1
|
Sreepangi S, Baha H, Opoku LA, Jones NX, Konadu M, Alem F, Barrera MD, Narayanan A. Host-Driven Ubiquitination Events in Vector-Transmitted RNA Virus Infections as Options for Broad-Spectrum Therapeutic Intervention Strategies. Viruses 2024; 16:1727. [PMID: 39599842 PMCID: PMC11599102 DOI: 10.3390/v16111727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Many vector-borne viruses are re-emerging as public health threats, yet our understanding of the virus-host interactions critical for productive infection remains limited. The ubiquitination of proteins, including host- and pathogen-derived proteins is a highly prominent and consistent post-translational modification that regulates protein function through signaling and degradation. Viral proteins are documented to hijack the host ubiquitination machinery to modulate multiple host processes including antiviral defense mechanisms. The engagement of the host ubiquitination machinery in the post-translational modification of viral proteins to support aspects of the viral life cycle including assembly and egress is also well documented. Exploring the role ubiquitination plays in the life cycle of vector-transmitted viral pathogens will increase the knowledge base pertinent to the impact of host-enabled ubiquitination of viral and host proteins and the consequences on viral pathogenesis. In this review, we explore E3 ligase-regulated ubiquitination pathways functioning as proviral and viral restriction factors in the context of acutely infectious, vector-transmitted viral pathogens and the potential for therapeutically targeting them for countermeasures development.
Collapse
Affiliation(s)
- Sanskruthi Sreepangi
- School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA; (S.S.); (H.B.); (L.A.O.); (N.X.J.); (M.K.); (M.D.B.)
| | - Haseebullah Baha
- School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA; (S.S.); (H.B.); (L.A.O.); (N.X.J.); (M.K.); (M.D.B.)
| | - Lorreta Aboagyewa Opoku
- School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA; (S.S.); (H.B.); (L.A.O.); (N.X.J.); (M.K.); (M.D.B.)
| | - Naomi X. Jones
- School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA; (S.S.); (H.B.); (L.A.O.); (N.X.J.); (M.K.); (M.D.B.)
| | - Maame Konadu
- School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA; (S.S.); (H.B.); (L.A.O.); (N.X.J.); (M.K.); (M.D.B.)
| | - Farhang Alem
- Institute of Biohealth Innovation, George Mason University, Fairfax, VA 22030, USA;
| | - Michael D. Barrera
- School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA; (S.S.); (H.B.); (L.A.O.); (N.X.J.); (M.K.); (M.D.B.)
| | - Aarthi Narayanan
- Department of Biology, College of Science, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
2
|
Melo K, Dos Santos CR, Franco ECS, Martins Filho AJ, Casseb SMM, Vasconcelos PFDC. Exploring the interplay between miRNAs, apoptosis and viral load, in Dengue virus infection. Virology 2024; 596:110095. [PMID: 38761641 DOI: 10.1016/j.virol.2024.110095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/08/2024] [Accepted: 04/23/2024] [Indexed: 05/20/2024]
Abstract
Dengue virus (DENV) is a major global health concern, causing millions of infections annually. Understanding the cellular response to DENV infection is crucial for developing effective therapies. This study provides an in-depth analysis of the cellular response to Dengue virus (DENV) infection, with a specific focus on the interplay between microRNAs (miRNAs), apoptosis, and viral load across different DENV serotypes. Utilizing a variety of cell lines infected with four DENV serotypes, the research methodically quantifies viral load, and the expression levels of miRNA-15, miRNA-16, and BCL2 protein, alongside measuring apoptosis markers. Methodologically, the study employs quantitative PCR for viral load and miRNA expression analysis, and Western blot for apoptosis and BCL2 detection, with a statistical framework that includes ANOVA and correlation analysis to discern significant differences and relationships. The findings reveal that despite similar viral loads across DENV serotypes, DENV-2 exhibits a marginally higher load. A notable upregulation of miRNA-15 and miRNA-16 correlates positively with increased viral load, suggesting their potential role in modulating viral replication. Concurrently, a marked activation of caspases 3 and 7, along with changes in BCL2 protein levels, underscores the role of apoptosis in the cellular response to DENV infection. Conclusively, the study enhances the understanding of miRNA involvement in DENV pathogenesis, highlighting miRNA-15 and miRNA-16 as potential regulatory agents in viral replication and apoptosis. These findings pave the way for further exploration into miRNA-based therapeutic strategies against DENV infection.
Collapse
Affiliation(s)
- Karla Melo
- Instituto Evandro Chagas, Brazil; Universidade Federal do Pará, Brazil
| | | | | | | | | | | |
Collapse
|
3
|
Bermudez-Santana CI, Gallego-Gómez JC. Toward a Categorization of Virus-ncRNA Interactions in the World of RNA to Disentangle the Tiny Secrets of Dengue Virus. Viruses 2024; 16:804. [PMID: 38793685 PMCID: PMC11125801 DOI: 10.3390/v16050804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, the function of noncoding RNAs (ncRNAs) as regulatory molecules of cell physiology has begun to be better understood. Advances in viral molecular biology have shown that host ncRNAs, cellular factors, and virus-derived ncRNAs and their interplay are strongly disturbed during viral infections. Nevertheless, the folding of RNA virus genomes has also been identified as a critical factor in regulating canonical and non-canonical functions. Due to the influence of host ncRNAs and the structure of RNA viral genomes, complex molecular and cellular processes in infections are modulated. We propose three main categories to organize the current information about RNA-RNA interactions in some well-known human viruses. The first category shows examples of host ncRNAs associated with the immune response triggered in viral infections. Even though miRNAs introduce a standpoint, they are briefly presented to keep researchers moving forward in uncovering other RNAs. The second category outlines interactions between virus-host ncRNAs, while the third describes how the structure of the RNA viral genome serves as a scaffold for processing virus-derived RNAs. Our grouping may provide a comprehensive framework to classify ncRNA-host-cell interactions for emerging viruses and diseases. In this sense, we introduced them to organize DENV-host-cell interactions.
Collapse
Affiliation(s)
- Clara Isabel Bermudez-Santana
- Computational and theoretical RNomics Group, Center of Excellence in Scientific Computing, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Juan Carlos Gallego-Gómez
- Grupo de Medicina de Traslación, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| |
Collapse
|
4
|
Zhang X, Li Y, Cao Y, Wu Y, Cheng G. The Role of Noncoding RNA in the Transmission and Pathogenicity of Flaviviruses. Viruses 2024; 16:242. [PMID: 38400018 PMCID: PMC10892091 DOI: 10.3390/v16020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Noncoding RNAs (ncRNAs) constitute a class of RNA molecules that lack protein-coding capacity. ncRNAs frequently modulate gene expression through specific interactions with target proteins or messenger RNAs, thereby playing integral roles in a wide array of cellular processes. The Flavivirus genus comprises several significant members, such as dengue virus (DENV), Zika virus (ZIKV), and yellow fever virus (YFV), which have caused global outbreaks, resulting in high morbidity and mortality in human populations. The life cycle of arthropod-borne flaviviruses encompasses their transmission between hematophagous insect vectors and mammalian hosts. During this process, a complex three-way interplay occurs among the pathogen, vector, and host, with ncRNAs exerting a critical regulatory influence. ncRNAs not only constitute a crucial regulatory mechanism that has emerged from the coevolution of viruses and their hosts but also hold potential as antiviral targets for controlling flavivirus epidemics. This review introduces the biogenesis of flavivirus-derived ncRNAs and summarizes the regulatory roles of ncRNAs in viral replication, vector-mediated viral transmission, antiviral innate immunity, and viral pathogenicity. A profound comprehension of the interplay between ncRNAs and flaviviruses will help formulate efficacious prophylactic and therapeutic strategies against flavivirus-related diseases.
Collapse
Affiliation(s)
- Xianwen Zhang
- Shenzhen Bay Laboratory, Institute of Infectious Diseases, Shenzhen 518000, China
| | - Yuhan Li
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; (Y.L.); (Y.C.)
| | - Yingyi Cao
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; (Y.L.); (Y.C.)
| | - Ying Wu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan 430072, China;
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; (Y.L.); (Y.C.)
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
- Southwest United Graduate School, Kunming 650092, China
| |
Collapse
|
5
|
Wu J, Yan Y. SIAH1 Promotes the Pyroptosis of Cardiomyocytes in Diabetic Cardiomyopathy via Regulating IκB-α/NF-κВ Signaling. Crit Rev Eukaryot Gene Expr 2024; 34:45-57. [PMID: 38842203 DOI: 10.1615/critreveukaryotgeneexpr.2024052773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Inflammation-mediated dysfunction of cardiomyocytes is the main cause of diabetic cardiomyopathy (DCM). The present study aimed to investigate the roles of siah E3 ubiquitin protein ligase 1 (SIAH1) in DCM. The online dataset GSE4172 was used to analyze the differentially expressed genes in myocardial inflammation of DCM patients. RT-qPCR was conducted to detect mRNA levels. Enzyme-Linked Immunosorbent Assay (ELISA) was performed to detect cytokine release. Western blot was used to detect protein expression. Lactate dehydrogenase (LDH) assay was used to determine cytotoxicity. In vitro ubiquitination assay was applied to determine the ubiquitination of nuclear factor kappa B inhibitor alpha (1κВ-α). Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay was used to detect the death of cardiomyocytes. Flow cytometry was applied for determining cardiomyocyte pyroptosis. The results showed that SIAH1 was overexpressed in human inflammatory cardiomyopathy. High expression of SIAH1 was associated with inflammatory response. SIAH1 was also overexpressed lipopolysaccharide (LPS)-induced inflammatory cardiomyopathy model in vitro. However, SIAH1 knockdown suppressed the inflammatory-related pyroptosis of cardiomyocytes. SIAH1 promoted the ubiquitination of 1κВ-α and activated nuclear factor kappa В (NF-κВ) signaling, which promoted the pyroptosis of cardiomyocytes. In conclusion, SIAH1 exacerbated the progression of human inflammatory cardiomyopathy via inducing the ubiquitination of 1κВ-α and activation of NF-κВ signaling. Therefore, SIAHI/IκB-α/NF-κB signaling may be a potential target for human inflammatory cardiomyopathy.
Collapse
Affiliation(s)
| | - Yaoming Yan
- Laboratory Department, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
6
|
Wang J, Zhang X, Ma X, Chen D, Cai M, Xiao L, Li J, Huang Z, Huang Y, Lian Y. Blockage of CacyBP inhibits macrophage recruitment and improves anti-PD-1 therapy in hepatocellular carcinoma. J Exp Clin Cancer Res 2023; 42:303. [PMID: 37968706 PMCID: PMC10652496 DOI: 10.1186/s13046-023-02885-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/03/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Despite remarkable advancements in cancer immunotherapy, the overall response rate to anti-programmed cell death-1 (anti-PD-1) therapy in hepatocellular carcinoma (HCC) patients remains low. Our previous study has demonstrated the critical role of CacyBP/SIP (Calcyclin-Binding Protein and Siah-1 Interacting Protein) as a regulator of HCC development and progression. However, the possible impact of CacyBP on the tumor immune microenvironment has not yet been clarified. METHODS The expressions of CacyBP and Myd88 in HCC cell lines and tissues was detected by bioinformatics analysis, real-time quantitative PCR, western blotting and immunohistochemistry. The interaction between CacyBP and Myd88 was measured using co-immunoprecipitation and immunofluorescence. In vitro and in vivo assays were used to investigate the regulation of CacyBP on tumor-associated macrophages (TAMs). RESULTS We identified that CacyBP was positively correlated with Myd88, a master regulator of innate immunity, and Myd88 was a novel binding substrate downstream of CacyBP in HCC. Additionally, CacyBP protected Myd88 from Siah-1-mediated proteasome-dependent degradation by competitively binding to its Toll/interleukin-1 receptor (TIR) domain. Inhibition of CacyBP-Myd88 signaling subsequently diminished HDAC1-mediated H3K9ac and H3K27ac modifications on the CX3CL1 promoter and reduced its transcription and secretion in HCC cells. Moreover, by using in vitro and in vivo strategies, we demonstrated that depletion of CacyBP impaired the infiltration of TAMs and the immunosuppressive state of the tumor microenvironment, further sensitizing HCC-bearing anti-PD-1 therapy. CONCLUSIONS Our findings suggest that targeting CacyBP may be a novel treatment strategy for improving the efficacy of anti-PD-1 immunotherapy in HCC.
Collapse
Affiliation(s)
- Jialiang Wang
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, China
| | - Xiaoyu Zhang
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, China
| | - Xinyi Ma
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, China
| | - Dongmei Chen
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, China
| | - Meina Cai
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, China
| | - Lexin Xiao
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, China
| | - Jing Li
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, China
| | - Zexuan Huang
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, China
| | - Yuehua Huang
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, China.
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, China.
| | - Yifan Lian
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, China.
| |
Collapse
|
7
|
Casseb SMM, Melo KFLD, Carvalho CAMD, Santos CRD, Franco ECS, Vasconcelos PFDC. Experimental Dengue Virus Type 4 Infection Increases the Expression of MicroRNAs-15/16, Triggering a Caspase-Induced Apoptosis Pathway. Curr Issues Mol Biol 2023; 45:4589-4599. [PMID: 37367040 DOI: 10.3390/cimb45060291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 06/28/2023] Open
Abstract
The World Health Organization has estimated the annual occurrence of approximately 392 million dengue virus (DENV) infections in more than 100 countries where the virus is endemic, which represents a serious threat to humanity. DENV is a serologic group with four distinct serotypes (DENV-1, DENV-2, DENV-3, and DENV-4) belonging to the genus Flavivirus, in the family Flaviviridae. Dengue is the most widespread mosquito-borne disease in the world. The ~10.7 kb DENV genome encodes three structural proteins (capsid (C), pre-membrane (prM), and envelope (E)) and seven non-structural (NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). The NS1 protein is a membrane-associated dimer and a secreted, lipid-associated hexamer. Dimeric NS1 is found on membranes both in cellular compartments and cell surfaces. Secreted NS1 (sNS1) is often present in patient serum at very high levels, which correlates with severe dengue symptoms. This study was conducted to discover how the NS1 protein, microRNAs-15/16 (miRNAs-15/16), and apoptosis are related during DENV-4 infection in human liver cell lines. Huh 7.5 and HepG2 cells were infected with DENV-4, and miRNAs-15/16, viral load, NS1 protein, and caspases-3/7 were quantified after different durations of infection. This study demonstrated that miRNAs-15/16 were overexpressed during the infection of HepG2 and Huh 7.5 cells with DENV-4 and had a relationship with NS1 protein expression, viral load, and the activity of caspases-3/7, thus making these miRNAs potential injury markers during DENV infection in human hepatocytes.
Collapse
Affiliation(s)
- Samir Mansour Moraes Casseb
- Experimental Pathology Section, Evandro Chagas Institute, Ananindeua 67030-000, PA, Brazil
- Oncology Research Center, Federal University of Pará, Belém 66075-110, PA, Brazil
| | | | | | | | | | | |
Collapse
|
8
|
Turi M, Anilkumar Sithara A, Hofmanová L, Žihala D, Radhakrishnan D, Vdovin A, Knápková S, Ševčíková T, Chyra Z, Jelínek T, Šimíček M, Gullà A, Anderson KC, Hájek R, Hrdinka M. Transcriptome Analysis of Diffuse Large B-Cell Lymphoma Cells Inducibly Expressing MyD88 L265P Mutation Identifies Upregulated CD44, LGALS3, NFKBIZ, and BATF as Downstream Targets of Oncogenic NF-κB Signaling. Int J Mol Sci 2023; 24:ijms24065623. [PMID: 36982699 PMCID: PMC10057398 DOI: 10.3390/ijms24065623] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
During innate immune responses, myeloid differentiation primary response 88 (MyD88) functions as a critical signaling adaptor protein integrating stimuli from toll-like receptors (TLR) and the interleukin-1 receptor (IL-1R) family and translates them into specific cellular outcomes. In B cells, somatic mutations in MyD88 trigger oncogenic NF-κB signaling independent of receptor stimulation, which leads to the development of B-cell malignancies. However, the exact molecular mechanisms and downstream signaling targets remain unresolved. We established an inducible system to introduce MyD88 to lymphoma cell lines and performed transcriptomic analysis (RNA-seq) to identify genes differentially expressed by MyD88 bearing the L265P oncogenic mutation. We show that MyD88L265P activates NF-κB signaling and upregulates genes that might contribute to lymphomagenesis, including CD44, LGALS3 (coding Galectin-3), NFKBIZ (coding IkBƺ), and BATF. Moreover, we demonstrate that CD44 can serve as a marker of the activated B-cell (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) and that CD44 expression is correlated with overall survival in DLBCL patients. Our results shed new light on the downstream outcomes of MyD88L265P oncogenic signaling that might be involved in cellular transformation and provide novel therapeutical targets.
Collapse
Affiliation(s)
- Marcello Turi
- Faculty of Science, University of Ostrava, 70100 Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Anjana Anilkumar Sithara
- Faculty of Science, University of Ostrava, 70100 Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Lucie Hofmanová
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - David Žihala
- Faculty of Science, University of Ostrava, 70100 Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Dhwani Radhakrishnan
- Faculty of Science, University of Ostrava, 70100 Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Alexander Vdovin
- Faculty of Science, University of Ostrava, 70100 Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Sofija Knápková
- Faculty of Science, University of Ostrava, 70100 Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Tereza Ševčíková
- Faculty of Science, University of Ostrava, 70100 Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Zuzana Chyra
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Tomáš Jelínek
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Michal Šimíček
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Annamaria Gullà
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Kenneth Carl Anderson
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Roman Hájek
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Matouš Hrdinka
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
- Correspondence:
| |
Collapse
|
9
|
Huang S, Cheng A, Wang M, Yin Z, Huang J, Jia R. Viruses utilize ubiquitination systems to escape TLR/RLR-mediated innate immunity. Front Immunol 2022; 13:1065211. [PMID: 36505476 PMCID: PMC9732732 DOI: 10.3389/fimmu.2022.1065211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/10/2022] [Indexed: 11/26/2022] Open
Abstract
When the viruses invade the body, they will be recognized by the host pattern recognition receptors (PRRs) such as Toll like receptor (TLR) or retinoic acid-induced gene-I like receptor (RLR), thus causing the activation of downstream antiviral signals to resist the virus invasion. The cross action between ubiquitination and proteins in these signal cascades enhances the antiviral signal. On the contrary, more and more viruses have also been found to use the ubiquitination system to inhibit TLR/RLR mediated innate immunity. Therefore, this review summarizes how the ubiquitination system plays a regulatory role in TLR/RLR mediated innate immunity, and how viruses use the ubiquitination system to complete immune escape.
Collapse
Affiliation(s)
- Shanzhi Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,*Correspondence: Renyong Jia,
| |
Collapse
|
10
|
Lee MF, Voon GZ, Lim HX, Chua ML, Poh CL. Innate and adaptive immune evasion by dengue virus. Front Cell Infect Microbiol 2022; 12:1004608. [PMID: 36189361 PMCID: PMC9523788 DOI: 10.3389/fcimb.2022.1004608] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Dengue is a mosquito-borne disease which causes significant public health concerns in tropical and subtropical countries. Dengue virus (DENV) has evolved various strategies to manipulate the innate immune responses of the host such as ‘hiding’ in the ultrastructure of the host, interfering with the signaling pathway through RNA modifications, inhibiting type 1 IFN production, as well as inhibiting STAT1 phosphorylation. DENV is also able to evade the adaptive immune responses of the host through antigenic variation, antigen-dependent enhancement (ADE), partial maturation of prM proteins, and inhibition of antigen presentation. miRNAs are important regulators of both innate and adaptive immunity and they have been shown to play important roles in DENV replication and pathogenesis. This makes them suitable candidates for the development of anti-dengue therapeutics. This review discusses the various strategies employed by DENV to evade innate and adaptive immunity. The role of miRNAs and DENV non-structural proteins (NS) are promising targets for the development of anti-dengue therapeutics.
Collapse
|
11
|
Wang J, Fan P, Wei Y, Wang J, Zou W, Zhou G, Zhong D, Zheng X. Isobaric tags for relative and absolute quantification-based proteomic analysis of host-pathogen protein interactions in the midgut of Aedes albopictus during dengue virus infection. Front Microbiol 2022; 13:990978. [PMID: 36187964 PMCID: PMC9515977 DOI: 10.3389/fmicb.2022.990978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Aedes albopictus (Ae. albopictus), an important vector of dengue virus (DENV), is distributed worldwide. Identifying host proteins involved in flavivirus replication in Ae. albopictus and determining their natural antiviral mechanisms are critical to control virus transmission. Revealing the key proteins related to virus replication and exploring the host-pathogen interaction are of great significance in finding new pathways of the natural immune response in Ae. albopictus. Isobaric tags for relative and absolute quantification (iTRAQ) was used to perform a comparative proteomic analysis between the midgut of Ae. albopictus infected with DENV and the control. 3,419 proteins were detected, of which 162 were ≥ 1.2-fold differentially upregulated or ≤ 0.8-fold differentially downregulated (p < 0.05) during DENV infections. Differentially expressed proteins (DEPs) were mainly enriched in ubiquitin ligase complex, structural constituent of cuticle, carbohydrate metabolism, and lipid metabolism pathways. We found that one of the DEPs, a putative pupal cuticle (PC) protein could inhibit the replication of DENV and interact with the DENV-E protein. In addition, the result of immunofluorescence (IF) test showed that there was co-localization between ubiquitin carboxyl-terminal hydrolase (UCH) protein and the DENV-E protein, and virus infection reduced the level of this protein. iTRAQ-based proteomic analysis of the Ae. albopictus midgut identified dengue infection-induced upregulated and downregulated proteins. The interaction between the PC and UCH proteins in the midgut of Ae. albopictus might exert a natural antiviral mechanism in mosquito.
Collapse
Affiliation(s)
- Jiatian Wang
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Peiyang Fan
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yong Wei
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiaqi Wang
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Weihao Zou
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California, Irvine, Irvine, CA, United States
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California, Irvine, Irvine, CA, United States
| | - Xueli Zheng
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
- *Correspondence: Xueli Zheng,
| |
Collapse
|
12
|
Cai W, Pan Y, Cheng A, Wang M, Yin Z, Jia R. Regulatory Role of Host MicroRNAs in Flaviviruses Infection. Front Microbiol 2022; 13:869441. [PMID: 35479613 PMCID: PMC9036177 DOI: 10.3389/fmicb.2022.869441] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA that affect mRNA abundance or translation efficiency by binding to the 3′UTR of the mRNA of the target gene, thereby participating in multiple biological processes, including viral infection. Flavivirus genus consists of small, positive-stranded, single-stranded RNA viruses transmitted by arthropods, especially mosquitoes and ticks. The genus contains several globally significant human/animal pathogens, such as Dengue virus, Japanese encephalitis virus, West Nile virus, Zika virus, Yellow fever virus, Tick-borne encephalitis virus, and Tembusu virus. After flavivirus invades, the expression of host miRNA changes, exerting the immune escape mechanism to create an environment conducive to its survival, and the altered miRNA in turn affects the life cycle of the virus. Accumulated evidence suggests that host miRNAs influence flavivirus replication and host–virus interactions through direct binding of viral genomes or through virus-mediated host transcriptome changes. Furthermore, miRNA can also interweave with other non-coding RNAs, such as long non-coding RNA and circular RNA, to form an interaction network to regulate viral replication. A variety of non-coding RNAs produced by the virus itself exert similar function by interacting with cellular RNA and viral RNA. Understanding the interaction sites between non-coding RNA, especially miRNA, and virus/host genes will help us to find targets for antiviral drugs and viral therapy.
Collapse
Affiliation(s)
- Wenjun Cai
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Yuhong Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- *Correspondence: Anchun Cheng,
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- Renyong Jia,
| |
Collapse
|
13
|
Zhang H, Wang J, Ge Y, Ye M, Jin X. Siah1 in cancer and nervous system diseases (Review). Oncol Rep 2021; 47:35. [PMID: 34958110 DOI: 10.3892/or.2021.8246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/10/2021] [Indexed: 11/06/2022] Open
Abstract
The dysregulation of the ubiquitin‑proteasome system will result in the abnormal accumulation and dysfunction of proteins, thus leading to severe diseases. Seven in absentia homolog 1 (Siah1), an E3 ubiquitin ligase, has attracted wide attention due to its varied functions in physiological and pathological conditions, and the numerous newly discovered Siah1 substrates. In cancer and nervous system diseases, the functions of Siah1 as a promoter or a suppressor of diseases are related to the change in cellular microenvironment and subcellular localization. At the same time, complex upstream regulations make Siah1 different from other E3 ubiquitin ligases. Understanding the molecular mechanism of Siah1 will help the study of various signaling pathways and benefit the therapeutic strategy of human diseases (e.g., cancer and nervous system diseases). In the present review, the functions and regulations of Siah1 are described. Moreover, novel substrates of Siah1 discovered in recent studies will be highlighted in cancer and nervous system diseases, providing ideas for future research and clinical targeted therapies using Siah1.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Jie Wang
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Yidong Ge
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Meng Ye
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Xiaofeng Jin
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| |
Collapse
|
14
|
Cellular host factors for SARS-CoV-2 infection. Nat Microbiol 2021; 6:1219-1232. [PMID: 34471255 DOI: 10.1038/s41564-021-00958-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has claimed millions of lives and caused a global economic crisis. No effective antiviral drugs are currently available to treat infections of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The medical need imposed by the pandemic has spurred unprecedented research efforts to study coronavirus biology. Every virus depends on cellular host factors and pathways for successful replication. These proviral host factors represent attractive targets for antiviral therapy as they are genetically more stable than viral targets and may be shared among related viruses. The application of various 'omics' technologies has led to the rapid discovery of proviral host factors that are required for the completion of the SARS-CoV-2 life cycle. In this Review, we summarize insights into the proviral host factors that are required for SARS-CoV-2 infection that were mainly obtained using functional genetic and interactome screens. We discuss cellular processes that are important for the SARS-CoV-2 life cycle, as well as parallels with non-coronaviruses. Finally, we highlight host factors that could be targeted by clinically approved molecules and molecules in clinical trials as potential antiviral therapies for COVID-19.
Collapse
|
15
|
Kayesh MEH, Kohara M, Tsukiyama-Kohara K. Recent Insights Into the Molecular Mechanism of Toll-Like Receptor Response to Dengue Virus Infection. Front Microbiol 2021; 12:744233. [PMID: 34603272 PMCID: PMC8483762 DOI: 10.3389/fmicb.2021.744233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
Dengue is the most prevalent and rapidly spreading mosquito-borne viral disease caused by dengue virus (DENV). Recently, DENV has been affecting humans within an expanding geographic range due to the warming of the earth. Innate immune responses play a significant role in antiviral defense, and Toll-like receptors (TLRs) are key regulators of innate immunity. Therefore, a detailed understanding of TLR and DENV interactions is important for devising therapeutic and preventive strategies. Several studies have indicated the ability of DENV to modulate the TLR signaling pathway and host immune response. Vaccination is considered one of the most successful medical interventions for preventing viral infections. However, only a partially protective dengue vaccine, the first licensed dengue vaccine CYD-TDV, is available in some dengue-endemic countries to protect against DENV infection. Therefore, the development of a fully protective, durable, and safe DENV vaccine is a priority for global health. Here, we demonstrate the progress made in our understanding of the host response to DENV infection, with a particular focus on TLR response and how DENV avoids the response toward establishing infection. We also discuss dengue vaccine candidates in late-stage development and the issues that must be overcome to enable their success.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, Bangladesh
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
16
|
Su Y, Lin T, Liu C, Cheng C, Han X, Jiang X. microRNAs, the Link Between Dengue Virus and the Host Genome. Front Microbiol 2021; 12:714409. [PMID: 34456895 PMCID: PMC8385664 DOI: 10.3389/fmicb.2021.714409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022] Open
Abstract
Dengue virus (DENV) is a small envelope virus of Flaviviridae that is mainly transmitted by Aedes aegypti and Aedes albopictus. It can cause dengue fever with mild clinical symptoms or even life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). At present, there are no specific drugs or mature vaccine products to treat DENV. microRNAs (miRNAs) are a class of important non-coding small molecular RNAs that regulate gene expression at the post-transcriptional level. It is involved in and regulates a series of important life processes, such as growth and development, cell differentiation, cell apoptosis, anti-virus, and anti-tumor. miRNAs also play important roles in interactions between host and viral genome transcriptomes. Host miRNAs can directly target the genome of the virus or regulate host factors to promote or inhibit virus replication. Understanding the expression and function of miRNAs during infection with DENV and the related signal molecules of the miRNA-mediated regulatory network will provide new insights for the development of miRNA-based therapies.
Collapse
Affiliation(s)
- Yinghua Su
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Ting Lin
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Chun Liu
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Cui Cheng
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Xiwen Jiang
- DAAN Gene Co., Ltd. of Sun Yat-sen University, Guangdong, China
| |
Collapse
|
17
|
Brezgin S, Kostyusheva A, Bayurova E, Volchkova E, Gegechkori V, Gordeychuk I, Glebe D, Kostyushev D, Chulanov V. Immunity and Viral Infections: Modulating Antiviral Response via CRISPR-Cas Systems. Viruses 2021; 13:1373. [PMID: 34372578 PMCID: PMC8310348 DOI: 10.3390/v13071373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022] Open
Abstract
Viral infections cause a variety of acute and chronic human diseases, sometimes resulting in small local outbreaks, or in some cases spreading across the globe and leading to global pandemics. Understanding and exploiting virus-host interactions is instrumental for identifying host factors involved in viral replication, developing effective antiviral agents, and mitigating the severity of virus-borne infectious diseases. The diversity of CRISPR systems and CRISPR-based tools enables the specific modulation of innate immune responses and has contributed impressively to the fields of virology and immunology in a very short time. In this review, we describe the most recent advances in the use of CRISPR systems for basic and translational studies of virus-host interactions.
Collapse
Affiliation(s)
- Sergey Brezgin
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (S.B.); (A.K.); (V.C.)
- Institute of Immunology, Federal Medical Biological Agency, 115522 Moscow, Russia
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Anastasiya Kostyusheva
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (S.B.); (A.K.); (V.C.)
| | - Ekaterina Bayurova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (I.G.)
| | - Elena Volchkova
- Department of Infectious Diseases, Sechenov University, 119991 Moscow, Russia;
| | - Vladimir Gegechkori
- Department of Pharmaceutical and Toxicological Chemistry, Sechenov University, 119991 Moscow, Russia;
| | - Ilya Gordeychuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (I.G.)
- Department of Organization and Technology of Immunobiological Drugs, Sechenov University, 119991 Moscow, Russia
| | - Dieter Glebe
- National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, Institute of Medical Virology, Justus Liebig University of Giessen, 35392 Giessen, Germany;
| | - Dmitry Kostyushev
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (S.B.); (A.K.); (V.C.)
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Vladimir Chulanov
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (S.B.); (A.K.); (V.C.)
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Infectious Diseases, Sechenov University, 119991 Moscow, Russia;
| |
Collapse
|
18
|
Zafari P, Golpour M, Hafezi N, Bashash D, Esmaeili SA, Tavakolinia N, Rafiei A. Tuberculosis comorbidity with rheumatoid arthritis: Gene signatures, associated biomarkers, and screening. IUBMB Life 2020; 73:26-39. [PMID: 33217772 DOI: 10.1002/iub.2413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022]
Abstract
Rheumatoid arthritis (RA) is known to be related to an elevated risk of infections because of its pathobiology and the use of immunosuppressive therapies. Reactivation of latent tuberculosis (TB) infection is a serious issue in patients with RA, especially after receiving anti-TNFs therapy. TNF blocking reinforces the TB granuloma formation and maintenance and the growth of Mycobacterium tuberculosis (Mtb). After intercurrent of TB infection, the standard recommendation is that the treatment with TNF inhibitors to be withheld despite its impressive effect on suppression of inflammation until the infection has resolved. Knowing pathways and mechanisms that are common between two diseases might help to find the mechanistic basis of this comorbidity, as well as provide us a new approach to apply them as therapeutic targets or diagnostic biomarkers. Also, screening for latent TB before initiation of an anti-TNF therapy can minimize complications. This review summarizes the shared gene signature between TB and RA and discusses the biomarkers for early detection of this infection, and screening procedures as well.
Collapse
Affiliation(s)
- Parisa Zafari
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Monireh Golpour
- Molecular and Cellular Biology Research Center, Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nasim Hafezi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Naeimeh Tavakolinia
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Rafiei
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|