1
|
Chu Z, Tang X, Li Y, Li J, Xiong W, Yin Y, Pan X. Simultaneous removal of organic matter and inorganic nitrogen in Baijiu wastewater by methanotrophic denitrification. BIORESOURCE TECHNOLOGY 2025; 418:131956. [PMID: 39644935 DOI: 10.1016/j.biortech.2024.131956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/22/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Methanotroph could facilitate nitrogen removal during methane oxidation, and promote conversion of organic compounds by producing methane monooxygenase. Co-metabolic effect and mechanism of aerobic methane oxidation on the removal of nitrogen and organic matter from Baijiu wastewater were investigated using an improved denitrifying biological filter. It was found that the average removal efficiency of chemical oxygen demand (COD), total nitrogen (TN) and chroma increased by 17 %, 22 % and 10 % in reactor B with methane compared to reactor A with air only. Three-dimensional fluorescence spectroscopy and Fourier transform infrared spectroscopy analysis revealed that methanotroph co-metabolism was accompanied by eliminating nitrogen and organic matter as well as forming alcohol compounds. Metagenomic analyses revealed that Methylocaldum, the dominant genera in Reactor B, exerted a pivotal role in removing nitrogen and organic matter removal by supplying energy and catalysis. Functional genes pmoABC-amoABC could facilitate nitrogen and organic matter removal.
Collapse
Affiliation(s)
- Zhaohan Chu
- North Alabama International College of Engineering and Technology, Guizhou University, Guiyang 550025, China
| | - Xin Tang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Yancheng Li
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China.
| | - Jiang Li
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Wei Xiong
- Power China Guiyang Engineering Corporation Limited, Guiyang 550081, China
| | - Yaohua Yin
- Power China Guiyang Engineering Corporation Limited, Guiyang 550081, China
| | - Xinglin Pan
- Power China Guiyang Engineering Corporation Limited, Guiyang 550081, China
| |
Collapse
|
2
|
Xing F, Wang S, Wang T, Sun B, Meng H. Comprehensive performance of a new-type hybrid membrane bioreactor applied to mainstream anammox process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123771. [PMID: 39705998 DOI: 10.1016/j.jenvman.2024.123771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/27/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
The new-type submerged granular sludge membrane bioreactor (S-GSMBR) was constructed by installing a membrane module inside an upflow anaerobic sludge blanket. S-GSMBR achieved the fast start-up (47 d) and long-term stable operation (133 d) of mainstream Anammox process as well as the effective control of membrane fouling. The maximum nitrogen removal rate and efficiency were 0.52 kg N m-3 d-1 and 88.32%. The flow field analysis indicated that the turbulent effects were found around the membrane module and benefited for alleviating the membrane fouling at the special axial flow velocity at the central section of the membrane module (4.89 × 10-7 m s-1 to 1.30 × 10-6 m s-1). On day 133, S-GSMBR achieved sludge granulation with 68.63% of particles larger than 200 μm. Meanwhile, Candidatus Brocadia and Candidatus Kuenenia were typical Anammox bacteria in mature Anammox granular sludge. The relative abundance of Candidatus Brocadia and Candidatus Kuenenia was 21.22% and 0.36%, indicating that Candidatus Brocadia occupied the main niche under mainstream Anammox conditions. The feasibility of application of S-GSMBR in mainstream Anammox process was confirmed and moreover S-GSMBR was proven to be a robust mainstream Anammox reactor. This study lays the important theoretical foundation and technical support for the engineering application of the mainstream Anammox process.
Collapse
Affiliation(s)
- Fanghua Xing
- Institute of Pollution Control and Environmental Health, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Shuhang Wang
- Key Laboratory of Environmental Protection of Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, 100012, China.
| | - Tao Wang
- Institute of Pollution Control and Environmental Health, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Binbin Sun
- Institute of Pollution Control and Environmental Health, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Hao Meng
- Institute of Pollution Control and Environmental Health, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| |
Collapse
|
3
|
Wang XW, Tan X, Dang CC, Liu LY, Wang X, Zhao ZC, Ren HY, Liu BF, Xie GJ. Enrichment and characterization of thermophilic anaerobic ammonium oxidizing bacteria from hot spring. WATER RESEARCH 2024; 267:122497. [PMID: 39340864 DOI: 10.1016/j.watres.2024.122497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Anaerobic ammonium oxidization (Anammox) process plays a crucial role in the global nitrogen cycle and sustainable biological nitrogen removal from wastewater. Although Anammox bacteria have been detected across mesophilic and thermophilic conditions, the direct cultivation of Anammox bacteria from thermal environments has remained elusive. This impedes limiting our understanding of their physiology and ecology in high-temperature habitats. Here, we successfully enriched Anammox bacteria from hot spring sediments at 45 °C, achieving an ammonium oxidation rate of 158.0 mg NH4+-N l-1d-1, with the genus 'Candidatus Brocadia' presenting 22.9 % of the total microbial community after about 500 days of operation. Metagenomic analysis recovered two high-quality genomes of novel Anammox bacteria, which we designed as 'Candidatus Brocadia thermophilus' and 'Candidatus Brocadia thermoanammoxidans'. Both of them encoded and actively expressed key metabolic genes involved in Anammox process and several genes associated with thermotolerance, demonstrating their remarkable ability to perform Anammox reaction in thermophilic environments. Notably, phylotypes related to 'Candidatus Brocadia thermoanammoxidans' have frequently been retrieved from geographically distinct natural habitats. These findings expand our understanding of thermophilic Anammox bacteria and underscore their potential in the nitrogen cycle of thermal natural and engineering ecosystems.
Collapse
Affiliation(s)
- Xiao-Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xin Tan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Cheng-Cheng Dang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Lu-Yao Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xuan Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zhi-Cheng Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Hong-Yu Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
4
|
Li Y, Zhang HM. Calcined pyrite accelerates sulfur metabolic and electron transfer in driving targeted microbial fuel cell denitrification. BIORESOURCE TECHNOLOGY 2024; 410:131285. [PMID: 39151569 DOI: 10.1016/j.biortech.2024.131285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
The sulfur powder as electron donor in driving dual-chamber microbial fuel cell denitrification (S) process has the advantages in economy and pollution-free to treat nitrate-contained groundwater. However, the low efficiency of electron utilization in sulfur oxidation (ACE) is the bottleneck to this method. In this study, the addition of calcined pyrite to the S system (SCP) accelerated electron generation and intra/extracellular transfer efficiency, thereby improving ACE and denitrification performance. The highest nitrate removal rate reached to 3.55 ± 0.01 mg N/L/h in SCP system, and the ACE was 103 % higher than that in S system. More importantly, calcined pyrite enhanced the enrichment of functional bacteria (Burkholderiales, Thiomonas and Sulfurovum) and functional genes which related to sulfur metabolism and electron transfer. This study was more effective in removing nitrate from groundwater without compromising the water quality.
Collapse
Affiliation(s)
- Yue Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, PR China
| | - Han-Min Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, PR China.
| |
Collapse
|
5
|
Mu M, Li D, Lin S, Bi H, Liu X, Wang Z, Qian C, Ji J. Insights into the individual and combined effects of Cu(Ⅱ) and Ni(Ⅱ) on anammox: Nitrogen removal performance, enzyme activity and microbial community. CHEMOSPHERE 2024; 365:143308. [PMID: 39265735 DOI: 10.1016/j.chemosphere.2024.143308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Anaerobic ammonium oxidation (anammox) is an efficient and economical nitrogen removal process for treating ammonium-rich industrial wastewaters. However, Cu(Ⅱ) and Ni(Ⅱ) present in industrial wastewaters are toxic to anaerobic ammonium-oxidizing bacteria (AnAOB). Unfortunately, the effects of Cu(Ⅱ) and Ni(Ⅱ) on anammox have not been thoroughly investigated, especially when Cu(Ⅱ) and Ni(Ⅱ) coexist. This work comprehensively investigated the individual and combined effects of Cu(Ⅱ) and Ni(Ⅱ) on anammox and revealed the inhibitory mechanisms. With the influent NH4+-N and NO2--N concentration of 230 and 250 mg L-1, the inhibition thresholds on anammox are 2.00 mg L-1 Cu(Ⅱ), 1.00 mg L-1 Ni(Ⅱ) and 1.00 mg L-1 Cu(Ⅱ) + 1.00 mg L-1 Ni(Ⅱ), and higher Cu(Ⅱ) or Ni(Ⅱ) concentrations resulted in sharp deteriorations of nitrogen removal performance. The inhibition of Ni(Ⅱ) on anammox was mainly attributed to the adverse effect on NiR activity, while the inhibition mechanism of Cu(Ⅱ) seemed to be unrelated to the four functional enzymes, but associated with disruption of cellular and organellar membranes. The behavior of extracellular polymeric substances (EPS) contributed to the antagonistic effect between Cu(Ⅱ) and Ni(Ⅱ) on anammox. In addition, the niche of Candidatus Brocadia and Candidatus Jettenia shifted under the Cu(II) and Ni(II) stress, and Candidatus Jettenia displayed greater tolerance to Cu(II) and Ni(II) stress. In conclusion, this research clarified the combined effect and the inhibitory mechanism of multiple heavy metals on anammox, and provide the guidances for anammox process application in treating high-ammonium industrial wastewaters containing heavy metals.
Collapse
Affiliation(s)
- Minghao Mu
- Innovation Research Institute, Shandong Hi-speed Group, Jinan, 250001, China
| | - Dengzhi Li
- Key Lab of Marine Environment and Ecology of Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Shilin Lin
- Key Lab of Marine Environment and Ecology of Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Haisong Bi
- Innovation Research Institute, Shandong Hi-speed Group, Jinan, 250001, China
| | - Xinqiang Liu
- Innovation Research Institute, Shandong Hi-speed Group, Jinan, 250001, China
| | - Zheng Wang
- Innovation Research Institute, Shandong Hi-speed Group, Jinan, 250001, China
| | - Chengduo Qian
- Innovation Research Institute, Shandong Hi-speed Group, Jinan, 250001, China
| | - Junyuan Ji
- Key Lab of Marine Environment and Ecology of Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
6
|
Li B, Liu C, Bai J, Huang Y, Su R, Wei Y, Ma B. Strategy to mitigate substrate inhibition in wastewater treatment systems. Nat Commun 2024; 15:7920. [PMID: 39256375 PMCID: PMC11387818 DOI: 10.1038/s41467-024-52364-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
Global urbanization requires more stable and sustainable wastewater treatment to reduce the burden on the water environment. To address the problem of substrate inhibition of microorganisms during wastewater treatment, which leads to unstable wastewater discharge, this study proposes an approach to enhance the tolerance of bacterial community by artificially setting up a non-lethal high substrate environment. And the feasibility of this approach was explored by taking the inhibition of anammox process by nitrite as an example. It was shown that the non-lethal high substrate environment could enhance the nitrite tolerance of anammox bacterial community, as the specific anammox activity increasing up to 24.71 times at high nitrite concentrations. Moreover, the system composed of anammox bacterial community with high nitrite tolerance also showed greater resistance (two-fold) in response to nitrite shock. The antifragility of the system was enhanced without affecting the operation of the main reactor, and the non-lethal high nitrite environment changed the dominant anammox genera to Candidatus Jettenia. This approach to enhance tolerance of bacterial community in a non-lethal high substrate environment not only allows the anammox system to operate stably, but also promises to be a potential strategy for achieving stable biological wastewater treatment processes to comply with standards.
Collapse
Affiliation(s)
- Beiying Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
| | - Conghe Liu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
| | - Jingjing Bai
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
| | - Yikun Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
| | - Run Su
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
| | - Yan Wei
- State Key Laboratory of Marine Resources Utilization in the South China Sea, Hainan University, Haikou, 570228, China
| | - Bin Ma
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China.
| |
Collapse
|
7
|
Litti Y, Elcheninov A, Botchkova E, Chernyh N, Merkel A, Vishnyakova A, Popova N, Zhang Y, Safonov A. Metagenomic evidence of a novel anammox community in a cold aquifer with high nitrogen pollution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121629. [PMID: 38944958 DOI: 10.1016/j.jenvman.2024.121629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/06/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
The process of anaerobic ammonium oxidation by nitrite (anammox) is a globally essential part of N cycle. To date, 8 Candidatus genera and more than 22 species of anammox bacteria have been discovered in various anthropogenic and natural habitats, including nitrogen-polluted aquifers. In this work, anammox bacteria were detected for the first time in the groundwater ecosystem with high anthropogenic nitrogen pollution (up to 1760 mg NO3--N/L and 280 mg NH4+-N/L) and low year-round temperature (7-8 °C) in the zone of a uranium sludge repository. Further metagenomic analysis resulted in retrieval of metagenome-assembled genomes of 4 distinct anammox bacteria: a new genus named Ca. Frigussubterria, new species in Ca. Kuenenia, and two strains of a new species in Ca. Scalindua. Analysis of the genomes revealed essential genes involved in anammox metabolism. Both strains of Ca. Scalindua chemeplantae had a high copy number of genes encoding the cold shock proteins CspA/B, which can also function as an antifreeze protein (CspB). Ca. Kuenenia glazoviensis and Ca. Frigussubterria udmurtiae were abundant in less N-polluted site, while Ca. Scalindua chemeplantae inhabited both sites. Genes for urea utilization, reduction of insoluble Fe2O3 or MnO2, assimilatory sulfate reduction, reactive oxygen detoxification, nitrate reduction to ammonium, and putatively arsenate respiration were found. These findings enrich knowledge of the functional and phylogenetic diversity of anammox bacteria and improve understanding of the nitrogen cycle in polluted aquifers.
Collapse
Affiliation(s)
- Yuriy Litti
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, 117312, Moscow, Russia.
| | - Alexander Elcheninov
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, 117312, Moscow, Russia.
| | - Ekaterina Botchkova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, 117312, Moscow, Russia.
| | - Nikolay Chernyh
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, 117312, Moscow, Russia.
| | - Alexander Merkel
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, 117312, Moscow, Russia.
| | - Anastasia Vishnyakova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, 117312, Moscow, Russia.
| | - Nadezhda Popova
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, 31, bld.4, Leninsky Prospect, 119071, Moscow, Russia.
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Alexey Safonov
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, 31, bld.4, Leninsky Prospect, 119071, Moscow, Russia.
| |
Collapse
|
8
|
Liu X, Wu M, Guo J. Coupling Nitrate-Dependent Anaerobic Ethane Degradation with Anaerobic Ammonium Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11525-11533. [PMID: 38898713 DOI: 10.1021/acs.est.4c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The microbial oxidation of short-chain gaseous alkanes (SCGAs, consisting of ethane, propane, and butane) serves as an efficient sink to mitigate these gases' emission to the atmosphere, thus reducing their negative impacts on air quality and climate. "Candidatus Alkanivorans nitratireducens" are recently found to mediate nitrate-dependent anaerobic ethane oxidation (n-DAEO). In natural ecosystems, anaerobic ammonium-oxidizing (anammox) bacteria may consume nitrite generated from nitrate reduction by "Ca. A. nitratireducens", thereby alleviating the inhibition caused by nitrite accumulation on the metabolism of "Ca. A. nitratireducens". Here, we demonstrate the coupling of n-DAEO with anammox in a laboratory-scale model system to prevent nitrite accumulation. Our results suggest that a high concentration of ethane (6.9-7.9%) has acute inhibition on anammox activities, thus making the coupling process a significant challenge. By maintaining ethane concentrations within the range of 1.7-5.5%, stable ethane and ammonium oxidation, nitrate reduction, and dinitrogen gas generation without nitrite accumulation were finally achieved. After the accomplished coupling of n-DAEO with anammox, nitrate reduction rates increased by 8.1 times compared to the rate observed with n-DAEO alone. Microbial community profiling via 16S rRNA gene amplicon sequencing showed "Ca. A. nitratireducens" (6.6-12.9%) and anammox bacteria "Candidatus Kuenenia" (3.4-5.6%) were both dominant in the system, indicating they potentially form a syntrophic partnership to jointly contribute to nitrogen removal. Our findings offer insights into the cross-feeding interaction between "Ca. A. nitratireducens" and anammox bacteria in anoxic environments.
Collapse
Affiliation(s)
- Xiawei Liu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Mengxiong Wu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
9
|
Naufal M, Wu JH. Chemomixoautotrophy and stress adaptation of anammox bacteria: A review. WATER RESEARCH 2024; 257:121663. [PMID: 38669739 DOI: 10.1016/j.watres.2024.121663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/16/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Anaerobic ammonium oxidizing (anammox) bacteria, which were first discovered nearly three decades ago, are crucial for treating ammonium-containing wastewater. Studies have reported on the biochemical nitrogen conversion process and the physiological, phylogenic, and ecological features of anammox bacteria. For a long time, anammox bacteria were assumed to have a lithoautotrophic lifestyle. However, recent studies have suggested the functional versatility of anammox bacteria. Genome-based analysis and experiments with enrichment cultures have demonstrated the association of the metabolic activities of anammox bacteria with different stress conditions, revealing the importance of utilizing specific organic substances, including organoautotrophy, for growth and adaptation to stress conditions. Our understanding regarding the utilization and metabolism of organic substances and their associations with anammox reactions in anammox bacteria is growing but still incomplete. In this review, we summarize the effect of the utilization of organic substances by anammox bacteria under environmental stress conditions, emphasizing their potential organoautotrophic activity and metabolic flexibility. Although most anammox bacteria may utilize specific organic substances, Ca. Brocadia exhibited the highest level of mixoautotrophic activity. The environmental factors that substantially affect the organoautotrophic activities of anammox bacteria were also examined. This review provides a new perspective on the organoautotrophic capacity of anammox bacteria.
Collapse
Affiliation(s)
- Muhammad Naufal
- Department of Environmental Engineering, National Cheng Kung University, No.1, University Road, East District, Tainan City 70101, Taiwan
| | - Jer-Horng Wu
- Department of Environmental Engineering, National Cheng Kung University, No.1, University Road, East District, Tainan City 70101, Taiwan.
| |
Collapse
|
10
|
Wang YC, Mao Y, Fu HM, Wang J, Weng X, Liu ZH, Xu XW, Yan P, Fang F, Guo JS, Shen Y, Chen YP. New insights into functional divergence and adaptive evolution of uncultured bacteria in anammox community by complete genome-centric analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171530. [PMID: 38453092 DOI: 10.1016/j.scitotenv.2024.171530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/13/2023] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Anaerobic ammonium-oxidation (anammox) bacteria play a crucial role in global nitrogen cycling and wastewater nitrogen removal, but they share symbiotic relationships with various other microorganisms. Functional divergence and adaptive evolution of uncultured bacteria in anammox community remain underexplored. Although shotgun metagenomics based on short reads has been widely used in anammox research, metagenome-assembled genomes (MAGs) are often discontinuous and highly contaminated, which limits in-depth analyses of anammox communities. Here, for the first time, we performed Pacific Biosciences high-fidelity (HiFi) long-read sequencing on the anammox granule sludge sample from a lab-scale bioreactor, and obtained 30 accurate and complete metagenome-assembled genomes (cMAGs). These cMAGs were obtained by selecting high-quality circular contigs from initial assemblies of long reads generated by HiFi sequencing, eliminating the need for Illumina short reads, binning, and reassembly. One new anammox species affiliated with Candidatus Jettenia and three species affiliated with novel families were found in this anammox community. cMAG-centric analysis revealed functional divergence in general and nitrogen metabolism among the anammox community members, and they might adopt a cross-feeding strategy in organic matter, cofactors, and vitamins. Furthermore, we identified 63 mobile genetic elements (MGEs) and 50 putative horizontal gene transfer (HGT) events within these cMAGs. The results suggest that HGT events and MGEs related to phage and integration or excision, particularly transposons containing tnpA in anammox bacteria, might play important roles in the adaptive evolution of this anammox community. The cMAGs generated in the present study could be used to establish of a comprehensive database for anammox bacteria and associated microorganisms. These findings highlight the advantages of HiFi sequencing for the studies of complex mixed cultures and advance the understanding of anammox communities.
Collapse
Affiliation(s)
- Yi-Cheng Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Yanping Mao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, Guangdong, China
| | - Hui-Min Fu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China; National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Jin Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Xun Weng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Zi-Hao Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Xiao-Wei Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
11
|
Cheng L, Liang H, Yang W, Xiang T, Chen T, Gao D. Zeolite enhanced iron-modified biocarrier drives Fe(II)/Fe(III) cycle to achieve nitrogen removal from eutrophic water. CHEMOSPHERE 2024; 346:140547. [PMID: 37890800 DOI: 10.1016/j.chemosphere.2023.140547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/29/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
The problem of nitrogen removal in eutrophic water needs to be solved. Two new autotrophic nitrogen removal technologies, ammonia oxidation coupled with Fe(III) reduction (Feammox) and Nitrate-dependent Fe(II) oxidation (NDFO), have been shown to have the potential to treat eutrophic water. However, the continuous addition of iron sources not only costs more, but also leads to sludge mineralization. In this study, nano-sized iron powder was loaded on the surface of K3 filler as a solid iron source for the extracellular metabolism of iron-trophic bacteria. At the same time, due to the high selective adsorption of zeolite for ammonia can improve the low nitrogen metabolism rate caused by low nitrogen concentrations in eutrophic water, three kinds of modified functional biological carriers were prepared by mixing zeolite powder and iron powder in different proportions (Z1, Zeolite:iron = 1; Z2, Zeolite:iron = 2; Z3, Zeolite:iron = 3). Z3 exhibited the best performance, with removal efficiencies of 54.8% for total nitrogen during 70 days of cultivation. The chemical structure and state of iron compounds changed under microorganism activity. The ex-situ test detected high NDFO and Feammox activities, with values of 1.02 ± 0.23 and 0.16 ± 0.04 mgN/gVSS/h. The enrichment of NDFO bacteria (Gallionellaceae, 0.73%-1.43%-0.74%) and Feammox bacteria (Alicycliphilus, 1.51%-0.88%-2.30%) indicated that collaboration between various functional microorganisms led to autotrophic nitrogen removal. Hence, zeolite/iron-modified biocarrier could drive the Fe(II)/Fe(III) cycle to remove nitrogen autotrophically from eutrophic water without carbon and Fe resource addition.
Collapse
Affiliation(s)
- Lang Cheng
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Wenbo Yang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Tao Xiang
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110168, Liaoning, China
| | - Tao Chen
- Key Laboratory of Urban Stormwater System & Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| |
Collapse
|
12
|
Hu P, Qian Y, Liu J, Gao L, Li Y, Xu Y, Wu J, Hong Y, Ford T, Radian A, Yang Y, Gu JD. Delineation of the complex microbial nitrogen-transformation network in an anammox-driven full-scale wastewater treatment plant. WATER RESEARCH 2023; 235:119799. [PMID: 36965294 DOI: 10.1016/j.watres.2023.119799] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Microbial-driven nitrogen removal is a crucial step in modern full-scale wastewater treatment plants (WWTPs), and the complexity of nitrogen transformation is integral to the various wastewater treatment processes. A full understanding of the overall nitrogen cycling networks in WWTPs is therefore a prerequisite for the further enhancement and optimization of wastewater treatment processes. In this study, metagenomics and metatranscriptomics were used to elucidate the microbial nitrogen removal processes in an ammonium-enriched full-scale WWTP, which was configured as an anaerobic-anoxic-anaerobic-oxic system for efficient nitrogen removal (99.63%) on a duck breeding farm. A typical simultaneous nitrification-anammox-denitrification (SNAD) process was established in each tank of this WWTP. Ammonia was oxidized by ammonia-oxidizing bacteria (AOB), archaea (AOA), and nitrite-oxidizing bacteria (NOB), and the produced nitrite and nitrate were further reduced to dinitrogen gas (N2) by anammox and denitrifying bacteria. Visible red anammox biofilms were formed successfully on the sponge carriers submerged in the anoxic tank, and the nitrogen removal rate by anammox reaction was 4.85 times higher than that by denitrification based on 15N isotope labeling and analysis. This supports the significant accumulation of anammox bacteria on the carriers responsible for efficient nitrogen removal. Two distinct anammox bacteria, named "Ca. Brocadia sp. PF01" and "Ca. Jettenia sp. PF02", were identified from the biofilm in this investigation. By recovering their genomic features and their metabolic capabilities, our results indicate that the highly active core anammox process found in PF01, suggests extending its niche within the plant. With the possible contribution of the dissimilatory nitrate reduction to ammonium (DNRA) reaction, enriching PF02 within the biofilm may also be warranted. Collectively, this study highlights the effective design strategies of a full-scale WWTP with enrichment of anammox bacteria on the carrier materials for nitrogen removal and therefore the biochemical reaction mechanisms of the contributing members.
Collapse
Affiliation(s)
- Pengfei Hu
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel; Environmental Science and Engineering Research Group, Guangdong Technion -Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, the People's Republic of China
| | - Youfen Qian
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel; Environmental Science and Engineering Research Group, Guangdong Technion -Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, the People's Republic of China
| | - Jinye Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, Guangdong 510275, the People's Republic of China
| | - Lin Gao
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel; Environmental Science and Engineering Research Group, Guangdong Technion -Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, the People's Republic of China
| | - Yuxin Li
- School of Environmental Sciences and Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, the People's Republic of China
| | - Yanbin Xu
- School of Environmental Sciences and Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, the People's Republic of China
| | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, the People's Republic of China
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, the People's Republic of China
| | - Tim Ford
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
| | - Adi Radian
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Yuchun Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, Guangdong 510275, the People's Republic of China.
| | - Ji-Dong Gu
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel; Environmental Science and Engineering Research Group, Guangdong Technion -Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, the People's Republic of China; Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, the People's Republic of China.
| |
Collapse
|
13
|
Chen X, Liu L, Bi Y, Meng F, Wang D, Qiu C, Yu J, Wang S. A review of anammox metabolic response to environmental factors: Characteristics and mechanisms. ENVIRONMENTAL RESEARCH 2023; 223:115464. [PMID: 36773633 DOI: 10.1016/j.envres.2023.115464] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/18/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Anaerobic ammonium oxidation (anammox) is a promising low carbon and economic biological nitrogen removal technology. Considering the anammox technology has been easily restricted by environmental factors in practical engineering applications, therefore, it is necessary to understand the metabolic response characteristics of anammox bacteria to different environmental factors, and then guide the application of the anammox process. This review presented the latest advances of the research progress of the effects of different environmental factors on the metabolic pathway of anammox bacteria. The effects as well as mechanisms of conventional environmental factors and emerging pollutants on the anammox metabolic processes were summarized. Also, the role of quorum sensing (QS) mediating the bacteria growth, gene expression and other metabolic process in the anammox system were also reviewed. Finally, interaction and cross-feeding mechanisms of microbial communities in the anammox system were discussed. This review systematically summarized the variations of metabolic mechanism response to the external environment and cross-feeding interactions in the anammox process, which would provide an in-depth understanding for the anammox metabolic process and a comprehensive guidance for future anammox-related metabolic studies and engineering applications.
Collapse
Affiliation(s)
- Xiaoying Chen
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Lingjie Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Yanmeng Bi
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Fansheng Meng
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Dong Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Chunsheng Qiu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Jingjie Yu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China.
| |
Collapse
|
14
|
Ya T, Liu J, Zhang M, Wang Y, Huang Y, Hai R, Zhang T, Wang X. Metagenomic insights into the symbiotic relationship in anammox consortia at reduced temperature. WATER RESEARCH 2022; 225:119184. [PMID: 36206682 DOI: 10.1016/j.watres.2022.119184] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Anammox as a promising biological nitrogen removal technology has attracted much attention. However, cold temperature would limit its wide application and little is known about the microbial interactions between anammox bacteria (AnAOB) and heterotrophic bacteria at cold temperature. Here, we observed reduced temperature (25-15 °C) promoted the secretion of EPS and thus stimulated bigger size of granular sludge in a laboratory-scale anammox reactor. We further combined co-occurrence network analysis and genome-centered metagenomics to explore the potential interactions between AnAOB and heterotrophic bacteria. Network analysis suggested 22 out of 25 positively related species were reported as definite heterotrophic bacteria in subnetwork of AnAOB. Genome-centered metagenomics analysis yielded 23 metagenomic assembly genomes (MAGs), and we found that Acidobacteriota-affiliated bacteria could biosynthesize most polysaccharides (PS) precursors and contain the most glycosyltransferases and transporters to facilitate exopolysaccharides biosynthesis, together with partial PS precursors produced by AnAOB. AMX1 as the only anammox genome could synthesize most amino acids and cross feed with some heterotrophs to affect the extracellular protein function. Additionally, Bacteroidota, Planctomycetota, Chloroflexota, and Proteobacteria could contribute folate and molybdopterin cofactor for AMX1 to benefit their activity and growth. Superphylum Patescibacteria could survive by cross-feeding with AnAOB and heterotrophic organisms about organic compounds (Glyceraldehyde-3P and lactate). These cross-feedings maintained the stability of anammox reactor performance and emphasize the importance of heterotrophs in anammox system at reduced temperature.
Collapse
Affiliation(s)
- Tao Ya
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Junyu Liu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Minglu Zhang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Yulin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266000, PR China
| | - Yan Huang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Reti Hai
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tingting Zhang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
15
|
Vishnyakova A, Popova N, Artemiev G, Botchkova E, Litti Y, Safonov A. Effect of Mineral Carriers on Biofilm Formation and Nitrogen Removal Activity by an Indigenous Anammox Community from Cold Groundwater Ecosystem Alone and Bioaugmented with Biomass from a “Warm” Anammox Reactor. BIOLOGY 2022; 11:biology11101421. [PMID: 36290325 PMCID: PMC9598201 DOI: 10.3390/biology11101421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary During more than 50 years of exploitation of the sludge repositories near Chepetsky Mechanical Plant (Glazov, Udmurtia, Russia) containing solid wastes of uranium and processed polymetallic concentrate, the soluble compounds entered the upper aquifer due to infiltration. Nowadays, this has resulted in a high level of pollution of the groundwater with reduced and oxidized nitrogen compounds. In this work, quartz, kaolin, and bentonite clays from various deposits were shown to induce biofilm formation and enhance nitrogen removal by an indigenous microbial community capable of anaerobic ammonium oxidation with nitrite (anammox) at low temperatures. The addition of a “warm” anammox community was also effective in further improving nitrogen removal and expanding the list of mineral carriers most suitable for creating a permeable reactive barrier. It has been suggested that the anammox activity is determined by the presence of essential trace elements in the carrier, the morphology of its surface, and most importantly, competition from rapidly growing microbial groups. Future work was discussed to adapt the “warm” anammox community to cold and provide the anammox community with nitrite through a partial denitrification route within the scope of sustainable anammox-based bioremediation of a nitrogen-polluted cold aquifer. In this unique habitat, novel species of anammox bacteria that are adapted to cold and heavy nitrogen pollution can be discovered. Abstract The complex pollution of aquifers by reduced and oxidized nitrogen compounds is currently considered one of the urgent environmental problems that require non-standard solutions. This work was a laboratory-scale trial to show the feasibility of using various mineral carriers to create a permeable in situ barrier in cold (10 °C) aquifers with extremely high nitrogen pollution and inhabited by the Candidatus Scalindua-dominated indigenous anammox community. It has been established that for the removal of ammonium and nitrite in situ due to the predominant contribution of the anammox process, quartz, kaolin clays of the Kantatsky and Kamalinsky deposits, bentonite clay of the Berezovsky deposit, and zeolite of the Kholinsky deposit can be used as components of the permeable barrier. Biofouling of natural loams from a contaminated aquifer can also occur under favorable conditions. It has been suggested that the anammox activity is determined by a number of factors, including the presence of the essential trace elements in the carrier and the surface morphology. However, one of the most important factors is competition with other microbial groups that can develop on the surface of the carrier at a faster rate. For this reason, carriers with a high specific surface area and containing the necessary microelements were overgrown with the most rapidly growing microorganisms. Bioaugmentation with a “warm” anammox community from a laboratory reactor dominated by Ca. Kuenenia improved nitrogen removal rates and biofilm formation on most of the mineral carriers, including bentonite clay of the Dinozavrovoye deposit, as well as loamy rock and zeolite-containing tripoli, in addition to carriers that perform best with the indigenous anammox community. The feasibility of coupled partial denitrification–anammox and the adaptation of a “warm” anammox community to low temperatures and hazardous components contained in polluted groundwater prior to bioaugmentation should be the scope of future research to enhance the anammox process in cold, nitrate-rich aquifers.
Collapse
Affiliation(s)
- Anastasia Vishnyakova
- Winogradsky Institute of Microbiology, «Fundamentals of Biotechnology» Federal Research Center, Russian Academy of Sciences, 117312 Moscow, Russia
| | - Nadezhda Popova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Grigoriy Artemiev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Ekaterina Botchkova
- Winogradsky Institute of Microbiology, «Fundamentals of Biotechnology» Federal Research Center, Russian Academy of Sciences, 117312 Moscow, Russia
| | - Yuriy Litti
- Winogradsky Institute of Microbiology, «Fundamentals of Biotechnology» Federal Research Center, Russian Academy of Sciences, 117312 Moscow, Russia
- Correspondence: ; Tel.: +7-(926)-369-92-43
| | - Alexey Safonov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
16
|
Tan X, Nie WB, Xie GJ, Dang CC, Wang XW, Xing D, Liu BF, Ding J, Ren N. Deciphering the Inhibition of Ethane on Anaerobic Ammonium Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13419-13427. [PMID: 35917334 DOI: 10.1021/acs.est.2c01527] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anaerobic ammonium oxidation (anammox) and nitrification, two common biological ammonium oxidation pathways, are critical for the microbial nitrogen cycle. Short chain alkanes (C2-C8) have been well-known as inhibitors for nitrification through interaction with the ammonia monooxygenase, while whether these alkanes affect anammox is an open question. Here, this work demonstrated significant inhibition of ethane on anammox and revealed the inhibitory mechanism. The acute inhibition of ethane on anammox was concentration-dependent and reversible; 0.86 mM dissolved ethane caused 50% inhibition (IC50), and 1.72 mM ethane almost completely inhibited anammox. After long-term exposure to 0.09 mM ethane for 30 days, the ammonium (nitrite) removal rate dropped from 202 (267) mg N L-1 d-1 to 1 (1) mg N L-1 d-1, and the abundance of anammox bacteria decreased from 61.9% to 9.5%. The intercellular ammonium concentration of anammox bacteria decreased after ethane exposure, while metatranscriptome analysis showed significant upregulation of genes for ammonium transport of anammox bacteria. Thus, ethane could suppress ammonium uptake resulting in the inhibition of anammox activities. As ethane is the second most prevalent alkane after methane in various anoxic environments, ethane may have an important effect on the nitrogen cycle driven by anammox that should be investigated in future research.
Collapse
Affiliation(s)
- Xin Tan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wen-Bo Nie
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Cheng-Cheng Dang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiao-Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
17
|
Pimenov NV, Nikolaev YA, Dorofeev AG, Grachev VA, Kallistova AY, Kanapatskii TA, Litti YV, Gruzdev EV, Begmatov SA, Ravin NV, Mardanov AV. Introduction of Exogenous Activated Sludge as a Way to Enhance the Efficiency of Nitrogen Removal in the Anammox Process. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722300178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
18
|
Wang X, Yang H. Nitrogen removal performance of anammox immobilized fillers in response to seasonal temperature variations and different operating modes: Substrate utilization and microbial community analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154574. [PMID: 35304144 DOI: 10.1016/j.scitotenv.2022.154574] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Four anaerobic ammonium oxidation (anammox) immobilized filler reactors (R1: 33 °C-normal, R2: seasonal temperature-normal, R3: seasonal temperature-feast, R4: seasonal temperature-starvation) were established to study the response of anammox immobilized fillers to seasonal temperature changes and different operating modes. The results showed that the anammox immobilized filler could better adapt to the seasonal temperature drop and maintain the activity potential by adjusting the hydraulic retention time (HRT). During the temperature rise phase, R2 activity increased rapidly with the highest nitrogen removal rate reaching 1.26 kgN·(m3·d)-1, which was equivalent to control sample R1 (1.33 kgN·(m3·d)-1). However, feasting and famine conditions severely impaired anammox performance and changed stoichiometric ratios; feasting, in particular, significantly lowered the nitrogen removal potential of R3. The specific anammox activity of R2, R3 and R4 was 92.2%, 52.6% and 67.9%, respectively, that of R1, respectively, where the accumulation of functional bacteria was the reason for the higher activity of R2. Degradation kinetics and NO2--N inhibition curves showed that R3 was less sensitive to high concentrations of NH4+-N, while R4 responded earlier to low concentrations of NH4+-N, and the reduction of IC50 at low temperature was the reason for the inhibition of R3 activity. Furthermore, seasonal temperature fluctuations had little effect on the microbial community structure but had a considerable impact on bacteria abundance. The anammox functional bacteria Candidatus Kuenenia was found to be the dominant genus in R1-R4; however, the relative abundance of most bacteria, including anammox bacteria, decreased in R3, while the proportion of fermentation bacteria and denitrifying bacteria increased in R4. These findings highlight the necessity of rational regulation of HRT for the adaptation of anammox immobilized fillers to seasonal temperature changes, which could enhance our understanding of the synergistic effect of seasonal temperature changes and different operating modes on nitrogen removal.
Collapse
Affiliation(s)
- XiaoTong Wang
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hong Yang
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
19
|
Podmirseg SM, Gómez-Brandón M, Muik M, Stres B, Hell M, Pümpel T, Murthy S, Chandran K, Park H, Insam H, Wett B. Microbial response on the first full-scale DEMON® biomass transfer for mainstream deammonification. WATER RESEARCH 2022; 218:118517. [PMID: 35512538 DOI: 10.1016/j.watres.2022.118517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 04/16/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Sidestream partial nitritation and deammonification (pN/A) of high-strength ammonia wastewater is a well-established technology. Its expansion to the mainstream is, however mainly impeded by poor retention of anaerobic ammonia oxidizing bacteria (AnAOB), insufficient repression of nitrite oxidizing bacteria (NOB) and difficult control of soluble chemical oxygen demand and nitrite levels. At the municipal wastewater treatment plant in Strass (Austria) the microbial consortium was exhaustively monitored at full-scale over one and a half year with regular transfer of sidestream DEMON® biomass and further retention and enrichment of granular anammox biomass via hydrocyclone operation. Routine process parameters were surveyed and the response and evolution of the microbiota was followed by molecular tools, ex-situ activity tests and further, AnAOB quantification through particle tracking and heme measurement. After eight months of operation, the first anaerobic, simultaneous depletion of ammonia and nitrite was observed ex-situ, together with a direction to higher nitrite generation (68% of total NOx-N) as compared to nitrate under aerobic conditions. Our dissolved oxygen (DO) scheme allowed for transient anoxic conditions and had a strong influence on nitrite levels and the NOB community, where Nitrobacter eventually dominated Nitrospira. The establishment of a minor but stable AnAOB biomass was accompanied by the rise of Chloroflexi and distinct emergence of Chlorobi, a trend not seen in the sidestream system. Interestingly, the most pronounced switch in the microbial community and noticeable NOB repression occurred during unfavorable conditions, i.e. the cold winter season and high organic load. Further abatement of NOB was achieved through bioaugmentation of aerobic ammonia oxidizing bacteria (AerAOB) from the sidestream-DEMON® tank. Performance of the sidestream pN/A was not impaired by this operational scheme and the average volumetric nitrogen removal rate of the mainstream even doubled in the second half of the monitoring campaign. We conclude that a combination of both, regular sidestream-DEMON® biomass transfer and granular SRT increase via hydrocyclone operation was crucial for AnAOB establishment within the mainstream.
Collapse
Affiliation(s)
- Sabine Marie Podmirseg
- Department of Microbiology, University of Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria; alpS GmbH, Grabenweg 68, 6020 Innsbruck, Austria.
| | - María Gómez-Brandón
- Department of Microbiology, University of Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria; alpS GmbH, Grabenweg 68, 6020 Innsbruck, Austria; Grupo Ecoloxía Animal (GEA), Centro di Investigación Mariña (CIM), Universidade de Vigo, E-36310, Spain
| | - Markus Muik
- Department of Microbiology, University of Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria.
| | - Blaz Stres
- University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Geodetic and Civil Engineering, Jamova 2, 1000 Ljubljana, Slovenia
| | - Martin Hell
- Achental-Inntal-Zillertal Water Board, Hausnummer 150, 6261 Strass i.Z., Austria.
| | - Thomas Pümpel
- Department of Microbiology, University of Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria.
| | | | - Kartik Chandran
- Department of Earth and Environmental Engineering, Columbia University, 500 West 120th Street, NY 10027, United States.
| | - Hongkeun Park
- Department of Earth and Environmental Engineering, Columbia University, 500 West 120th Street, NY 10027, United States.
| | - Heribert Insam
- Department of Microbiology, University of Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria.
| | - Bernhard Wett
- ARAconsult GmbH, Unterbergerstraße 1, 6020 Innsbruck, Austria.
| |
Collapse
|
20
|
Suarez C, Dalcin Martins P, Jetten MS, Karačić S, Wilén BM, Modin O, Hagelia P, Hermansson M, Persson F. Metagenomic evidence of a novel family of anammox bacteria in a subsea environment. Environ Microbiol 2022; 24:2348-2360. [PMID: 35415863 PMCID: PMC9325076 DOI: 10.1111/1462-2920.16006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/07/2022] [Indexed: 12/02/2022]
Abstract
Bacteria in the order 'Candidatus Brocadiales' within the phylum Planctomycetes (Planctomycetota) have the remarkable ability to perform anaerobic ammonium oxidation (anammox). Two families of anammox bacteria with different biogeographical distributions have been reported, marine Ca. Scalinduaceae and freshwater Ca. Brocadiaceae. Here we report evidence of three new species within a novel genus and family of anammox bacteria, which were discovered in biofilms of a subsea road tunnel under a fjord in Norway. In this particular ecosystem, the nitrogen cycle is likely fuelled by ammonia from organic matter degradation in the fjord sediments and the rock mass above the tunnel, resulting in the growth of biofilms where anammox bacteria can thrive under oxygen limitation. We resolved several metagenome-assembled genomes (MAGs) of anammox bacteria, including three Ca. Brocadiales MAGs that could not be classified at the family level. MAGs of this novel family had all the diagnostic genes for a full anaerobic ammonium oxidation pathway in which nitrite was probably reduced by a NirK-like reductase. A survey of published molecular data indicated that this new family of anammox bacteria occurs in many marine sediments, where its members presumably would contribute to nitrogen loss.
Collapse
Affiliation(s)
- Carolina Suarez
- Division of Water Resources Engineering, Faculty of Engineering LTHLund UniversityLundSweden
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | - Paula Dalcin Martins
- Department of Microbiology, RIBES, Radboud Institute for Biological and Environmental SciencesRadboud UniversityNijmegenThe Netherlands
| | - Mike S.M. Jetten
- Department of Microbiology, RIBES, Radboud Institute for Biological and Environmental SciencesRadboud UniversityNijmegenThe Netherlands
| | - Sabina Karačić
- Division of Water Environment Technology, Department of Architecture and Civil EngineeringChalmers University of TechnologyGothenburgSweden
| | - Britt Marie Wilén
- Division of Water Environment Technology, Department of Architecture and Civil EngineeringChalmers University of TechnologyGothenburgSweden
| | - Oskar Modin
- Division of Water Environment Technology, Department of Architecture and Civil EngineeringChalmers University of TechnologyGothenburgSweden
| | - Per Hagelia
- Construction DivisionThe Norwegian Public Roads AdministrationOsloNorway
| | - Malte Hermansson
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | - Frank Persson
- Division of Water Environment Technology, Department of Architecture and Civil EngineeringChalmers University of TechnologyGothenburgSweden
| |
Collapse
|
21
|
Wang X, Yang H, Geng L, Liu X. Analyzing the effect of storage conditions on anammox recovery performance from the perspectives of time, temperature and biomass form. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151577. [PMID: 34801501 DOI: 10.1016/j.scitotenv.2021.151577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/19/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
In this study, the effects of different storage conditions, such as temperature, storage time and biomass form, on the properties of anaerobic ammonia oxidation (anammox) were investigated along with the identification of the process mechanism. The results showed that the influence of storage time on anammox properties was stronger than that of storage temperature and biomass form. Also, the anammox recovery activity at 15 °C was better than that at 4 °C, and the anammox recovery activity of immobilized filler was better than that of anammox granular sludge (AnGS). Although cryogenic storage severely damaged anammox activity, lower loss of extracellular polymeric substances maintained the AnGS structure. The maximum recovery of specific anammox activity at 15 °C for the immobilized filler was observed to be 109%. In addition, intermittent substrate supplementation weakened the adverse effect of long-term storage on anammox activity, and was conducive to maintaining stable flora composition and promoting regeneration of anammox bacteria (AnAOB). High-throughput sequencing analysis showed that starvation resulted in increased community diversity, and the functional bacteria Candidatus Brocadia was observed to be more tolerant to starvation than Candidatus Kuenenia. Finally, principal component analysis was used to explain the complex relationship between process performance and preservation conditions. Based on the results of this work, it is recommended to preserve AnAOB in the form of immobilized filler at 15 °C and supplement substrate intermittently during long term storage. This study provides an economical and robust strategy for the short-term and long-term preservation of AnAOB.
Collapse
Affiliation(s)
- XiaoTong Wang
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hong Yang
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China.
| | - LiangHan Geng
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China
| | - XuYan Liu
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
22
|
Begmatov S, Dorofeev AG, Kadnikov VV, Beletsky AV, Pimenov NV, Ravin NV, Mardanov AV. The structure of microbial communities of activated sludge of large-scale wastewater treatment plants in the city of Moscow. Sci Rep 2022; 12:3458. [PMID: 35236881 PMCID: PMC8891259 DOI: 10.1038/s41598-022-07132-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/03/2022] [Indexed: 12/21/2022] Open
Abstract
Microbial communities in wastewater treatment plants (WWTPs) play a key role in water purification. Microbial communities of activated sludge (AS) vary extensively based on plant operating technology, influent characteristics and WWTP capacity. In this study we performed 16S rRNA gene profiling of AS at nine large-scale WWTPs responsible for the treatment of municipal sewage from the city of Moscow, Russia. Two plants employed conventional aerobic process, one plant-nitrification/denitrification technology, and six plants were operated with the University of Cape Town (UCT) anaerobic/anoxic/oxic process. Microbial communities were impacted by the technology and dominated by the Proteobacteria, Bacteroidota and Actinobacteriota. WWTPs employing the UCT process enabled efficient removal of not only organic matter, but also nitrogen and phosphorus, consistently with the high content of ammonia-oxidizing Nitrosomonas sp. and phosphate-accumulating bacteria. The latter group was represented by Candidatus Accumulibacter, Tetrasphaera sp. and denitrifiers. Co-occurrence network analysis provided information on key hub microorganisms in AS, which may be targeted for manipulating the AS stability and performance. Comparison of AS communities from WWTPs in Moscow and worldwide revealed that Moscow samples clustered together indicating that influent characteristics, related to social, cultural and environmental factors, could be more important than a plant operating technology.
Collapse
Affiliation(s)
- Shahjahon Begmatov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33-2, Moscow, Russia, 119071
| | - Alexander G Dorofeev
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33‑2, Moscow, Russia, 119071
| | - Vitaly V Kadnikov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33-2, Moscow, Russia, 119071
| | - Alexey V Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33-2, Moscow, Russia, 119071
| | - Nikolai V Pimenov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33‑2, Moscow, Russia, 119071
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33-2, Moscow, Russia, 119071.
| | - Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33-2, Moscow, Russia, 119071.
| |
Collapse
|
23
|
Xue Y, Ma H, Hu Y, Kong Z, Li YY. Microstructure and granulation cycle mechanisms of anammox-HAP coupled granule in the anammox EGSB reactor. WATER RESEARCH 2022; 210:117968. [PMID: 34952457 DOI: 10.1016/j.watres.2021.117968] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/06/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
The formation of anammox-hydroxyapatite (HAP) coupled granules has been shown to be an approach to efficient nitrogen removal and phosphorus recovery in the anammox EGSB reactor. However, the granulation cycle mechanism of anammox-HAP coupled granules for sustainable regeneration and growth is still not well understood. In this study, the microstructure, chemical composition and microbial structure of a total of six different-sized granules, from 0.25 mm to 2.8 mm, was determined. An SEM-EDS analysis indicated that the small granules (<0.5 mm) were composed of poly-pellet clusters with anammox biofilms attached to the HAP cores, and the large granules (>0.5 mm) consisted of a three-layer structure: a surface anammox biofilm layer, a middle connection layer, and a HAP mineral inner core. The analysis of elemental composition and microbial structure suggested homogenous granular characteristics regardless of granule size. The dominant microorganisms were anammox bacteria of Candidatus Kuenenia stuttgartiensis and heterotrophic denitrifying bacteria. Based on these results, a granulation cycle mechanism for anammox-HAP coupled granules was proposed for the first time. The growth of the small granules with the simultaneous enlargement of anammox biofilms and HAP cores results in the formation of large granules. Large granules regenerate new small granules in a two-step procedure. The first step is the separation of embryo HAP crystals from the mother core via heterogeneous growth, and the second step is the separation of the biofilms due to biodegradation and shear stress.
Collapse
Affiliation(s)
- Yi Xue
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Haiyuan Ma
- College of Environment and Ecology, Chongqing University, Chongqing 40045, China
| | - Yisong Hu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Zhe Kong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yu-You Li
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
24
|
Kallistova A, Nikolaev Y, Grachev V, Beletsky A, Gruzdev E, Kadnikov V, Dorofeev A, Berestovskaya J, Pelevina A, Zekker I, Ravin N, Pimenov N, Mardanov A. New Insight Into the Interspecies Shift of Anammox Bacteria Ca. "Brocadia" and Ca. "Jettenia" in Reactors Fed With Formate and Folate. Front Microbiol 2022; 12:802201. [PMID: 35185828 PMCID: PMC8851195 DOI: 10.3389/fmicb.2021.802201] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
The sensitivity of anaerobic ammonium-oxidizing (anammox) bacteria to environmental fluctuations is a frequent cause of reactor malfunctions. It was hypothesized that the addition of formate and folate would have a stimulating effect on anammox bacteria, which in turn would lead to the stability of the anammox process under conditions of a sharp increase in ammonium load, i.e., it helps overcome a stress factor. The effect of formate and folate was investigated using a setup consisting of three parallel sequencing batch reactors equipped with a carrier. Two runs of the reactors were performed. The composition of the microbial community was studied by the 16S rRNA gene profiling and metagenomic analysis. Among anammox bacteria, Ca. "Brocadia" spp. dominated during the first run. A stimulatory effect of folate on the daily nitrogen removal rate (dN) was identified. The addition of formate led to progress in dissimilatory nitrate reduction and stimulated the growth of Ca. "Jettenia" spp. The spatial separation of two anammox species was observed in the formate reactor: Ca. "Brocadia" occupied the carrier and Ca. "Jettenia"-the walls of the reactors. Biomass storage at low temperature without feeding led to an interspecies shift in anammox bacteria in favor of Ca. "Jettenia." During the second run, a domination of Ca. "Jettenia" spp. was recorded along with a stimulating effect of formate, and there was no effect of folate on dN. A comparative genome analysis revealed the patterns suggesting different strategies used by Ca. "Brocadia" and Ca. "Jettenia" spp. to cope with environmental changes.
Collapse
Affiliation(s)
- Anna Kallistova
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Yury Nikolaev
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir Grachev
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey Beletsky
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Evgeny Gruzdev
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Vitaly Kadnikov
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Dorofeev
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Julia Berestovskaya
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Anna Pelevina
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Ivar Zekker
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Nikolai Ravin
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Nikolai Pimenov
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Mardanov
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
25
|
Oshiki M, Takaki Y, Hirai M, Nunoura T, Kamigaito A, Okabe S. Metagenomic Analysis of Five Phylogenetically Distant Anammox Bacterial Enrichment Cultures. Microbes Environ 2022; 37:ME22017. [PMID: 35811137 PMCID: PMC9530715 DOI: 10.1264/jsme2.me22017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/03/2022] [Indexed: 11/22/2022] Open
Abstract
Anaerobic ammonium-oxidizing (anammox) bacteria are slow-growing and fastidious bacteria, and limited numbers of enrichment cultures have been established. A metagenomic ana-lysis of our 5 established anammox bacterial enrichment cultures was performed in the present study. Fourteen high-quality metagenome-assembled genomes (MAGs) were obtained, including those of 5 anammox Planctomycetota (Candidatus Brocadia, Ca. Kuenenia, Ca. Jettenia, and Ca. Scalindua), 4 Bacteroidota, and 3 Chloroflexota. Based on the gene sets of metabolic pathways involved in the degradation of polymeric substances found in Chloroflexota and Bacteroidota MAGs, they are expected to be scavengers of extracellular polymeric substances and cell debris.
Collapse
Affiliation(s)
- Mamoru Oshiki
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Yoshihiro Takaki
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka 237–0061, Japan
| | - Miho Hirai
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka 237–0061, Japan
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), JAMSTEC, 2–15 Natsushima-cho, Yokosuka 237–0061, Japan
| | - Atsushi Kamigaito
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| |
Collapse
|
26
|
Okubo T, Toyoda A, Fukuhara K, Uchiyama I, Harigaya Y, Kuroiwa M, Suzuki T, Murakami Y, Suwa Y, Takami H. The physiological potential of anammox bacteria as revealed by their core genome structure. DNA Res 2021; 28:6046978. [PMID: 33367889 PMCID: PMC7814187 DOI: 10.1093/dnares/dsaa028] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/04/2020] [Indexed: 01/25/2023] Open
Abstract
We present here the second complete genome of anaerobic ammonium oxidation (anammox) bacterium, Candidatus (Ca.) Brocadia pituitae, along with those of a nitrite oxidizer and two incomplete denitrifiers from the anammox bacterial community (ABC) metagenome. Although NO2− reduction to NO is considered to be the first step in anammox, Ca. B. pituitae lacks nitrite reductase genes (nirK and nirS) responsible for this reaction. Comparative genomics of Ca. B. pituitae with Ca. Kuenenia stuttgartiensis and six other anammox bacteria with nearly complete genomes revealed that their core genome structure contains 1,152 syntenic orthologues. But nitrite reductase genes were absent from the core, whereas two other Brocadia species possess nirK and these genes were horizontally acquired from multiple lineages. In contrast, at least five paralogous hydroxylamine oxidoreductase genes containing candidate ones (hao2 and hao3) encoding another nitrite reductase were observed in the core. Indeed, these two genes were also significantly expressed in Ca. B. pituitae as in other anammox bacteria. Because many nirS and nirK genes have been detected in the ABC metagenome, Ca. B. pituitae presumably utilises not only NO supplied by the ABC members but also NO and/or NH2OH by self-production for anammox metabolism.
Collapse
Affiliation(s)
- Takashi Okubo
- Marine Microbiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa 277-8564, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Kohei Fukuhara
- Department of Biological Sciences, Chuo University, Bunkyo, Tokyo 112-8851, Japan
| | - Ikuo Uchiyama
- Laboratory of Genome Informatics, National Institute for Basic Biology, National Institutes of Natural Sciences, Myodaiji, Okazaki 444-8585, Japan
| | - Yuhki Harigaya
- Department of Biological Sciences, Chuo University, Bunkyo, Tokyo 112-8851, Japan
| | - Megumi Kuroiwa
- Department of Biological Sciences, Chuo University, Bunkyo, Tokyo 112-8851, Japan
| | - Takuma Suzuki
- Department of Biological Sciences, Chuo University, Bunkyo, Tokyo 112-8851, Japan
| | - Yuka Murakami
- Department of Biological Sciences, Chuo University, Bunkyo, Tokyo 112-8851, Japan
| | - Yuichi Suwa
- Department of Biological Sciences, Chuo University, Bunkyo, Tokyo 112-8851, Japan
| | - Hideto Takami
- Marine Microbiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa 277-8564, Japan
| |
Collapse
|