1
|
Łopucki R, Sajnaga E, Kalwasińska A, Klich D, Kitowski I, Stępień-Pyśniak D, Christensen H. Green spaces contribute to structural resilience of the gut microbiota in urban mammals. Sci Rep 2024; 14:15508. [PMID: 38969657 PMCID: PMC11226671 DOI: 10.1038/s41598-024-66209-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024] Open
Abstract
The gut microbiome of wild animals is subject to various environmental influences, including those associated with human-induced alterations to the environment. We investigated how the gut microbiota of a synurbic rodent species, the striped field mouse (Apodemus agrarius), change in cities of varying sizes, seeking the urban microbiota signature for this species. Fecal samples for analysis were collected from animals living in non-urbanized areas and green spaces of different-sized cities (Poland). Metagenomic 16S rRNA gene sequencing and further bioinformatics analyses were conducted. Significant differences in the composition of gut microbiomes among the studied populations were found. However, the observed changes were dependent on local habitat conditions, without strong evidence of a correlation with the size of the urbanized area. The results suggest that ecological detachment from a more natural, non-urban environment does not automatically lead to the development of an "urban microbiome" model in the studied rodent. The exposure to the natural environment in green spaces may serve as a catalyst for microbiome transformations, providing a previously underestimated contribution to the maintenance of native gut microbial communities in urban mammals.
Collapse
Affiliation(s)
- Rafał Łopucki
- Department of Biomedicine and Environmental Research, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708, Lublin, Poland.
| | - Ewa Sajnaga
- Department of Biomedicine and Environmental Research, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708, Lublin, Poland
| | - Agnieszka Kalwasińska
- Department of Environmental Microbiology and Biotechnology, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland
| | - Daniel Klich
- Department of Animal Genetics and Conservation, Warsaw University of Life Sciences (SGGW), Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Ignacy Kitowski
- University College of Applied Sciences in Chełm, Pocztowa 54, 22-100, Chełm, Poland
| | - Dagmara Stępień-Pyśniak
- Department of Veterinary Prevention and Avian Diseases, University of Life Sciences in Lublin, Głęboka 30, 20-612, Lublin, Poland
| | - Henrik Christensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, Frederiksberg C, Denmark
| |
Collapse
|
2
|
Chandel N, Somvanshi PR, Thakur V. Characterisation of Indian gut microbiome for B-vitamin production and its comparison with Chinese cohort. Br J Nutr 2024; 131:686-697. [PMID: 37781761 PMCID: PMC10803823 DOI: 10.1017/s0007114523002179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
The human gut microbiota can biosynthesize essential micronutrients such as B-vitamins and is also known for its metabolic cooperative behaviour. The present study characterises such B-vitamin biosynthesizers, their biosynthetic pathways, explores their prevalence and abundance, examines how lifestyle or diet affects them in multiple Indian cohorts and compares it with the Chinese cohort. To achieve this, publicly available faecal metagenome data of healthy individuals from multiple Indian (two urban and three tribal populations) and a Chinese cohort were analysed. The distribution of prevalence and abundance of B-vitamin biosynthesizers showed similar profiles to that of the entire gut community of the Indian cohort, and there were 28 B-vitamin biosynthesizers that had modest or higher prevalence and abundance. The omnivorous diet affected only the prevalence of a few B-vitamin biosynthesizers; however, lifestyle and/or location affected both prevalence and abundance. A comparison with the Chinese cohort showed that fourteen B-vitamin biosynthesizers were significantly more prevalent and abundant in Chinese as compared with Indian samples (False Discovery Rate (FDR) <= 0·05). The metabolic potential of the entire gut community for B-vitamin production showed that within India, the tribal cohort has a higher abundance of B-vitamin biosynthesis pathways as compared with two urban cohorts namely, Bhopal and Kasargod, and comparison with the Chinese cohort revealed a higher abundance in the latter group. Potential metabolic cooperative behaviour of the Indian gut microbiome for biosynthesis of the B-vitamins showed multiple pairs of species showed theoretical complementarity for complete biosynthetic pathways genes of thiamine, riboflavin, niacin and pantothenate.
Collapse
Affiliation(s)
- Nisha Chandel
- Department of Systems and Computational Biology, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Pramod R. Somvanshi
- Department of Systems and Computational Biology, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Vivek Thakur
- Department of Systems and Computational Biology, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| |
Collapse
|
3
|
Rantala MJ, Luoto S, Borráz-León JI, Krams I. Schizophrenia: the new etiological synthesis. Neurosci Biobehav Rev 2022; 142:104894. [PMID: 36181926 DOI: 10.1016/j.neubiorev.2022.104894] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 08/25/2022] [Accepted: 09/25/2022] [Indexed: 10/31/2022]
Abstract
Schizophrenia has been an evolutionary paradox: it has high heritability, but it is associated with decreased reproductive success. The causal genetic variants underlying schizophrenia are thought to be under weak negative selection. To unravel this paradox, many evolutionary explanations have been suggested for schizophrenia. We critically discuss the constellation of evolutionary hypotheses for schizophrenia, highlighting the lack of empirical support for most existing evolutionary hypotheses-with the exception of the relatively well supported evolutionary mismatch hypothesis. It posits that evolutionarily novel features of contemporary environments, such as chronic stress, low-grade systemic inflammation, and gut dysbiosis, increase susceptibility to schizophrenia. Environmental factors such as microbial infections (e.g., Toxoplasma gondii) can better predict the onset of schizophrenia than polygenic risk scores. However, researchers have not been able to explain why only a small minority of infected people develop schizophrenia. The new etiological synthesis of schizophrenia indicates that an interaction between host genotype, microbe infection, and chronic stress causes schizophrenia, with neuroinflammation and gut dysbiosis mediating this etiological pathway. Instead of just alleviating symptoms with drugs, the parasite x genotype x stress model emphasizes that schizophrenia treatment should focus on detecting and treating possible underlying microbial infection(s), neuroinflammation, gut dysbiosis, and chronic stress.
Collapse
Affiliation(s)
- Markus J Rantala
- Department of Biology, University of Turku, FIN-20014 Turku, Finland.
| | - Severi Luoto
- School of Population Health, University of Auckland, 1023 Auckland, New Zealand
| | | | - Indrikis Krams
- Institute of Ecology and Earth Sciences, University of Tartu, 51014 Tartu, Estonia; Department of Zoology and Animal Ecology, Faculty of Biology, University of Latvia, 1004, Rīga, Latvia
| |
Collapse
|
4
|
Helminth-Induced Human Gastrointestinal Dysbiosis: a Systematic Review and Meta-Analysis Reveals Insights into Altered Taxon Diversity and Microbial Gradient Collapse. mBio 2021; 12:e0289021. [PMID: 34933444 PMCID: PMC8689561 DOI: 10.1128/mbio.02890-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
High-throughput 16S rRNA sequencing has allowed the characterization of helminth-uninfected (HU) and helminth-infected (HI) gut microbiomes, revealing distinct profiles. However, there have been no qualitative or quantitative syntheses of these studies, which show marked variation in participant age, diet, pathogen of interest, and study location. A predefined minimally biased search strategy identified 23 studies in humans. For each of these studies, we qualitatively addressed the effects of helminth infection on within-individual (alpha) and between-individual (beta) fecal microbiome diversity, infection-associated microbial taxa, the effect of helminth clearance on microbiome composition, microbiome composition as a predictor of infection status or treatment outcome, and treatment-specific effects on the fecal microbiome. Concomitantly, we performed a meta-analysis on a subset of 7 of these studies containing raw, paired-end 16S reads and individual-level metadata, comprising 424 pretreatment or untreated HI individuals and 497 HU controls. After reducing the batch effect and adjusting for age, our data demonstrated that intestinal helminth parasites can alter the host gut microbiome by increasing alpha diversity and promoting taxonomic reassortment and gradient collapse. Most strongly influencing the microbiome composition were the helminths found in the large intestine, Enterobius vermicularis and Trichuris trichiura, suggesting that this influence appears to be specific to soil-transmitted helminths (STH) species and host anatomical niche. In summary, using a large and diverse sample set captured in the meta-analysis, we were able to evaluate the influence of individual helminth species as well as species-species interactions, each of which explained a significant portion of the variation in the microbiome.
Collapse
|
5
|
Conceição MVR, Costa SS, Schaan AP, Ribeiro-Dos-Santos ÂKC, Silva A, das Graças DA, Schneider MPC, Baraúna RA. Amazonia Seasons Have an Influence in the Composition of Bacterial Gut Microbiota of Mangrove Oysters ( Crassostrea gasar). Front Genet 2021; 11:602608. [PMID: 33643371 PMCID: PMC7907636 DOI: 10.3389/fgene.2020.602608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/17/2020] [Indexed: 12/04/2022] Open
Abstract
The mangrove oysters (Crassostrea gasar) are molluscs native to the Amazonia region and their exploration and farming has increased considerably in recent years. These animals are farmed on beds built in the rivers of the Amazonia estuaries and, therefore, the composition of their microbiome should be directly influenced by environmental conditions. Our work aimed to evaluate the changes in bacterial composition of oyster's microbiota at two different seasons (rainy and dry). For this purpose, we amplified and sequenced the V3-V4 regions of the 16S rRNA gene. Sequencing was performed on the Illumina MiSeq platform. According to the rarefaction curve, the sampling effort was sufficient to describe the bacterial diversity in the samples. Alpha-diversity indexes showed that the bacterial microbiota of oysters is richer during the rainy season. This richness is possibly associated with the diversity at lower taxonomic levels, since the relative abundance of bacterial phyla in the two seasons remained relatively constant. The main phyla found include Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria. Similar results were found for the species Crassostrea gigas, Crassostrea sikamea, and Crassostrea corteziensis. Beta-diversity analysis showed that the bacterial composition of oyster's gut microbiota was quite different in the two seasons. Our data demonstrate the close relationship between the environment and the microbiome of these molluscs, reinforcing the need for conservation and sustainable management of estuaries in the Amazonia.
Collapse
Affiliation(s)
- Marcos Vinícius Reis Conceição
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil.,Laboratory of Biological Engineering, Guamá Science and Technology Park, Belém, Brazil
| | - Sávio Souza Costa
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil.,Laboratory of Biological Engineering, Guamá Science and Technology Park, Belém, Brazil
| | - Ana Paula Schaan
- Laboratory of Medical and Human Genetics, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | - Artur Silva
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil.,Laboratory of Biological Engineering, Guamá Science and Technology Park, Belém, Brazil
| | - Diego Assis das Graças
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil.,Laboratory of Biological Engineering, Guamá Science and Technology Park, Belém, Brazil
| | - Maria Paula Cruz Schneider
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil.,Laboratory of Biological Engineering, Guamá Science and Technology Park, Belém, Brazil
| | - Rafael Azevedo Baraúna
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil.,Laboratory of Biological Engineering, Guamá Science and Technology Park, Belém, Brazil
| |
Collapse
|
6
|
Bhattacharya S, Bhadra R, Schols AMWJ, Sambashivaiah S. Gut microbial dysbiosis as a limiting factor in the management of primary and secondary sarcopenia: an Asian Indian perspective. Curr Opin Clin Nutr Metab Care 2020; 23:404-410. [PMID: 32868683 DOI: 10.1097/mco.0000000000000688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW The article summarizes recent research advances on the role of gut microbiome in primary and secondary sarcopenia. This article also explores the potential contribution of gut dysbiosis to suboptimal sarcopenia management with special focus on factors contributing to gut dysbiosis among Asian Indians. RECENT FINDINGS Aging and chronic diseases contribute to gut dysbiosis and intestinal barrier dysfunction allowing enhanced microbial translocation that may negatively affect muscle strength, physical function, and frailty. Gut microbiome of Asian Indians has shown a unique composition that is affected by multiple factors, such as socioeconomic status, poor hygiene, high rate of infection and infestations, antibiotic overuse and transition towards a westernized eating pattern. Current management approach for sarcopenia (exercise and/or protein supplementation) fails to address gut dysbiosis and intestinal barrier dysfunction. Incorporating a prebiotic or probiotic element to the intervention strategy may improve gut dysbiosis, inflammation and muscle function. SUMMARY Gut dysbiosis and intestinal barrier dysfunction appear to be a significant limitation in sarcopenia management, thus gut centric intervention may be perceived as a (co)intervention strategy to be tested in appropriate clinical trials.
Collapse
Affiliation(s)
| | - Rohini Bhadra
- St John's Research Institute, St John's Medical College, Bengaluru, India
| | - Annemie M W J Schols
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Respiratory Medicine, Maastricht University, The Netherlands
| | | |
Collapse
|