1
|
Tharmalingam N, Jayanthan HS, Port J, Rossatto FCP, Mylonakis E. Mefloquine reduces the bacterial membrane fluidity of Acinetobacter baumannii and distorts the bacterial membrane when combined with polymyxin B. mBio 2025; 16:e0401624. [PMID: 39998211 PMCID: PMC11980597 DOI: 10.1128/mbio.04016-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 01/29/2025] [Indexed: 02/26/2025] Open
Abstract
Acinetobacter baumannii is a high-priority organism for the development of new antibacterial treatments. We found that the antimalarial medication mefloquine (MFQ) permeabilized the bacterial cell membrane of A. baumannii, decreased membrane fluidity, and caused physical injury to the membrane. MFQ also maintained activity across different pH conditions (pH range: 5-8). Structure-activity relationship analysis using MFQ analogs demonstrated that piperidin-2-yl methanol is required for antibacterial activity. Scanning and transmission electron microscopy demonstrated the compromised morphological and membrane integrity in MFQ-treated cells. MFQ synergized with the membrane permeabilizers polymyxin B and colistin and the MFQ + polymyxin B combination killed bacterial cells more effectively than either treatment alone. MFQ + polymyxin B was effective against other gram-negative bacteria including Escherichia coli, Burkholderia pseudomallei, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Bodipy-cadaverine displacement assays confirmed the active interaction of MFQ with other membrane lipid components, such as lipopolysaccharide, lipid A, lipoteichoic acids, and fatty acids. In all-atom molecular dynamics simulations, lipid interactions facilitated the permeation of MFQ into the simulated Gram-negative membrane. Additionally, positively charged nitrogen in the piperidine group of MFQ seems to enhance interactions with the negatively charged components of the bacterial membrane. MFQ + polymyxin B caused significantly greater curvature in the simulated membrane, indicating greater damage than standalone drug treatment. Finally, in vivo assays showed that MFQ + polymyxin B rescued Galleria mellonella larvae infected with A. baumannii. In conclusion, membrane-active agents such as MFQ may warrant further investigation as a potential components of gram-negative infection treatment, particularly in combination with polymyxin B. IMPORTANCE Antimicrobial resistance is a threat globally, and new treatments are urgently needed to combat the rise of multidrug-resistant bacteria. However, the development of anti-infectives has declined over the last two decades due to regulatory, financial and long-term requirement related challenges. In this study, we examined the membrane interactions of the antiparasitic agent mefloquine (MFQ) in combination with polymyxin B, using both in vitro and in silico approaches to evaluate their potential efficacy against gram-negative bacterial infections. We investigated the interaction of MFQ with lipid bilayers to understand the mechanism through which antibacterial activity is exerted. The piperidine moiety of MFQ plays a critical role in its interaction with the lipid bilayer and facilitates membrane permeabilization. In contrast, the membrane permeabilizer polymyxin B is associated with significant neurotoxicity and nephrotoxicity. Our findings highlight the potential of membrane-acting compounds, such as MFQ, to enhance combinatorial activity while mitigating polymyxin B-associated toxicity.
Collapse
Affiliation(s)
- Nagendran Tharmalingam
- Houston Methodist Hospital and Houston Methodist Research Institute, Houston, Texas, USA
| | | | - Jenna Port
- Tufts University, Boston, Massachusetts, USA
| | | | - Eleftherios Mylonakis
- Houston Methodist Hospital and Houston Methodist Research Institute, Houston, Texas, USA
| |
Collapse
|
2
|
Tharmalingam N, Jayanthan HS, Port J, Rossatto FCP, Mylonakis E. Mefloquine reduces the bacterial membrane fluidity of Acinetobacter baumannii and distorts the bacterial membrane when combined with polymyxin B. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633232. [PMID: 39868148 PMCID: PMC11761044 DOI: 10.1101/2025.01.15.633232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Acinetobacter baumannii is a high-priority organism for the development of new antibacterial treatments. We found that the antimalarial medication mefloquine (MFQ) permeabilized the bacterial cell membrane of A. baumannii , decreased membrane fluidity, and caused physical injury to the membrane. MFQ also maintained activity across different pH conditions (PH range 5-8). Structure-activity relationship analysis using MFQ analogs demonstrated that piperidin-2-yl methanol is required for antibacterial activity. Scanning and transmission electron microscopy demonstrated the compromised morphological and membrane integrity in MFQ treated cells. MFQ synergized with the membrane permeabilizers polymyxin B and colistin and the MFQ+polymyxin B combination killed bacterial cells more effectively than either treatment alone. MFQ+polymyxin B was effective against other Gram-negative bacteria including Escherisia coli, Burkholderia pseudomallei, Klebsiella pneumoniae, and Pseudomonas auroginosa . Bodipy-cadaverine displacement assays confirmed the active interaction of MFQ with other membrane lipid components, such as lipopolysaccharide, lipid A, lipoteichoic acids, and fatty acids. In all-atom molecular dynamics simulations, lipid interactions facilitated the permeation of MFQ into the simulated Gram-negative membrane. Additionally, positively charged nitrogen in the piperidine group of MFQ seems to enhance interactions with the negatively charged components of the bacterial membrane. MFQ+polymyxin B caused significantly greater curvature in the simulated membrane, indicating greater damage than standalone drug treatment. Finally, in vivo assays showed that MFQ+polymyxin B rescued Galleria mellonella larvae infected with A. baumannii . In conclusion, membrane-active agents such as MFQ may warrant further investigation as potential component of Gram-negative infection treatment, particularly in combination with polymyxin B. Importance Antimicrobial resistance is a threat globally, and new treatments are urgently needed to combat the rise of multidrug-resistant bacteria. However, the development of anti-infectives has declined over the last two decades due to regulatory, financial and long-term requirement related challenges. In this study, we examined the membrane interactions of the antiparasitic agent mefloquine in combination with polymyxin B, using both in vitro and in silico approaches to evaluate their potential efficacy against Gram-negative bacterial infections. We investigated the interaction of MFQ with lipid bilayers to understand the mechanism through which antibacterial activity is exerted. The piperidine moiety of MFQ plays a critical role in its interaction with the lipid bilayer and facilitates membrane permeabilization. In contrast, the membrane permeabilizer polymyxin B is associated with significant neurotoxicity and nephrotoxicity. Our findings highlight the potential of membrane-acting compounds, such as MFQ, to enhance combinatorial activity while mitigating polymyxin B-associated toxicity.
Collapse
|
3
|
Konwar B, De S, Das G, Ramesh A. Inhibition of staphylococcal nuclease by benzimidazole-based Ligand: Implications in DNA-Mediated entrapment and uptake of MRSA by Macrophage-like cells. Bioorg Chem 2024; 144:107133. [PMID: 38278047 DOI: 10.1016/j.bioorg.2024.107133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
The staphylococcal nuclease also referred as micrococcal nuclease (MNase) is a key drug target as the enzyme degrades the neutrophil extracellular trap (NET) and empowers the pathogen to subvert the host innate immune system. To this end, the current study presents a critical evaluation of MNase inhibition rendered by benzimidazole-based ligands (C1 and C2) and probes its therapeutic implications. A nuclease assay indicated that MNase inhibition rendered by C1 and C2 was ∼ 55 % and ∼ 72 %, respectively, at the highest tested concentration of 10 µM. Studies on enzyme kinetics revealed that C2 rendered non-competitive inhibition and significantly reduced MNase turnover number (Kcat) and catalytic efficiency (Kcat/Km) with an IC50 value of ∼ 1122 nM. In CD spectroscopy, a notable perturbation in the β-sheet content of MNase was observed in presence of C2. Fluorescence-microscope analysis indicated that MNase inhibition by C2 could restore entrapment of methicillin-resistant Staphylococcus aureus (MRSA) in calf-thymus DNA (CT-DNA). Flow cytometry and confocal microscope analysis revealed that uptake of DNA-entrapped MRSA by activated THP-1 cells was reinstated by MNase inhibition rendered by C2. Inhibition of nuclease by the non-toxic ligand C2 holds therapeutic prospect as it has the potential to bolster the DNA-mediated entrapment machinery and mitigate MRSA infections.
Collapse
Affiliation(s)
- Barlina Konwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sagnik De
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Gopal Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Aiyagari Ramesh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
4
|
Joy A, Seethi V F, Cyriac MC, Habeeb J, Sudhakaran S, Shah S. Modelling of AgrA inhibitors to combat anti-microbial resistance in Staphylococcus aureus. J Biomol Struct Dyn 2024; 42:551-558. [PMID: 37166373 DOI: 10.1080/07391102.2023.2203260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/15/2023] [Indexed: 05/12/2023]
Abstract
Staphylococcus aureus is a Gram-positive bacterium found on human skin that causes skin and soft tissue infections, as well as pneumonia, osteomyelitis, and endocarditis. The prevalence of antibiotic resistant strains has made the treatments less effective. An efficient alternate method for battling these contagious diseases is anti-virulence strategy. The AgrA protein, a key activator of Accessory Gene Regulator system in S. aureus, is vital to the virulence of the organism and, consequently, its pathogenesis. Using a Machine Learning algorithm, the Support Vector Machine (SVM), and a ligand-based pharmacophore modelling method, prediction models of AgrA inhibitors were developed. The metrics of the SVM model were inadequate, hence it was not used for virtual screening. For ligand-based pharmacophore modelling, 14 of 29 compounds were removed from the active set due to a lack of shared pharmacophore properties, and 504 compounds were designated as decoys. A 3D pharmacophore model was created using LigandScout 4.4.5, with a fit score of 57.48, including a positive ionizable group, one hydrogen bond donor, and three hydrogen bond acceptors. The model after further validation was used to virtually screen an external database which resulted in six hits. These compounds were docked with the AgrA domain crystal structure to determine the inhibitor activity. Further, each docked complex was subjected to a 100 ns molecular dynamics simulation. CID238 and CID20510252 demonstrated potent inhibitory binding interactions and hence can be used to develop AgrA inhibitors in future after proper validation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amitha Joy
- Department of Biotechnology, Sahrdaya College of Engineering and Technology, Thrissur, Kerala, India
| | | | - Marria C Cyriac
- Department of Biotechnology, Sahrdaya College of Engineering and Technology, Thrissur, Kerala, India
| | - Jasmin Habeeb
- Division of Crop Improvement, ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, India
| | | | - Shaheen Shah
- Genomics Central [MaGenomics], Thrissur, Kerala, India
| |
Collapse
|
5
|
Putt KS, Du Y, Fu H, Zhang ZY. High-throughput screening strategies for space-based radiation countermeasure discovery. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:88-104. [PMID: 36336374 DOI: 10.1016/j.lssr.2022.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 06/16/2023]
Abstract
As humanity begins to venture further into space, approaches to better protect astronauts from the hazards found in space need to be developed. One particular hazard of concern is the complex radiation that is ever present in deep space. Currently, it is unlikely enough spacecraft shielding could be launched that would provide adequate protection to astronauts during long-duration missions such as a journey to Mars and back. In an effort to identify other means of protection, prophylactic radioprotective drugs have been proposed as a potential means to reduce the biological damage caused by this radiation. Unfortunately, few radioprotectors have been approved by the FDA for usage and for those that have been developed, they protect normal cells/tissues from acute, high levels of radiation exposure such as that from oncology radiation treatments. To date, essentially no radioprotectors have been developed that specifically counteract the effects of chronic low-dose rate space radiation. This review highlights how high-throughput screening (HTS) methodologies could be implemented to identify such a radioprotective agent. Several potential target, pathway, and phenotypic assays are discussed along with potential challenges towards screening for radioprotectors. Utilizing HTS strategies such as the ones proposed here have the potential to identify new chemical scaffolds that can be developed into efficacious radioprotectors that are specifically designed to protect astronauts during deep space journeys. The overarching goal of this review is to elicit broader interest in applying drug discovery techniques, specifically HTS towards the identification of radiation countermeasures designed to be efficacious towards the biological insults likely to be encountered by astronauts on long duration voyages.
Collapse
Affiliation(s)
- Karson S Putt
- Institute for Drug Discovery, Purdue University, West Lafayette IN 47907 USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Zhong-Yin Zhang
- Institute for Drug Discovery, Purdue University, West Lafayette IN 47907 USA; Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette IN 47907 USA.
| |
Collapse
|
6
|
Sena KXFR, Mendes RFV, Bôtelho EX, Araújo-Melo RO, Silva CJA, Costa Júnior HNP, Amorim-Carmo B, Damasceno IZ, Fernandes-Pedrosa MF, Aguiar JS, Silva TG, Lima GMS, Albuquerque JFC, Ximenes RM. Antibacterial and antibiofilm activities of thiazolidine-2,4-dione and 4-thioxo-thiazolidin-2-one derivatives against multidrug-resistant Staphylococcus aureus clinical isolates. J Appl Microbiol 2022; 133:3558-3572. [PMID: 36000385 DOI: 10.1111/jam.15790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 12/01/2022]
Abstract
AIMS Antimicrobial resistance is one of the highest priorities in global public health with Staphylococcus aureus among the most important microorganisms due to its rapidly evolving antimicrobial resistance. Despite all the efforts of antimicrobial stewardship, research and development of new antimicrobials are still imperative. The thiazolidine ring is considered a privileged structure for the development of new antimicrobials. This study aimed to compare the antibacterial effects of two analog series of thiazolidine-2,4-dione and 4-thioxo-thiazolidin-2-one against multidrug-resistant Staphylococcus aureus clinical isolates. METHODS AND RESULTS The derivatives 1a, 2a, and 2b exhibited MIC between 1-32 μg.mL-1 , with time-to-kill curves showing a bactericidal effect up to 24 h. In the antibiofilm assay, the most active derivatives were able to inhibit about 90% of biofilm formation. The 4-thioxo-thiazolidine-2-one derivatives were more active against planktonic cells, while the thiazolidine-2,4-dione derivatives were able to disrupt about 50% of the preformed biofilm. In the in vivo infection model using Caenorhabditis elegans as a host, the derivatives 1a, 2a, and 2b increased nematode survival with a concentration-dependent effect. Exposure of S. aureus to the derivatives 2a and 2b induced surface changes and decrease cell size. None of the derivatives was cytotoxic for human peripheral blood mononuclear cells (PBMC) but showed moderate cytotoxicity for L929 fibroblasts. CONCLUSION The 5-(3,4-dichlorobenzylidene)-4-thioxothiazolidin-2-one (2b) was the most active derivative against S. aureus and showed the higher selective indexes. SIGNIFICANCE AND IMPACT OF STUDY 4-thioxo-thiazolidin-2-one are a promising scaffold for the research and development of new antimicrobial drugs against multidrug-resistant S. aureus.
Collapse
Affiliation(s)
- Kêsia X F R Sena
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, Brazil
| | - Raudiney F V Mendes
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, Brazil
| | - Evillyn X Bôtelho
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - Camila J A Silva
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - Bruno Amorim-Carmo
- Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Igor Z Damasceno
- Departamento de Engenharia de Materiais, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | - Jaciana S Aguiar
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, Brazil
| | - Teresinha G Silva
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, Brazil
| | - Gláucia M S Lima
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - Rafael M Ximenes
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
7
|
El-Ganiny AM, Gad AI, El-Sayed MA, Shaldam MA, Abbas HA. The promising anti-virulence activity of candesartan, domperidone, and miconazole on Staphylococcus aureus. Braz J Microbiol 2021; 53:1-18. [PMID: 34773629 DOI: 10.1007/s42770-021-00655-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 10/17/2021] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus is a primary cause of hospital and community-acquired infections. With the emergence of multidrug-resistant S. aureus strains, there is a need for new drugs discovery. Due to the poor supply of new antimicrobials, targeting virulence of S. aureus may generate weaker selection for resistant strains, anti-virulence agents disarm the pathogen instead of killing it. In this study, the ability of the FDA-approved drugs domperidone, candesartan, and miconazole as inhibitors of S. aureus virulence was investigated. The effect of tested drugs was evaluated against biofilm formation, lipase, protease, hemolysin, and staphyloxanthin production by using phenotypic and genotypic methods. At sub-inhibitory concentrations, candesartan, domperidone, and miconazole showed a significant inhibition of hemolysin (75.8-96%), staphyloxanthin (81.2-85%), lipase (50-65%), protease (40-64%), and biofilm formation (71.4-90%). Domperidone and candesartan have similar activity and were more powerful than miconazole against S. aureus virulence. The hemolysins and lipase inhibition were the greatest under the domperidone effect. Candesartan showed a remarkable reduction in staphyloxanthin production. The highest inhibitory effect of proteolytic activity was obtained with domperidone and candesartan. Biofilm was significantly reduced by miconazole. Expression levels of crtM, sigB, sarA, agrA, hla, fnbA, and icaA genes were significantly reduced under candesartan (68.98-82.7%), domperidone (62.6-77.2%), and miconazole (32.96-52.6%) at sub-MIC concentrations. Candesartan showed the highest inhibition activity against crtM, sigB, sarA, agrA, hla, and icaA expression followed by domperidone then miconazole. Domperidone showed the highest downregulation activity against fnbA gene. In conclusion, candesartan, domperidone, and miconazole could serve as anti-virulence agents for attenuation of S. aureus pathogenicity.
Collapse
Affiliation(s)
- Amira M El-Ganiny
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Amany I Gad
- Microbiology and Immunology Department, School of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
| | - Mona A El-Sayed
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Moataz A Shaldam
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Hisham A Abbas
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
8
|
Zhang Y, Zhang H, Chen Y, Qiao L, Han Y, Lin Y, Si S, Jiang JD. Screening and Identification of a Novel Anti-tuberculosis Compound That Targets Deoxyuridine 5'-Triphosphate Nucleotidohydrolase. Front Microbiol 2021; 12:757914. [PMID: 34707597 PMCID: PMC8544286 DOI: 10.3389/fmicb.2021.757914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/10/2021] [Indexed: 01/08/2023] Open
Abstract
Tuberculosis (TB) is still a threat to humans worldwide. The rise of drug-resistant TB strains has escalated the need for developing effective anti-TB agents. Deoxyuridine 5′-triphosphate nucleotidohydrolase (dUTPase) is essential for thymidylate biosynthesis to maintain the DNA integrity. In Mycobacterium tuberculosis, dUTPase provides the sole source for thymidylate biosynthesis, which also has the specific five-residue loop and the binding pockets absent in human dUTPase. Therefore, dUTPase has been regarded as a promising anti-TB drug target. Herein, we used a luminescence-based dUTPase assay to search for the inhibitors target M. tuberculosis dUTPase (Mt-dUTPase) and identified compound F0414 as a potent Mt-dUTPase inhibitor with an IC50 of 0.80 ± 0.09 μM. F0414 exhibited anti-TB activity with low cytotoxicity. Molecular docking model and site-directed mutation experiments revealed that P79 was the key residue in the interaction of Mt-dUTPase and F0414. Moreover, F0414 was shown to have stronger binding with Mt-dUTPase than with Mt-P79A-dUTPase by surface plasmon resonance (SPR) detection. Interestingly, F0414 exhibited insensitivity and weak directly binding on human dUTPase compared with that on Mt-dUTPase. All the results highlight that F0414 is the first compound reported to have anti-TB activity by inhibiting Mt-dUTPase, which indicates the potential application in anti-TB therapy.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongjuan Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Chen
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Luyao Qiao
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanxing Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Lin
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuyi Si
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Impeding Virulence of Candida albicans by Candesartan and Domperidone. Curr Microbiol 2021; 78:3957-3967. [PMID: 34550434 DOI: 10.1007/s00284-021-02663-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
Candida albicans is the most common human fungal pathogen that has developed extensive virulence factors which allows successful colonization and infection of the host. Anti-virulence agents can alleviate the pathogenesis of fungi and help the immune system to eradicate them easily. This study aimed to explore the anti-virulence effect of domperidone and candesartan against C. albicans standard strain. Sub-inhibitory concentrations (1/4 and 1/8 of minimum inhibitory concentration) of domperidone and candesartan significantly inhibited the virulence factors hemolysin, lipase, protease, phospholipase, and bioflim formation. It was found that candesartan inhibited biofilm formation by 60.48-67.91%, hemolysin activity (61.21-74.14%), phospholipase activity (40-49.67%), lipase activity (58.97-73%), and protease activity (52.63%), while domperidone was found to inhibit biofilm formation by 70.54-77.49%, hemolysin activity (64.84-69.84%), phospholipase activity (49.67-60%), lipase activity (50-54.87%), and protease activity (52.63-57.9%). Quantitative real time-PCR confirmed the anti-virulence activity of domperidone and candesartan as both drugs significantly reduce the expression of the virulence genes SAP2, SAP6, PLB1, PLB2, LIP4, LIP5. In conclusion, domperidone and candesartan could serve as anti-virulence agents for treatment of C. albicans infections.
Collapse
|
10
|
Possamai Rossatto FC, Tharmalingam N, Escobar IE, d’Azevedo PA, Zimmer KR, Mylonakis E. Antifungal Activity of the Phenolic Compounds Ellagic Acid (EA) and Caffeic Acid Phenethyl Ester (CAPE) against Drug-Resistant Candida auris. J Fungi (Basel) 2021; 7:jof7090763. [PMID: 34575801 PMCID: PMC8466507 DOI: 10.3390/jof7090763] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/17/2022] Open
Abstract
Candida auris is an emerging healthcare-associated fungal pathogen that has become a serious global health threat. Current treatment options are limited due to drug resistance. New therapeutic strategies are required to target this organism and its pathogenicity. Plant polyphenols are structurally diverse compounds that present a vast range of biological properties. In the present study, plant-derived molecules ellagic acid (EA) and caffeic acid phenethyl ester (CAPE) were investigated for their antifungal and antivirulence activities against Candida auris. We also tested against C. albicans. The minimum inhibitory concentration (MIC) for EA ranged from 0.125 to 0.25 µg/mL and for CAPE ranged from 1 to 64 µg/mL against drug-resistant C. auris strains. Killing kinetics determined that after 4 h treatment with CAPE, there was a complete reduction of viable C. auris cells compared to fluconazole. Both compounds might act by modifying the fungal cell wall. CAPE significantly reduced the biomass and the metabolic activity of C. auris biofilm and impaired C. auris adhesion to cultured human epithelial cells. Furthermore, both compounds prolonged the survival rate of Galleria mellonella infected by C. auris (p = 0.0088 for EA at 32 mg/kg and p = 0.0028 for CAPE at 4 mg/kg). In addition, EA at 4 μg/mL prolonged the survival of C. albicans-infected Caenorhabditis elegans (p < 0.0001). CAPE was not able to prolong the survival of C. albicans-infected C. elegans. These findings highlight the antifungal and antivirulence effects of EA and CAPE against C. auris, and warrant further investigation as novel antifungal agents against drug-resistant infections.
Collapse
Affiliation(s)
- Fernanda Cristina Possamai Rossatto
- Laboratory of Biofilms and Alternative Models, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, RS, Brazil; (F.C.P.R.); (P.A.d.); (K.R.Z.)
| | - Nagendran Tharmalingam
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School at Brown University, 593 Eddy Street, P.O. Box 328/330, Providence, RI 02903, USA; (N.T.); (I.E.E.)
| | - Iliana E. Escobar
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School at Brown University, 593 Eddy Street, P.O. Box 328/330, Providence, RI 02903, USA; (N.T.); (I.E.E.)
| | - Pedro Alves d’Azevedo
- Laboratory of Biofilms and Alternative Models, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, RS, Brazil; (F.C.P.R.); (P.A.d.); (K.R.Z.)
| | - Karine Rigon Zimmer
- Laboratory of Biofilms and Alternative Models, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, RS, Brazil; (F.C.P.R.); (P.A.d.); (K.R.Z.)
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School at Brown University, 593 Eddy Street, P.O. Box 328/330, Providence, RI 02903, USA; (N.T.); (I.E.E.)
- Correspondence: ; Tel.: +1-401-444-7845; Fax: +1-401-444-8179
| |
Collapse
|
11
|
Ismail MM, Hassan M, Moawad SS, Okba MM, Ashour RM, Fayek NM, Saber FR. Exploring the Antivirulence Activity of Pulverulentone A, a Phloroglucinol-Derivative from Callistemon citrinus Leaf Extract, against Multi-Drug Resistant Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:antibiotics10080907. [PMID: 34438957 PMCID: PMC8388764 DOI: 10.3390/antibiotics10080907] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
(1) Background: Bacterial resistance to antibiotics is a global life-threatening issue. Antivirulence therapy is a promising approach to combat bacterial infections as it disarms the bacteria from their virulence factors with reduced selective pressure and a lower chance of resistance. (2) Methods: Callistemon citrinus leaf extract and its major constituent, Pulverulentone A, were tested for their ability to inhibit biofilm, exopolysaccharides, pyocyanin and proteases produced by MDR P. aeruginosa. In addition, a Galleria mellonella larvae model was employed to evaluate the in vivo cytotoxicity of Pulverulentone A and its ability to combat Pseudomonas infection. Docking study was further performed to investigate Pulverulentone A druggability against main quorum sensing (QS) targets expressed by P. aeruginosa; (3) Results: Both C. citrinus extract and the isolated compound could inhibit biofilm formation, extracellular polymeric substances (EPS) and pigment production by the tested isolates. Unexpectedly, no significant inhibition was observed on proteases production. The in silico docking analysis revealed good interactions of Pulverulentone A with all QS targets examined (LasR, MyfR/PqsR, QscR). Pulverulentone A was safe up to 400 µg·mL−1 in Galleria caterpillars. Moreover, pre-treatment of P. aeruginosa with Pulverulentone A slightly enhanced the survival of the infected larvae. (4) Conclusions: The present study proves Pulverulentone A safety with significant in vitro and in silico antivirulence potential against P. aeruginosa.
Collapse
Affiliation(s)
- Maha M. Ismail
- Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt;
- Correspondence: (M.M.I.); (F.R.S.); Tel./Fax: +20-3628426 (ext. 00202) (M.M.I.); Tel.: +20-1004405983 (F.R.S.)
| | - Mariam Hassan
- Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt;
| | - Sawsan S. Moawad
- Department of Pests and Plant Protection, National Research Center (NRC), Giza 12622, Egypt;
| | - Mona M. Okba
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (M.M.O.); (R.M.A.); (N.M.F.)
| | - Rehab M. Ashour
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (M.M.O.); (R.M.A.); (N.M.F.)
| | - Nesrin M. Fayek
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (M.M.O.); (R.M.A.); (N.M.F.)
| | - Fatema R. Saber
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (M.M.O.); (R.M.A.); (N.M.F.)
- Correspondence: (M.M.I.); (F.R.S.); Tel./Fax: +20-3628426 (ext. 00202) (M.M.I.); Tel.: +20-1004405983 (F.R.S.)
| |
Collapse
|
12
|
Zha GF, Preetham HD, Rangappa S, Sharath Kumar KS, Girish YR, Rakesh KP, Ashrafizadeh M, Zarrabi A, Rangappa KS. Benzimidazole analogues as efficient arsenals in war against methicillin-resistance staphylococcus aureus (MRSA) and its SAR studies. Bioorg Chem 2021; 115:105175. [PMID: 34298242 DOI: 10.1016/j.bioorg.2021.105175] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/11/2021] [Indexed: 12/19/2022]
Abstract
Small molecule based inhibitors development is a growing field in medicinal chemistry. In recent years, different heterocyclic derivatives have been designed to counter the infections caused by multi-drug resistant bacteria. Indeed, small molecule inhibitors can be employed as an efficient antibacterial agents with different mechanism of action. Methicillin-resistant Staphylococcus aureus (MRSA) is becoming lethal to mankind due to easy transmission mode, rapid resistance development to existing antibiotics and affect difficult-to-treat skin and filmsy diseases. Benzimidazoles are a class of heterocyclic compounds which have capability to fight against MRSA. High biocompatibility of benzimidazoles, synergistic behaviour with antibiotics and their tunable physico-chemical properties attracted the researchers to develop new benzimidazole based antibacterial agents. The present review focus on recent developments of benzimidazole-hybrid molecules as anti MRSA agents and the results of in-vitro and in-vivo studies with possible mechanism of action and discussing structure-activity relationship (SAR) in different directions. Benzimdazoles act as DNA binding agents, enzyme inhibitors, anti-biofilm agents and showed synergistic effect with available antibiotics to achieve antibacterial activity against MRSA. This cumulative figures would help to design new benzimidazole-based MRSA growth inhibitors.
Collapse
Affiliation(s)
- Gao-Feng Zha
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhan 518107, China.
| | - Habbanakuppe D Preetham
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri Institute of Medical Sciences, Adichunchanagiri University, B. G. Nagar, Nagamangala Taluk, Mandya District 571448, India
| | | | - Yarabahally R Girish
- Centre for Research and Innovations, School of Natural Sciences, BGSIT, Adichunchanagiri University, B. G. Nagara, Mandya, 571448, India
| | - Kadalipura P Rakesh
- School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | | |
Collapse
|
13
|
Peng J, Mishra B, Khader R, Felix L, Mylonakis E. Novel Cecropin-4 Derived Peptides against Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2021; 10:36. [PMID: 33401476 PMCID: PMC7824259 DOI: 10.3390/antibiotics10010036] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022] Open
Abstract
Increasing microbial resistance, coupled with a lack of new antimicrobial discovery, has led researchers to refocus on antimicrobial peptides (AMPs) as novel therapeutic candidates. Significantly, the less toxic cecropins have gained widespread attention for potential antibacterial agent development. However, the narrow activity spectrum and long sequence remain the primary limitations of this approach. In this study, we truncated and modified cecropin 4 (41 amino acids) by varying the charge and hydrophobicity balance to obtain smaller AMPs. The derivative peptide C18 (16 amino acids) demonstrated high antibacterial activity against Gram-negative and Gram-positive bacteria, as well as yeasts. Moreover, C18 demonstrated a minimal inhibitory concentration (MIC) of 4 µg/mL against the methicillin-resistant Staphylococcus aureus (MRSA) and showed synergy with daptomycin with a fractional inhibition concentration index (FICI) value of 0.313. Similar to traditional cecropins, C18 altered the membrane potential, increased fluidity, and caused membrane breakage at 32 µg/mL. Importantly, C18 eliminated 99% persisters at 10 × MIC within 20 min and reduced the biofilm adherence by ~40% and 35% at 32 and 16 µg/mL. Besides, C18 possessed a strong binding ability with DNA at 7.8 μM and down-regulated the expression of virulence factor genes like agrA, fnb-A, and clf-1 by more than 5-fold (p < 0.05). Interestingly, in the Galleria mellonella model, C18 rescued more than 80% of larva infected with the MRSA throughout 120-h post-infection at a single dose of 8 mg/kg (p < 0.05). In conclusion, this study provides a reference for the transformation of cecropin to derive small peptides and presents C18 as an attractive therapeutic candidate to be developed to treat severe MRSA infections.
Collapse
Affiliation(s)
- Jian Peng
- Infectious Diseases Division, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (J.P.); (B.M.); (R.K.); (L.F.)
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Biswajit Mishra
- Infectious Diseases Division, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (J.P.); (B.M.); (R.K.); (L.F.)
| | - Rajamohammed Khader
- Infectious Diseases Division, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (J.P.); (B.M.); (R.K.); (L.F.)
| | - LewisOscar Felix
- Infectious Diseases Division, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (J.P.); (B.M.); (R.K.); (L.F.)
| | - Eleftherios Mylonakis
- Infectious Diseases Division, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (J.P.); (B.M.); (R.K.); (L.F.)
| |
Collapse
|
14
|
Rossoni RD, de Barros PP, Mendonça IDC, Medina RP, Silva DHS, Fuchs BB, Junqueira JC, Mylonakis E. The Postbiotic Activity of Lactobacillus paracasei 28.4 Against Candida auris. Front Cell Infect Microbiol 2020; 10:397. [PMID: 32850495 PMCID: PMC7417517 DOI: 10.3389/fcimb.2020.00397] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
Candida auris has emerged as a medically important pathogen with considerable resistance to antifungal agents. The ability to produce biofilms is an important pathogenicity feature of this species that aids escape of host immune responses and antimicrobial agents. The objective of this study was to verify antifungal action using in vitro and in vivo models of the Lactobacillus paracasei 28.4 probiotic cells and postbiotic activity of crude extract (LPCE) and fraction 1 (LPF1), derived from L. paracasei 28.4 supernatant. Both live cells and cells free supernatant of L. paracasei 28.4 inhibited C. auris suggesting probiotic and postbiotic effects. The minimum inhibitory concentration (MIC) for LPCE was 15 mg/mL and ranges from 3.75 to 7.5 mg/mL for LPF1. Killing kinetics determined that after 24 h treatment with LPCE or LPF1 there was a complete reduction of viable C. auris cells compared to fluconazole, which decreased the initial inoculum by 1-logCFU during the same time period. LPCE and LPF1 significantly reduced the biomass (p = 0.0001) and the metabolic activity (p = 0.0001) of C. auris biofilm. There was also a total reduction (~108 CFU/mL) in viability of persister C. auris cells after treatment with postbiotic elements (p < 0.0001). In an in vivo study, injection of LPCE and LPF1 into G. mellonella larvae infected with C. auris prolonged survival of these insects compared to a control group (p < 0.05) and elicited immune responses by increasing the number of circulating hemocytes and gene expression of antimicrobial peptide galiomicin. We concluded that the L. paracasei 28.4 cells and postbiotic elements (LPCE and LPF1) have antifungal activity against planktonic cells, biofilms, and persister cells of C. auris. Postbiotic supplementation derived from L. paracasei 28.4 protected G. mellonella infected with C. auris and enhanced its immune status indicating a dual function in modulating a host immune response.
Collapse
Affiliation(s)
- Rodnei Dennis Rossoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, São José dos Campos, Brazil.,Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, United States
| | - Patrícia Pimentel de Barros
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, São José dos Campos, Brazil.,Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, United States
| | - Iatã do Carmo Mendonça
- Department of Organic Chemistry, Center for Bioassays, Biosynthesis and Ecophysiology of Natural Products, Institute of Chemistry, São Paulo State University, UNESP, Araraquara, Brazil
| | - Rebeca Previate Medina
- Department of Organic Chemistry, Center for Bioassays, Biosynthesis and Ecophysiology of Natural Products, Institute of Chemistry, São Paulo State University, UNESP, Araraquara, Brazil
| | - Dulce Helena Siqueira Silva
- Department of Organic Chemistry, Center for Bioassays, Biosynthesis and Ecophysiology of Natural Products, Institute of Chemistry, São Paulo State University, UNESP, Araraquara, Brazil
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, United States
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, São José dos Campos, Brazil
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, United States
| |
Collapse
|
15
|
Kim SM, Escorbar I, Lee K, Fuchs BB, Mylonakis E, Kim W. Anti-MRSA agent discovery using Caenorhabditis elegans-based high-throughput screening. J Microbiol 2020; 58:431-444. [PMID: 32462486 DOI: 10.1007/s12275-020-0163-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022]
Abstract
Staphylococcus aureus is a leading cause of hospital- and community-acquired infections. Despite current advances in antimicrobial chemotherapy, the infections caused by S. aureus remain challenging due to their ability to readily develop resistance. Indeed, antibiotic resistance, exemplified by methicillin-resistant S. aureus (MRSA) is a top threat to global health security. Furthermore, the current rate of antibiotic discovery is much slower than the rate of antibiotic-resistance development. It seems evident that the conventional in vitro bacterial growth-based screening strategies can no longer effectively supply new antibiotics at the rate needed to combat bacterial antibiotic-resistance. To overcome this antibiotic resistance crisis, screening assays based on host-pathogen interactions have been developed. In particular, the free-living nematode Caenorhabditis elegans has been used for drug screening against MRSA. In this review, we will discuss the general principles of the C. elegans-based screening platform and will highlight its unique strengths by comparing it with conventional antibiotic screening platforms. We will outline major hits from high-throughput screens of more than 100,000 small molecules using the C. elegans-MRSA infection assay and will review the mode-of-action of the identified hit compounds. Lastly, we will discuss the potential of a C. elegans-based screening strategy as a paradigm shift screening platform.
Collapse
Affiliation(s)
- Soo Min Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Iliana Escorbar
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, 02903, USA
| | - Kiho Lee
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, 02903, USA
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, 02903, USA
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, 02903, USA
| | - Wooseong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|