1
|
Bernardini R, Tengattini S, Li Z, Piubelli L, Bavaro T, Modolea AB, Mattei M, Conti P, Marini S, Zhang Y, Pollegioni L, Temporini C, Terreni M. Effect of glycosylation on the affinity of the MTB protein Ag85B for specific antibodies: towards the design of a dual-acting vaccine against tuberculosis. Biol Direct 2024; 19:11. [PMID: 38268026 PMCID: PMC10809592 DOI: 10.1186/s13062-024-00454-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND To create a dual-acting vaccine that can fight against tuberculosis, we combined antigenic arabino-mannan analogues with the Ag85B protein. To start the process, we studied the impact of modifying different parts of the Ag85B protein on its ability to be recognized by antibodies. RESULTS Through our research, we discovered that three modified versions of the protein, rAg85B-K30R, rAg85B-K282R, and rAg85B-K30R/K282R, retained their antibody reactivity in healthy individuals and those with tuberculosis. To further test the specificity of the sugar AraMan for AraMan antibodies, we used Human Serum Albumin glycosylated with AraMan-IME and Ara3Man-IME. Our findings showed that this specific sugar was fully and specifically modified. Bio-panning experiments revealed that patients with active tuberculosis exhibited a higher antibody response to Ara3Man, a sugar found in lipoarabinomannan (LAM), which is a major component of the mycobacterial cell wall. Bio-panning with anti-LAM plates could eliminate this increased response, suggesting that the enhanced Ara3Man response was primarily driven by antibodies targeting LAM. These findings highlight the importance of Ara3Man as an immunodominant epitope in LAM and support its role in eliciting protective immunity against tuberculosis. Further studies evaluated the effects of glycosylation on the antibody affinity of recombinant Ag85B and its variants. The results indicated that rAg85B-K30R/K282R, when conjugated with Ara3Man-IME, demonstrated enhanced antibody recognition compared to unconjugated or non-glycosylated versions. CONCLUSIONS Coupling Ara3Man to rAg85B-K30R/K282R could lead to the development of effective dual-acting vaccines against tuberculosis, stimulating protective antibodies against both AraMan and Ag85B, two key tuberculosis antigens.
Collapse
Affiliation(s)
- Roberta Bernardini
- Department of Translational Medicine, University of Tor Vergata, Via Montpellier 1, Rome, 00133, Italy.
- Interdepartmental Center for Comparative Medicine, Alternative Techniques and Aquaculture (CIMETA), University of Rome "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy.
| | - Sara Tengattini
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, Pavia, 27100, Italy.
| | - Zhihao Li
- Parisian Institute of Molecular Chemistry, Sorbonne University, UMR CNRS 8232, 4 Place Jussieu, Paris, 75005, France
| | - Luciano Piubelli
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant, 3, Insubria, Varese, 21100, Italy
| | - Teodora Bavaro
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, Pavia, 27100, Italy
| | - Anamaria Bianca Modolea
- Interdepartmental Center for Comparative Medicine, Alternative Techniques and Aquaculture (CIMETA), University of Rome "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy
| | - Maurizio Mattei
- Interdepartmental Center for Comparative Medicine, Alternative Techniques and Aquaculture (CIMETA), University of Rome "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Conti
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, Milan, 20133, Italy
| | - Stefano Marini
- Department of Translational Medicine, University of Tor Vergata, Via Montpellier 1, Rome, 00133, Italy
| | - Yongmin Zhang
- Parisian Institute of Molecular Chemistry, Sorbonne University, UMR CNRS 8232, 4 Place Jussieu, Paris, 75005, France
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant, 3, Insubria, Varese, 21100, Italy
| | - Caterina Temporini
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, Pavia, 27100, Italy
| | - Marco Terreni
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, Pavia, 27100, Italy
| |
Collapse
|
2
|
Khairullah AR, Kurniawan SC, Sudjarwo SA, Effendi MH, Widodo A, Moses IB, Hasib A, Zahra RLA, Gelolodo MA, Kurniawati DA, Riwu KHP, Silaen OSM, Afnani DA, Ramandinianto SC. Kinship analysis of mecA gene of methicillin-resistant Staphylococcus aureus isolated from milk and risk factors from the farmers in Blitar, Indonesia. Vet World 2024; 17:216-225. [PMID: 38406357 PMCID: PMC10884576 DOI: 10.14202/vetworld.2024.216-225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/02/2024] [Indexed: 02/27/2024] Open
Abstract
Background and Aim There are numerous reports of subclinical mastitis cases in Blitar, which is consistent with the region's high milk production and dairy cattle population. Staphylococcus aureus, which is often the cause of mastitis cases, is widely known because of its multidrug-resistant properties and resistance to β-lactam antibiotic class, especially the methicillin-resistant S. aureus (MRSA) strains. This study aimed to molecular detection and sequence analysis of the mecA gene in milk and farmer's hand swabs to show that dairy cattle are reservoirs of MRSA strains. Materials and Methods A total of 113 milk samples and 39 farmers' hand swab samples were collected from a dairy farm for the isolation of S. aureus using Mannitol salt agar. The recovered isolates were further characterized using standard microbiological techniques. Isolates confirmed as S. aureus were tested for sensitivity to antibiotics. Oxacillin Resistance Screening Agar Base testing was used to confirm the presence of MRSA, whereas the mecA gene was detected by polymerase chain reaction and sequencing. Results A total of 101 samples were confirmed to be S. aureus. There were 2 S. aureus isolates that were multidrug-resistant and 14 S. aureus isolates that were MRSA. The mecA gene was detected in 4/14 (28.6%) phenotypically identified MRSA isolates. Kinship analysis showed identical results between mecA from milk and farmers' hand swabs. No visible nucleotide variation was observed in the two mecA sequences of isolates from Blitar, East Java. Conclusion The spread of MRSA is a serious problem because the risk of zoonotic transmission can occur not only to people who are close to livestock in the workplace, such as dairy farm workers but also to the wider community through the food chain.
Collapse
Affiliation(s)
- Aswin Rafif Khairullah
- Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya 60115, East Java, Indonesia
| | - Shendy Canadya Kurniawan
- Master Program of Animal Sciences, Department of Animal Sciences, Specialisation in Molecule, Cell and Organ Functioning, Wageningen University and Research, Wageningen 6708 PB, Netherlands
| | - Sri Agus Sudjarwo
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya 60115, East Java, Indonesia
| | - Mustofa Helmi Effendi
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya 60115, East Java, Indonesia
| | - Agus Widodo
- Department of Health, Faculty of Vocational Studies, Universitas Airlangga, Jl. Dharmawangsa Dalam Selatan No. 28-30, Kampus B Airlangga, Surabaya 60115, East Java, Indonesia
| | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki 480211, Nigeria
| | - Abdullah Hasib
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, QLD 4343, Queensland, Australia
| | - Reichan Lisa Az Zahra
- Profession Program of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya 60115, East Java, Indonesia
| | - Maria Aega Gelolodo
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Medicine and Veterinary Medicine, Universitas Nusa Cendana, Jl. Adisucipto Penfui, Kupang 85001, East Nusa Tenggara, Indonesia
| | - Dyah Ayu Kurniawati
- Indonesia Research Center for Veterinary Science, Jl. RE Martadinata No. 30, Bogor 16114, West Java, Indonesia
| | - Katty Hendriana Priscilia Riwu
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Jl. Pemuda No. 59A, Dasan Agung Baru, Mataram 83125, West Nusa Tenggara, Indonesia
| | - Otto Sahat Martua Silaen
- Doctoral Program of Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6 Senen, Jakarta 10430, Indonesia
| | - Daniah Ashri Afnani
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Jl. Pemuda No. 59A, Dasan Agung Baru, Mataram 83125, West Nusa Tenggara, Indonesia
| | | |
Collapse
|
3
|
Conceição S, Queiroga MC, Laranjo M. Antimicrobial Resistance in Bacteria from Meat and Meat Products: A One Health Perspective. Microorganisms 2023; 11:2581. [PMID: 37894239 PMCID: PMC10609446 DOI: 10.3390/microorganisms11102581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
According to the 2030 Agenda of the United Nations, one of the sustainable development goals is to ensure sustainable consumption and production patterns. The need to ensure food safety includes, other than microbiological hazards, concerns with antimicrobial-resistant (AMR) bacteria. The emergence of resistant bacteria in the food industry is essentially due to the abusive, and sometimes incorrect, administration of antimicrobials. Although not allowed in Europe, antimicrobials are often administered to promote animal growth. Each time antimicrobials are used, a selective pressure is applied to AMR bacteria. Moreover, AMR genes can be transmitted to humans through the consumption of meat-harbouring-resistant bacteria, which highlights the One Health dimension of antimicrobial resistance. Furthermore, the appropriate use of antimicrobials to ensure efficacy and the best possible outcome for the treatment of infections is regulated through the recommendations of antimicrobial stewardship. The present manuscript aims to give the current state of the art about the transmission of AMR bacteria, particularly methicillin-resistant S. aureus, ESBL-producing Enterobacteriaceae, and vancomycin-resistant Enterococcus spp., along with other ESKAPE bacteria, from animals to humans through the consumption of meat and meat products, with emphasis on pork meat and pork meat products, which are considered the most consumed worldwide.
Collapse
Affiliation(s)
- Sara Conceição
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (S.C.); (M.C.Q.)
| | - Maria Cristina Queiroga
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (S.C.); (M.C.Q.)
- Departamento de Medicina Veterinária, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Marta Laranjo
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (S.C.); (M.C.Q.)
- Departamento de Medicina Veterinária, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| |
Collapse
|
4
|
Silva V, Monteiro A, Pereira JE, Maltez L, Igrejas G, Poeta P. MRSA in Humans, Pets and Livestock in Portugal: Where We Came from and Where We Are Going. Pathogens 2022; 11:1110. [PMID: 36297167 PMCID: PMC9608539 DOI: 10.3390/pathogens11101110] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 09/10/2023] Open
Abstract
Over the years, molecular typing of methicillin-resistant S. aureus (MRSA) has allowed for the identification of endemic MRSA strains and pathogenic strains. After reaching a peak of predominance in a given geographic region, MRSA strains are usually replaced by a new strain. This process is called clonal replacement and is observed worldwide. The worldwide spread of hospital-associated MRSA (HA-MRSA), community-associated MRSA (CA-MRSA) and livestock-associated MRSA (LA-MRSA) clones over the last few decades has allowed this microorganism to be currently considered a pandemic. In Portugal, most HA-MRSA infections are associated with EMRSA-15 (S22-IV), New York/Japan (ST5-II) and Iberian (ST247-I) clones. Regarding the strains found in the community, many of them are frequently associated with the hospital environment, namely the Pediatric, Brazilian and Iberian clones. On the other hand, a strain that is typically found in animals, MRSA clonal complex (CC) 398, has been described in humans as colonizing and causing infections. The ST398 clone is found across all animal species, particularly in farm animals where the economic impact of LA-MRSA infections can have disastrous consequences for industries. In contrast, the EMRSA-15 clone seems to be more related to companion animals. The objective of this review is to better understand the MRSA epidemiology because it is, undoubtedly, an important public health concern that requires more attention, in order to achieve an effective response in all sectors.
Collapse
Affiliation(s)
- Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Caparica, Portugal
| | - Andreia Monteiro
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - José Eduardo Pereira
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Luís Maltez
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Caparica, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
5
|
Silva V, Correia S, Rocha J, Manaia CM, Silva A, García-Díez J, Pereira JE, Semedo-Lemsaddek T, Igrejas G, Poeta P. Antimicrobial Resistance and Clonal Lineages of Staphylococcus aureus from Cattle, Their Handlers, and Their Surroundings: A Cross-Sectional Study from the One Health Perspective. Microorganisms 2022; 10:microorganisms10050941. [PMID: 35630384 PMCID: PMC9144820 DOI: 10.3390/microorganisms10050941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Staphylococcus aureus have been progressively identified in farm animals and in humans with direct contact with these animals showing that S. aureus may be a major zoonotic pathogen. Therefore, we aimed to isolate S. aureus from cows, their handlers, and their immediate surroundings, and to investigate the antimicrobial resistance and genetic lineages of the isolates. Mouth and nose swabs of 244 healthy cows (195 Maronesa, 11 Holstein-Friesians, and 28 crossbreeds), 82 farm workers, 53 water and 63 soil samples were collected. Identification of species was carried out by MALDI-TOF MS Biotyper. The presence of antimicrobial resistance genes and virulence factors was assessed based on gene search by PCR. All isolates were typed by multilocus sequence typing and spa-typing. From 442 samples, 33 (13.9%), 24 (29.3%), 1 (2%), and 1 (2%) S. aureus were recovered from cows, farm workers, water, and soil samples, respectively. Most of the isolates showed resistance only to penicillin. S. aureus isolates were ascribed to 17 sequence types (STs) and 26 spa-types. Some clonal lineages were common to both cows and farm workers such as ST30-t9413, ST72-t148, and ST45-t350. Through a One Health approach, this study revealed that there is a great diversity of clonal lineages of S. aureus in cows and their handlers. Furthermore, some S. aureus lineages are common to cows and handlers, which may suggest a possible transmission.
Collapse
Affiliation(s)
- Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (V.S.); (S.C.); (A.S.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisbon, Portugal
| | - Susana Correia
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (V.S.); (S.C.); (A.S.)
| | - Jaqueline Rocha
- Centro de Biotecnologia e Química Fina (CBQF), Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal; (J.R.); (C.M.M.)
| | - Célia M. Manaia
- Centro de Biotecnologia e Química Fina (CBQF), Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal; (J.R.); (C.M.M.)
| | - Adriana Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (V.S.); (S.C.); (A.S.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisbon, Portugal
| | - Juan García-Díez
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.G.-D.); (J.E.P.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - José Eduardo Pereira
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.G.-D.); (J.E.P.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Teresa Semedo-Lemsaddek
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Avenida da Universidade Técnica, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Correspondence: (T.S.-L.); (P.P.)
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisbon, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (V.S.); (S.C.); (A.S.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisbon, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.G.-D.); (J.E.P.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Correspondence: (T.S.-L.); (P.P.)
| |
Collapse
|
6
|
Donadu MG, Ferrari M, Mazzarello V, Zanetti S, Kushkevych I, Rittmann SKMR, Stájer A, Baráth Z, Szabó D, Urbán E, Gajdács M. No Correlation between Biofilm-Forming Capacity and Antibiotic Resistance in Environmental Staphylococcus spp.: In Vitro Results. Pathogens 2022; 11:pathogens11040471. [PMID: 35456146 PMCID: PMC9031815 DOI: 10.3390/pathogens11040471] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 01/18/2023] Open
Abstract
The production of biofilms is a critical factor in facilitating the survival of Staphylococcus spp. in vivo and in protecting against various environmental noxa. The possible relationship between the antibiotic-resistant phenotype and biofilm-forming capacity has raised considerable interest. The purpose of the study was to assess the interdependence between biofilm-forming capacity and the antibiotic-resistant phenotype in 299 Staphylococcus spp. (S. aureus n = 143, non-aureus staphylococci [NAS] n = 156) of environmental origin. Antimicrobial susceptibility testing and detection of methicillin resistance (MR) was performed. The capacity of isolates to produce biofilms was assessed using Congo red agar (CRA) plates and a crystal violet microtiter-plate-based (CV-MTP) method. MR was identified in 46.9% of S. aureus and 53.8% of NAS isolates (p > 0.05), with resistance to most commonly used drugs being significantly higher in MR isolates compared to methicillin-susceptible isolates. Resistance rates were highest for clindamycin (57.9%), erythromycin (52.2%) and trimethoprim-sulfamethoxazole (51.1%), while susceptibility was retained for most last-resort drugs. Based on the CRA plates, biofilm was produced by 30.8% of S. aureus and 44.9% of NAS (p = 0.014), while based on the CV-MTP method, 51.7% of S. aureus and 62.8% of NAS were identified as strong biofilm producers, respectively (mean OD570 values: S. aureus: 0.779±0.471 vs. NAS: 1.053±0.551; p < 0.001). No significant differences in biofilm formation were observed based on MR (susceptible: 0.824 ± 0.325 vs. resistant: 0.896 ± 0.367; p = 0.101). However, pronounced differences in biofilm formation were identified based on rifampicin susceptibility (S: 0.784 ± 0.281 vs. R: 1.239 ± 0.286; p = 0.011). The mechanistic understanding of the mechanisms Staphylococcus spp. use to withstand harsh environmental and in vivo conditions is crucial to appropriately address the therapy and eradication of these pathogens.
Collapse
Affiliation(s)
- Matthew Gavino Donadu
- Hospital Pharmacy, Azienda Ospedaliero Universitaria di Sassari, 07100 Sassari, Italy;
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (V.M.); (S.Z.)
| | - Marco Ferrari
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (V.M.); (S.Z.)
- Correspondence:
| | - Vittorio Mazzarello
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (V.M.); (S.Z.)
| | - Stefania Zanetti
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (V.M.); (S.Z.)
| | - Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
| | - Simon K.-M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, 1090 Wien, Austria;
| | - Anette Stájer
- Department of Periodontology, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 62-64, 6720 Szeged, Hungary;
| | - Zoltán Baráth
- Department of Prosthodontics, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 62–64, 6720 Szeged, Hungary;
| | - Dóra Szabó
- Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary;
| | - Edit Urbán
- Department of Medical Microbiology and Immunology, University of Pécs Medical School, Szigeti út 12, 7624 Pécs, Hungary;
| | - Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 63, 6720 Szeged, Hungary;
| |
Collapse
|
7
|
Regina ALA, Medeiros JD, Teixeira FM, Côrrea RP, Santos FAM, Brantes CPR, Pereira IA, Stapelfeldt DMA, Diniz CG, da Silva VL. A watershed impacted by anthropogenic activities: Microbial community alterations and reservoir of antimicrobial resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148552. [PMID: 34328962 DOI: 10.1016/j.scitotenv.2021.148552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Water is the main resource for maintaining life. Anthropic activities influence the microbial epidemiological chain in watersheds, which can act as ways of disseminating microorganisms resistant to antimicrobial drugs, with impacts on human, animal, and environmental health. Here, we characterized aquatic microbial communities and their resistomes in samples collected along Rio das Ostras watershed during two seasons. Surface water samples were collected at eleven sites from the Jundiá, Iriry, and Rio das Ostras rivers in two seasons (dry and wet season). Microbial DNA was extracted, high-throughput sequenced and screened for antimicrobial resistance genetic (ARG) markers. The physicochemical characteristics and the microbiota data confirmed that Rio das Ostras watershed can be divided into three well defined portions: rural, urban, and marine. Rural areas were enriched by bacteria typically found in limnic environments and Patescibacteria phyla. The urban portion was characterized by sites with low pH and groups associated with iron oxidation. Some genera of clinical relevance were also identified, though in relatively low abundance. The marine site was enriched mainly by Cyanobacteria and bacteria that showed strong correlation with conductivity, salinity, and chloride. Twenty-six ARG markers were identified on the resistome, being found most frequently in the urban area, despite being present in rural sites. Among them were some related to classes of great clinical concern, such as genes coding for extended-spectrum beta-lactamase (blaCTX-M and blaTEM), resistance to carbapenems (blaKPC) and to methicillin by Staphylococcus aureus (mecA). These results broaden our understanding of the microbial community of a watershed impacted by anthropogenic actions. The large number of ARGs detected along the Rio das Ostras watershed contrasts with the small number of microorganisms of clinical relevance observed, suggesting that antimicrobial resistance has arisen from non-clinical environments and microbes. Our results corroborate that freshwater acts as a reservoir of antimicrobial resistance genes.
Collapse
Affiliation(s)
- Ana Luísa Almeida Regina
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora - UFJF, José Lourenço Kelmer, Martelos, CEP 36036-900 Juiz de Fora, MG, Brazil
| | - Julliane Dutra Medeiros
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora - UFJF, José Lourenço Kelmer, Martelos, CEP 36036-900 Juiz de Fora, MG, Brazil; Faculty of Biological and Agricultural Sciences, Mato Grosso State University - UNEMAT, Perimetral Rogério Silva - Norte 2, CEP 78580-000 Alta Floresta, MT, Brazil
| | - Francisco Martins Teixeira
- Laboratory of Microbiology and Parasitology, Federal University of Rio de Janeiro - UFRJ, Macaé Campus, Aloísio da Silva Gomes, Granja dos Cavaleiros, CEP 27930-560 Macaé, RJ, Brazil
| | - Raíssa Pereira Côrrea
- Laboratory of Microbiology and Parasitology, Federal University of Rio de Janeiro - UFRJ, Macaé Campus, Aloísio da Silva Gomes, Granja dos Cavaleiros, CEP 27930-560 Macaé, RJ, Brazil
| | - Fernanda Almeida Maciel Santos
- Laboratory of Microbiology and Parasitology, Federal University of Rio de Janeiro - UFRJ, Macaé Campus, Aloísio da Silva Gomes, Granja dos Cavaleiros, CEP 27930-560 Macaé, RJ, Brazil
| | - Caique Pinheiro Rosa Brantes
- Laboratory of Microbiology and Parasitology, Federal University of Rio de Janeiro - UFRJ, Macaé Campus, Aloísio da Silva Gomes, Granja dos Cavaleiros, CEP 27930-560 Macaé, RJ, Brazil
| | - Ingrid Annes Pereira
- Laboratory of Food Microbiology, Federal University of Rio de Janeiro - UFRJ, Macaé Campus, Aloísio da Silva Gomes, Granja dos Cavaleiros, CEP 27930-560, Macaé, RJ, Brazil
| | - Danielle Marques Araújo Stapelfeldt
- Laboratory of Chemistry, Federal University of Rio de Janeiro - UFRJ, Macaé Campus, Aloísio da Silva Gomes, Granja dos Cavaleiros, CEP 27930-560 Macaé, RJ, Brazil
| | - Cláudio Galuppo Diniz
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora - UFJF, José Lourenço Kelmer, Martelos, CEP 36036-900 Juiz de Fora, MG, Brazil
| | - Vânia Lúcia da Silva
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora - UFJF, José Lourenço Kelmer, Martelos, CEP 36036-900 Juiz de Fora, MG, Brazil.
| |
Collapse
|
8
|
Suleiman A, Ademola O, Olalekan O. Constellation of methicillin-resistant genomic islands (SCCmec) among nasal meticillin-resistant Staphylococcus aureus isolates. ACTA FACULTATIS MEDICAE NAISSENSIS 2021. [DOI: 10.5937/afmnai38-25349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The apprehensiveness for the knowledge vacuum on existential threat of nasal carriage of pvl+ healthcare-acquired meticillin-resistant Staphylococcus aureus (HA-MRSA) strains amongst subjects in hospitals have led us to pursue a grasp on the constellation of staphylococcal cassette chromosome mec (SCCmec) types and pvl gene among mecA positive MRSA nasal strains. This was accomplished by phenotypic (catalase, coagulase, Microgen staph ID, ORSAB) and genotypic (polymerase chain reaction) biotyping techniques. All the mecA+ strains harboured the SCCmec gene; SCCmec type I prevailed in 43.75% and pvl was found in 42.1% of the isolates. Dual carriage of mecA and pvl genes occurred in six (37.5%, n = 6/16) strains. Overall, majority of the mecA+ MRSA strains documented in this study carried SCCmec elements of the HA genotype with a hint of community-acquired (CA)genotype suggesting a possible coexistence of both HA-MRSA and community-acquiredhealthcare-acquired meticillin-resistant Staphylococcus aureus (CA-MRSA) strains. Consequently, the implementation of methodical surveillance is needed for the evaluation of potential shifts in directionality of (HA-MRSA/CA-MRSA) pvl+ MRSA clones in our hospitals for effective and prudent antimicrobial stewardship.
Collapse
|
9
|
Lima WG, de Brito JCM, Cardoso VN, Fernandes SOA. In-depth characterization of antibacterial activity of melittin against Staphylococcus aureus and use in a model of non-surgical MRSA-infected skin wounds. Eur J Pharm Sci 2020; 156:105592. [PMID: 33049305 DOI: 10.1016/j.ejps.2020.105592] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022]
Abstract
Skin infections caused by methicillin-resistant Staphylococcus aureus (MRSA) require the development of new and effective topical antibiotics. In this context, melittin, the main component of apitoxin, has a potent antibacterial effect. However, little is known regarding the anti-inflammatory potential this peptide in infection models, or its ability to induce clinically important resistance. Here, we aimed to conduct an in-depth characterization of the antibacterial potential of melittin in vitro and evaluate the pharmaceutical potential of an ointment containing melittin for the treatment of non-surgical infections induced by MRSA. The minimum inhibitory concentration of melittin varied from 0.12 to 4 μM. The antibacterial effect was mainly bactericidal and fast (approximately 0.5 h after incubation) and was maintained even in stationary cells and mature MRSA biofilms. Melittin interacts synergistically with beta-lactams and aminoglycosides, and its ability to form pores in the membrane reverses the resistance of vancomycin-intermediate Staphylococcus aureus (VISA) to amoxicillin, and vancomycin. Its ability to induce resistance in vitro was absent, and melittin was stable in several conditions often associated with infected wounds. In vivo, aointment containing melittin reduced bacterial load and the content of pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin-6 (IL-6), and IL-1 beta. Collectively, these data point to melittin as a potential candidate for topical formulations aimed at the treatment of non-surgical infections caused by MRSA.
Collapse
Affiliation(s)
- William Gustavo Lima
- Laboratório de Radioisótopos, Departamento de Análises Clinicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Valbert Nascimento Cardoso
- Laboratório de Radioisótopos, Departamento de Análises Clinicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Simone Odília Antunes Fernandes
- Laboratório de Radioisótopos, Departamento de Análises Clinicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
10
|
Assessment of the Antibiotic Resistance Profile, Genetic Heterogeneity and Biofilm Production of Methicillin-Resistant Staphylococcus aureus (MRSA) Isolated from The Italian Swine Production Chain. Foods 2020; 9:foods9091141. [PMID: 32825203 PMCID: PMC7555242 DOI: 10.3390/foods9091141] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/10/2020] [Accepted: 08/15/2020] [Indexed: 12/11/2022] Open
Abstract
The main aim of the present study was to evaluate the level of antibiotic resistance, prevalence and virulence features of methicillin-resistant Staphylococcus aureus (MRSA) isolated from heavy swine at abattoir level and farming environments in Lombardy (Northern Italy). With this scope, 88 different heavy swine farms were surveyed, obtaining a total of n = 440 animal swabs and n = 150 environmental swabs. A total of n = 87 MRSA isolates were obtained, with an overall MRSA incidence of 17.50% (n = 77) among animal samples and a 6.67% (n = 10) among environmental. Molecular characterisation using multilocus sequence typing (MLST) plus spa-typing showed that sequence type ST398/t899 and ST398/t011 were the most commonly isolated genotypes, although other relevant sequence types such as ST1 or ST97 were also found. A lack of susceptibility to penicillins, tetracycline and ceftiofur was detected in >91.95, 85.05 and 48.28% of the isolates, respectively. Resistance to doxycycline (32.18%), enrofloxacin (27.59%) and gentamicin (25.29%) was also observed. Additionally, a remarkable level of antibiotic multiresistance (AMR) was observed representing a 77.01% (n = 67) of the obtained isolates. Genetic analysis revealed that 97.70% and 77.01% of the isolates harboured at least one antibiotic resistance or enterotoxin gene, respectively, pointing out a high isolate virulence potential. Lastly, 55.17% (n = 48) were able to produce measurable amounts of biofilm after 24 h. In spite of the current programmes for antibiotic reduction in intensively farming, a still on-going high level of AMR and virulence potential in MRSA was demonstrated, making this pathogen a serious risk in swine production chain, highlighting once more the need to develop efficient, pathogen-specific control strategies.
Collapse
|