1
|
Górniak D, Świątecki A, Kowalik J, Grzesiak J, Jastrzębski J, Zdanowski MK. High antagonistic activity and antibiotic resistance of flavobacteria of polar microbial freshwater mats on King George Island in maritime Antarctica. Sci Rep 2025; 15:13615. [PMID: 40253552 PMCID: PMC12009332 DOI: 10.1038/s41598-025-97205-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/02/2025] [Indexed: 04/21/2025] Open
Abstract
This is the first study to demonstrate a relationship between antagonistic interactions with antibiotic resistance within flavobacterial strains, a component of polar-region microbial mats. These strains were derived from ephemeral freshwater reservoirs, i.e. ponds and streams of the periglacial zone of Ecology Glacier (King George Island, maritime Antarctica). The study demonstrated the strains' surprisingly high phylogenetic diversity, with 20 species among 50 isolates. Flavobacteria were characterised by different patterns of antagonism and sensitivity to antimicrobials. 29 strains produced substances inhibiting the growth of other isolates, with 21 strains being sensitive to such compounds; 34 strains were multidrug-resistant (MDR). The antibiotic resistance index (ARI) demonstrated a significantly higher proportion of MDR strains and ARI ≥ 0.2 in stream mats (87%) as compared to the strains derived from pond mats (55%). A strong correlation was observed between the strains' antagonistic potential and antibiotic resistance. An important role in these phenomena is accomplished by the "super bacteria" strains that effectively accumulate numerous traits associated with antagonistic potential and can be involved in the potential transfer of these traits. The results of the study demonstrate that there are individual patterns of antagonistic interactions and antibiotic resistance among the biotic components of mats.
Collapse
Affiliation(s)
- Dorota Górniak
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, Olsztyn, 10-719, Poland.
| | - Aleksander Świątecki
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, Olsztyn, 10-719, Poland
| | - Jakub Kowalik
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, Olsztyn, 10-719, Poland
| | - Jakub Grzesiak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, Warszawa, 02- 106, Poland
| | - Jan Jastrzębski
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, Olsztyn, 10-719, Poland
| | - Marek K Zdanowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, Warszawa, 02- 106, Poland
| |
Collapse
|
2
|
Hacopian MT, Barrón‐Sandoval A, Romero‐Olivares AL, Berlemont R, Treseder KK. Warming is Associated With More Encoded Antimicrobial Resistance Genes and Transcriptions Within Five Drug Classes in Soil Bacteria: A Case Study and Synthesis. Environ Microbiol 2025; 27:e70097. [PMID: 40262767 PMCID: PMC12014264 DOI: 10.1111/1462-2920.70097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/24/2025]
Abstract
The effect of warming on anti-microbial resistance (AMR) genes in the environment has critical implications for public health but is little studied. We collected published soil bacterial genomes from the BV-BRC database and tested the correlation between reported optimal growth temperature and the number of encoded AMR genes. Furthermore, we tested the relationship between temperature and AMR gene transcription in a natural ecosystem by analysing soil transcriptomes from a warming manipulation experiment in an Alaskan boreal forest. We hypothesised that there is a positive relationship between warming and AMR prevalence in gene content in bacterial genomes and transcriptomic sequences, and that this effect would vary by drug class. Regarding the bacterial genomes, we found a positive relationship between the fraction of encoded AMR genes and the reported optimal temperature of soil bacteria. The drug classes tetracycline and lincosamide/macrolide/streptogramin had the strongest positive relationship with reported optimal temperature. For the case study in a natural ecosystem, we found 61 significantly upregulated AMR gene-associated transcripts spanning eight drug classes in warmed plots. In the Alaskan soil samples, we found that warming elicited the strongest positive effect on transcripts targeting lincosamide/streptogramin, beta-lactam and phenicol/quinolone antibiotics. Overall, higher temperatures were linked to AMR gene prevalence.
Collapse
Affiliation(s)
- Melanie T. Hacopian
- Department of Ecology and Evolutionary BiologyUniversity of California, IrvineIrvineCaliforniaUSA
| | - Alberto Barrón‐Sandoval
- Department of Ecology and Evolutionary BiologyUniversity of California, IrvineIrvineCaliforniaUSA
| | | | - Renaud Berlemont
- Department of Biological SciencesCalifornia State University, Long BeachLong BeachCaliforniaUSA
| | - Kathleen K. Treseder
- Department of Ecology and Evolutionary BiologyUniversity of California, IrvineIrvineCaliforniaUSA
| |
Collapse
|
3
|
Contreras-de la Rosa PA, De la Torre-Zavala S, O´Connor-Sánchez A, Prieto-Davó A, Góngora-Castillo EB. Exploring the microbial communities in coastal cenote and their hidden biotechnological potential. Microb Genom 2025; 11:001382. [PMID: 40178526 PMCID: PMC11968836 DOI: 10.1099/mgen.0.001382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/19/2025] [Indexed: 04/05/2025] Open
Abstract
Bacterial secondary metabolites are crucial bioactive compounds with significant therapeutic potential, playing key roles in ecological processes and the discovery of novel antimicrobial agents and natural products. Cenotes, as extreme environments, harbour untapped microbial diversity and hold an interesting potential as sources of novel secondary metabolites. While research has focused on the fauna and flora of cenotes, the study of their microbial communities and their biosynthetic capabilities remains limited. Advances in metagenomics and genome sequencing have greatly improved the capacity to explore these communities and their metabolites. In this study, we analysed the microbial diversity and biotechnological potential of micro-organisms inhabiting sediments from a coastal cenote. Metagenomic analyses revealed a rich diversity of bacterial and archaeal communities, containing several novel biosynthetic gene clusters (BGCs) linked to secondary metabolite production. Notably, polyketide synthase BGCs, including those encoding ladderanes and aryl-polyenes, were identified. Bioinformatics analyses of these pathways suggest the presence of compounds with potential industrial and pharmaceutical applications. These findings highlight the biotechnological value of cenotes as reservoirs of secondary metabolites. The study and conservation of these ecosystems are essential to facilitate the discovery of new bioactive compounds that could benefit various industries.
Collapse
Affiliation(s)
- Perla A. Contreras-de la Rosa
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, México
| | - Susana De la Torre-Zavala
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León, 66425, San Nicolás de los Garza, Nuevo León, Mexico
| | - Aileen O´Connor-Sánchez
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, México
| | - Alejandra Prieto-Davó
- Unidad de Química-Sisal, Facultad de Química. Universidad Nacional Autónoma de México, 97356, Sisal, Yucatán, México
| | - Elsa B. Góngora-Castillo
- CONAHCYT- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130. Col. Chuburná de Hidalgo 97205, Mérida, Yucatán, México
- CONAHCYT-Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 6. Antigua carretera a Progreso. Cordemex, 97310, Mérida, Yucatán, México
| |
Collapse
|
4
|
Basile A, Riggio FP, Tescari M, Chebbi A, Sodo A, Bartoli F, Imperi F, Caneva G, Visca P. Metagenome-resolved functional traits of Rubrobacter species implicated in rosy discoloration of ancient frescoes in two Georgian Cathedrals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178135. [PMID: 39705954 DOI: 10.1016/j.scitotenv.2024.178135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Pink biofilm formation on stone monuments and mural paintings poses serious harm to cultural heritage preservation. Pink biofilms are globally widespread and recalcitrant to eradication, often causing recurrences after restoration. Yet, the ecological drivers of pink biofilm formation and the metabolic functions sustaining the growth of pigment-producing biodeteriogens remain unclear. In this study, a combined approach integrating physicochemical investigations, scanning electron microscopy, 16S rRNA sequence-based analysis of the prokaryotic community, metagenomic deep sequencing, and metabolic profiling, was applied to determine the etiology of rosy discoloration of ancient frescoes in the Gelati and the Martvili Cathedrals (Georgia). Martvili samples showed greater diversity than Gelati samples, though Actinomycetota predominated in both samples. Rubrobacter-related sequences were detected in all sampling sites, showing an overwhelming abundance in Gelati samples. Reconstruction of metagenome-assembled genomes (MAGs) and phylogenetic analyses highlighted significant intra-genus diversity for Rubrobacter-related sequences, most of which could not be assigned to any formally described Rubrobacter species. Metabolic profiling of the Gelati metagenomes suggests that carbon-fixing autotrophic bacteria and proteinaceous substances in the plaster could contribute to sustaining the chemoorganotrophic members of the community. Complete pathways for β-carotene and bacterioruberin synthesis were identified in Rubrobacter MAGs, consistent with the Raman spectroscopy-based detection of these pigments in fresco samples. Gene clusters for the synthesis of secondary metabolites endowed with antibiotic activity were predicted from the annotation of Rubrobacter MAGs, along with genes conferring resistance to several antimicrobials and biocides. In conclusion, genome-resolved metagenomics provided robust evidence of a causal relationship between contamination by Rubrobacter-related carotenoid-producing bacteria and the rosy discoloration of Georgian frescoes, with relevant implications for rational biodeteriogen-targeted restoration strategies.
Collapse
Affiliation(s)
- Arianna Basile
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | | | - Marco Tescari
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy; Biology Laboratory, Supporto ALES S.p.A. c/o Istituto Centrale per il Restauro (ICR), Via di S. Michele, 25, 00153 Rome, Italy
| | - Alif Chebbi
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Armida Sodo
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Flavia Bartoli
- Institute of Heritage Science (ISPC), National Research Center (CNR), SP35d, 9, 00010 Montelibretti, Rome, Italy
| | - Francesco Imperi
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy; NBFC, National Biodiversity Future Center, Piazza Marina, 61, 90133 Palermo, Italy
| | - Giulia Caneva
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy; NBFC, National Biodiversity Future Center, Piazza Marina, 61, 90133 Palermo, Italy.
| | - Paolo Visca
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy; NBFC, National Biodiversity Future Center, Piazza Marina, 61, 90133 Palermo, Italy.
| |
Collapse
|
5
|
Alvarez SCV, Pendón MD, Bengoa AA, Leiva Alaniz MJ, Maturano YP, Garrote GL. Probiotic Potential of Yeasts Isolated from Fermented Beverages: Assessment of Antagonistic Strategies Against Salmonella enterica Serovar Enteritidis. J Fungi (Basel) 2024; 10:878. [PMID: 39728373 DOI: 10.3390/jof10120878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Global concern about pathogenic resistance to antibiotics is prompting interest in probiotics as a strategy to prevent or inhibit infections. Fermented beverages are promising sources of probiotic yeasts. This study aimed to evaluate the antagonistic effects of Kluyveromyces marxianus, Wickerhamomyces anomalus, and Pichia manshurica strains from kefir and wine against Salmonella enterica serovar Enteritidis in intestinal epithelial cells. The ability of these yeasts to adhere to Caco-2/TC-7 cells was evaluated, as well as their influence on the ability of Salmonella to associate and invade these cells. The behavior of the pathogen was analyzed by (a) incubation of enterocytes with yeast before adding Salmonella, (b) co-incubation of Salmonella with yeast before contact with the enterocytes, and (c) incubation of Salmonella with yeast metabolites before contact with enterocytes. All yeast strains demonstrated adherence to Caco-2/TC-7 cells (33-100%) and effectively inhibited Salmonella invasion. Among the treatments, co-culture showed the greatest effect, reducing Salmonella association and invasion by more than 50%. Additionally, these yeasts modulated the epithelial immune response, significantly decreasing CCL20-driven luminescence by 60-81% (p < 0.0001). These results highlight the potential of yeasts from fermented beverages as probiotics to counteract Salmonella infections, offering a promising alternative in the fight against antibiotic resistance.
Collapse
Affiliation(s)
- Silvia Cristina Vergara Alvarez
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires 1425, Argentina
| | - María Dolores Pendón
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires 1425, Argentina
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CONICET-UNLP-CIC, Street 47 and 116, La Plata 1900, Argentina
| | - Ana Agustina Bengoa
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires 1425, Argentina
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CONICET-UNLP-CIC, Street 47 and 116, La Plata 1900, Argentina
| | - María José Leiva Alaniz
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires 1425, Argentina
| | - Yolanda Paola Maturano
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires 1425, Argentina
| | - Graciela Liliana Garrote
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires 1425, Argentina
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CONICET-UNLP-CIC, Street 47 and 116, La Plata 1900, Argentina
| |
Collapse
|
6
|
Mwamburi SM, Islam SI, Dinh-Hung N, Dangsawat O, Sowanpreecha R, Khang LTP, Montha N, Therdtatha P, Dwinanti SH, Permpoonpattana P, Linh NV. Genomic Characterization of Bacillus sp. THPS1: A Hot Spring-Derived Species with Functional Features and Biotechnological Potential. Microorganisms 2024; 12:2476. [PMID: 39770679 PMCID: PMC11727782 DOI: 10.3390/microorganisms12122476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Bacillus sp. THPS1 is a novel strain isolated from a high-temperature hot spring in Thailand, exhibiting distinctive genomic features that enable adaptation to an extreme environment. This study aimed to characterize the genomic and functional attributes of Bacillus sp. THPS1 to understand its adaptation strategies and evaluate its potential for biotechnological applications. The draft genome is 5.38 Mbp with a GC content of 35.67%, encoding 5606 genes, including those linked to stress response and sporulation, which are essential for survival in high-temperature conditions. Phylogenetic analysis and average nucleotide identity (ANI) values confirmed its classification as a distinct species within the Bacillus genus. Pangenome analysis involving 19 others closely related thermophilic Bacillus species identified 1888 singleton genes associated with heat resistance, sporulation, and specialized metabolism, suggesting adaptation to nutrient-deficient, high-temperature environments. Genomic analysis revealed 12 biosynthetic gene clusters (BGCs), including those for polyketides and non-ribosomal peptides, highlighting its potential for synthesizing secondary metabolites that may facilitate its adaptation. Additionally, the presence of three Siphoviridae phage regions and 96 mobile genetic elements (MGEs) suggests significant genomic plasticity, whereas the existence of five CRISPR arrays implies an advanced defense mechanism against phage infections, contributing to genomic stability. The distinctive genomic features and functional capacities of Bacillus sp. THPS1 make it a promising candidate for biotechnological applications, particularly in the production of heat-stable enzymes and the development of resilient bioformulations.
Collapse
Affiliation(s)
| | - Sk Injamamul Islam
- Department of Fisheries and Marine Bioscience, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh;
| | - Nguyen Dinh-Hung
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA;
| | - Orathai Dangsawat
- Scientific Laboratory and Equipment Center, Office of Surat Thani Campus, Prince of Songkla University, Surat Thani Campus, Surat Thani 84000, Thailand;
| | - Rapeewan Sowanpreecha
- Department of Agricultural Science and Technology, Faculty of Innovative Agriculture, Fisheries and Food, Prince of Songkla University, Surat Thani Campus, Surat Thani 84000, Thailand;
| | - Luu Tang Phuc Khang
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (L.T.P.K.); (N.M.)
| | - Napatsorn Montha
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (L.T.P.K.); (N.M.)
| | - Phatthanaphong Therdtatha
- Division of Biotechnology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Sefti Heza Dwinanti
- Department of Aquaculture, Faculty of Agriculture, Sriwijaya University, Inderalaya 30662, Indonesia;
| | - Patima Permpoonpattana
- Department of Agricultural Science and Technology, Faculty of Innovative Agriculture, Fisheries and Food, Prince of Songkla University, Surat Thani Campus, Surat Thani 84000, Thailand;
| | - Nguyen Vu Linh
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (L.T.P.K.); (N.M.)
| |
Collapse
|
7
|
Mussagy CU, Caicedo-Paz AV, Farias FO, de Souza Mesquita LM, Giuffrida D, Dufossé L. Microbial bacterioruberin: The new C50 carotenoid player in food industries. Food Microbiol 2024; 124:104623. [PMID: 39244374 DOI: 10.1016/j.fm.2024.104623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024]
Abstract
The demand for natural products has significantly increased, driving interest in carotenoids as bioactive compounds for both human and animal consumption. Carotenoids, natural pigments with several biological properties, like antioxidant and antimicrobial, are increasingly preferred over synthetic colorants by the consumers (chemophobia). The global carotenoid market is projected to reach US$ 2.45 billion by 2034, driven by consumer preferences for natural ingredients and regulatory restrictions on synthetic products. Among carotenoids, bacterioruberin (BR), a C50 carotenoid naturally found in microbial hyperhalophilic archaea and in moderate halophilic archaea, stands out for its exceptional antioxidant capabilities, surpassing even well-known carotenoids like astaxanthin. BR's and its derivatives unique structure, with 13 conjugated double bonds and four -OH groups, contributes to its potent antioxidant activity and potential applications in food, feed, supplements, pharmaceuticals, and cosmeceuticals. This review explores BR's chemical and biological properties, upstream and downstream technologies, analytical techniques, market applications, and prospects in the colorants industry. While BR is not intended to replace existing carotenoids, its inclusion enriches the range of natural products available to meet the rising demand for natural alternatives. Furthermore, BR's promising antioxidant capacity positions it as a key player in the future carotenoid market, offering diverse industries a natural and potent alternative for several applications.
Collapse
Affiliation(s)
- Cassamo U Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota, 2260000, Chile.
| | - Angie V Caicedo-Paz
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota, 2260000, Chile
| | - Fabiane O Farias
- Department of Chemical Engineering, Polytechnique Center, Federal University of Paraná, Curitiba/PR, Brazil
| | - Leonardo M de Souza Mesquita
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria 1300, 13484-350, Limeira, SP, Brazil
| | - Daniele Giuffrida
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, 98125, Messina, Italy
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products, CHEMBIOPRO, ESIROI Agroalimentaire, Université de La Réunion, 15 Avenue René Cassin, CS, 92003, CEDEX 9, F-97744, Saint-Denis, France
| |
Collapse
|
8
|
Ikram M, Shabir Y, Haider A, Shahzadi I, Bilal M, Ul-Hamid A, Fouda AM, Ali S. Dye degradation and antimicrobial efficacy of cesium-doped Y 2O 3 nanostructures: in silico docking study. RSC Adv 2024; 14:30732-30742. [PMID: 39328869 PMCID: PMC11425155 DOI: 10.1039/d4ra05620e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Developing multifunctional nanomaterials is crucial to rising global concerns over environmental contamination caused by dye effluents and antibiotic resistance. This work presents cesium (Cs)-doped Y2O3 nanostructures (NSs) as viable options for catalytic dye degradation and antibacterial action. This study prepared yttrium oxide (Y2O3) and various (2, 4, and 6 wt%) concentrations of Cs-doped Y2O3 NSs via co-precipitation technique. The pure and Cs-doped Y2O3 NSs were used to degrade methylene blue (MB) at different pH levels and assess the antibacterial properties against multidrug-resistant (MDR) Escherichia coli (E. coli). The X-ray diffraction spectra of the pure and Cs-doped Y2O3 revealed the presence of cubic and monoclinic structures. The UV-vis absorption spectra displayed distinct peaks at 274 nm and a reduction in band gap energy (from 4.94 eV to 4.41 eV) upon incorporation of Cs. Maximum degradation efficiency of up to 99% attributed to 6% Cs-doped Y2O3. The bactericidal activity against MDR E. coli exhibited 4.15 mm inhibition zones at higher concentrations of Cs-doped Y2O3. The bactericidal mechanism of Cs-Y2O3 NSs was further investigated by molecular docking studies for β-lactamase and DNA gyrase enzymes.
Collapse
Affiliation(s)
- Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore Lahore 54000 Punjab Pakistan
- Advance Nanomaterials Research Lab, Department of Physics, Government College University Lahore Lahore 54000 Punjab Pakistan
| | - Yasir Shabir
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University 14 Ali Road Lahore Pakistan
| | - Ali Haider
- Department of Clinical Medicine, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef, University of Agriculture 66000 Multan Punjab Pakistan
| | - Iram Shahzadi
- School of Pharmacy, University of Management and Technology Lahore 54770 Pakistan
| | - Muhammad Bilal
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore Lahore 54000 Punjab Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Ahmed M Fouda
- Chemistry Department, Faculty of Science, King Khalid University P. O. Box 9004 Abha 61413 Saudi Arabia
| | - Salamat Ali
- Department of Physics, The University of Lahore 54000 Pakistan
| |
Collapse
|
9
|
Dong X, Zhang T, Wu W, Peng Y, Liu X, Han Y, Chen X, Gao Z, Xia J, Shao Z, Greening C. A vast repertoire of secondary metabolites potentially influences community dynamics and biogeochemical processes in cold seeps. SCIENCE ADVANCES 2024; 10:eadl2281. [PMID: 38669328 PMCID: PMC11051675 DOI: 10.1126/sciadv.adl2281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/27/2024] [Indexed: 04/28/2024]
Abstract
In deep-sea cold seeps, microbial communities thrive on the geological seepage of hydrocarbons and inorganic compounds, differing from photosynthetically driven ecosystems. However, their biosynthetic capabilities remain largely unexplored. Here, we analyzed 81 metagenomes, 33 metatranscriptomes, and 7 metabolomes derived from nine different cold seep areas to investigate their secondary metabolites. Cold seep microbiomes encode diverse and abundant biosynthetic gene clusters (BGCs). Most BGCs are affiliated with understudied bacteria and archaea, including key mediators of methane and sulfur cycling. The BGCs encode diverse antimicrobial compounds that potentially shape community dynamics and various metabolites predicted to influence biogeochemical cycling. BGCs from key players are widely distributed and highly expressed, with their abundance and expression levels varying with sediment depth. Sediment metabolomics reveals unique natural products, highlighting uncharted chemical potential and confirming BGC activity in these sediments. Overall, these results demonstrate that cold seep sediments serve as a reservoir of hidden natural products and sheds light on microbial adaptation in chemosynthetically driven ecosystems.
Collapse
Affiliation(s)
- Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Tianxueyu Zhang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310005, China
| | - Weichao Wu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yongyi Peng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Xinyue Liu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Yingchun Han
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xiangwei Chen
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Zhizeng Gao
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Jinmei Xia
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
10
|
Ahmad W, Shahzadi I, Haider A, Ul-Hamid A, Ullah H, Khan S, Somaily HH, Ikram M. Efficient Dye Degradation and Antimicrobial Behavior with Molecular Docking Performance of Silver and Polyvinylpyrrolidone-Doped Zn-Fe Layered Double Hydroxide. ACS OMEGA 2024; 9:5068-5079. [PMID: 38313529 PMCID: PMC10831970 DOI: 10.1021/acsomega.3c09890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024]
Abstract
Zn-Fe layered double hydroxide (LDH) was synthesized through the low-temperature-based coprecipitation method. Various concentrations of Ag (1, 3, and 5 wt %) with a fixed amount (5 wt %) of polyvinylpyrrolidone (PVP) were doped into LDH nanocomposites. This research aims to improve the bactericidal properties and catalytic activities of doping-dependent nanocomposites. Adding Ag and PVP to LDH enhanced oxygen vacancies, which increased the amount of hydroxide adsorption sites and the number of active sites. The doped LDH was employed to degrade rhodamine-B dye in the presence of a reducing agent (NaBH4), and the obtained results showed maximum dye degradation in a basic medium compared to acidic and neutral. The bactericidal efficacy of doped Zn-Fe (5 wt %) showed a considerably greater inhibition zone of 3.65 mm against Gram-negative (G-ve) or Escherichia coli (E. coli). Furthermore, molecular docking was used to decipher the mystery behind the microbicidal action of Ag-doped PVP/Zn-Fe LDH and to propose an inhibition mechanism of β-ketoacyl-acyl carrier protein synthase IIE. coli (FabH) and deoxyribonucleic acid gyrase E. coli behind in vitro results.
Collapse
Affiliation(s)
- Wakeel Ahmad
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore, Punjab 54000, Pakistan
| | - Iram Shahzadi
- School
of Pharmacy, University of Management and
Technology, Lahore 54770, Pakistan
| | - Ali Haider
- Department
of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad
Nawaz Shareef, University of Agriculture, Multan, Punjab 66000, Pakistan
| | - Anwar Ul-Hamid
- Core
Research Facilities, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Hameed Ullah
- Laboratory
of Nanomaterials for Renewable Energy and Artificial Photosynthesis
(NanoREAP), Institute of Physics, UFRGS, Porto Alegre, Rio Grande
do Sul 91509-900, Brazil
| | - Sherdil Khan
- Laboratory
of Nanomaterials for Renewable Energy and Artificial Photosynthesis
(NanoREAP), Institute of Physics, UFRGS, Porto Alegre, Rio Grande
do Sul 91509-900, Brazil
| | - Hamoud H. Somaily
- Department
of Physics, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 62529, Saudi Arabia
| | - Muhammad Ikram
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore, Punjab 54000, Pakistan
| |
Collapse
|
11
|
Baranova MN, Pilipenko EA, Gabibov AG, Terekhov SS, Smirnov IV. Animal Microbiomes as a Source of Novel Antibiotic-Producing Strains. Int J Mol Sci 2023; 25:537. [PMID: 38203702 PMCID: PMC10779147 DOI: 10.3390/ijms25010537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Natural compounds continue to serve as the most fruitful source of new antimicrobials. Analysis of bacterial genomes have revealed that the biosynthetic potential of antibiotic producers by far exceeds the number of already discovered structures. However, due to the repeated discovery of known substances, it has become necessary to change both approaches to the search for antibiotics and the sources of producer strains. The pressure of natural selection and the diversity of interactions in symbiotic communities make animal microbiomes promising sources of novel substances. Here, microorganisms associated with various animals were examined in terms of their antimicrobial agents. The application of alternative cultivation techniques, ultrahigh-throughput screening, and genomic analysis facilitated the investigation of compounds produced by unique representatives of the animal microbiota. We believe that new strategies of antipathogen defense will be discovered by precisely studying cell-cell and host-microbe interactions in microbiomes in the wild.
Collapse
Affiliation(s)
- Margarita N. Baranova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (M.N.B.); (A.G.G.)
| | - Ekaterina A. Pilipenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (M.N.B.); (A.G.G.)
| | - Alexander G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (M.N.B.); (A.G.G.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Stanislav S. Terekhov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (M.N.B.); (A.G.G.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ivan V. Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (M.N.B.); (A.G.G.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
12
|
Ceniceros A, Cañedo L, Méndez C, Olano C, Schleissner C, Cuevas C, de la Calle F, Salas JA. Identification of the Biosynthetic Gene Cluster of New Piperazic Acid-Containing Lipopeptides with Cytotoxic Activity in the Genome of Marine Streptomyces PHM034. Metabolites 2023; 13:1091. [PMID: 37887416 PMCID: PMC10609185 DOI: 10.3390/metabo13101091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Three novel lipopeptides, PM130391 (1), PM130392 (2), and PM140293 (3) were obtained from cultures of Streptomyces tuirus PHM034 isolated from a marine sediment. Structural elucidation of the three compounds showed they belong to the nonribosomal peptides family, and they all contain an acylated alanine, three piperazic acids, a methylated glycine, and an N-hydroxylated alanine. The difference between the three compounds resides in the acyl chain bound to the alanine residue. All three compounds showed cytotoxic activity against human cancer cell lines. Genome sequence and bioinformatics analysis allowed the identification of the gene cluster responsible for the biosynthesis. Inactivation of a nonribosomal peptide synthase of this cluster abolished the biosynthesis of the three compounds, thus demonstrating the involvement of this cluster in the biosynthesis of these lipopeptides.
Collapse
Affiliation(s)
- Ana Ceniceros
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain; (A.C.); (C.M.); (C.O.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Librada Cañedo
- Drug Discovery Area, PharmaMar S.A. Avda. de los Reyes 1, Colmenar Viejo, 28770 Madrid, Spain; (L.C.); (C.C.); (F.d.l.C.)
| | - Carmen Méndez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain; (A.C.); (C.M.); (C.O.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Carlos Olano
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain; (A.C.); (C.M.); (C.O.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Carmen Schleissner
- Unolab Manufacturing, Avenida de las Flores 6, Humanes de Madrid, 28970 Madrid, Spain;
| | - Carmen Cuevas
- Drug Discovery Area, PharmaMar S.A. Avda. de los Reyes 1, Colmenar Viejo, 28770 Madrid, Spain; (L.C.); (C.C.); (F.d.l.C.)
| | - Fernando de la Calle
- Drug Discovery Area, PharmaMar S.A. Avda. de los Reyes 1, Colmenar Viejo, 28770 Madrid, Spain; (L.C.); (C.C.); (F.d.l.C.)
| | - José A. Salas
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain; (A.C.); (C.M.); (C.O.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| |
Collapse
|
13
|
de França P, Costa JH, Fill TP, Lancellotti M, Ruiz ALTG, Fantinatti-Garboggini F. Genome mining reveals secondary metabolites of Antarctic bacterium Streptomyces albidoflavus related to antimicrobial and antiproliferative activities. Arch Microbiol 2023; 205:354. [PMID: 37828121 DOI: 10.1007/s00203-023-03691-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/10/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
The urgent need for new antimicrobials arises from antimicrobial resistance. Actinobacteria, especially Streptomyces genus, are responsible for production of numerous clinical antibiotics and anticancer agents. Genome mining reveals the biosynthetic gene clusters (BGCs) related to secondary metabolites and the genetic potential of a strain to produce natural products. However, this potential may not be expressed under laboratory conditions. In the present study, the Antarctic bacterium was taxonomically affiliated as Streptomyces albidoflavus ANT_B131 (CBMAI 1855). The crude extracts showed antimicrobial activity against both fungi, Gram-positive and Gram-negative bacteria and antiproliferative activity against five human tumor cell lines. Whole-genome sequencing reveals a genome size of 6.96 Mb, and the genome mining identified 24 BGCs, representing 13.3% of the genome. The use of three culture media and three extraction methods reveals the expression and recovery of 20.8% of the BGCs. The natural products identified included compounds, such as surugamide A, surugamide D, desferrioxamine B + Al, desferrioxamine E, and ectoine. This study reveals the potential of S. albidoflavus ANT_B131 as a natural product producer. Yet, the diversity of culture media and extraction methods could enhance the BGCs expression and recovery of natural products, and could be a strategy to intensify the BGC expression of natural products.
Collapse
Affiliation(s)
- Paula de França
- Division of Microbial Resources, Pluridisciplinary Center for Chemical, Biological and Agricultural Research, University of Campinas, Paulínia, SP, Brazil.
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil.
| | - Jonas Henrique Costa
- Institute of Chemistry, University of Campinas, CP 6154, Campinas, SP, 13083-970, Brazil
| | - Taícia Pacheco Fill
- Institute of Chemistry, University of Campinas, CP 6154, Campinas, SP, 13083-970, Brazil
| | - Marcelo Lancellotti
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | | | - Fabiana Fantinatti-Garboggini
- Division of Microbial Resources, Pluridisciplinary Center for Chemical, Biological and Agricultural Research, University of Campinas, Paulínia, SP, Brazil.
| |
Collapse
|
14
|
Aziz T, Imran M, Haider A, Shahzadi A, Ul Abidin MZ, Ul-Hamid A, Nabgan W, Algaradah MM, Fouda AM, Ikram M. Catalytic performance and antibacterial behaviour with molecular docking analysis of silver and polyacrylic acid doped graphene quantum dots. RSC Adv 2023; 13:28008-28020. [PMID: 37746345 PMCID: PMC10517100 DOI: 10.1039/d3ra04741e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023] Open
Abstract
In this research, a fixed concentration (3 wt%) of Ag/PAA and PAA/Ag doped graphene quantum dots (GQDs) were synthesized using the co-precipitation technique. A variety of characterization techniques were employed to synthesize samples to investigate their optical, morphological, structural, and compositional analyses, antimicrobial efficacy, and dye degradation potential with molecular docking analysis. GQDs have high solubility, narrow band gaps, and are suitable for electron acceptors and donors but show less adsorption and catalytic behavior. Incorporating polyacrylic acid (PAA) into GQDs increases the catalytic and antibacterial activities due to the carboxylic group (-COOH). Furthermore, introducing silver (Ag) increased the degradation of dye and microbes as it had a high surface-to-volume ratio. In addition, molecular docking studies were used to decipher the mechanism underlying the bactericidal action of silver and polyacrylic acid-doped graphene quantum dots and revealed inhibition of β-lactamase and DNA gyrase.
Collapse
Affiliation(s)
- Tahreem Aziz
- Department of Chemistry, Government College University, Faisalabad Pakpattan Road Sahiwal Punjab 57000 Pakistan
| | - Muhammad Imran
- Department of Chemistry, Government College University, Faisalabad Pakpattan Road Sahiwal Punjab 57000 Pakistan
| | - Ali Haider
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture Multan 66000 Punjab Pakistan
| | - Anum Shahzadi
- Faculty of Pharmacy, The University of Lahore Lahore 54000 Pakistan
| | - Muhammad Zain Ul Abidin
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore Lahore 54000 Punjab Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Walid Nabgan
- Departament d'Enginyeria Química, Universitat Rovira i Virgili Av Països Catalans 26 43007 Tarragona Spain
| | | | - Ahmed M Fouda
- Chemistry Department, Faculty of Science, King Khalid University Abha 61413 Saudi Arabia
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore Lahore 54000 Punjab Pakistan
| |
Collapse
|
15
|
Sobol MS, Hoshino T, Delgado V, Futagami T, Kadooka C, Inagaki F, Kiel Reese B. Genome characterization of two novel deep-sea sediment fungi, Penicillium pacificagyrus sp. nov. and Penicillium pacificasedimenti sp. nov., from South Pacific Gyre subseafloor sediments, highlights survivability. BMC Genomics 2023; 24:249. [PMID: 37165355 PMCID: PMC10173653 DOI: 10.1186/s12864-023-09320-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/18/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Marine deep subsurface sediments were once thought to be devoid of eukaryotic life, but advances in molecular technology have unlocked the presence and activity of well-known closely related terrestrial and marine fungi. Commonly detected fungi in deep marine sediment environments includes Penicillium, Aspergillus, Cladosporium, Fusarium, and Schizophyllum, which could have important implications in carbon and nitrogen cycling in this isolated environment. In order to determine the diversity and unknown metabolic capabilities of fungi in deep-sea sediments, their genomes need to be fully analyzed. In this study, two Penicillium species were isolated from South Pacific Gyre sediment enrichments during Integrated Ocean Drilling Program Expedition 329. The inner gyre has very limited productivity, organic carbon, and nutrients. RESULTS Here, we present high-quality genomes of two proposed novel Penicillium species using Illumina HiSeq and PacBio sequencing technologies. Single-copy homologues within the genomes were compared to other closely related genomes using OrthoMCL and maximum-likelihood estimation, which showed that these genomes were novel species within the genus Penicillium. We propose to name isolate SPG-F1 as Penicillium pacificasedimenti sp. nov. and SPG-F15 as Penicillium pacificagyrus sp. nov. The resulting genome sizes were 32.6 Mbp and 36.4 Mbp, respectively, and both genomes were greater than 98% complete as determined by the presence of complete single-copy orthologs. The transposable elements for each genome were 4.87% for P. pacificasedimenti and 10.68% for P. pacificagyrus. A total of 12,271 genes were predicted in the P. pacificasedimenti genome and 12,568 genes in P. pacificagyrus. Both isolates contained genes known to be involved in the degradation of recalcitrant carbon, amino acids, and lignin-derived carbon. CONCLUSIONS Our results provide the first constructed genomes of novel Penicillium isolates from deep marine sediments, which will be useful for future studies of marine subsurface fungal diversity and function. Furthermore, these genomes shed light on the potential impact fungi in marine sediments and the subseafloor could have on global carbon and nitrogen biogeochemical cycles and how they may be persisting in the most energy-limited sedimentary biosphere.
Collapse
Affiliation(s)
- Morgan S Sobol
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Baden-Württemberg, Germany
| | - Tatsuhiko Hoshino
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi, 783-8502, Japan
| | - Victor Delgado
- Department of Life Sciences, TX A&M University, Corpus Christi, Texas, USA
| | - Taiki Futagami
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Chihiro Kadooka
- Department of Biotechnology and Life Science, Faculty of Biotechnology and Life Science, Sojo University, Ikeda, Nishiku, Kumamoto, 860-0082, Japan
| | - Fumio Inagaki
- Mantle Drilling Promotion Office, Institute for Marine Earth Exploration and Engineering (MarE3), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, 236- 0001, Japan
- Department of Earth Sciences, Graduate School of Science, Tohoku University, Sendai, 980-8574, Japan
| | - Brandi Kiel Reese
- Dauphin Island Sea Lab, Dauphin Island, Alabama, USA.
- Stokes School of Marine and Environmental Sciences, University of South Alabama, Mobile, AL, USA.
| |
Collapse
|
16
|
Subirats J, Sharpe H, Santoro D, Topp E. Modeling Antibiotic Concentrations in the Vicinity of Antibiotic-Producing Bacteria at the Micron Scale. Appl Environ Microbiol 2023; 89:e0026123. [PMID: 36975795 PMCID: PMC10132100 DOI: 10.1128/aem.00261-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/09/2023] [Indexed: 03/29/2023] Open
Abstract
It is generally thought that antibiotics confer upon the producing bacteria the ability to inhibit or kill neighboring microorganisms, thereby providing the producer with a significant competitive advantage. Were this to be the case, the concentrations of emitted antibiotics in the vicinity of producing bacteria might be expected to fall within the ranges of MICs that are documented for a number of bacteria. Furthermore, antibiotic concentrations that bacteria are punctually or chronically exposed to in environments harboring antibiotic-producing bacteria might fall within the range of minimum selective concentrations (MSCs) that confer a fitness advantage to bacteria carrying acquired antibiotic resistance genes. There are, to our knowledge, no available in situ measured antibiotic concentrations in the biofilm environments that bacteria typically live in. The objective of the present study was to use a modeling approach to estimate the antibiotic concentrations that might accumulate in the vicinity of bacteria that are producing an antibiotic. Fick's law was used to model antibiotic diffusion using a series of key assumptions. The concentrations of antibiotics within a few microns of single producing cells could not reach MSC (8 to 16 μg/L) or MIC (500 μg/L) values, whereas the concentrations around aggregates of a thousand cells could reach these concentrations. The model outputs suggest that single cells could not produce an antibiotic at a rate sufficient to achieve a bioactive concentration in the vicinity, whereas a group of cells, each producing the antibiotic, could do so. IMPORTANCE It is generally assumed that a natural function of antibiotics is to provide their producers with a competitive advantage. If this were the case, sensitive organisms in proximity to producers would be exposed to inhibitory concentrations. The widespread detection of antibiotic resistance genes in pristine environments suggests that bacteria are indeed exposed to inhibitory antibiotic concentrations in the natural world. Here, a model using Fick's law was used to estimate potential antibiotic concentrations in the space surrounding producing cells at the micron scale. Key assumptions were that per-cell production rates drawn from the pharmaceutical manufacturing industry are applicable in situ, that production rates were constant, and that produced antibiotics are stable. The model outputs indicate that antibiotic concentrations in proximity to aggregates of a thousand cells can indeed be in the minimum inhibitory or minimum selective concentration range.
Collapse
Affiliation(s)
- Jessica Subirats
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Hannah Sharpe
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Domenico Santoro
- USP Technologies, London, Ontario, Canada
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario, Canada
| | - Edward Topp
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
17
|
Gao J, Sun Y, Xiong R, Ma Y, Wang L, Qiao S, Zhang J, Ji W, Li Y. Strategy for oxygen vacancy enriched CoMn spinel oxide catalyst activated peroxodisulfate for tetracycline degradation: process, mechanism, and toxicity analysis. RSC Adv 2023; 13:11472-11479. [PMID: 37063739 PMCID: PMC10091099 DOI: 10.1039/d3ra00852e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/29/2023] [Indexed: 04/18/2023] Open
Abstract
Antibiotic-like organic pollutants are harmful to aquatic ecosystems and seriously disrupt the ecological balance. Herein, we propose a simple and versatile method to prepare cobalt-manganese oxides with high specific surface area and abundant oxygen vacancies using low-temperature reduction crystallization, which greatly facilitates the adsorption and electron transfer between the catalyst, PDS, and TC, thus accelerating the degradation of tetracycline (TC). Among them, the degradation efficiency of TC in the CoMn2O4(C)/PDS system was 99.8% in 60 min and the degradation rate remained above 90% after four cycles. The possible degradation mechanism is also discussed, where Co is the main metal active center of the catalyst and Mn plays an auxiliary catalytic role to promote the generation of reactive radicals in PDS through redox interactions between Co and Mn, where SO4 -˙ is the main active species for TC degradation. Finally, the possible degradation pathways of TC are proposed and the toxicity of the intermediates is evaluated. Findings from this work will shed light on the rational design of bimetallic oxide catalysts.
Collapse
Affiliation(s)
- Jingdan Gao
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 P. R. China
| | - Yonggang Sun
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 P. R. China
| | - Ruijia Xiong
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 P. R. China
| | - Yulong Ma
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 P. R. China
| | - Lei Wang
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 P. R. China
| | - Song Qiao
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 P. R. China
| | - Juan Zhang
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 P. R. China
| | - Wenxin Ji
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 P. R. China
| | - Yuanyuan Li
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 P. R. China
| |
Collapse
|
18
|
Lin X, Hu T, Chen J, Liang H, Zhou J, Wu Z, Ye C, Jin X, Xu X, Zhang W, Jing X, Yang T, Wang J, Yang H, Kristiansen K, Xiao L, Zou Y. The genomic landscape of reference genomes of cultivated human gut bacteria. Nat Commun 2023; 14:1663. [PMID: 36966151 PMCID: PMC10039858 DOI: 10.1038/s41467-023-37396-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 03/14/2023] [Indexed: 03/27/2023] Open
Abstract
Culture-independent metagenomic studies have revolutionized our understanding of the gut microbiota. However, the lack of full genomes from cultured species is still a limitation for in-depth studies of the gut microbiota. Here we present a substantially expanded version of our Cultivated Genome Reference (CGR), termed CGR2, providing 3324 high-quality draft genomes from isolates selected from a large-scale cultivation of bacterial isolates from fecal samples of healthy Chinese individuals. The CGR2 classifies 527 species (179 previously unidentified species) from 8 phyla, and uncovers a genomic and functional diversity of Collinsella aerofaciens. The CGR2 genomes match 126 metagenome-assembled genomes without cultured representatives in the Unified Human Gastrointestinal Genome (UHGG) collection and harbor 3767 unidentified secondary metabolite biosynthetic gene clusters, providing a source of natural compounds with pharmaceutical potentials. We uncover accurate phage-bacterium linkages providing information on the evolutionary characteristics of interaction between bacteriophages and bacteria at the strain level.
Collapse
Affiliation(s)
- Xiaoqian Lin
- BGI-Shenzhen, Shenzhen, 518083, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | | | - Jianwei Chen
- BGI-Shenzhen, Shenzhen, 518083, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, 266555, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark
| | | | - Jianwei Zhou
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, 266555, China
| | - Zhinan Wu
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Ye
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Xin Jin
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Xiaohuan Jing
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Tao Yang
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou, 310058, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou, 310058, China
| | - Karsten Kristiansen
- BGI-Shenzhen, Shenzhen, 518083, China.
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, 266555, China.
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark.
- PREDICT, Center for Molecular Prediction of Inflammatory Bowel Disease, Faculty of Medicine, Aalborg University, 2450, Copenhagen, Denmark.
| | - Liang Xiao
- BGI-Shenzhen, Shenzhen, 518083, China.
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, 266555, China.
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen, China.
| | - Yuanqiang Zou
- BGI-Shenzhen, Shenzhen, 518083, China.
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, 266555, China.
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark.
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen, China.
| |
Collapse
|
19
|
Ikram M, Shahzadi A, Haider A, Imran M, Hayat S, Haider J, Ul-Hamid A, Rasool F, Nabgan W, Mustajab M, Ali S, Al-Shanini A. Toward Efficient Bactericidal and Dye Degradation Performance of Strontium- and Starch-Doped Fe 2O 3 Nanostructures: In Silico Molecular Docking Studies. ACS OMEGA 2023; 8:8066-8077. [PMID: 36872998 PMCID: PMC9979251 DOI: 10.1021/acsomega.2c07980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
In this study, various concentrations of strontium (Sr) into a fixed amount of starch (St) and Fe2O3 nanostructures (NSs) were synthesized with the co-precipitation approach to evaluate the antibacterial and photocatalytic properties of the concerned NSs. The study aimed to synthesize nanorods of Fe2O3 with co-precipitation to enhance the bactericidal behavior with dopant-dependent Fe2O3. Advanced techniques were utilized to investigate the structural characteristics, morphological properties, optical absorption and emission, and elemental composition properties of synthesized samples. Measurements via X-ray diffraction confirmed the rhombohedral structure for Fe2O3. Fourier-transform infrared analysis explored the vibrational and rotational modes of the O-H functional group and the C=C and Fe-O functional groups. The energy band gap of the synthesized samples was observed in the range of 2.78-3.15 eV, which indicates that the blue shift in the absorption spectra of Fe2O3 and Sr/St-Fe2O3 was identified with UV-vis spectroscopy. The emission spectra were obtained through photoluminescence spectroscopy, and the elements in the materials were determined using energy-dispersive X-ray spectroscopy analysis. High-resolution transmission electron microscopy micrographs showed NSs that exhibit nanorods (NRs), and upon doping, agglomeration of NRs and nanoparticles was observed. Efficient degradations of methylene blue increased the photocatalytic activity in the implantation of Sr/St on Fe2O3 NRs. The antibacterial potential for Escherichia coli and Staphylococcus aureus was measured against ciprofloxacin. E. coli bacteria exhibit inhibition zones of 3.55 and 4.60 mm at low and high doses, respectively. S. aureus shows the measurement of inhibition zones for low and high doses of prepared samples at 0.47 and 2.40 mm, respectively. The prepared nanocatalyst showed remarkable antibacterial action against E. coli bacteria rather than S. aureus at high and low doses compared to ciprofloxacin. The best-docked conformation of the dihydrofolate reductase enzyme against E. coli for Sr/St-Fe2O3 showed H-bonding interactions with Ile-94, Tyr-100, Tyr-111, Trp-30, ASP-27, Thr-113, and Ala-6.
Collapse
Affiliation(s)
- Muhammad Ikram
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Pakistan
| | - Anum Shahzadi
- Faculty
of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| | - Ali Haider
- Department
of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan 66000, Pakistan
| | - Muhammad Imran
- Department
of Chemistry, Government College University
Faisalabad, Pakpattan
Road, Sahiwal, Punjab 57000, Pakistan
| | - Shaukat Hayat
- Department
of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore 54000, Pakistan
| | - Junaid Haider
- Tianjin
Institute
of Industrial Biotechnology, Chinese Academy
of Sciences, Tianjin 300308, China
| | - Anwar Ul-Hamid
- Core
Research Facilities, King Fahd University
of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Faiz Rasool
- Department
of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore 54000, Pakistan
| | - Walid Nabgan
- Departament
d’Enginyeria Química, Universitat
Rovira i Virgili, Av Països Catalans 26, Tarragona 43007, Spain
| | - Muhammad Mustajab
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Pakistan
| | - Salamat Ali
- Department
of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore 54000, Pakistan
| | - Ali Al-Shanini
- College
of Petroleum and Engineering, Hadhramout
University, Mukalla, Hadhramout 50512, Yemen
| |
Collapse
|
20
|
Back to Basics: A Simplified Improvement to Multiple Displacement Amplification for Microbial Single-Cell Genomics. Int J Mol Sci 2023; 24:ijms24054270. [PMID: 36901710 PMCID: PMC10002425 DOI: 10.3390/ijms24054270] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/23/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Microbial single-cell genomics (SCG) provides access to the genomes of rare and uncultured microorganisms and is a complementary method to metagenomics. Due to the femtogram-levels of DNA in a single microbial cell, sequencing the genome requires whole genome amplification (WGA) as a preliminary step. However, the most common WGA method, multiple displacement amplification (MDA), is known to be costly and biased against specific genomic regions, preventing high-throughput applications and resulting in uneven genome coverage. Thus, obtaining high-quality genomes from many taxa, especially minority members of microbial communities, becomes difficult. Here, we present a volume reduction approach that significantly reduces costs while improving genome coverage and uniformity of DNA amplification products in standard 384-well plates. Our results demonstrate that further volume reduction in specialized and complex setups (e.g., microfluidic chips) is likely unnecessary to obtain higher-quality microbial genomes. This volume reduction method makes SCG more feasible for future studies, thus helping to broaden our knowledge on the diversity and function of understudied and uncharacterized microorganisms in the environment.
Collapse
|
21
|
Mullis MM, Selwyn JD, Kevorkian R, Tague ED, Castro HF, Campagna SR, Lloyd KG, Reese BK. Microbial survival mechanisms within serpentinizing Mariana forearc sediments. FEMS Microbiol Ecol 2023; 99:6985003. [PMID: 36631299 DOI: 10.1093/femsec/fiad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 12/07/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Marine deep subsurface sediment is often a microbial environment under energy-limited conditions. However, microbial life has been found to persist and even thrive in deep subsurface environments. The Mariana forearc represents an ideal location for determining how microbial life can withstand extreme conditions including pH 10-12.5 and depleted nutrients. The International Ocean Discovery Program Expedition 366 to the Mariana Convergent Margin sampled three serpentinizing seamounts located along the Mariana forearc chain with elevated concentrations of methane, hydrogen, and sulfide. Across all three seamount summits, the most abundant transcripts were for cellular maintenance such as cell wall and membrane repair, and the most abundant metabolic pathways were the Entner-Doudoroff pathway and tricarboxylic acid cycle. At flank samples, sulfur cycling involving taurine assimilation dominated the metatranscriptomes. The in situ activity of these pathways was supported by the detection of their metabolic intermediates. All samples had transcripts from all three domains of Bacteria, Archaea, and Eukarya, dominated by Burkholderiales, Deinococcales, and Pseudomonales, as well as the fungal group Opisthokonta. All samples contained transcripts for aerobic methane oxidation (pmoABC) and denitrification (nirKS). The Mariana forearc microbial communities show activity not only consistent with basic survival mechanisms, but also coupled metabolic reactions.
Collapse
Affiliation(s)
- Megan M Mullis
- Life Sciences Department, Texas A&M University - Corpus Christi, Corpus Christi, TX, United States.,Dauphin Island Sea Lab, Mobile, AL, United States
| | - Jason D Selwyn
- Life Sciences Department, Texas A&M University - Corpus Christi, Corpus Christi, TX, United States
| | - Richard Kevorkian
- Microbiology Department, University of Tennessee, Knoxville, TN, United States
| | - Eric D Tague
- Microbiology Department, University of Tennessee, Knoxville, TN, United States
| | - Hector F Castro
- Microbiology Department, University of Tennessee, Knoxville, TN, United States.,Chemistry Department, UTK Biological and Small Molecule Mass Spectrometry Core, Knoxville, TN, United States
| | - Shawn R Campagna
- Microbiology Department, University of Tennessee, Knoxville, TN, United States.,Chemistry Department, UTK Biological and Small Molecule Mass Spectrometry Core, Knoxville, TN, United States
| | - Karen G Lloyd
- Microbiology Department, University of Tennessee, Knoxville, TN, United States
| | - Brandi Kiel Reese
- Dauphin Island Sea Lab, Mobile, AL, United States.,Marine Sciences Department, University of South Alabama, Mobile, AL, United States
| |
Collapse
|
22
|
Islam MD, Harrison BD, Li JJY, McLoughlin AG, Court DA. Do mitochondria use efflux pumps to protect their ribosomes from antibiotics? MICROBIOLOGY (READING, ENGLAND) 2023; 169:001272. [PMID: 36748523 PMCID: PMC9993110 DOI: 10.1099/mic.0.001272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Fungal environments are rich in natural and engineered antimicrobials, and this, combined with the fact that fungal genomes are rich in coding sequences for transporters, suggests that fungi are an intriguing group in which to search for evidence of antimicrobial efflux pumps in mitochondria. Herein, the range of protective mechanisms used by fungi against antimicrobials is introduced, and it is hypothesized, based on the susceptibility of mitochondrial and bacterial ribosomes to the same antibiotics, that mitochondria might also contain pumps that efflux antibiotics from these organelles. Preliminary evidence of ethidium bromide efflux is presented and several candidate efflux pumps are identified in fungal mitochondrial proteomes.
Collapse
Affiliation(s)
- Md Deen Islam
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Brian D Harrison
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Judy J-Y Li
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Austein G McLoughlin
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | | |
Collapse
|
23
|
Mandal S, Bose H, Ramesh K, Sahu RP, Saha A, Sar P, Kazy SK. Depth wide distribution and metabolic potential of chemolithoautotrophic microorganisms reactivated from deep continental granitic crust underneath the Deccan Traps at Koyna, India. Front Microbiol 2022; 13:1018940. [PMID: 36504802 PMCID: PMC9731672 DOI: 10.3389/fmicb.2022.1018940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022] Open
Abstract
Characterization of inorganic carbon (C) utilizing microorganisms from deep crystalline rocks is of major scientific interest owing to their crucial role in global carbon and other elemental cycles. In this study we investigate the microbial populations from the deep [up to 2,908 meters below surface (mbs)] granitic rocks within the Koyna seismogenic zone, reactivated (enriched) under anaerobic, high temperature (50°C), chemolithoautotrophic conditions. Subsurface rock samples from six different depths (1,679-2,908 mbs) are incubated (180 days) with CO2 (+H2) or HCO3 - as the sole C source. Estimation of total protein, ATP, utilization of NO3 - and SO4 2- and 16S rRNA gene qPCR suggests considerable microbial growth within the chemolithotrophic conditions. We note a better response of rock hosted community towards CO2 (+H2) over HCO3 -. 16S rRNA gene amplicon sequencing shows a depth-wide distribution of diverse chemolithotrophic (and a few fermentative) Bacteria and Archaea. Comamonas, Burkholderia-Caballeronia-Paraburkholderia, Ralstonia, Klebsiella, unclassified Burkholderiaceae and Enterobacteriaceae are reactivated as dominant organisms from the enrichments of the deeper rocks (2335-2,908 mbs) with both CO2 and HCO3 -. For the rock samples from shallower depths, organisms of varied taxa are enriched under CO2 (+H2) and HCO3 -. Pseudomonas, Rhodanobacter, Methyloversatilis, and Thaumarchaeota are major CO2 (+H2) utilizers, while Nocardioides, Sphingomonas, Aeromonas, respond towards HCO3 -. H2 oxidizing Cupriavidus, Hydrogenophilus, Hydrogenophaga, CO2 fixing Cyanobacteria Rhodobacter, Clostridium, Desulfovibrio and methanogenic archaea are also enriched. Enriched chemolithoautotrophic members show good correlation with CO2, CH4 and H2 concentrations of the native rock environments, while the organisms from upper horizons correlate more to NO3 -, SO4 2- , Fe and TIC levels of the rocks. Co-occurrence networks suggest close interaction between chemolithoautotrophic and chemoorganotrophic/fermentative organisms. Carbon fixing 3-HP and DC/HB cycles, hydrogen, sulfur oxidation, CH4 and acetate metabolisms are predicted in the enriched communities. Our study elucidates the presence of live, C and H2 utilizing Bacteria and Archaea in deep subsurface granitic rocks, which are enriched successfully. Significant impact of depth and geochemical controls on relative distribution of various chemolithotrophic species enriched and their C and H2 metabolism are highlighted. These endolithic microorganisms show great potential for answering the fundamental questions of deep life and their exploitation in CO2 capture and conversion to useful products.
Collapse
Affiliation(s)
- Sunanda Mandal
- Environmental Microbiology and Biotechnology Laboratory, Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, WB, India
| | - Himadri Bose
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, India
| | - Kheerthana Ramesh
- Environmental Microbiology and Biotechnology Laboratory, Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, WB, India
| | - Rajendra Prasad Sahu
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, India
| | - Anumeha Saha
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, India
| | - Pinaki Sar
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, India
| | - Sufia Khannam Kazy
- Environmental Microbiology and Biotechnology Laboratory, Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, WB, India
| |
Collapse
|
24
|
Gude F, Molloy EM, Horch T, Dell M, Dunbar KL, Krabbe J, Groll M, Hertweck C. A Specialized Polythioamide-Binding Protein Confers Antibiotic Self-Resistance in Anaerobic Bacteria. Angew Chem Int Ed Engl 2022; 61:e202206168. [PMID: 35852818 PMCID: PMC9545259 DOI: 10.1002/anie.202206168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 12/04/2022]
Abstract
Understanding antibiotic resistance mechanisms is central to the development of anti-infective therapies and genomics-based drug discovery. Yet, many knowledge gaps remain regarding the resistance strategies employed against novel types of antibiotics from less-explored producers such as anaerobic bacteria, among them the Clostridia. Through the use of genome editing and functional assays, we found that CtaZ confers self-resistance against the copper chelator and gyrase inhibitor closthioamide (CTA) in Ruminiclostridium cellulolyticum. Bioinformatics, biochemical analyses, and X-ray crystallography revealed CtaZ as a founding member of a new group of GyrI-like proteins. CtaZ is unique in binding a polythioamide scaffold in a ligand-optimized hydrophobic pocket, thereby confining CTA. By genome mining using CtaZ as a handle, we discovered previously overlooked homologs encoded by diverse members of the phylum Firmicutes, including many pathogens. In addition to characterizing both a new role for a GyrI-like domain in self-resistance and unprecedented thioamide binding, this work aids in uncovering related drug-resistance mechanisms.
Collapse
Affiliation(s)
- Finn Gude
- Research Unit Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Evelyn M Molloy
- Research Unit Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Therese Horch
- Research Unit Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Maria Dell
- Research Unit Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Kyle L Dunbar
- Research Unit Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Jana Krabbe
- Research Unit Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Michael Groll
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, 85747, Garching, Germany
| | - Christian Hertweck
- Research Unit Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
25
|
Rivera-Chávez J, Ceapă CD, Figueroa M. Biological Dark Matter Exploration using Data Mining for the Discovery of Antimicrobial Natural Products. PLANTA MEDICA 2022; 88:702-720. [PMID: 35697058 DOI: 10.1055/a-1795-0562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The discovery of novel antimicrobials has significantly slowed down over the last three decades. At the same time, humans rely increasingly on antimicrobials because of the progressive antimicrobial resistance in medical practices, human communities, and the environment. Data mining is currently considered a promising option in the discovery of new antibiotics. Some of the advantages of data mining are the ability to predict chemical structures from sequence data, anticipation of the presence of novel metabolites, the understanding of gene evolution, and the corroboration of data from multiple omics technologies. This review analyzes the state-of-the-art for data mining in the fields of bacteria, fungi, and plant genomic data, as well as metabologenomics. It also summarizes some of the most recent research accomplishments in the field, all pinpointing to innovation through uncovering and implementing the next generation of antimicrobials.
Collapse
Affiliation(s)
- José Rivera-Chávez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Corina-Diana Ceapă
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Mario Figueroa
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
26
|
Gude F, Molloy EM, Horch T, Dell M, Dunbar KL, Krabbe J, Groll M, Hertweck C. A Specialized Polythioamide‐Binding Protein Confers Antibiotic Self‐Resistance in Anaerobic Bacteria. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Finn Gude
- Leibniz-Institut fur Naturstoff-Forschung und Infektionsbiologie eV Hans-Knoll-Institut Biomolecular Chemistry GERMANY
| | - Evelyn M. Molloy
- Leibniz-Institut fur Naturstoff-Forschung und Infektionsbiologie eV Hans-Knoll-Institut Biomolecular Chemistry GERMANY
| | - Therese Horch
- Leibniz-Institut fur Naturstoff-Forschung und Infektionsbiologie eV Hans-Knoll-Institut Biomolecular Chemistry GERMANY
| | - Maria Dell
- Leibniz-Institut fur Naturstoff-Forschung und Infektionsbiologie eV Hans-Knoll-Institut Biomolecular Chemistry GERMANY
| | - Kyle L. Dunbar
- Leibniz-Institut fur Naturstoff-Forschung und Infektionsbiologie eV Hans-Knoll-Institut Biomolecular Chemistry GERMANY
| | - Jana Krabbe
- Leibniz-Institut fur Naturstoff-Forschung und Infektionsbiologie eV Hans-Knoll-Institut Biomolecular Chemistry GERMANY
| | - Michael Groll
- TU München: Technische Universitat Munchen Center for Protein Assemblies GERMANY
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology, HKI Department of Biomolecular Chemistry Beutenbergstr. 11a 07745 Jena GERMANY
| |
Collapse
|
27
|
Kaluzhnaya OV, Itskovich VB. Features of Diversity of Polyketide Synthase Genes in the Community of Freshwater Sponge Baikalospongia fungiformis. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422030061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Shaheen S, Iqbal A, Ikram M, Imran M, Naz S, Ul-Hamid A, Shahzadi A, Nabgan W, Haider J, Haider A. Graphene oxide-ZnO nanorods for efficient dye degradation, antibacterial and in-silico analysis. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-02251-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Zhang H, Chen S. Cyclic peptide drugs approved in the last two decades (2001-2021). RSC Chem Biol 2022; 3:18-31. [PMID: 35128405 PMCID: PMC8729179 DOI: 10.1039/d1cb00154j] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/05/2021] [Indexed: 01/01/2023] Open
Abstract
In contrast to the major families of small molecules and antibodies, cyclic peptides, as a family of synthesizable macromolecules, have distinct biochemical and therapeutic properties for pharmaceutical applications. Cyclic peptide-based drugs have increasingly been developed in the past two decades, confirming the common perception that cyclic peptides have high binding affinities and low metabolic toxicity as antibodies, good stability and ease of manufacture as small molecules. Natural peptides were the major source of cyclic peptide drugs in the last century, and cyclic peptides derived from novel screening and cyclization strategies are the new source. In this review, we will discuss and summarize 18 cyclic peptides approved for clinical use in the past two decades to provide a better understanding of cyclic peptide development and to inspire new perspectives. The purpose of the present review is to promote efforts to resolve the challenges in the development of cyclic peptide drugs that are more effective.
Collapse
Affiliation(s)
- Huiya Zhang
- Biotech Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Shiyu Chen
- Biotech Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| |
Collapse
|
30
|
da Rosa CE, Pinilla CMB, Stincone P, Pereira JQ, Varela APM, Mayer FQ, Brandelli A. Genomic characterization and production of antimicrobial lipopeptides by Bacillus velezensis P45 growing on feather by-products. J Appl Microbiol 2021; 132:2067-2079. [PMID: 34811844 DOI: 10.1111/jam.15363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/02/2021] [Accepted: 11/10/2021] [Indexed: 11/26/2022]
Abstract
AIMS To investigate the potential of novel Bacillus velezensis P45 as an eco-friendly alternative for bioprocessing poultry by-products into valuable antimicrobial products. METHODS AND RESULTS The complete genome of B. velezensis P45 was sequenced using the Illumina MiSeq platform, showing 4455 protein and 98 RNA coding sequences according to the annotation on the RAST server. Moreover, the genome contains eight gene clusters for the production of antimicrobial secondary metabolites and 25 putative protease-related genes, which can be related to feather-degrading activity. Then, in vitro tests were performed to determine the production of antimicrobial compounds using feather, feather meal and brain-heart infusion (BHI) cultures. Antimicrobial activity was observed in feather meal and BHI media, reaching 800 and 3200 AU ml-1 against Listeria monocytogenes respectively. Mass spectrometry analysis indicates the production of antimicrobial lipopeptides surfactin, fengycin and iturin. CONCLUSIONS The biotechnological potential of B. velezensis P45 was deciphered through genome analysis and in vitro studies. This strain produced antimicrobial lipopeptides growing on feather meal, a low-cost substrate. SIGNIFICANCE AND IMPACT OF STUDY The production of antimicrobial peptides by this keratinolytic strain may represent a sustainable alternative for recycling by-products from poultry industry. Furthermore, whole B. velezensis P45 genome sequence was obtained and deposited.
Collapse
Affiliation(s)
- Carolini Esmeriz da Rosa
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Paolo Stincone
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jamile Queiroz Pereira
- Instituto Federal de Educação, Ciência e Tecnologia Farroupilha, Frederico Westphalen, Brazil
| | - Ana Paula Muterle Varela
- Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária e Desenvolvimento Rural Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor, Eldorado do Sul, Brazil
| | - Fabiana Quoos Mayer
- Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária e Desenvolvimento Rural Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor, Eldorado do Sul, Brazil
| | - Adriano Brandelli
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
31
|
Kumar V, Singh B, van Belkum MJ, Diep DB, Chikindas ML, Ermakov AM, Tiwari SK. Halocins, natural antimicrobials of Archaea: Exotic or special or both? Biotechnol Adv 2021; 53:107834. [PMID: 34509601 DOI: 10.1016/j.biotechadv.2021.107834] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 01/16/2023]
Abstract
Haloarchaea are adapted to survive under extreme saline conditions by accumulating osmolytes and salts to counteract the high osmotic pressure in their habitats. As a consequence, their proteins have evolved to remain active, or even most active, at very high ionic strength. Halocins are proteinaceous antimicrobial substances that are ribosomally-synthesized by haloarchaea and they provide the producers an advantage in the competition for nutrients and ecological niches. These antimicrobials are stable at high temperature, elevated salt concentrations, and alkaline pH conditions. These properties have endowed them with great potential in diverse biotechnological applications, which involve extreme processing conditions (such as high salt concentrations, high pressure, or high temperatures). They kill target cells by inhibition of Na+/H+ antiporter in the membrane or modification/disruption of the cell membrane leading to cell lysis. In general, the taxonomy of haloarchaea and their typical phenotypic and genotypic characteristics are well studied; however, information regarding their halocins, especially aspects related to genetics, biosynthetic pathways, mechanism of action, and structure-function relationship is very limited. A few studies have demonstrated the potential applications of halocins in the preservation of salted food products and brine-cured hides in leather industries, protecting the myocardium from ischemia and reperfusion injury, as well as from life-threatening diseases such as cardiac arrest and cancers. In recent years, genome mining has been an essential tool to decipher the genetic basis of halocin biosynthesis. Nevertheless, this is likely the tip of the iceberg as genome analyses have revealed many putative halocins in databases waiting for further investigation. Identification and characterization of this source of halocins may lead to antimicrobials for future therapeutics and/or food preservation. Hence, the present review analyzes different aspects of halocins such as biosynthesis, mechanism of action against target cells, and potential biotechnological applications.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Genetics, Maharshi Dayanand University, Rohtak 124001, Haryana, India; Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Bijender Singh
- Department of Biotechnology, Central University of Haryana, Jant-Pali 123031, Mahendergarh, Haryana, India; Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Marco J van Belkum
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Dzung B Diep
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås 1430, Norway
| | - Michael L Chikindas
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08901, USA; Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don 344002, Russia; I. M. Sechenov First Moscow State Medical University, Moscow 119435, Russia
| | - Alexey M Ermakov
- I. M. Sechenov First Moscow State Medical University, Moscow 119435, Russia
| | - Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| |
Collapse
|
32
|
Sepúlveda-Correa A, Daza-Giraldo LV, Polanía J, Arenas NE, Muñoz-García A, Sandoval-Figueredo AV, Vanegas J. Genes associated with antibiotic tolerance and synthesis of antimicrobial compounds in a mangrove with contrasting salinities. MARINE POLLUTION BULLETIN 2021; 171:112740. [PMID: 34304060 DOI: 10.1016/j.marpolbul.2021.112740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/22/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Salinity and wastewater pollution in mangrove ecosystems can affect microorganisms and the abundance of genes involved in response to these stressors. This research aimed to identify genes associated with resistance and biosynthesis of antimicrobial compounds in mangrove soils subjected to contrasting salinities and wastewater pollution. Samples of rhizospheric soil were taken from a mangrove at the mouth of the Ranchería River in La Guajira, Colombia. A functional analysis was performed using Illumina HiSeq 2500 sequencing data obtained from total DNA extracted. Increased salt concentration influenced metabolic pathways and differential abundance of genes associated with the synthesis of antimicrobial compounds (e.g., rfbB/rffG, INO1/ISYNA1, rfbA/rffH, sat/met3, asd). Also, among 33 genes involved in intrinsic antibiotic resistance, 16 were significantly influenced by salinity (e.g., cusR/copR/silR, vgb, tolC). We concluded that salt stress tolerance and adaptive mechanisms could favor the biosynthesis of antimicrobial compounds in mangroves contaminated by sewage.
Collapse
Affiliation(s)
| | | | - Jaime Polanía
- Universidad Nacional de Colombia Sede Medellín, Cra. 65 #59a-110, Medellín, Colombia
| | - Nelson E Arenas
- Universidad Antonio Nariño, Sede Circunvalar, Cra 3 Este No. 47 A 15, Bogotá, Colombia
| | | | | | - Javier Vanegas
- Universidad Antonio Nariño, Sede Circunvalar, Cra 3 Este No. 47 A 15, Bogotá, Colombia.
| |
Collapse
|
33
|
Washburn LA, Nepal KK, Watanabe CMH. A Capture Strategy for the Identification of Thio-Templated Metabolites. ACS Chem Biol 2021; 16:1737-1744. [PMID: 34423966 DOI: 10.1021/acschembio.1c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nonribosomal peptide synthetase and polyketide synthase systems are home to complex enzymology and produce compounds of great therapeutic value. Despite this, they have continued to be difficult to characterize due to their substrates remaining enzyme-bound by a thioester bond. Here, we have developed a strategy to directly trap and characterize the thioester-bound enzyme intermediates and applied the strategy to the azinomycin biosynthetic pathway. The approach was initially applied in vitro to evaluate its efficacy and subsequently moved to an in situ system, where a protein of interest was isolated from the native organism to avoid needing to supply substrates. When the nonribosomal peptide synthetase AziA3 was isolated from Streptomyces sahachiroi, the capture strategy revealed AziA3 functions in the late stages of epoxide moiety formation of the azinomycins. The strategy was further validated in vitro with a nonribosomal peptide synthetase involved in colibactin biosynthesis. In the long term, this method will be utilized to characterize thioester-bound metabolites within not only the azinomycin biosynthetic pathway but also other cryptic metabolite pathways.
Collapse
Affiliation(s)
- Lauren A. Washburn
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Keshav K. Nepal
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Coran M. H. Watanabe
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
34
|
Peterson SB, Bertolli SK, Mougous JD. The Central Role of Interbacterial Antagonism in Bacterial Life. Curr Biol 2021; 30:R1203-R1214. [PMID: 33022265 DOI: 10.1016/j.cub.2020.06.103] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The study of bacteria interacting with their environment has historically centered on strategies for obtaining nutrients and resisting abiotic stresses. We argue this focus has deemphasized a third facet of bacterial life that is equally central to their existence: namely, the threat to survival posed by antagonizing bacteria. The diversity and ubiquity of interbacterial antagonism pathways is becoming increasingly apparent, and the insidious manner by which interbacterial toxins disarm their targets emphasizes the highly evolved nature of these processes. Studies examining the role of antagonism in natural communities reveal it can serve many functions, from facilitating colonization of naïve habitats to maintaining bacterial community stability. The pervasiveness of antagonistic pathways is necessarily matched by an equally extensive array of defense strategies. These overlap with well characterized, central stress response pathways, highlighting the contribution of bacterial interactions to shaping cell physiology. In this review, we build the case for the ubiquity and importance of interbacterial antagonism.
Collapse
Affiliation(s)
- S Brook Peterson
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Savannah K Bertolli
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Joseph D Mougous
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
35
|
Leinberger J, Holste J, Bunk B, Freese HM, Spröer C, Dlugosch L, Kück AC, Schulz S, Brinkhoff T. High Potential for Secondary Metabolite Production of Paracoccus marcusii CP157, Isolated From the Crustacean Cancer pagurus. Front Microbiol 2021; 12:688754. [PMID: 34262548 PMCID: PMC8273931 DOI: 10.3389/fmicb.2021.688754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Secondary metabolites are key components in microbial ecology by mediating interactions between bacteria and their environment, neighboring species or host organisms. Bioactivities can be beneficial for both interaction partners or provide a competitive advantage only for the producer. Colonizers of confined habitats such as biofilms are known as prolific producers of a great number of bioactive secondary metabolites and are a potential source for novel compounds. We investigated the strain Paracoccus marcusii CP157, which originates from the biofilm on the carapace of a shell disease-affected Cancer pagurus specimen, for its potential to produce bioactive secondary metabolites. Its closed genome contains 22 extrachromosomal elements and several gene clusters potentially involved in biosynthesis of bioactive polyketides, bacteriocins, and non-ribosomal peptides. Culture extracts of CP157 showed antagonistic activities against bacteria from different phyla, but also against microalgae and crustacean larvae. Different HPLC-fractions of CP157 culture extracts had antibacterial properties, indicating that several bioactive compounds are produced by CP157. The bioactive extract contains several small, antibacterial compounds that partially withstand elevated temperatures, extreme pH values and exposure to proteolytic enzymes, providing high stability toward environmental conditions in the natural habitat of CP157. Further, screening of 17 Paracoccus spp. revealed that antimicrobial activity, hemolysis and production of N-acyl homoserine lactones are common features within the genus. Taking into account the large habitat diversity and phylogenetic distance of the tested strains, we hypothesize that bioactive secondary metabolites play a central role in the ecology of Paracoccus spp. in their natural environments.
Collapse
Affiliation(s)
- Janina Leinberger
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Jonas Holste
- Institute of Organic Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Boyke Bunk
- Leibniz-Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Heike M. Freese
- Leibniz-Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz-Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Leon Dlugosch
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Anna-Carlotta Kück
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
36
|
Screening of Antibiotic Gene Clusters in Microorganisms Isolated from Wood. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2296:151-165. [PMID: 33977446 DOI: 10.1007/978-1-0716-1358-0_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The biosphere of Earth is made up of a variety of ecosystems governed by complex biological interactions, some of them mediated by microbial bioactive secondary metabolites. These metabolites such as antibiotics (e.g., polyketides and nonribosomal peptides) have been receiving increasing attention, due to their multiple pharmaceutical uses. Besides, antibiotic resistance is on the rise, and it is currently regarded as one of the greatest threats to global human health. The screening of novel antimicrobial polyketides and nonribosomal peptides in poorly studied ecosystems is an interesting alternative to address the problem of antibiotic resistance. This chapter updates a molecular method to identify antibiotics gene clusters and their subsequent production and activity validation. On the one hand, a PCR method based on degenerated primers for nonribosomal peptide synthases (NRPS) and the polyketide synthases (PKS) genes is used as an initial fast screening. On the other hand, a bioassay-based method is the protocol selected for the production confirmation and antibacterial effect estimation. These methods are applied to screen Actinobacteria and Penicillium species as main antibiotic producers isolated from wood.
Collapse
|
37
|
Gutiérrez-Chávez C, Benaud N, Ferrari BC. The ecological roles of microbial lipopeptides: Where are we going? Comput Struct Biotechnol J 2021; 19:1400-1413. [PMID: 33777336 PMCID: PMC7960500 DOI: 10.1016/j.csbj.2021.02.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/30/2022] Open
Abstract
Lipopeptides (LPs) are secondary metabolites produced by a diversity of bacteria and fungi. Their unique chemical structure comprises both a peptide and a lipid moiety. LPs are of major biotechnological interest owing to their emulsification, antitumor, immunomodulatory, and antimicrobial activities. To date, these versatile compounds have been applied across multiple industries, from pharmaceuticals through to food processing, cosmetics, agriculture, heavy metal, and hydrocarbon bioremediation. The variety of LP structures and the diversity of the environments from which LP-producing microorganisms have been isolated suggest important functions in their natural environment. However, our understanding of the ecological role of LPs is limited. In this review, the mode of action and the role of LPs in motility, antimicrobial activity, heavy metals removal and biofilm formation are addressed. We include discussion on the need to characterise LPs from a diversity of microorganisms, with a focus on taxa inhabiting 'extreme' environments. We introduce the use of computational target fishing and molecular dynamics simulations as powerful tools to investigate the process of interaction between LPs and cell membranes. Together, these advances will provide new understanding of the mechanism of action of novel LPs, providing greater insights into the roles of LPs in the natural environment.
Collapse
Affiliation(s)
| | - Nicole Benaud
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney 2052, Australia
| | - Belinda C Ferrari
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney 2052, Australia
| |
Collapse
|
38
|
Chan EWL, Chin MY, Low YH, Tan HY, Ooi YS, Chong CW. The Antibacterial Agent Identified from Acidocella spp. in the Fluid of Nepenthes gracilis Against Multidrug-Resistant Klebsiella pneumoniae: A Functional Metagenomic Approach. Microb Drug Resist 2020; 27:1018-1028. [PMID: 33325795 DOI: 10.1089/mdr.2020.0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aims: The fluid of Nepenthes gracilis harbors diverse bacterial taxa that could serve as a gene pool for the discovery of the new genre of antimicrobial agents against multidrug-resistant Klebsiella pneumoniae. The aim of this study was to explore the presence of antibacterial genes in the fluids of N. gracilis growing in the wild. Methods: Using functional metagenomic approach, fosmid clones were isolated and screened for antibacterial activity against three strains of K. pneumoniae. A clone that exhibited the most potent antibacterial activity was sent for sequencing to identify the genes responsible for the observed activity. The secondary metabolites secreted by the selected clone was sequentially extracted using hexane, chloroform, and ethyl acetate. The chemical profiles of a clone (C6) hexane extract were determined by gas chromatography/mass spectrometry (GC-MS). Results: Fosmid clone C6 from the fluid of pitcher plant that exhibited antibacterial activity against three strains of K. pneumoniae was isolated using functional metagenome approach. A majority of the open reading frames detected from C6 were affiliated with the largely understudied Acidocella genus. Among them, the gene that encodes for coproporphyrinogen III oxidase in the heme biosynthesis pathway could be involved in the observed antibacterial activity. Based on the GC-MS analysis, the identities of the putative bioactive compounds were 2,5-di-tert-butylphenol and 1-ethyl-2-methyl cyclododecane. Conclusions: The gene that encodes for coproporphyrinogen III oxidase in the heme biosynthesis pathway as well as the secondary metabolites, namely 2,5-di-tert-butylphenol and 1-ethyl-2-methyl cyclododecane could be the potential antibacterial molecules responsible for the antibacterial activity of C6.
Collapse
Affiliation(s)
- Elaine Wan Ling Chan
- Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur, Malaysia
| | - Mei Yu Chin
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Yi Hui Low
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Hui Yin Tan
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Yi Sing Ooi
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Chun Wie Chong
- Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur, Malaysia.,School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
39
|
Pahalagedara ASNW, Flint S, Palmer J, Subbaraj A, Brightwell G, Gupta TB. Antimicrobial Activity of Soil Clostridium Enriched Conditioned Media Against Bacillus mycoides, Bacillus cereus, and Pseudomonas aeruginosa. Front Microbiol 2020; 11:608998. [PMID: 33343553 PMCID: PMC7746556 DOI: 10.3389/fmicb.2020.608998] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
The rise of antimicrobial resistant bacteria has fast-tracked the exploration for novel antimicrobial compounds. Reports on antimicrobial producing soil anaerobes such as Clostridium spp. are very limited. In the present study, the antimicrobial activity of soil Clostridium enriched conditioned/spent media (CMs) against Bacillus mycoides, Bacillus cereus and Pseudomonas aeruginosa was assessed by turbidimetric growth inhibition assay. Our results highlighted the antimicrobial potential of soil Clostridium enriched conditioned media against pathogenic and spoilage bacteria. Farm 4 soil conditioned medium (F4SCM) demonstrated a greater growth inhibition activity against all three tested microorganisms in comparison to other soil conditioned media. Non-targeted metabolite profiling of all soil conditioned media revealed distinctive polar and intermediate-polar metabolites in F4SCM, consistent with its strong antimicrobial property. Moreover, 539 significantly abundant metabolites including some unique features were detected in F4SCM suggesting its substantial and specialized chemical diversity. This study putatively identified seven significantly high metabolites in F4SCM; 3-hydroxyphenylacetic acid, γ-aminobutyric acid, creatine, tryptamine, and 2-hydroxyisocaproic acid. Tryptamine and 2-hydroxyisocaproic acid were previously reported to have antimicrobial properties. The present study shows that soil Clostridium spp. are a promising group of bacteria producing metabolites with antimicrobial activity and provides future prospects for clostridial antimicrobial discovery within their metabolic diversity.
Collapse
Affiliation(s)
- Amila Srilal Nawarathna Weligala Pahalagedara
- Food Assurance team, AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, New Zealand.,School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Steve Flint
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Jon Palmer
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Arvind Subbaraj
- Proteins and Metabolites team, AgResearch Ltd., Lincoln Research Centre, Lincoln, New Zealand
| | - Gale Brightwell
- Food Assurance team, AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| | - Tanushree Barua Gupta
- Food Assurance team, AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
40
|
Microbial single-cell omics: the crux of the matter. Appl Microbiol Biotechnol 2020; 104:8209-8220. [PMID: 32845367 PMCID: PMC7471194 DOI: 10.1007/s00253-020-10844-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/08/2020] [Accepted: 08/17/2020] [Indexed: 01/10/2023]
Abstract
Abstract Single-cell genomics and transcriptomics can provide reliable context for assembled genome fragments and gene expression activity on the level of individual prokaryotic genomes. These methods are rapidly emerging as an essential complement to cultivation-based, metagenomics, metatranscriptomics, and microbial community-focused research approaches by allowing direct access to information from individual microorganisms, even from deep-branching phylogenetic groups that currently lack cultured representatives. Their integration and binning with environmental ‘omics data already provides unprecedented insights into microbial diversity and metabolic potential, enabling us to provide information on individual organisms and the structure and dynamics of natural microbial populations in complex environments. This review highlights the pitfalls and recent advances in the field of single-cell omics and its importance in microbiological and biotechnological studies. Key points • Single-cell omics expands the tree of life through the discovery of novel organisms, genes, and metabolic pathways. • Disadvantages of metagenome-assembled genomes are overcome by single-cell omics. • Functional analysis of single cells explores the heterogeneity of gene expression. • Technical challenges still limit this field, thus prompting new method developments.
Collapse
|
41
|
Lin Z, Nielsen J, Liu Z. Bioprospecting Through Cloning of Whole Natural Product Biosynthetic Gene Clusters. Front Bioeng Biotechnol 2020; 8:526. [PMID: 32582659 PMCID: PMC7290108 DOI: 10.3389/fbioe.2020.00526] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Since the discovery of penicillin, natural products and their derivatives have been a valuable resource for drug discovery. With recent development of genome mining approaches in the post-genome era, a great number of natural product biosynthetic gene clusters (BGCs) have been identified and these can potentially be exploited for the discovery of novel natural products that can find application as pharmaceuticals. Since many BGCs are silent or do not express in native hosts under laboratory conditions, heterologous expression of BGCs in genetically tractable hosts becomes an attractive route to activate these BGCs to discover the corresponding products. Here, we highlight recent achievements in cloning and discovery of natural product biosynthetic pathways via intact BGC capturing, and discuss the prospects of high-throughput and multiplexed cloning of rational-designed gene clusters in the future.
Collapse
Affiliation(s)
- Zhenquan Lin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jens Nielsen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.,BioInnovation Institute, Copenhagen, Denmark
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|