oxidizing bacteria. The retrieved MAGs showed a high level of novelty and streamlining signals and belong to the most abundant members of the main microbial guilds in the Antarctic sponge holobiont. Moreover, the genomes of these symbiotic bacteria contain highly abundant functions related to their adaptation to the cold environment, vitamin production, and symbiotic lifestyle, helping the holobiont survive in this extreme environment.
Collapse
Affiliation(s)
- Mario Moreno-Pino
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, 8580745, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | - Génesis Parada-Pozo
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, 8580745, Santiago, Chile
- Millenium Nucleus in Marine Agronomy of Seaweed Holobionts (MASH), Puerto Montt, Chile
| | | | | | - Patricio Flores-Herrera
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, 8580745, Santiago, Chile
| | - Mariela Guajardo
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, 8580745, Santiago, Chile
| | - Nicole Trefault
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, 8580745, Santiago, Chile.
- Millenium Nucleus in Marine Agronomy of Seaweed Holobionts (MASH), Puerto Montt, Chile.
- FONDAP Center IDEAL- Dynamics of High Latitude Marine Ecosystem, Valdivia, Chile.
| |
Collapse
|
3
|
Barrenechea Angeles I, Nguyen NL, Greco M, Tan KS, Pawlowski J. Assigning the unassigned: A signature-based classification of rDNA metabarcodes reveals new deep-sea diversity. PLoS One 2024; 19:e0298440. [PMID: 38422100 PMCID: PMC10903905 DOI: 10.1371/journal.pone.0298440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Environmental DNA metabarcoding reveals a vast genetic diversity of marine eukaryotes. Yet, most of the metabarcoding data remain unassigned due to the paucity of reference databases. This is particularly true for the deep-sea meiofauna and eukaryotic microbiota, whose hidden diversity is largely unexplored. Here, we tackle this issue by using unique DNA signatures to classify unknown metabarcodes assigned to deep-sea foraminifera. We analyzed metabarcoding data obtained from 311 deep-sea sediment samples collected in the Clarion-Clipperton Fracture Zone, an area of potential polymetallic nodule exploitation in the Eastern Pacific Ocean. Using the signatures designed in the 37F hypervariable region of the 18S rRNA gene, we were able to classify 802 unassigned metabarcodes into 61 novel lineages, which have been placed in 27 phylogenetic clades. The comparison of new lineages with other foraminiferal datasets shows that most novel lineages are widely distributed in the deep sea. Five lineages are also present in the shallow-water datasets; however, phylogenetic analysis of these lineages separates deep-sea and shallow-water metabarcodes except in one case. While the signature-based classification does not solve the problem of gaps in reference databases, this taxonomy-free approach provides insight into the distribution and ecology of deep-sea species represented by unassigned metabarcodes, which could be useful in future applications of metabarcoding for environmental monitoring.
Collapse
Affiliation(s)
- Inès Barrenechea Angeles
- Department of Earth Sciences, University of Geneva, Geneva, Switzerland
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
- Department of Geosciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Ngoc-Loi Nguyen
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - Mattia Greco
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
- Institute of Marine Sciences, Spanish National Research Council, Barcelona, Spain
| | - Koh Siang Tan
- Tropical Marine Science Institute, National University of Singapore, Singapore, Singapore
| | - Jan Pawlowski
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
- ID-Gene Ecodiagnostics Ltd., Plan-les-Ouates, Switzerland
| |
Collapse
|
4
|
Varliero G, Lebre PH, Adams B, Chown SL, Convey P, Dennis PG, Fan D, Ferrari B, Frey B, Hogg ID, Hopkins DW, Kong W, Makhalanyane T, Matcher G, Newsham KK, Stevens MI, Weigh KV, Cowan DA. Biogeographic survey of soil bacterial communities across Antarctica. MICROBIOME 2024; 12:9. [PMID: 38212738 PMCID: PMC10785390 DOI: 10.1186/s40168-023-01719-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/11/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Antarctica and its unique biodiversity are increasingly at risk from the effects of global climate change and other human influences. A significant recent element underpinning strategies for Antarctic conservation has been the development of a system of Antarctic Conservation Biogeographic Regions (ACBRs). The datasets supporting this classification are, however, dominated by eukaryotic taxa, with contributions from the bacterial domain restricted to Actinomycetota and Cyanobacteriota. Nevertheless, the ice-free areas of the Antarctic continent and the sub-Antarctic islands are dominated in terms of diversity by bacteria. Our study aims to generate a comprehensive phylogenetic dataset of Antarctic bacteria with wide geographical coverage on the continent and sub-Antarctic islands, to investigate whether bacterial diversity and distribution is reflected in the current ACBRs. RESULTS Soil bacterial diversity and community composition did not fully conform with the ACBR classification. Although 19% of the variability was explained by this classification, the largest differences in bacterial community composition were between the broader continental and maritime Antarctic regions, where a degree of structural overlapping within continental and maritime bacterial communities was apparent, not fully reflecting the division into separate ACBRs. Strong divergence in soil bacterial community composition was also apparent between the Antarctic/sub-Antarctic islands and the Antarctic mainland. Bacterial communities were partially shaped by bioclimatic conditions, with 28% of dominant genera showing habitat preferences connected to at least one of the bioclimatic variables included in our analyses. These genera were also reported as indicator taxa for the ACBRs. CONCLUSIONS Overall, our data indicate that the current ACBR subdivision of the Antarctic continent does not fully reflect bacterial distribution and diversity in Antarctica. We observed considerable overlap in the structure of soil bacterial communities within the maritime Antarctic region and within the continental Antarctic region. Our results also suggest that bacterial communities might be impacted by regional climatic and other environmental changes. The dataset developed in this study provides a comprehensive baseline that will provide a valuable tool for biodiversity conservation efforts on the continent. Further studies are clearly required, and we emphasize the need for more extensive campaigns to systematically sample and characterize Antarctic and sub-Antarctic soil microbial communities. Video Abstract.
Collapse
Affiliation(s)
- Gilda Varliero
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, 0002, South Africa
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
| | - Pedro H Lebre
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, 0002, South Africa
| | - Byron Adams
- Department of Biology, Brigham Young University, Provo, UT, 84602, USA
- Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT, 84602, USA
| | - Steven L Chown
- Securing Antarctica's Environmental Future, School of Biological Sciences, Monash University, Clayton, VA, 3800, Australia
| | - Peter Convey
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
- Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006, South Africa
- Biodiversity of Antarctic and Sub-Antarctic Ecosystems (BASE), Santiago, Chile
| | - Paul G Dennis
- School of the Environment, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Dandan Fan
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Belinda Ferrari
- School of Biotechnology and Biomolecular Sciences, University of NSW, Sydney, NSW, 2052, Australia
| | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
| | - Ian D Hogg
- School of Science, University of Waikato, Hamilton, New Zealand
- Canadian High Arctic Research Station, Polar Knowledge Canada, Cambridge Bay, NU, Canada
| | - David W Hopkins
- SRUC - Scotland's Rural College, West Mains Road, Edinburgh, EH9 3JG, Scotland, UK
| | - Weidong Kong
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Thulani Makhalanyane
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Gwynneth Matcher
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Kevin K Newsham
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Mark I Stevens
- Securing Antarctica's Environmental Future, Earth and Biological Sciences, South Australian Museum, Adelaide, SA, 5000, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Katherine V Weigh
- School of the Environment, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Don A Cowan
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, 0002, South Africa.
| |
Collapse
|
5
|
Connors E, Dutta A, Trinh R, Erazo N, Dasarathy S, Ducklow H, Weissman JL, Yeh YC, Schofield O, Steinberg D, Fuhrman J, Bowman JS. Microbial community composition predicts bacterial production across ocean ecosystems. THE ISME JOURNAL 2024; 18:wrae158. [PMID: 39105280 PMCID: PMC11385589 DOI: 10.1093/ismejo/wrae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/28/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Microbial ecological functions are an emergent property of community composition. For some ecological functions, this link is strong enough that community composition can be used to estimate the quantity of an ecological function. Here, we apply random forest regression models to compare the predictive performance of community composition and environmental data for bacterial production (BP). Using data from two independent long-term ecological research sites-Palmer LTER in Antarctica and Station SPOT in California-we found that community composition was a strong predictor of BP. The top performing model achieved an R2 of 0.84 and RMSE of 20.2 pmol L-1 hr-1 on independent validation data, outperforming a model based solely on environmental data (R2 = 0.32, RMSE = 51.4 pmol L-1 hr-1). We then operationalized our top performing model, estimating BP for 346 Antarctic samples from 2015 to 2020 for which only community composition data were available. Our predictions resolved spatial trends in BP with significance in the Antarctic (P value = 1 × 10-4) and highlighted important taxa for BP across ocean basins. Our results demonstrate a strong link between microbial community composition and microbial ecosystem function and begin to leverage long-term datasets to construct models of BP based on microbial community composition.
Collapse
Affiliation(s)
- Elizabeth Connors
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA 92037, United States
- Scripps Polar Center, UC San Diego, La Jolla, CA 92037, United States
| | - Avishek Dutta
- Department of Geology, University of Georgia, Athens, GA 30602, United States
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, United States
| | - Rebecca Trinh
- Lamont-Doherty Earth Observatory, Columbia University, New York, NY 10964, United States
| | - Natalia Erazo
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA 92037, United States
| | - Srishti Dasarathy
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA 92037, United States
| | - Hugh Ducklow
- Lamont-Doherty Earth Observatory, Columbia University, New York, NY 10964, United States
| | - J L Weissman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States
- Department of Biology, The City College of New York, New York, NY 10003, United States
| | - Yi-Chun Yeh
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States
| | - Oscar Schofield
- Coastal Ocean Observation Laboratory, Institute of Marine and Coastal Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901-8520, United States
| | - Deborah Steinberg
- Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, VA 23062, United States
| | - Jed Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States
| | - Jeff S Bowman
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA 92037, United States
- Scripps Polar Center, UC San Diego, La Jolla, CA 92037, United States
| |
Collapse
|
6
|
Bendia AG, Moreira JCF, Ferreira JCN, Romano RG, Ferreira IGC, Franco DC, Evangelista H, Montone RC, Pellizari VH. Insights into Antarctic microbiomes: diversity patterns for terrestrial and marine habitats. AN ACAD BRAS CIENC 2023; 95:e20211442. [PMID: 37820122 DOI: 10.1590/0001-3765202320211442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 08/27/2022] [Indexed: 10/13/2023] Open
Abstract
Microorganisms in Antarctica are recognized for having crucial roles in ecosystems functioning and biogeochemical cycles. To explore the diversity and composition of microbial communities through different terrestrial and marine Antarctic habitats, we analyze 16S rRNA sequence datasets from fumarole and marine sediments, soil, snow and seawater environments. We obtained measures of alpha- and beta-diversities, as well as we have identified the core microbiome and the indicator microbial taxa of a particular habitat. Our results showed a unique microbial community structure according to each habitat, including specific taxa composing each microbiome. Marine sediments harbored the highest microbial diversity among the analyzed habitats. In the fumarole sediments, the core microbiome was composed mainly of thermophiles and hyperthermophilic Archaea, while in the majority of soil samples Archaea was absent. In the seawater samples, the core microbiome was mainly composed by cultured and uncultured orders usually identified on Antarctic pelagic ecosystems. Snow samples exhibited common taxa previously described for habitats of the Antarctic Peninsula, which suggests long-distance dispersal processes occurring from the Peninsula to the Continent. This study contributes as a baseline for further efforts on evaluating the microbial responses to environmental conditions and future changes.
Collapse
Affiliation(s)
- Amanda G Bendia
- Universidade de São Paulo (USP), Departamento de Oceanografia Biológica, Instituto Oceanográfico, Cidade Universitária, Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil
| | - Julio Cezar F Moreira
- Universidade de São Paulo (USP), Departamento de Oceanografia Biológica, Instituto Oceanográfico, Cidade Universitária, Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil
| | - Juliana C N Ferreira
- Universidade de São Paulo (USP), Departamento de Oceanografia Biológica, Instituto Oceanográfico, Cidade Universitária, Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil
| | - Renato G Romano
- Universidade de São Paulo (USP), Departamento de Oceanografia Biológica, Instituto Oceanográfico, Cidade Universitária, Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil
| | - Ivan G C Ferreira
- Universidade de São Paulo (USP), Departamento de Oceanografia Biológica, Instituto Oceanográfico, Cidade Universitária, Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil
| | - Diego C Franco
- Universidade de São Paulo (USP), Departamento de Oceanografia Biológica, Instituto Oceanográfico, Cidade Universitária, Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil
| | - Heitor Evangelista
- Universidade do Estado do Rio de Janeiro (UERJ), Instituto de Biologia Roberto Alcantara Gomes, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
| | - Rosalinda C Montone
- Universidade de São Paulo (USP), Departamento de Oceanografia Física, Química e Geológica, Instituto Oceanográfico, Cidade Universitária, Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil
| | - Vivian Helena Pellizari
- Universidade de São Paulo (USP), Departamento de Oceanografia Biológica, Instituto Oceanográfico, Cidade Universitária, Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil
| |
Collapse
|
7
|
Pinheiro Y, Faria da Mota F, Peixoto RS, van Elsas JD, Lins U, Mazza Rodrigues JL, Rosado AS. A thermophilic chemolithoautotrophic bacterial consortium suggests a mutual relationship between bacteria in extreme oligotrophic environments. Commun Biol 2023; 6:230. [PMID: 36859706 PMCID: PMC9977764 DOI: 10.1038/s42003-023-04617-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
A thermophilic, chemolithoautotrophic, and aerobic microbial consortium (termed carbonitroflex) growing in a nutrient-poor medium and an atmosphere containing N2, O2, CO2, and CO is investigated as a model to expand our understanding of extreme biological systems. Here we show that the consortium is dominated by Carbonactinospora thermoautotrophica (strain StC), followed by Sphaerobacter thermophilus, Chelatococcus spp., and Geobacillus spp. Metagenomic analysis of the consortium reveals a mutual relationship among bacteria, with C. thermoautotrophica StC exhibiting carboxydotrophy and carbon-dioxide storage capacity. C. thermoautotrophica StC, Chelatococcus spp., and S. thermophilus harbor genes encoding CO dehydrogenase and formate oxidase. No pure cultures were obtained under the original growth conditions, indicating that a tightly regulated interactive metabolism might be required for group survival and growth in this extreme oligotrophic system. The breadwinner hypothesis is proposed to explain the metabolic flux model and highlight the vital role of C. thermoautotrophica StC (the sole keystone species and primary carbon producer) in the survival of all consortium members. Our data may contribute to the investigation of complex interactions in extreme environments, exemplifying the interconnections and dependency within microbial communities.
Collapse
Affiliation(s)
- Yuri Pinheiro
- Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio Faria da Mota
- Computational and Systems Biology Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Raquel S Peixoto
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | | | - Ulysses Lins
- Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge L Mazza Rodrigues
- Department of Land, Air, and Water Resources, University of California Davis, Davis, CA, USA
| | - Alexandre Soares Rosado
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Bioscience Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
8
|
Schultz J, Modolon F, Rosado AS, Voolstra CR, Sweet M, Peixoto RS. Methods and Strategies to Uncover Coral-Associated Microbial Dark Matter. mSystems 2022; 7:e0036722. [PMID: 35862824 PMCID: PMC9426423 DOI: 10.1128/msystems.00367-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The vast majority of environmental microbes have not yet been cultured, and most of the knowledge on coral-associated microbes (CAMs) has been generated from amplicon sequencing and metagenomes. However, exploring cultured CAMs is key for a detailed and comprehensive characterization of the roles of these microbes in shaping coral health and, ultimately, for their biotechnological use as, for example, coral probiotics and other natural products. Here, the strategies and technologies that have been used to access cultured CAMs are presented, while advantages and disadvantages associated with each of these strategies are discussed. We highlight the existing gaps and potential improvements in culture-dependent methodologies, indicating several possible alternatives (including culturomics and in situ diffusion devices) that could be applied to retrieve the CAM "dark matter" (i.e., the currently undescribed CAMs). This study provides the most comprehensive synthesis of the methodologies used to recover the cultured coral microbiome to date and draws suggestions for the development of the next generation of CAM culturomics.
Collapse
Affiliation(s)
- Júnia Schultz
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Flúvio Modolon
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre S. Rosado
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Michael Sweet
- Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby, UK
| | - Raquel S. Peixoto
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
9
|
Soil substrate culturing approaches recover diverse members of Actinomycetota from desert soils of Herring Island, East Antarctica. Extremophiles 2022; 26:24. [PMID: 35829965 PMCID: PMC9279279 DOI: 10.1007/s00792-022-01271-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 06/06/2022] [Indexed: 11/12/2022]
Abstract
Antimicrobial resistance is an escalating health crisis requiring urgent action. Most antimicrobials are natural products (NPs) sourced from Actinomycetota, particularly the Streptomyces. Underexplored and extreme environments are predicted to harbour novel microorganisms with the capacity to synthesise unique metabolites. Herring Island is a barren and rocky cold desert in East Antarctica, remote from anthropogenic impact. We aimed to recover rare and cold-adapted NP-producing bacteria, by employing two culturing methods which mimic the natural environment: direct soil culturing and the soil substrate membrane system. First, we analysed 16S rRNA gene amplicon sequencing data from 18 Herring Island soils and selected the soil sample with the highest Actinomycetota relative abundance (78%) for culturing experiments. We isolated 166 strains across three phyla, including novel and rare strains, with 94% of strains belonging to the Actinomycetota. These strains encompassed thirty-five ‘species’ groups, 18 of which were composed of Streptomyces strains. We screened representative strains for genes which encode polyketide synthases and non-ribosomal peptide synthetases, indicating that 69% have the capacity to synthesise polyketide and non-ribosomal peptide NPs. Fourteen Streptomyces strains displayed antimicrobial activity against selected bacterial and yeast pathogens using an in situ assay. Our results confirm that the cold-adapted bacteria of the harsh East Antarctic deserts are worthy targets in the search for bioactive compounds.
Collapse
|
10
|
Survival strategies of an anoxic microbial ecosystem in Lake Untersee, a potential analog for Enceladus. Sci Rep 2022; 12:7376. [PMID: 35513542 PMCID: PMC9070616 DOI: 10.1038/s41598-022-10876-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
Lake Untersee located in Eastern Antarctica, is a perennially ice-covered lake. At the bottom of its southern basin lies 20 m of anoxic, methane rich, stratified water, making it a good analog for Enceladus, a moon of Saturn. Here we present the first metagenomic study of this basin and detail the community composition and functional potential of the microbial communities at 92 m, 99 m depths and within the anoxic sediment. A diverse and well-populated microbial community was found, presenting the potential for Enceladus to have a diverse and abundant community. We also explored methanogenesis, sulfur metabolism, and nitrogen metabolism, given the potential presence of these compounds on Enceladus. We found an abundance of these pathways offering a variety of metabolic strategies. Additionally, the extreme conditions of the anoxic basin make it optimal for testing spaceflight technology and life detection methods for future Enceladus exploration.
Collapse
|
11
|
LIMA IGORG, BISPO JAMESR, AGOSTINHO ADSONY, QUEIROZ ALINECDE, MOREIRA MAGNASUZANAA, PASSARINI MICHELRODRIGOZ, OLIVEIRA VALÉRIAMDE, SETTE LARAD, ROSA LUIZHENRIQUE, DUARTE ALYSSONWAGNERF. Antarctic environments as a source of bacterial and fungal therapeutic enzymes. AN ACAD BRAS CIENC 2022; 94:e20210452. [DOI: 10.1590/0001-3765202220210452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/20/2021] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | - LARA D. SETTE
- Universidade Estadual Paulista Júlio de Mesquita Filho, Brazil
| | | | | |
Collapse
|
12
|
Functional Characterisation of Bile Metagenome: Study of Metagenomic Dark Matter. Microorganisms 2021; 9:microorganisms9112201. [PMID: 34835325 PMCID: PMC8621414 DOI: 10.3390/microorganisms9112201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Gallbladder metagenome involves a wide range of unidentified sequences comprising the so-called metagenomic dark matter. Therefore, this study aimed to characterise three gallbladder metagenomes and a fosmid library with an emphasis on metagenomic dark matter fraction. For this purpose, a novel data analysis strategy based on the combination of remote homology and molecular modelling has been proposed. According to the results obtained, several protein functional domains were annotated in the metagenomic dark matter fraction including acetyltransferases, outer membrane transporter proteins, membrane assembly factors, DNA repair and recombination proteins and response regulator phosphatases. In addition, one deacetylase involved in mycothiol biosynthesis was found in the metagenomic dark matter fraction of the fosmid library. This enzyme may exert a protective effect in Actinobacteria against bile components exposure, in agreement with the presence of multiple antibiotic and multidrug resistance genes. Potential mechanisms of action of this novel deacetylase were elucidated by molecular simulations, highlighting the role of histidine and aspartic acid residues. Computational pipelines presented in this work may be of special interest to discover novel microbial enzymes which had not been previously characterised.
Collapse
|
13
|
Molina-Menor E, Gimeno-Valero H, Pascual J, Peretó J, Porcar M. High Culturable Bacterial Diversity From a European Desert: The Tabernas Desert. Front Microbiol 2021; 11:583120. [PMID: 33488536 PMCID: PMC7821382 DOI: 10.3389/fmicb.2020.583120] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
One of the most diverse ecological niches for microbial bioprospecting is soil, including that of drylands. Drylands are one of the most abundant biomes on Earth, but extreme cases, such as deserts, are considered very rare in Europe. The so-called Tabernas Desert is one of the few examples of a desert area in continental Europe, and although some microbial studies have been performed on this region, a comprehensive strategy to maximize the isolation of environmental bacteria has not been conducted to date. We report here a culturomics approach to study the bacterial diversity of this dryland by using a simple strategy consisting of combining different media, using serial dilutions of the nutrients, and using extended incubation times. With this strategy, we were able to set a large (254 strains) collection of bacteria, the majority of which (93%) were identified through 16S ribosomal RNA (rRNA) gene amplification and sequencing. A significant fraction of the collection consisted of Actinobacteria and Proteobacteria, as well as Firmicutes strains. Among the 254 isolates, 37 different genera were represented, and a high number of possible new taxa were identified (31%), of which, three new Kineococcus species. Moreover, 5 out of the 13 genera represented by one isolate were also possible new species. Specifically, the sequences of 80 isolates held a percentage of identity below the 98.7% threshold considered for potentially new species. These strains belonged to 20 genera. Our results reveal a clear link between medium dilution and isolation of new species, highlight the unexploited bacterial biodiversity of the Tabernas Desert, and evidence the potential of simple strategies to yield surprisingly large numbers of diverse, previously unreported, bacterial strains and species.
Collapse
Affiliation(s)
- Esther Molina-Menor
- Institute for Integrative Systems Biology I2SysBio (University of València-CSIC), Paterna, Spain
| | - Helena Gimeno-Valero
- Darwin Bioprospecting Excellence S.L., Parc Científic Universitat de València, Paterna, Spain
| | - Javier Pascual
- Darwin Bioprospecting Excellence S.L., Parc Científic Universitat de València, Paterna, Spain
| | - Juli Peretó
- Institute for Integrative Systems Biology I2SysBio (University of València-CSIC), Paterna, Spain.,Darwin Bioprospecting Excellence S.L., Parc Científic Universitat de València, Paterna, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Spain
| | - Manuel Porcar
- Institute for Integrative Systems Biology I2SysBio (University of València-CSIC), Paterna, Spain.,Darwin Bioprospecting Excellence S.L., Parc Científic Universitat de València, Paterna, Spain
| |
Collapse
|
14
|
A network approach to elucidate and prioritize microbial dark matter in microbial communities. ISME JOURNAL 2020; 15:228-244. [PMID: 32963345 PMCID: PMC7852563 DOI: 10.1038/s41396-020-00777-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/18/2020] [Accepted: 09/10/2020] [Indexed: 01/13/2023]
Abstract
Microbes compose most of the biomass on the planet, yet the majority of taxa remain uncharacterized. These unknown microbes, often referred to as “microbial dark matter,” represent a major challenge for biology. To understand the ecological contributions of these Unknown taxa, it is essential to first understand the relationship between unknown species, neighboring microbes, and their respective environment. Here, we establish a method to study the ecological significance of “microbial dark matter” by building microbial co-occurrence networks from publicly available 16S rRNA gene sequencing data of four extreme aquatic habitats. For each environment, we constructed networks including and excluding unknown organisms at multiple taxonomic levels and used network centrality measures to quantitatively compare networks. When the Unknown taxa were excluded from the networks, a significant reduction in degree and betweenness was observed for all environments. Strikingly, Unknown taxa occurred as top hubs in all environments, suggesting that “microbial dark matter” play necessary ecological roles within their respective communities. In addition, novel adaptation-related genes were detected after using 16S rRNA gene sequences from top-scoring hub taxa as probes to blast metagenome databases. This work demonstrates the broad applicability of network metrics to identify and prioritize key Unknown taxa and improve understanding of ecosystem structure across diverse habitats.
Collapse
|
15
|
Wahba L, Jain N, Fire AZ, Shoura MJ, Artiles KL, McCoy MJ, Jeong DE. An Extensive Meta-Metagenomic Search Identifies SARS-CoV-2-Homologous Sequences in Pangolin Lung Viromes. mSphere 2020. [PMID: 32376697 DOI: 10.1101/2020.02.08.939660] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
In numerous instances, tracking the biological significance of a nucleic acid sequence can be augmented through the identification of environmental niches in which the sequence of interest is present. Many metagenomic data sets are now available, with deep sequencing of samples from diverse biological niches. While any individual metagenomic data set can be readily queried using web-based tools, meta-searches through all such data sets are less accessible. In this brief communication, we demonstrate such a meta-metagenomic approach, examining close matches to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in all high-throughput sequencing data sets in the NCBI Sequence Read Archive accessible with the "virome" keyword. In addition to the homology to bat coronaviruses observed in descriptions of the SARS-CoV-2 sequence (F. Wu, S. Zhao, B. Yu, Y. M. Chen, et al., Nature 579:265-269, 2020, https://doi.org/10.1038/s41586-020-2008-3; P. Zhou, X. L. Yang, X. G. Wang, B. Hu, et al., Nature 579:270-273, 2020, https://doi.org/10.1038/s41586-020-2012-7), we note a strong homology to numerous sequence reads in metavirome data sets generated from the lungs of deceased pangolins reported by Liu et al. (P. Liu, W. Chen, and J. P. Chen, Viruses 11:979, 2019, https://doi.org/10.3390/v11110979). While analysis of these reads indicates the presence of a similar viral sequence in pangolin lung, the similarity is not sufficient to either confirm or rule out a role for pangolins as an intermediate host in the recent emergence of SARS-CoV-2. In addition to the implications for SARS-CoV-2 emergence, this study illustrates the utility and limitations of meta-metagenomic search tools in effective and rapid characterization of potentially significant nucleic acid sequences.IMPORTANCE Meta-metagenomic searches allow for high-speed, low-cost identification of potentially significant biological niches for sequences of interest.
Collapse
Affiliation(s)
- Lamia Wahba
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Nimit Jain
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Andrew Z Fire
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Massa J Shoura
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Karen L Artiles
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Matthew J McCoy
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Dae-Eun Jeong
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
16
|
Wahba L, Jain N, Fire AZ, Shoura MJ, Artiles KL, McCoy MJ, Jeong DE. An Extensive Meta-Metagenomic Search Identifies SARS-CoV-2-Homologous Sequences in Pangolin Lung Viromes. mSphere 2020; 5:e00160-20. [PMID: 32376697 PMCID: PMC7203451 DOI: 10.1128/msphere.00160-20] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/24/2020] [Indexed: 12/21/2022] Open
Abstract
In numerous instances, tracking the biological significance of a nucleic acid sequence can be augmented through the identification of environmental niches in which the sequence of interest is present. Many metagenomic data sets are now available, with deep sequencing of samples from diverse biological niches. While any individual metagenomic data set can be readily queried using web-based tools, meta-searches through all such data sets are less accessible. In this brief communication, we demonstrate such a meta-metagenomic approach, examining close matches to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in all high-throughput sequencing data sets in the NCBI Sequence Read Archive accessible with the "virome" keyword. In addition to the homology to bat coronaviruses observed in descriptions of the SARS-CoV-2 sequence (F. Wu, S. Zhao, B. Yu, Y. M. Chen, et al., Nature 579:265-269, 2020, https://doi.org/10.1038/s41586-020-2008-3; P. Zhou, X. L. Yang, X. G. Wang, B. Hu, et al., Nature 579:270-273, 2020, https://doi.org/10.1038/s41586-020-2012-7), we note a strong homology to numerous sequence reads in metavirome data sets generated from the lungs of deceased pangolins reported by Liu et al. (P. Liu, W. Chen, and J. P. Chen, Viruses 11:979, 2019, https://doi.org/10.3390/v11110979). While analysis of these reads indicates the presence of a similar viral sequence in pangolin lung, the similarity is not sufficient to either confirm or rule out a role for pangolins as an intermediate host in the recent emergence of SARS-CoV-2. In addition to the implications for SARS-CoV-2 emergence, this study illustrates the utility and limitations of meta-metagenomic search tools in effective and rapid characterization of potentially significant nucleic acid sequences.IMPORTANCE Meta-metagenomic searches allow for high-speed, low-cost identification of potentially significant biological niches for sequences of interest.
Collapse
Affiliation(s)
- Lamia Wahba
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Nimit Jain
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Andrew Z Fire
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Massa J Shoura
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Karen L Artiles
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Matthew J McCoy
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Dae-Eun Jeong
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
17
|
Community Structures of Bacteria, Archaea, and Eukaryotic Microbes in the Freshwater Glacier Lake Yukidori-Ike in Langhovde, East Antarctica. DIVERSITY 2019. [DOI: 10.3390/d11070105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Since most studies about community structures of microorganisms in Antarctic terrestrial lakes using molecular biological tools are mainly focused on bacteria, limited information is available about archaeal and eukaryotic microbial diversity. In this study, the biodiversity of microorganisms belonging to all three domains in a typical Antarctic freshwater glacier lake (Yukidori-Ike) was revealed using small subunit ribosomal RNA (SSU rRNA) clone library analysis. The bacterial clones were grouped into 102 operational taxonomic units (OTUs) and showed significant biodiversity. Betaproteobacteria were most frequently detected, followed by Cyanobacteria, Bacteroidetes, and Firmicutes as major lineages. In contrast to the bacterial diversity, much lower archaeal diversity, consisting of only two OTUs of methanogens, was observed. In the eukaryotic microbial community consisting of 20 OTUs, Tardigradal DNA was remarkably frequently detected. Genera affiliated with the phyla Ciliophora, Cryptomycota, Chlorophyta, Bacillariophyta, and Apusozoa were also detected. The biodiversity and species compositions of the whole microbial community of Lake Yukidori-Ike are similar to those of freshwater environments in temperate regions but are different from saline lakes in Antarctica, indicating that the salinity seems to affect the microbial composition more than the temperature.
Collapse
|
18
|
Lambrechts S, Willems A, Tahon G. Uncovering the Uncultivated Majority in Antarctic Soils: Toward a Synergistic Approach. Front Microbiol 2019; 10:242. [PMID: 30828325 PMCID: PMC6385771 DOI: 10.3389/fmicb.2019.00242] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/29/2019] [Indexed: 01/22/2023] Open
Abstract
Although Antarctica was once believed to be a sterile environment, it is now clear that the microbial communities inhabiting the Antarctic continent are surprisingly diverse. Until the beginning of the new millennium, little was known about the most abundant inhabitants of the continent: prokaryotes. From then on, however, the rising use of deep sequencing techniques has led to a better understanding of the Antarctic prokaryote diversity and provided insights in the composition of prokaryotic communities in different Antarctic environments. Although these cultivation-independent approaches can produce millions of sequences, linking these data to organisms is hindered by several problems. The largest difficulty is the lack of biological information on large parts of the microbial tree of life, arising from the fact that most microbial diversity on Earth has never been characterized in laboratory cultures. These unknown prokaryotes, also known as microbial dark matter, have been dominantly detected in all major environments on our planet. Laboratory cultures provide access to the complete genome and the means to experimentally verify genomic predictions and metabolic functions and to provide evidence of horizontal gene transfer. Without such well-documented reference data, microbial dark matter will remain a major blind spot in deep sequencing studies. Here, we review our current understanding of prokaryotic communities in Antarctic ice-free soils based on cultivation-dependent and cultivation-independent approaches. We discuss advantages and disadvantages of both approaches and how these strategies may be combined synergistically to strengthen each other and allow a more profound understanding of prokaryotic life on the frozen continent.
Collapse
Affiliation(s)
- Sam Lambrechts
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | | | - Guillaume Tahon
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|