1
|
Isogai S, Nishimura A, Inoue A, Sonohara S, Tsugukuni T, Takagi H. Functional analysis of a S-adenosylmethionine-insensitive methylenetetrahydrofolate reductase identified in methionine-accumulating yeast mutants. Biosci Biotechnol Biochem 2024; 89:124-132. [PMID: 39496525 DOI: 10.1093/bbb/zbae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024]
Abstract
Essential amino acids (EAAs) are important for the maintenance of brain functions. Therefore, the yeast Saccharomyces cerevisiae that accumulates EAAs would help elderly people ingest appropriate levels of EAAs, which in turn could slow neurodegeneration, extend the healthy lifespan, and improve quality of life. Here, we isolated 2 mutant strains, ETH-80 and ETH-129, that accumulate the EAA methionine. Both strains were derived from a diploid laboratory yeast by conventional mutagenesis and carry a novel mutation in the MET13 gene, which encodes the Ser443Phe variant of methylenetetrahydrofolate reductase. Enzymatic analysis revealed that the Ser443Phe substitution abolished the sensitivity to S-adenosyl methionine (SAM)-mediated inhibition even in the presence of 2 m m SAM, while increasing the activity for NADPH-dependent reduction. Furthermore, yeast cells expressing the Ser443Phe variant showed a 4-fold increase in intracellular methionine content compared to the wild-type Met13. These findings will be useful for the future development of methionine-accumulating yeast strains.
Collapse
Affiliation(s)
- Shota Isogai
- Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Akira Nishimura
- Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Akiko Inoue
- Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Shino Sonohara
- Plant Bio Business Unit, Musashi Seimitsu Industry Co., Ltd., Toyohashi, Aichi, Japan
| | - Takashi Tsugukuni
- Plant Bio Business Unit, Musashi Seimitsu Industry Co., Ltd., Toyohashi, Aichi, Japan
| | - Hiroshi Takagi
- Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| |
Collapse
|
2
|
Kobayashi K, Taguchi YH. Gene Selection of Methionine-Dependent Melanoma and Independent Melanoma by Variable Selection Using Tensor Decomposition. Genes (Basel) 2024; 15:1543. [PMID: 39766809 PMCID: PMC11675770 DOI: 10.3390/genes15121543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Methionine is an essential amino acid. Dietary methionine restriction is associated with decreased tumor growth in preclinical studies and extended lifespans in animal models. The mechanism by which methionine restriction inhibits tumor growth while sparing normal cells is not fully understood. In this study, we applied tensor decomposition-based feature extraction for gene selection from the gene expression profiles of two cell lines of RNA sequencing. We compared two human melanoma cell lines, A101D and MeWo. A101D is a typical cancer cell line that exhibits methionine dependence. MeWo is a methionine-independent cell line. We used the application on R, TDbasedUFE, to perform an enrichment analysis of the selected gene set. Consequently, concordance with existing research on the differences between methionine-dependent melanoma and methionine-independent melanoma was confirmed. Targeting methionine metabolism is considered a promising strategy for treating melanoma and other cancers.
Collapse
Affiliation(s)
- Kenta Kobayashi
- Graduate School of Science and Engineering, Chuo University, Tokyo 112-8551, Japan
| | - Y-h. Taguchi
- Department of Physics, Chuo University, Tokyo 112-8551, Japan;
| |
Collapse
|
3
|
Panmanee W, Tran MTH, Seye SN, Strome ED. Altered S-AdenosylMethionine availability impacts dNTP pools in Saccharomyces cerevisiae. Yeast 2024; 41:513-524. [PMID: 38961653 PMCID: PMC12044341 DOI: 10.1002/yea.3973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/30/2024] [Accepted: 06/22/2024] [Indexed: 07/05/2024] Open
Abstract
Saccharomyces cerevisiae has long been used as a model organism to study genome instability. The SAM1 and SAM2 genes encode AdoMet synthetases, which generate S-AdenosylMethionine (AdoMet) from Methionine (Met) and ATP. Previous work from our group has shown that deletions of the SAM1 and SAM2 genes cause changes to AdoMet levels and impact genome instability in opposite manners. AdoMet is a key product of methionine metabolism and the major methyl donor for methylation events of proteins, RNAs, small molecules, and lipids. The methyl cycle is interrelated to the folate cycle which is involved in de novo synthesis of purine and pyrimidine deoxyribonucleotides (dATP, dTTP, dCTP, and dGTP). AdoMet also plays a role in polyamine production, essential for cell growth and used in detoxification of reactive oxygen species (ROS) and maintenance of the redox status in cells. This is also impacted by the methyl cycle's role in production of glutathione, another ROS scavenger and cellular protectant. We show here that sam2∆/sam2∆ cells, previously characterized with lower levels of AdoMet and higher genome instability, have a higher level of each dNTP (except dTTP), contributing to a higher overall dNTP pool level when compared to wildtype. Unchecked, these increased levels can lead to multiple types of DNA damage which could account for the genome instability increases in these cells.
Collapse
Affiliation(s)
- Warunya Panmanee
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, Kentucky, USA
| | - Men T H Tran
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, Kentucky, USA
| | - Serigne N Seye
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, Kentucky, USA
| | - Erin D Strome
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, Kentucky, USA
| |
Collapse
|
4
|
Church MC, Workman JL. The SWI/SNF chromatin remodeling complex: a critical regulator of metabolism. Biochem Soc Trans 2024; 52:1327-1337. [PMID: 38666605 PMCID: PMC11346436 DOI: 10.1042/bst20231141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/27/2024]
Abstract
The close relationship between chromatin and metabolism has been well-studied in recent years. Many metabolites have been found to be cofactors used to modify chromatin, and these modifications can in turn affect gene transcription. One chromatin-associated factor responsible for regulating transcription is the SWI/SNF complex, an ATP-dependent chromatin remodeler conserved throughout eukaryotes. SWI/SNF was originally described in yeast as regulating genes involved in carbon source metabolism and mating type switching, and its mammalian counterpart has been extensively studied for its role in diseases such as cancer. The yeast SWI/SNF complex is closely associated with activation of stress response genes, many of which have metabolic functions. It is now recognized that this is a conserved function of the complex, and recent work has shown that mammalian SWI/SNF is also a key regulator of metabolic transcription. Emerging evidence suggests that loss of SWI/SNF introduces vulnerabilities to cells due to this metabolic influence, and that this may present opportunities for treatment of SWI/SNF-deficient cancers.
Collapse
Affiliation(s)
- Michael C. Church
- Stowers Institute of Medical Research, 1000 E 50th Street, Kansas City, MO 64118, U.S.A
| | - Jerry L. Workman
- Stowers Institute of Medical Research, 1000 E 50th Street, Kansas City, MO 64118, U.S.A
| |
Collapse
|
5
|
Xie CY, Su RR, Wu B, Sun ZY, Tang YQ. Response mechanisms of different Saccharomyces cerevisiae strains to succinic acid. BMC Microbiol 2024; 24:158. [PMID: 38720268 PMCID: PMC11077785 DOI: 10.1186/s12866-024-03314-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND The production of succinic acid (SA) from biomass has attracted worldwide interest. Saccharomyces cerevisiae is preferred for SA production due to its strong tolerance to low pH conditions, ease of genetic manipulation, and extensive application in industrial processes. However, when compared with bacterial producers, the SA titers and productivities achieved by engineered S. cerevisiae strains were relatively low. To develop efficient SA-producing strains, it's necessary to clearly understand how S. cerevisiae cells respond to SA. RESULTS In this study, we cultivated five S. cerevisiae strains with different genetic backgrounds under different concentrations of SA. Among them, KF7 and NBRC1958 demonstrated high tolerance to SA, whereas NBRC2018 displayed the least tolerance. Therefore, these three strains were chosen to study how S. cerevisiae responds to SA. Under a concentration of 20 g/L SA, only a few differentially expressed genes were observed in three strains. At the higher concentration of 60 g/L SA, the response mechanisms of the three strains diverged notably. For KF7, genes involved in the glyoxylate cycle were significantly downregulated, whereas genes involved in gluconeogenesis, the pentose phosphate pathway, protein folding, and meiosis were significantly upregulated. For NBRC1958, genes related to the biosynthesis of vitamin B6, thiamin, and purine were significantly downregulated, whereas genes related to protein folding, toxin efflux, and cell wall remodeling were significantly upregulated. For NBRC2018, there was a significant upregulation of genes connected to the pentose phosphate pathway, gluconeogenesis, fatty acid utilization, and protein folding, except for the small heat shock protein gene HSP26. Overexpression of HSP26 and HSP42 notably enhanced the cell growth of NBRC1958 both in the presence and absence of SA. CONCLUSIONS The inherent activities of small heat shock proteins, the levels of acetyl-CoA and the strains' potential capacity to consume SA all seem to affect the responses and tolerances of S. cerevisiae strains to SA. These factors should be taken into consideration when choosing host strains for SA production. This study provides a theoretical basis and identifies potential host strains for the development of robust and efficient SA-producing strains.
Collapse
Affiliation(s)
- Cai-Yun Xie
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China
| | - Ran-Ran Su
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China
| | - Bo Wu
- Biogas Institute of Ministry of Agriculture, Renmin Rd. 4-13, Chengdu, 610041, Sichuan, China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China.
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China.
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
6
|
De Guidi I, Serre C, Noble J, Ortiz-Julien A, Blondin B, Legras JL. QTL mapping reveals novel genes and mechanisms underlying variations in H2S production during alcoholic fermentation in Saccharomyces cerevisiae. FEMS Yeast Res 2024; 24:foad050. [PMID: 38124683 PMCID: PMC11090286 DOI: 10.1093/femsyr/foad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/13/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Saccharomyces cerevisiae requirement for reduced sulfur to synthesize methionine and cysteine during alcoholic fermentation, is mainly fulfilled through the sulfur assimilation pathway. Saccharomyces cerevisiae reduces sulfate into sulfur dioxide (SO2) and sulfide (H2S), whose overproduction is a major issue in winemaking, due to its negative impact on wine aroma. The amount of H2S produced is highly strain-specific and also depends on SO2 concentration, often added to grape must. Applying a bulk segregant analysis to a 96-strain-progeny derived from two strains with different abilities to produce H2S, and comparing allelic frequencies along the genome of pools of segregants producing contrasting H2S quantities, we identified two causative regions involved in H2S production in the presence of SO2. A functional genetic analysis allowed the identification of variants in four genes able to impact H2S formation, viz; ZWF1, ZRT2, SNR2, and YLR125W, and involved in functions and pathways not associated with sulfur metabolism until now. These data point out that, in wine fermentation conditions, redox status, and zinc homeostasis are linked to H2S formation while providing new insights into the regulation of H2S production, and a new vision of the interplay between the sulfur assimilation pathway and cell metabolism.
Collapse
Affiliation(s)
- Irene De Guidi
- SPO, Université de Montpellier, INRAE, Institut Agro, Montpellier 34060, France
| | - Céline Serre
- SPO, Université de Montpellier, INRAE, Institut Agro, Montpellier 34060, France
| | | | | | - Bruno Blondin
- SPO, Université de Montpellier, INRAE, Institut Agro, Montpellier 34060, France
| | - Jean-Luc Legras
- SPO, Université de Montpellier, INRAE, Institut Agro, Montpellier 34060, France
| |
Collapse
|
7
|
Batista JM, Neves MJ, Menezes HC, Cardeal ZL. Evaluation of amino acid profile by targeted metabolomics in the eukaryotic model under exposure of benzo[a]pyrene as the exclusive stressor. Talanta 2023; 265:124859. [PMID: 37393711 DOI: 10.1016/j.talanta.2023.124859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/09/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023]
Abstract
Amino acids (AAs) are a class of important metabolites in metabolomics methodology that investigates metabolite changes in a cell, tissue, or organism for early diagnosis of diseases. Benzo[a]pyrene (BaP) is considered a priority contaminant by different environmental control agencies because it is a proven carcinogenic compound for humans. Therefore, it is important to evaluate the BaP interference in the metabolism of amino acids. In this work, a new amino acid extraction procedure (derivatized with propyl chloroformate/propanol) using functionalized magnetic carbon nanotubes was developed and optimized. A hybrid nanotube was used followed by desorption without heating, and excellent extraction of analytes was obtained. After exposure of Saccharomyces cerevisiae, the BaP concentration of 25.0 μmol L-1 caused changes in cell viability, indicating metabolic changes. A fast and efficient GC/MS method using a Phenomenex ZB-AAA column was optimized, enabling the determination of 16 AAs in yeasts exposed or not to BaP. A comparison of AA concentrations obtained in the two experimental groups showed that glycine (Gly), serine (Ser), phenylalanine (Phe), proline (Pro), asparagine (Asn), aspartic acid (Asp), glutamic acid (Glu), tyrosine (Tyr), and leucine (Leu) statistically differentiated, after subsequent application of ANOVA with Bonferroni post-hoc test, with a confidence level of 95%. This amino acid pathway analysis confirmed previous studies that revealed the potential of these AAs as toxicity biomarker candidates.
Collapse
Affiliation(s)
- Josimar M Batista
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270901, Belo Horizonte, MG, Brazil
| | - Maria J Neves
- Nuclear Technology Development Center/National Nuclear Energy Commission (CDTN/CNEN), Belo Horizonte, MG, Brazil
| | - Helvécio C Menezes
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270901, Belo Horizonte, MG, Brazil
| | - Zenilda L Cardeal
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
8
|
Purtov YA, Ozoline ON. Neuromodulators as Interdomain Signaling Molecules Capable of Occupying Effector Binding Sites in Bacterial Transcription Factors. Int J Mol Sci 2023; 24:15863. [PMID: 37958845 PMCID: PMC10647483 DOI: 10.3390/ijms242115863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Hormones and neurotransmitters are important components of inter-kingdom signaling systems that ensure the coexistence of eukaryotes with their microbial community. Their ability to affect bacterial physiology, metabolism, and gene expression was evidenced by various experimental approaches, but direct penetration into bacteria has only recently been reported. This opened the possibility of considering neuromodulators as potential effectors of bacterial ligand-dependent regulatory proteins. Here, we assessed the validity of this assumption for the neurotransmitters epinephrine, dopamine, and norepinephrine and two hormones (melatonin and serotonin). Using flexible molecular docking for transcription factors with ligand-dependent activity, we assessed the ability of neuromodulators to occupy their effector binding sites. For many transcription factors, including the global regulator of carbohydrate metabolism, CRP, and the key regulator of lactose assimilation, LacI, this ability was predicted based on the analysis of several 3D models. By occupying the ligand binding site, neuromodulators can sterically hinder the interaction of the target proteins with the natural effectors or even replace them. The data obtained suggest that the direct modulation of the activity of at least some bacterial transcriptional factors by neuromodulators is possible. Therefore, the natural hormonal background may be a factor that preadapts bacteria to the habitat through direct perception of host signaling molecules.
Collapse
Affiliation(s)
- Yuri A. Purtov
- Department of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Olga N. Ozoline
- Department of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia
| |
Collapse
|
9
|
Church MC, Price A, Li H, Workman JL. The Swi-Snf chromatin remodeling complex mediates gene repression through metabolic control. Nucleic Acids Res 2023; 51:10278-10291. [PMID: 37650639 PMCID: PMC10602859 DOI: 10.1093/nar/gkad711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/02/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
In eukaryotes, ATP-dependent chromatin remodelers regulate gene expression in response to nutritional and metabolic stimuli. However, altered transcription of metabolic genes may have significant indirect consequences which are currently poorly understood. In this study, we use genetic and molecular approaches to uncover a role for the remodeler Swi-Snf as a critical regulator of metabolism. We find that snfΔ mutants display a cysteine-deficient phenotype, despite growth in nutrient-rich media. This correlates with widespread perturbations in sulfur metabolic gene transcription, including global redistribution of the sulfur-sensing transcription factor Met4. Our findings show how a chromatin remodeler can have a significant impact on a whole metabolic pathway by directly regulating an important gene subset and demonstrate an emerging role for chromatin remodeling complexes as decisive factors in metabolic control.
Collapse
Affiliation(s)
- Michael C Church
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Andrew Price
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Hua Li
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| |
Collapse
|
10
|
Scott J, Amich J. The role of methionine synthases in fungal metabolism and virulence. Essays Biochem 2023; 67:853-863. [PMID: 37449444 DOI: 10.1042/ebc20230007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
Methionine synthases (MetH) catalyse the methylation of homocysteine (Hcy) with 5-methyl-tetrahydrofolate (5, methyl-THF) acting as methyl donor, to form methionine (Met) and tetrahydrofolate (THF). This function is performed by two unrelated classes of enzymes that differ significantly in both their structures and mechanisms of action. The genomes of plants and many fungi exclusively encode cobalamin-independent enzymes (EC.2.1.1.14), while some fungi also possess proteins from the cobalamin-dependent (EC.2.1.1.13) family utilised by humans. Methionine synthase's function connects the methionine and folate cycles, making it a crucial node in primary metabolism, with impacts on important cellular processes such as anabolism, growth and synthesis of proteins, polyamines, nucleotides and lipids. As a result, MetHs are vital for the viability or virulence of numerous prominent human and plant pathogenic fungi and have been proposed as promising broad-spectrum antifungal drug targets. This review provides a summary of the relevance of methionine synthases to fungal metabolism, their potential as antifungal drug targets and insights into the structures of both classes of MetH.
Collapse
Affiliation(s)
- Jennifer Scott
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jorge Amich
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| |
Collapse
|
11
|
da Silva JP, Meneghini MR, Santos RS, Alves VL, da Cruz Martho KF, Vallim MA, Pascon RC. ATP sulfurylase atypical leucine zipper interacts with Cys3 and calcineurin A in the regulation of sulfur amino acid biosynthesis in Cryptococcus neoformans. Sci Rep 2023; 13:11694. [PMID: 37474559 PMCID: PMC10359356 DOI: 10.1038/s41598-023-37556-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023] Open
Abstract
Fungal pathogens are a major cause of death, especially among immunocompromised patients. Therapies against invasive fungal infections are restricted to a few antifungals; therefore, novel therapies are necessary. Nutritional signaling and regulation are important for pathogen establishment in the host. In Cryptococcus neoformans, the causal agent of fungal meningitis, amino acid uptake and biosynthesis are major aspects of nutritional adaptation. Disruptions in these pathways lead to virulence attenuation in an animal model of infection, especially for sulfur uptake and sulfur amino acid biosynthesis. Deletion of Cys3, the main transcription factor that controls these pathways, is the most deleterious gene knockout in vitro and in vivo, making it an important target for further application. Previously, we demonstrated that Cys3 is part of a protein complex, including calcineurin, which is necessary to maintain high Cys3 protein levels during sulfur uptake and sulfur amino acid biosynthesis. In the current study, other aspects of Cys3 regulation are explored. Two lines of evidence suggest that C. neoformans Cys3 does not interact with the F-box WD40 protein annotated as Met30, indicating another protein mediates Cys3 ubiquitin degradation. However, we found another level of Cys3 regulation, which involves protein interactions between Cys3 and ATP sulfurylase (MET3 gene). We show that an atypical leucine zipper at the N-terminus of ATP sulfurylase is essential for physical interaction with Cys3 and calcineurin. Our data suggests that Cys3 and ATP sulfurylase interact to regulate Cys3 transcriptional activity. This work evidences the complexity involved in the regulation of a transcription factor essential for the sulfur metabolism, which is a biological process important to nutritional adaptation, oxidative stress response, nucleic acid stability, and methylation. This information may be useful in designing novel therapies against fungal infections.
Collapse
Affiliation(s)
- Jeyson Pereira da Silva
- Universidade Federal de São Paulo, Campus Diadema, Rua São Nicolau, Diadema, SP, 21009913-030, Brazil
| | - Mariana Reis Meneghini
- Universidade Federal de São Paulo, Campus Diadema, Rua São Nicolau, Diadema, SP, 21009913-030, Brazil
| | - Ronaldo Silva Santos
- Universidade Federal de São Paulo, Campus Diadema, Rua São Nicolau, Diadema, SP, 21009913-030, Brazil
| | - Verônica Lira Alves
- Universidade Federal de São Paulo, Campus Diadema, Rua São Nicolau, Diadema, SP, 21009913-030, Brazil
| | | | - Marcelo Afonso Vallim
- Universidade Federal de São Paulo, Campus Diadema, Rua São Nicolau, Diadema, SP, 21009913-030, Brazil
| | - Renata Castiglioni Pascon
- Universidade Federal de São Paulo, Campus Diadema, Rua São Nicolau, Diadema, SP, 21009913-030, Brazil.
| |
Collapse
|
12
|
Wu Y, Lei S, Lu C, Li J, Du G, Liu Y. Enhanced Ribonucleic Acid Production by High-Throughput Screening Based on Fluorescence Activation and Transcriptomic-Guided Fermentation Optimization in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6673-6680. [PMID: 37071119 DOI: 10.1021/acs.jafc.3c01677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Currently, the primary source of ribonucleic acids (RNAs), which is used as a flavor enhancer and nutritional supplement in the food manufacturing and processing industries, for large-scale industrial production is yeast, where the challenge is to optimize the cellular RNA content. Here, we developed and screened yeast strains yielding abundant RNAs via various methods. The novel Saccharomyces cerevisiae strain H1 with a 45.1% higher cellular RNA content than its FX-2 parent was successfully generated. Comparative transcriptomic analysis elucidated the molecular mechanisms underlying RNA accumulation in H1. Upregulation of genes encoding the hexose monophosphate and sulfur-containing amino acid biosynthesis pathways promoted RNA accumulation in the yeast, particularly in the presence of glucose as the sole carbon source. Feeding methionine into the bioreactor resulted in 145.2 mg/g dry cell weight and 9.6 g/L of cellular RNA content, which is the highest volumetric productivity of RNAs achieved in S. cerevisiae. This strategy of breeding S. cerevisiae strain with a higher capacity of accumulating abundant RNAs did not employ any genetic modification and thus will be favored by the food industry.
Collapse
Affiliation(s)
- Yexu Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Angel Yeast Co. Ltd., Chengdong Avenue 168, Yichang 443003, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Senlin Lei
- Angel Yeast Co. Ltd., Chengdong Avenue 168, Yichang 443003, China
| | - Chuanchuan Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
13
|
Karuppiah V, Zhang C, Liu T, Li Y, Chen J. Transcriptome Analysis of T. asperellum GDFS 1009 Revealed the Role of MUP1 Gene on the Methionine-Based Induction of Morphogenesis and Biological Control Activity. J Fungi (Basel) 2023; 9:jof9020215. [PMID: 36836329 PMCID: PMC9963050 DOI: 10.3390/jof9020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Trichoderma spp. are biological control agents extensively used against various plant pathogens. However, the key genes shared for the growth, development and biological activity are unclear. In this study, we explored the genes responsible for the growth and development of T. asperellum GDFS 1009 under liquid-shaking culture compared to solid-surface culture. Transcriptome analysis revealed 2744 differentially expressed genes, and RT-qPCR validation showed that the high-affinity methionine permease MUP1 was the key gene for growth under different media. Deletion of the MUP1 inhibited the transport of amino acids, especially methionine, thereby inhibiting mycelial growth and sporulation, whereas inhibition could be mitigated by adding methionine metabolites such as SAM, spermidine and spermine. The MUP1 gene responsible for the methionine-dependent growth of T. asperellum was confirmed to be promoted through the PKA pathway but not the MAPK pathway. Furthermore, the MUP1 gene also increased the mycoparasitic activity of T. asperellum against Fusarium graminearum. Greenhouse experiments revealed that MUP1 strengthens the Trichoderma-induced crop growth promotion effect and SA-induced pathogen defense potential in maize. Our study highlights the effect of the MUP1 gene on growth and morphological differentiation and its importance for the agricultural application of Trichoderma against plant diseases.
Collapse
Affiliation(s)
- Valliappan Karuppiah
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheng Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tong Liu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, Hainan University, Haikou 570228, China
| | - Yi Li
- Shanghai Dajing Biotec. Ltd., Shanghai 201100, China
| | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence:
| |
Collapse
|
14
|
Di Canito A, Altomare A, Fracassetti D, Messina N, Tirelli A, Foschino R, Vigentini I. The Riboflavin Metabolism in Four Saccharomyces cerevisiae Wine Strains: Assessment in Oenological Condition and Potential Implications with the Light-Struck Taste. J Fungi (Basel) 2023; 9:jof9010078. [PMID: 36675899 PMCID: PMC9867360 DOI: 10.3390/jof9010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023] Open
Abstract
Riboflavin (RF), or vitamin B2, is an essential compound for yeast growth and a precursor of the flavin coenzymes, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), involved in redox and non-redox processes. RF is a photosensitive compound involved in the light-struck taste (LST), a fault causing the formation of off-flavors that can develop when the wine is exposed to light in the presence of methionine (Met), as well. As both RF and Met can be associated with detrimental changes in wines, a better comprehension of its yeast-mediated production is relevant to predict the maintenance of the desired character of the wine. This study aims at assessing the production of flavin derivatives (FDs) and Met by S. cerevisiae oenological starters under laboratory conditions. The results showed the presence of extra- and intracellular FDs, and Met is a strain-dependent characteristic being also affected by the initial content of RF in the medium. This finding was confirmed when the winemaking was carried out in a relevant environment. Our results evidenced the important impact of the yeast strain on the content of RF and its derivatives.
Collapse
Affiliation(s)
- Alessandra Di Canito
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences (DSBCO), Università degli Studi di Milano, Via della Commenda 10, 20122 Milan, Italy
| | - Alessio Altomare
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| | - Daniela Fracassetti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| | - Natalia Messina
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| | - Antonio Tirelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| | - Roberto Foschino
- Department of Biomedical, Surgical and Dental Sciences (DSBCO), Università degli Studi di Milano, Via della Commenda 10, 20122 Milan, Italy
| | - Ileana Vigentini
- Department of Biomedical, Surgical and Dental Sciences (DSBCO), Università degli Studi di Milano, Via della Commenda 10, 20122 Milan, Italy
- Correspondence:
| |
Collapse
|
15
|
Silva LDC, Silva KSFE, Rocha OB, Barbosa KLB, Rozada AMF, Gauze GDF, Soares CMDA, Pereira M. Proteomic Response of Paracoccidioides brasiliensis Exposed to the Antifungal 4-Methoxynaphthalene-N-acylhydrazone Reveals Alteration in Metabolism. J Fungi (Basel) 2022; 9:jof9010066. [PMID: 36675887 PMCID: PMC9865261 DOI: 10.3390/jof9010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Background: Paracoccidioidomycosis is a neglected mycosis with a high socioeconomic impact that requires long-term treatment with antifungals that have limitations in their use. The development of antifungals targeting essential proteins that are present exclusively in the fungus points to a potentially promising treatment. Methods: The inhibitor of the enzyme homoserine dehydrogenase drove the synthesis of N'-(2-hydroxybenzylidene)-4-methoxy-1-naphthohydrazide (AOS). This compound was evaluated for its antifungal activity in different species of Paracoccidioides and the consequent alteration in the proteomic profile of Paracoccidioides brasiliensis. Results: The compound showed a minimal inhibitory concentration ranging from 0.75 to 6.9 μM with a fungicidal effect on Paracoccidioides spp. and high selectivity index. AOS differentially regulated proteins related to glycolysis, TCA, the glyoxylate cycle, the urea cycle and amino acid metabolism, including homoserine dehydrogenase. In addition, P. brasiliensis inhibited protein synthesis and stimulated reactive oxygen species in the presence of AOS. Conclusions: AOS is a promising antifungal agent for the treatment of PCM, targeting important metabolic processes of the fungus.
Collapse
Affiliation(s)
- Lívia do Carmo Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiás 74690-900, Brazil
- Correspondence: (L.d.C.S.); (M.P.); (K.S.F.e.S.); Tel.: +55-6235211110 (K.S.F.e.S.)
| | - Kleber Santiago Freitas e Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiás 74690-900, Brazil
- Correspondence: (L.d.C.S.); (M.P.); (K.S.F.e.S.); Tel.: +55-6235211110 (K.S.F.e.S.)
| | - Olívia Basso Rocha
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiás 74690-900, Brazil
| | | | | | | | - Célia Maria de Almeida Soares
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiás 74690-900, Brazil
| | - Maristela Pereira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiás 74690-900, Brazil
- Correspondence: (L.d.C.S.); (M.P.); (K.S.F.e.S.); Tel.: +55-6235211110 (K.S.F.e.S.)
| |
Collapse
|
16
|
Saini N, Naaz A, Metur SP, Gahlot P, Walvekar A, Dutta A, Davathamizhan U, Sarin A, Laxman S. Methionine uptake via the SLC43A2 transporter is essential for regulatory T-cell survival. Life Sci Alliance 2022; 5:5/12/e202201663. [PMID: 36260753 PMCID: PMC9463494 DOI: 10.26508/lsa.202201663] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Regulatory T cells survive after IL-2 withdrawal by taking up and using methionine through the SLC43A2 transporter in a Notch1-dependent manner. Cell death, survival, or growth decisions in T-cell subsets depend on interplay between cytokine-dependent and metabolic processes. The metabolic requirements of T-regulatory cells (Tregs) for their survival and how these are satisfied remain unclear. Herein, we identified a necessary requirement of methionine uptake and usage for Tregs survival upon IL-2 deprivation. Activated Tregs have high methionine uptake and usage to S-adenosyl methionine, and this uptake is essential for Tregs survival in conditions of IL-2 deprivation. We identify a solute carrier protein SLC43A2 transporter, regulated in a Notch1-dependent manner that is necessary for this methionine uptake and Tregs viability. Collectively, we uncover a specifically regulated mechanism of methionine import in Tregs that is required for cells to adapt to cytokine withdrawal. We highlight the need for methionine availability and metabolism in contextually regulating cell death in this immunosuppressive population of T cells.
Collapse
Affiliation(s)
- Neetu Saini
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bengaluru, India
| | - Afsana Naaz
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bengaluru, India
| | - Shree Padma Metur
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bengaluru, India
| | - Pinki Gahlot
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bengaluru, India
| | - Adhish Walvekar
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bengaluru, India
| | - Anupam Dutta
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bengaluru, India
| | | | - Apurva Sarin
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bengaluru, India
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bengaluru, India
| |
Collapse
|
17
|
Van Oss SB, Parikh SB, Castilho Coelho N, Wacholder A, Belashov I, Zdancewicz S, Michaca M, Xu J, Kang YP, Ward NP, Yoon SJ, McCourt KM, McKee J, Ideker T, VanDemark AP, DeNicola GM, Carvunis AR. On the illusion of auxotrophy: met15Δ yeast cells can grow on inorganic sulfur, thanks to the previously uncharacterized homocysteine synthase Yll058w. J Biol Chem 2022; 298:102697. [PMID: 36379252 PMCID: PMC9763685 DOI: 10.1016/j.jbc.2022.102697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 11/15/2022] Open
Abstract
Organisms must either synthesize or assimilate essential organic compounds to survive. The homocysteine synthase Met15 has been considered essential for inorganic sulfur assimilation in yeast since its discovery in the 1970s. As a result, MET15 has served as a genetic marker for hundreds of experiments that play a foundational role in eukaryote genetics and systems biology. Nevertheless, we demonstrate here through structural and evolutionary modeling, in vitro kinetic assays, and genetic complementation, that an alternative homocysteine synthase encoded by the previously uncharacterized gene YLL058W enables cells lacking Met15 to assimilate enough inorganic sulfur for survival and proliferation. These cells however fail to grow in patches or liquid cultures unless provided with exogenous methionine or other organosulfurs. We show that this growth failure, which has historically justified the status of MET15 as a classic auxotrophic marker, is largely explained by toxic accumulation of the gas hydrogen sulfide because of a metabolic bottleneck. When patched or cultured with a hydrogen sulfide chelator, and when propagated as colony grids, cells without Met15 assimilate inorganic sulfur and grow, and cells with Met15 achieve even higher yields. Thus, Met15 is not essential for inorganic sulfur assimilation in yeast. Instead, MET15 is the first example of a yeast gene whose loss conditionally prevents growth in a manner that depends on local gas exchange. Our results have broad implications for investigations of sulfur metabolism, including studies of stress response, methionine restriction, and aging. More generally, our findings illustrate how unappreciated experimental variables can obfuscate biological discovery.
Collapse
Affiliation(s)
- S. Branden Van Oss
- Department of Computational and System Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Saurin Bipin Parikh
- Department of Computational and System Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nelson Castilho Coelho
- Department of Computational and System Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Aaron Wacholder
- Department of Computational and System Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ivan Belashov
- Department of Biological Sciences, University of Pittsburgh, Dietrich School of Arts & Sciences, Pittsburgh, Pennsylvania, USA
| | - Sara Zdancewicz
- Department of Biological Sciences, University of Pittsburgh, Dietrich School of Arts & Sciences, Pittsburgh, Pennsylvania, USA
| | - Manuel Michaca
- Department of Computational and System Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jiazhen Xu
- Department of Computational and System Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yun Pyo Kang
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Nathan P. Ward
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Sang Jun Yoon
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Katherine M. McCourt
- Department of Computational and System Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jake McKee
- Department of Computational and System Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Trey Ideker
- Departments of Medicine, Bioengineering, Computer Science and Engineering, Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Andrew P. VanDemark
- Department of Biological Sciences, University of Pittsburgh, Dietrich School of Arts & Sciences, Pittsburgh, Pennsylvania, USA
| | - Gina M. DeNicola
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Anne-Ruxandra Carvunis
- Department of Computational and System Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,For correspondence: Anne-Ruxandra Carvunis
| |
Collapse
|
18
|
Li S, Liu G, Liu L, Li F. Methionine can subside hair follicle development prejudice of heat-stressed rex rabbits. FASEB J 2022; 36:e22464. [PMID: 35881391 DOI: 10.1096/fj.202200520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/11/2022] [Indexed: 11/11/2022]
Abstract
In the present experiment, we study the function of methionine on hair follicle development in heat-stressed Rex Rabbits and its potential molecular mechanism. Rex rabbits were randomly divided into 5 groups (30 replicates per group): control group (20-25°C, fed basic diet), heat stress group (30-34°C, fed basic diet), heat stress + methionine group (30-34°C, fed 0.15% methionine in addition to the basic diet). fed basic diet (control), heat stress + methionine group (30-34°C, fed 0.3% methionine in addition to the basic diet), heat stress + methionine group (30-34°C, fed 0.45% methionine in addition to the basic diet). The results show that heat stress decreases the hair follicle density of Rex rabbits, and the diet methionine addition significantly increases the hair follicle density of heat-stressed Rabbits (p < .05). Heat stress increased serum HSP70 concentration and skin HSP70 gene expression, 0.15%-0.3% methionine but not 0.45% addition alleviated the effect of heat stress. Dietary 0.15% methionine addition significantly increases the gene expression of Wnt10b, β-catenin, LEF, FZD4, LRP6, Shh, HGF, EGF, and Noggin in heat-stressed Rex rabbits and observably decreases the gene expression of BMP2/4 and TGFb. There was no significant effect of methionine on the expression of IGF1 and FGF5/7 gene expression. In conclusion, methionine maybe promotes hair follicle development via TGFβ-BMP/Shh-Noggin, Wnt10b/β-catenin, EGF, and HGF signaling pathways in heat-stressed rabbits.
Collapse
Affiliation(s)
- Shu Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agriculture University, Taian, China
| | - Gongyan Liu
- Shandong Academy of Agricultural Sciences Institute of Animal Husbandry and Veterinary Medicine, Jinan, China
| | - Lei Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agriculture University, Taian, China
| | - Fuchang Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agriculture University, Taian, China
| |
Collapse
|
19
|
Liu Y, Cui DX, Pan Y, Yu SH, Zheng LW, Wan M. Metabolic-epigenetic nexus in regulation of stem cell fate. World J Stem Cells 2022; 14:490-502. [PMID: 36157525 PMCID: PMC9350619 DOI: 10.4252/wjsc.v14.i7.490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/31/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
Stem cell fate determination is one of the central questions in stem cell biology, and although its regulation has been studied at genomic and proteomic levels, a variety of biological activities in cells occur at the metabolic level. Metabolomics studies have established the metabolome during stem cell differentiation and have revealed the role of metabolites in stem cell fate determination. While metabolism is considered to play a biological regulatory role as an energy source, recent studies have suggested the nexus between metabolism and epigenetics because several metabolites function as cofactors and substrates in epigenetic mechanisms, including histone modification, DNA methylation, and microRNAs. Additionally, the epigenetic modification is sensitive to the dynamic metabolites and consequently leads to changes in transcription. The nexus between metabolism and epigenetics proposes a novel stem cell-based therapeutic strategy through manipulating metabolites. In the present review, we summarize the possible nexus between metabolic and epigenetic regulation in stem cell fate determination, and discuss the potential preventive and therapeutic strategies via targeting metabolites.
Collapse
Affiliation(s)
- Yi Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Di-Xin Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yue Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Si-Han Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Li-Wei Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Mian Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
20
|
Genome-Wide Analysis of Yeast Metabolic Cycle through Metabolic Network Models Reveals Superiority of Integrated ATAC-seq Data over RNA-seq Data. mSystems 2022; 7:e0134721. [PMID: 35695574 PMCID: PMC9239220 DOI: 10.1128/msystems.01347-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae undergoes robust oscillations to regulate its physiology for adaptation and survival under nutrient-limited conditions. Environmental cues can induce rhythmic metabolic alterations in order to facilitate the coordination of dynamic metabolic behaviors. Of such metabolic processes, the yeast metabolic cycle enables adaptation of the cells to varying nutritional status through oscillations in gene expression and metabolite production levels. In this process, yeast metabolism is altered between diverse cellular states based on changing oxygen consumption levels: quiescent (reductive charging [RC]), growth (oxidative [OX]), and proliferation (reductive building [RB]) phases. We characterized metabolic alterations during the yeast metabolic cycle using a variety of approaches. Gene expression levels are widely used for condition-specific metabolic simulations, whereas the use of epigenetic information in metabolic modeling is still limited despite the clear relationship between epigenetics and metabolism. This prompted us to investigate the contribution of epigenomic information to metabolic predictions for progression of the yeast metabolic cycle. In this regard, we determined altered pathways through the prediction of regulated reactions and corresponding model genes relying on differential chromatin accessibility levels. The predicted metabolic alterations were confirmed via data analysis and literature. We subsequently utilized RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin using sequencing (ATAC-seq) data sets in the contextualization of the yeast model. The use of ATAC-seq data considerably enhanced the predictive capability of the model. To the best of our knowledge, this is the first attempt to use genome-wide chromatin accessibility data in metabolic modeling. The preliminary results showed that epigenomic data sets can pave the way for more accurate metabolic simulations. IMPORTANCE Dynamic chromatin organization mediates the emergence of condition-specific phenotypes in eukaryotic organisms. Saccharomyces cerevisiae can alter its metabolic profile via regulation of genome accessibility and robust transcriptional oscillations under nutrient-limited conditions. Thus, both epigenetic information and transcriptomic information are crucial in the understanding of condition-specific metabolic behavior in this organism. Based on genome-wide alterations in chromatin accessibility and transcription, we investigated the yeast metabolic cycle, which is a remarkable example of coordinated and dynamic yeast behavior. In this regard, we assessed the use of ATAC-seq and RNA-seq data sets in condition-specific metabolic modeling. To our knowledge, this is the first attempt to use chromatin accessibility data in the reconstruction of context-specific metabolic models, despite the extensive use of transcriptomic data. As a result of comparative analyses, we propose that the incorporation of epigenetic information is a promising approach in the accurate prediction of metabolic dynamics.
Collapse
|
21
|
Jiménez-Gómez I, Valdés-Muñoz G, Moreno-Ulloa A, Pérez-Llano Y, Moreno-Perlín T, Silva-Jiménez H, Barreto-Curiel F, Sánchez-Carbente MDR, Folch-Mallol JL, Gunde-Cimerman N, Lago-Lestón A, Batista-García RA. Surviving in the Brine: A Multi-Omics Approach for Understanding the Physiology of the Halophile Fungus Aspergillus sydowii at Saturated NaCl Concentration. Front Microbiol 2022; 13:840408. [PMID: 35586858 PMCID: PMC9108488 DOI: 10.3389/fmicb.2022.840408] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/07/2022] [Indexed: 11/30/2022] Open
Abstract
Although various studies have investigated osmoadaptations of halophilic fungi to saline conditions, only few analyzed the fungal mechanisms occurring at saturated NaCl concentrations. Halophilic Aspergillus sydowii is a model organism for the study of molecular adaptations of filamentous fungi to hyperosmolarity. For the first time a multi-omics approach (i.e., transcriptomics and metabolomics) was used to compare A. sydowii at saturated concentration (5.13 M NaCl) to optimal salinity (1 M NaCl). Analysis revealed 1,842 genes differentially expressed of which 704 were overexpressed. Most differentially expressed genes were involved in metabolism and signal transduction. A gene ontology multi-scale network showed that ATP binding constituted the main network node with direct interactions to phosphorelay signal transduction, polysaccharide metabolism, and transferase activity. Free amino acids significantly decreased and amino acid metabolism was reprogrammed at 5.13 M NaCl. mRNA transcriptional analysis revealed upregulation of genes involved in methionine and cysteine biosynthesis at extreme water deprivation by NaCl. No modifications of membrane fatty acid composition occurred. Upregulated genes were involved in high-osmolarity glycerol signal transduction pathways, biosynthesis of β-1,3-glucans, and cross-membrane ion transporters. Downregulated genes were related to the synthesis of chitin, mannose, cell wall proteins, starvation, pheromone synthesis, and cell cycle. Non-coding RNAs represented the 20% of the total transcripts with 7% classified as long non-coding RNAs (lncRNAs). The 42% and 69% of the total lncRNAs and RNAs encoding transcription factors, respectively, were differentially expressed. A network analysis showed that differentially expressed lncRNAs and RNAs coding transcriptional factors were mainly related to the regulation of metabolic processes, protein phosphorylation, protein kinase activity, and plasma membrane composition. Metabolomic analyses revealed more complex and unknown metabolites at saturated NaCl concentration than at optimal salinity. This study is the first attempt to unravel the molecular ecology of an ascomycetous fungus at extreme water deprivation by NaCl (5.13 M). This work also represents a pioneer study to investigate the importance of lncRNAs and transcriptional factors in the transcriptomic response to high NaCl stress in halophilic fungi.
Collapse
Affiliation(s)
- Irina Jiménez-Gómez
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Gisell Valdés-Muñoz
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Aldo Moreno-Ulloa
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Yordanis Pérez-Llano
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Tonatiuh Moreno-Perlín
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Hortencia Silva-Jiménez
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Mexico
| | | | | | - Jorge Luis Folch-Mallol
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Asunción Lago-Lestón
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
- *Correspondence: Ramón Alberto Batista-García, ;
| |
Collapse
|
22
|
Transcriptional Profiles of a Foliar Fungal Endophyte ( Pestalotiopsis, Ascomycota) and Its Bacterial Symbiont ( Luteibacter, Gammaproteobacteria) Reveal Sulfur Exchange and Growth Regulation during Early Phases of Symbiotic Interaction. mSystems 2022; 7:e0009122. [PMID: 35293790 PMCID: PMC9040847 DOI: 10.1128/msystems.00091-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Symbiosis with bacteria is widespread among eukaryotes, including fungi. Bacteria that live within fungal mycelia (endohyphal bacteria) occur in many plant-associated fungi, including diverse Mucoromycota and Dikarya. Pestalotiopsis sp. strain 9143 is a filamentous ascomycete isolated originally as a foliar endophyte of Platycladus orientalis (Cupressaceae). It is infected naturally with the endohyphal bacterium Luteibacter sp. strain 9143, which influences auxin and enzyme production by its fungal host. Previous studies have used transcriptomics to examine similar symbioses between endohyphal bacteria and root-associated fungi such as arbuscular mycorrhizal fungi and plant pathogens. However, currently there are no gene expression studies of endohyphal bacteria of Ascomycota, the most species-rich fungal phylum. To begin to understand such symbioses, we developed methods for assessing gene expression by Pestalotiopsis sp. and Luteibacter sp. when grown in coculture and when each was grown axenically. Our assays showed that the density of Luteibacter sp. in coculture was greater than in axenic culture, but the opposite was true for Pestalotiopsis sp. Dual-transcriptome sequencing (RNA-seq) data demonstrate that growing in coculture modulates developmental and metabolic processes in both the fungus and bacterium, potentially through changes in the balance of organic sulfur via methionine acquisition. Our analyses also suggest an unexpected, potential role of the bacterial type VI secretion system in symbiosis establishment, expanding current understanding of the scope and dynamics of fungal-bacterial symbioses. IMPORTANCE Interactions between microbes and their hosts have important outcomes for host and environmental health. Foliar fungal endophytes that infect healthy plants can harbor facultative endosymbionts called endohyphal bacteria, which can influence the outcome of plant-fungus interactions. These bacterial-fungal interactions can be influential but are poorly understood, particularly from a transcriptome perspective. Here, we report on a comparative, dual-RNA-seq study examining the gene expression patterns of a foliar fungal endophyte and a facultative endohyphal bacterium when cultured together versus separately. Our findings support a role for the fungus in providing organic sulfur to the bacterium, potentially through methionine acquisition, and the potential involvement of a bacterial type VI secretion system in symbiosis establishment. This work adds to the growing body of literature characterizing endohyphal bacterial-fungal interactions, with a focus on a model facultative bacterial-fungal symbiosis in two species-rich lineages, the Ascomycota and Proteobacteria.
Collapse
|
23
|
Subba P, Saha P, Karthikkeyan G, Biswas M, Prasad TSK, Roy-Barman S. Metabolite profiling reveals overexpression of the global regulator, MoLAEA leads to increased synthesis of metabolites in Magnaporthe oryzae. J Appl Microbiol 2022; 132:3825-3838. [PMID: 35261134 DOI: 10.1111/jam.15518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/18/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
AIMS To study the altered metabolic pathways and metabolites produced in overexpression and knockdown mutants of a global regulator named MoLAEA, which was recently found to regulate the expression of the genes involved in secondary metabolism in one of the most destructive plant pathogens, Magnaporthe oryzae. METHODS AND RESULTS Mass spectrometry-based global untargeted metabolomic profiling was used to identify altered metabolites. Metabolites were extracted from the mutant strains of MoLAEA using two extraction methods viz., aqueous and organic extraction and data acquired using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in positive and negative polarities. Levels of metabolites involved in various biological pathways such as amino acid as well as polyamine biosynthesis, fatty acid and pyrimidine metabolism showed remarkable change in the mutant strains. Interestingly, metabolites involved in stress responses were produced in higher quantities in the overexpression strain whereas, certain overproduced metabolites were associated with distinctive phenotypic changes in the overexpression strain compared to the wild-type. Further, the expression of several genes involved in the stress responses was found to have higher expression in the overexpression strain. CONCLUSIONS The global regulator MoLAEA is involved in secondary metabolism in the plant pathogen M. oryzae such that the mutant strains showed altered level of several metabolites involved in the biosynthesis pathways compared to the wild-type. Also, metabolites involved in stress responses were overproduced in the overexpression strain and this can be seen in the higher growth in media amended with stress-inducing agents or higher expression of genes involved in stress response in the overexpression strain compared to the wild-type. SIGNIFICANCE AND IMPACT This is the first report of metabolite profiling relative to the global regulation of secondary metabolism in M. oryzae, where secondary metabolism is poorly understood. It opens up avenues for more relevant investigations on the genetic regulation of several of the metabolites found in the analysis, which have not been previously characterized in M. oryzae.
Collapse
Affiliation(s)
- Pratigya Subba
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore-575018, India
| | - Pallabi Saha
- Department of Biotechnology, National Institute of Technology, Durgapur, India
| | - Gayathree Karthikkeyan
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore-575018, India
| | - Mousumi Biswas
- Department of Biotechnology, National Institute of Technology, Durgapur, India
| | | | | |
Collapse
|
24
|
Unravelling the Molecular Mechanisms Underlying the Protective Effect of Lactate on the High-Pressure Resistance of Listeria monocytogenes. Biomolecules 2021; 11:biom11050677. [PMID: 33946460 PMCID: PMC8147161 DOI: 10.3390/biom11050677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 12/22/2022] Open
Abstract
Formulations with lactate as an antimicrobial and high-pressure processing (HPP) as a lethal treatment are combined strategies used to control L. monocytogenes in cooked meat products. Previous studies have shown that when HPP is applied in products with lactate, the inactivation of L. monocytogenes is lower than that without lactate. The purpose of the present work was to identify the molecular mechanisms underlying the piezo-protection effect of lactate. Two L. monocytogenes strains (CTC1034 and EGDe) were independently inoculated in a cooked ham model medium without and with 2.8% potassium lactate. Samples were pressurized at 400 MPa for 10 min at 10 °C. Samples were subjected to RNA extraction, and a shotgun transcriptome sequencing was performed. The short exposure of L. monocytogenes cells to lactate through its inoculation in a cooked ham model with lactate 1h before HPP promoted a shift in the pathogen’s central metabolism, favoring the metabolism of propanediol and ethanolamine together with the synthesis of the B12 cofactor. Moreover, the results suggest an activated methyl cycle that would promote modifications in membrane properties resulting in an enhanced resistance of the pathogen to HPP. This study provides insights on the mechanisms developed by L. monocytogenes in response to lactate and/or HPP and sheds light on the understanding of the piezo-protective effect of lactate.
Collapse
|
25
|
Stovall AK, Knowles CM, Kalem MC, Panepinto JC. A Conserved Gcn2-Gcn4 Axis Links Methionine Utilization and the Oxidative Stress Response in Cryptococcus neoformans. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:640678. [PMID: 34622246 PMCID: PMC8494424 DOI: 10.3389/ffunb.2021.640678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/01/2021] [Indexed: 11/13/2022]
Abstract
The fungal pathogen Cryptococcus neoformans relies on post-transcriptional mechanisms of gene regulation to adapt to stressors it encounters in the human host, such as oxidative stress and nutrient limitation. The kinase Gcn2 regulates translation in response to stress by phosphorylating the initiation factor eIF2, and it is a crucial factor in withstanding oxidative stress in C. neoformans, and amino acid limitation in many fungal species. However, little is known about the role of Gcn2 in nitrogen limitation in C. neoformans. In this study, we demonstrate that Gcn2 is required for C. neoformans to utilize methionine as a source of nitrogen, and that the presence of methionine as a sole nitrogen source induces eIF2 phosphorylation. The stress imposed by methionine leads to an oxidative stress response at both the levels of transcription and translation, as seen through polysome profiling as well as increased abundance of select oxidative stress response transcripts. The transcription factor Gcn4 is also required for methionine utilization and oxidative stress resistance, and RT-qPCR data suggests that it regulates expression of certain transcripts in response to oxidative stress. The results of this study suggest a connection between nitrogen metabolism and oxidative stress in C. neoformans that is mediated by Gcn4, possibly indicating the presence of a compound stress response in this clinically important fungal pathogen.
Collapse
Affiliation(s)
| | | | | | - John C. Panepinto
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, NY, United States
| |
Collapse
|
26
|
Sensing and Signaling of Methionine Metabolism. Metabolites 2021; 11:metabo11020083. [PMID: 33572567 PMCID: PMC7912243 DOI: 10.3390/metabo11020083] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/15/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
Availability of the amino acid methionine shows remarkable effects on the physiology of individual cells and whole organisms. For example, most cancer cells, but not normal cells, are hyper dependent on high flux through metabolic pathways connected to methionine, and diets restricted for methionine increase healthy lifespan in model organisms. Methionine's impact on physiology goes beyond its role in initiation of translation and incorporation in proteins. Many of its metabolites have a major influence on cellular functions including epigenetic regulation, maintenance of redox balance, polyamine synthesis, and phospholipid homeostasis. As a central component of such essential pathways, cells require mechanisms to sense methionine availability. When methionine levels are low, cellular response programs induce transcriptional and signaling states to remodel metabolic programs and maintain methionine metabolism. In addition, an evolutionary conserved cell cycle arrest is induced to ensure cellular and genomic integrity during methionine starvation conditions. Methionine and its metabolites are critical for cell growth, proliferation, and development in all organisms. However, mechanisms of methionine perception are diverse. Here we review current knowledge about mechanisms of methionine sensing in yeast and mammalian cells, and will discuss the impact of methionine imbalance on cancer and aging.
Collapse
|
27
|
Shetty S, Varshney U. Regulation of translation by one-carbon metabolism in bacteria and eukaryotic organelles. J Biol Chem 2021; 296:100088. [PMID: 33199376 PMCID: PMC7949028 DOI: 10.1074/jbc.rev120.011985] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022] Open
Abstract
Protein synthesis is an energetically costly cellular activity. It is therefore important that the process of mRNA translation remains in excellent synchrony with cellular metabolism and its energy reserves. Unregulated translation could lead to the production of incomplete, mistranslated, or misfolded proteins, squandering the energy needed for cellular sustenance and causing cytotoxicity. One-carbon metabolism (OCM), an integral part of cellular intermediary metabolism, produces a number of one-carbon unit intermediates (formyl, methylene, methenyl, methyl). These OCM intermediates are required for the production of amino acids such as methionine and other biomolecules such as purines, thymidylate, and redox regulators. In this review, we discuss how OCM impacts the translation apparatus (composed of ribosome, tRNA, mRNA, and translation factors) and regulates crucial steps in protein synthesis. More specifically, we address how the OCM metabolites regulate the fidelity and rate of translation initiation in bacteria and eukaryotic organelles such as mitochondria. Modulation of the fidelity of translation initiation by OCM opens new avenues to understand alternative translation mechanisms involved in stress tolerance and drug resistance.
Collapse
Affiliation(s)
- Sunil Shetty
- Biozentrum, University of Basel, Basel, Switzerland
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India; Jawaharlal Nehru Centre for Advanced Scientific Studies, Jakkur, Bangalore, India.
| |
Collapse
|
28
|
Walvekar AS, Kadamur G, Sreedharan S, Gupta R, Srinivasan R, Laxman S. Methylated PP2A stabilizes Gcn4 to enable a methionine-induced anabolic program. J Biol Chem 2020; 295:18390-18405. [PMID: 33122193 PMCID: PMC7939465 DOI: 10.1074/jbc.ra120.014248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/25/2020] [Indexed: 11/06/2022] Open
Abstract
Methionine, through S-adenosylmethionine, activates a multifaceted growth program in which ribosome biogenesis, carbon metabolism, and amino acid and nucleotide biosynthesis are induced. This growth program requires the activity of the Gcn4 transcription factor (called ATF4 in mammals), which facilitates the supply of metabolic precursors that are essential for anabolism. However, how Gcn4 itself is regulated in the presence of methionine is unknown. Here, we discover that Gcn4 protein levels are increased by methionine, despite conditions of high cell growth and translation (in which the roles of Gcn4 are not well-studied). We demonstrate that this mechanism of Gcn4 induction is independent of transcription, as well as the conventional Gcn2/eIF2α-mediated increased translation of Gcn4. Instead, when methionine is abundant, Gcn4 phosphorylation is decreased, which reduces its ubiquitination and therefore degradation. Gcn4 is dephosphorylated by the protein phosphatase 2A (PP2A); our data show that when methionine is abundant, the conserved methyltransferase Ppm1 methylates and alters the activity of the catalytic subunit of PP2A, shifting the balance of Gcn4 toward a dephosphorylated, stable state. The absence of Ppm1 or the loss of the PP2A methylation destabilizes Gcn4 even when methionine is abundant, leading to collapse of the Gcn4-dependent anabolic program. These findings reveal a novel, methionine-dependent signaling and regulatory axis. Here methionine directs the conserved methyltransferase Ppm1 via its target phosphatase PP2A to selectively stabilize Gcn4. Through this, cells conditionally modify a major phosphatase to stabilize a metabolic master regulator and drive anabolism.
Collapse
Affiliation(s)
- Adhish S Walvekar
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Ganesh Kadamur
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Sreesa Sreedharan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India; School of Chemical and Biotechnology, SASTRA University, Tanjavur, India
| | - Ritu Gupta
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | | | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India.
| |
Collapse
|
29
|
Green R, Sonal, Wang L, Hart SFM, Lu W, Skelding D, Burton JC, Mi H, Capel A, Chen HA, Lin A, Subramaniam AR, Rabinowitz JD, Shou W. Metabolic excretion associated with nutrient-growth dysregulation promotes the rapid evolution of an overt metabolic defect. PLoS Biol 2020; 18:e3000757. [PMID: 32833957 PMCID: PMC7470746 DOI: 10.1371/journal.pbio.3000757] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 09/03/2020] [Accepted: 07/20/2020] [Indexed: 01/19/2023] Open
Abstract
In eukaryotes, conserved mechanisms ensure that cell growth is coordinated with nutrient availability. Overactive growth during nutrient limitation ("nutrient-growth dysregulation") can lead to rapid cell death. Here, we demonstrate that cells can adapt to nutrient-growth dysregulation by evolving major metabolic defects. Specifically, when yeast lysine-auxotrophic mutant lys- encountered lysine limitation, an evolutionarily novel stress, cells suffered nutrient-growth dysregulation. A subpopulation repeatedly evolved to lose the ability to synthesize organosulfurs (lys-orgS-). Organosulfurs, mainly reduced glutathione (GSH) and GSH conjugates, were released by lys- cells during lysine limitation when growth was dysregulated, but not during glucose limitation when growth was regulated. Limiting organosulfurs conferred a frequency-dependent fitness advantage to lys-orgS- by eliciting a proper slow growth program, including autophagy. Thus, nutrient-growth dysregulation is associated with rapid organosulfur release, which enables the selection of organosulfur auxotrophy to better tune cell growth to the metabolic environment. We speculate that evolutionarily novel stresses can trigger atypical release of certain metabolites, setting the stage for the evolution of new ecological interactions.
Collapse
Affiliation(s)
- Robin Green
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Sonal
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Lin Wang
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Samuel F. M. Hart
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Wenyun Lu
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - David Skelding
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Justin C. Burton
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Hanbing Mi
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Aric Capel
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Hung Alex Chen
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Aaron Lin
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Arvind R. Subramaniam
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Joshua D. Rabinowitz
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Wenying Shou
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|