1
|
Tian Q, Ye H, Zhou X, Wang J, Zhang L, Sun W, Duan C, Fan M, Zhou W, Bi C, Ye Q, Wong A. Evaluating the health risk of probiotic supplements from the perspective of antimicrobial resistance. Microbiol Spectr 2025; 13:e0001924. [PMID: 39655960 PMCID: PMC11705942 DOI: 10.1128/spectrum.00019-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 10/26/2024] [Indexed: 01/11/2025] Open
Abstract
Antimicrobial resistance remains a public health threat. Probiotics harboring antimicrobial resistant genes (ARGs) have, in recent years, been considered a potential health risk. Studies conducted on probiotics from increasingly popular health supplements have raised the possibility of transmitting ARGs to commensals in the human gut, concomitantly establishing a reservoir of ARGs and risking acquisition by opportunistic pathogens. Building on our previous study that reported multiple antibiotic resistance in probiotics of health supplements, in this research, we have attempted to detect their ARGs that may account for resistant phenotypes. ARGs responsible for tetracycline, macrolide, aminoglycoside, and glycopeptide resistance were prevalent in probiotics. Through laboratory adaptive evolution studies, we also show that streptomycin-adapted probiotics gained resistance to erythromycin, tetracycline, and doxycycline more effectively than non-adapted ones. When co-incubated with Enterococcus faecalis, Escherichia coli, or Staphylococcus aureus on Caco-2 and/or HCT-116 cells, streptomycin resistance was transferred from the adapted probiotics to generate transconjugants at frequencies comparable to or higher than that of other studies conducted through filter mating. Consistently, ARGs conferring resistance to streptomycin (aadA) and erythromycin [erm(B)-1] were detected in E. coli and S. aureus transconjugants, respectively, after co-incubation with streptomycin-adapted probiotics on Caco-2 cells. aadA and erm(B)-1 were both detected in E. faecalis transconjugant after the same co-incubation on HCT-116 cells. Our data and future comparative genomics and metagenomics studies conducted on animal models and in healthy, immunocompromised, and/or antibiotic-treated human cohorts will contribute to a more comprehensive understanding of probiotic consumption, application, and safety. IMPORTANCE Probiotics are becoming increasingly popular, with promising applications in food and medicine, but the risk of transferring ARGs to disease-causing bacteria has raised concerns. Our study detected ARGs in probiotics of health supplements conferring resistance to tetracycline, macrolide, aminoglycoside, and glycopeptide drugs. Streptomycin-adapted probiotics also gained resistance to other antibiotics more effectively than non-adapted ones. Importantly, we showed that streptomycin resistance could be transferred to other bacteria after co-incubation with probiotics on human intestinal cells. ARGs responsible for erythromycin and streptomycin resistance, which were initially absent in the recipient bacteria, were also detected in the transconjugants. Our data build the foundation for future studies that will be conducted on animal models and in humans and leveraging advanced metagenomics approaches to clarify the long-term health risk of probiotic consumption.
Collapse
Affiliation(s)
- Qiwen Tian
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang, China
| | - Hailv Ye
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang, China
| | - Xuan Zhou
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang, China
| | - Junyi Wang
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang, China
| | - Lifang Zhang
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang, China
| | - Wenxuan Sun
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang, China
| | - Chenxin Duan
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang, China
| | - Minyu Fan
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang, China
| | - Wei Zhou
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang, China
| | - Chuyun Bi
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang, China
| | - Qiong Ye
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang, China
| | - Aloysius Wong
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang, China
- Department of Biology, Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, Union, New Jersey, USA
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou, Zhejiang, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang, China
| |
Collapse
|
2
|
Santos EN, Magalhães-Guedes KT, Borges FEDM, Ferreira DD, da Silva DF, Conceição PCG, Lima AKDC, Cardoso LG, Umsza-Guez MA, Ramos CL. Probiotic Microorganisms in Inflammatory Bowel Diseases: Live Biotherapeutics as Food. Foods 2024; 13:4097. [PMID: 39767038 PMCID: PMC11675991 DOI: 10.3390/foods13244097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
(1) Background: Inflammatory bowel diseases (IBDs) are characterized by chronic and complex inflammatory processes of the digestive tract that evolve with frequent relapses and manifest at any age; they predominantly affect young individuals. Diet plays a direct role in maintaining the gut mucosal integrity and immune function. Regarding the diet, the administration of probiotics stands out. The use of probiotics for IBD treatment has shown promising effects on consumers' quality of life. (2) Methods: This study aimed to conduct a literature review on the effects of probiotic and smart probiotic ingestion on IBD and analyze the available literature based on the searched keywords using boxplot diagrams to search for scientific data in the online literature published up to October 2024. (3) Results: Google Scholar (containing ~6 × 106 articles) and Science Direct (containing ~5 × 106 articles) were the databases with the highest number of articles for the keywords used in the study. When analyzing the content of the articles, although probiotic microorganisms are currently not part of the standard treatment protocol for IBD, these live biotherapeutics have proven to be an effective treatment option, considering the adverse effects of conventional therapies. Furthermore, the development of genetically engineered probiotics or smart probiotics is a promising treatment for IBD. (4) Conclusions: Probiotics and smart probiotics could represent the future of nutritional medicine in IBD care, allowing patients to be treated in a more natural, safe, effective, and nutritious way. However, although many studies have demonstrated the potential of this biotherapy, clinical trials standardizing dosage and strains are still necessary.
Collapse
Affiliation(s)
- Emanuelle Natalee Santos
- Post-Graduate Program in Food Science, Federal University of Vale of Jequitinhonha and Mucuri (UFVJM), Street MGT 367—Km 583, No. 5000, Alto da Jacuba, Diamantina 39100-000, MG, Brazil
| | - Karina Teixeira Magalhães-Guedes
- Post-Graduate Program in Chemistry Engineering, Polytechnic School, Federal University of Bahia (UFBA) and Salvador University (UNIFACS), Street Professor Aristídes Novis, 02, Federação, Salvador 40210-630, BA, Brazil
- Post-Graduate Program in Food Science, Federal University of Bahia (UFBA), Barão of Geremoabo Street, s/n, Ondina, Salvador 40171-970, BA, Brazil
| | - Fernando Elias de Melo Borges
- Post-Graduate Program in Systems Engineering and Automation, Department of Automatic, Federal University of Lavras (UFLA), University Campus, Lavras 37000-200, MG, Brazil
| | - Danton Diego Ferreira
- Post-Graduate Program in Systems Engineering and Automation, Department of Automatic, Federal University of Lavras (UFLA), University Campus, Lavras 37000-200, MG, Brazil
| | - Daniele Ferreira da Silva
- Post-Graduate Program in Food Science, Federal University of Vale of Jequitinhonha and Mucuri (UFVJM), Street MGT 367—Km 583, No. 5000, Alto da Jacuba, Diamantina 39100-000, MG, Brazil
| | - Pietro Carlos Gonçalves Conceição
- Post-Graduate Program in Chemistry Engineering, Polytechnic School, Federal University of Bahia (UFBA) and Salvador University (UNIFACS), Street Professor Aristídes Novis, 02, Federação, Salvador 40210-630, BA, Brazil
| | - Ana Katerine de Carvalho Lima
- Post-Graduate Program in Chemistry Engineering, Polytechnic School, Federal University of Bahia (UFBA) and Salvador University (UNIFACS), Street Professor Aristídes Novis, 02, Federação, Salvador 40210-630, BA, Brazil
| | - Lucas Guimarães Cardoso
- Post-Graduate Program in Chemistry Engineering, Polytechnic School, Federal University of Bahia (UFBA) and Salvador University (UNIFACS), Street Professor Aristídes Novis, 02, Federação, Salvador 40210-630, BA, Brazil
| | - Marcelo Andrés Umsza-Guez
- Post-Graduate Program in Food Science, Federal University of Bahia (UFBA), Barão of Geremoabo Street, s/n, Ondina, Salvador 40171-970, BA, Brazil
| | - Cíntia Lacerda Ramos
- Post-Graduate Program in Food Science, Federal University of Vale of Jequitinhonha and Mucuri (UFVJM), Street MGT 367—Km 583, No. 5000, Alto da Jacuba, Diamantina 39100-000, MG, Brazil
| |
Collapse
|
3
|
Ivashkin VT, Gorelov AV, Abdulganieva DI, Alekseeva OP, Alekseenko SA, Baranovsky AY, Zakharova IN, Zolnikova OY, Ivashkin KV, Ivashkina NY, Korochanskaya NV, Mammaev SN, Nikolaeva SV, Poluektova EA, Trukhmanov AS, Usenko DV, Khlynov IB, Tsukanov VV, Shifrin OS, Berezhnaya IV, Lapina TL, Maslennikov RV, Sugian NG, Ulyanin AI. Methodological Guidelines of the Scientific Community for Human Microbiome Research (CHMR) and the Russian Gastroenterology Association (RGA) on the Use of Probiotics, Prebiotics, Synbiotics, Metabiotics and Functional Foods Enriched with Them for the Treatment and Prevention of Gastrointestinal Diseases in Adults and Children. RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2024; 34:113-136. [DOI: 10.22416/1382-4376-2024-117-312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Aim: to optimize outcomes of the treatment and prevention of gastrointestinal diseases in adults and children. Key points. The Methodological Guidelines contain sections on the terminology, classification, mechanisms of action, requirements for sale in the Russian Federation, requirements for proving the efficacy and safety of probiotics, prebiotics, synbiotics and metabiotics, as well as functional foods enriched with them. An overview of relevant data allowing to include these drugs and products in the treatment an d prevention of gastrointestinal diseases in adults and children is presented. Conclusion. The clinical efficacy of probiotics, prebiotics, synbiotics and metabiotics depends on the specificity and quantity of their components, the dosage form, the regimen and duration of treatment. Products and functional foods with proven efficacy and safety are recommended for the treatment and prevention of gastrointestinal diseases in adults and children.
Collapse
Affiliation(s)
- V. T. Ivashkin
- Sechenov First Moscow State Medical University (Sechenov University)
| | - A. V. Gorelov
- Sechenov First Moscow State Medical University (Sechenov University); Central Research Institute of Epidemiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Well-being (Rospotrebnadzor)
| | | | | | | | | | - I. N. Zakharova
- Russian Medical Academy of Continuous Professional Education
| | - O. Yu. Zolnikova
- Sechenov First Moscow State Medical University (Sechenov University)
| | - K. V. Ivashkin
- Sechenov First Moscow State Medical University (Sechenov University)
| | | | | | | | - S. V. Nikolaeva
- Central Research Institute of Epidemiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Well-being (Rospotrebnadzor)
| | - E. A. Poluektova
- Sechenov First Moscow State Medical University (Sechenov University)
| | - A. S. Trukhmanov
- Sechenov First Moscow State Medical University (Sechenov University)
| | - D. V. Usenko
- Central Research Institute of Epidemiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Well-being (Rospotrebnadzor)
| | | | - V. V. Tsukanov
- Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, a Separate Subdivision of the Research Institute of Medical Problems of the North
| | - O. S. Shifrin
- Sechenov First Moscow State Medical University (Sechenov University)
| | | | - T. L. Lapina
- Sechenov First Moscow State Medical University (Sechenov University)
| | - R. V. Maslennikov
- Sechenov First Moscow State Medical University (Sechenov University)
| | - N. G. Sugian
- Russian Medical Academy of Continuous Professional Education
| | - A. I. Ulyanin
- Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
4
|
El Far MS, Zakaria AS, Kassem MA, Edward EA. Characterization of probiotics isolated from dietary supplements and evaluation of metabiotic-antibiotic combinations as promising therapeutic options against antibiotic-resistant pathogens using time-kill assay. BMC Complement Med Ther 2024; 24:303. [PMID: 39143578 PMCID: PMC11325838 DOI: 10.1186/s12906-024-04582-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND The global probiotics dietary supplements market size is continuously growing. To overcome probiotics' health concerns, metabiotics are recognized as a safer alternative. Aiming to deal with the escalating antimicrobial resistance, the current work demonstrates synergistic metabiotic-antibiotic combinations against antibiotic-resistant pathogens. METHODS The probiotic properties of lactic acid bacteria (LAB) strains isolated from 3 commercial dietary supplements were characterized in vitro. The combinations of the cell-free supernatants (CFS) of selected probiotic strains and conventional antibiotics against Staphylococcus aureus and Escherichia coli clinical isolates were evaluated using the time-kill assay. To our knowledge, the current literature lacks sufficient time-kill assay studies revealing the kinetics of such metabiotic-antibiotic combinations against S. aureus and E. coli. RESULTS Four LAB strains isolated from dietary supplements as well as two reference strains were included in this study. The isolated LAB strains were identified by MALDI-TOF mass spectrometry as follows: P2: Lactobacillus acidophilus, P3: Lactiplantibacillus plantarum, P4: Lacticaseibacillus rhamnosus, and P5: Pediococcus acidilactici. The identification matched with that annotated by the manufacturers, except for P3. The tested strains could resist the acidic environment at pH 3. Excluding P2, the examined strains showed less than 1 log reduction in survivors upon the addition of reconstituted skimmed milk to pepsin at pH 2 and displayed an acceptable tolerance to 0.3% ox-bile. All the strains tolerated pancreatin. The hydrophobicity and autoaggregation capacities ranged between 7-92% and 36-66%, respectively. P2 was excluded owing to its inferior probiotic potential. Although the remaining strains showed excellent growth at 0.2% phenol, their growth was reduced at higher concentrations. L. plantarum and P. acidilactici strains possessed bile salt hydrolysis activity. The time-kill assay revealed promising synergistic activities of the combinations of CFS of L. rhamnosus P4 with either ceftazidime or gentamicin against E. coli and with only ceftazidime against S. aureus, as well as CFS of P. acidilactici P5 and ceftazidime against S. aureus. CONCLUSIONS Strict identification and evaluation of the probiotic strains incorporated in dietary supplements is crucial to ensure their safety and efficacy. The CFS of probiotics could be utilized to formulate novel biotherapeutics targeting problematic pathogens. However, future in vivo studies are required to evaluate the appropriate treatment regimen.
Collapse
Affiliation(s)
- Mona S El Far
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Azza S Zakaria
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mervat A Kassem
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Eva A Edward
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
5
|
Rana A, Taneja NK, Raposo A, Alarifi SN, Teixeira-Lemos E, Lima MJ, Gonçalves JC, Dhewa T. Exploring prebiotic properties and its probiotic potential of new formulations of soy milk-derived beverages. Front Microbiol 2024; 15:1404907. [PMID: 39050628 PMCID: PMC11266073 DOI: 10.3389/fmicb.2024.1404907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction The food and beverage industry has shown a growing interest in plant-based beverages as alternatives to traditional milk consumption. Soy milk is derived from soy beans and contains proteins, isoflavones, soy bean oligosaccharides, and saponins, among other ingredients. Because of its high nutritive value and versatility, soy milk has gained a lot of attention as a functional food. Methods The present work aims to explore the prebiotic properties and gastrointestinal tolerance potential of new formulations of soy milk-derived drinks to be fermented with riboflavin-producing probiotic Lactiplantibacillus plantarum MTCC (Microbial Type Culture Collection and Gene Bank) 25432, Lactiplantibacillus plantarum MTCC 25433, and Lactobacillus acidophilus NCIM (National Collection of Industrial Microorganisms) 2902 strains. Results and discussion The soy milk co-fermented beverage showed highest PAS (1.24 ± 0.02) followed by soy milk beverages fermented with L. plantarum MTCC 25433 (0.753 ± 0.0) when compared to the commercial prebiotic raffinose (1.29 ± 0.01). The findings of this study suggested that the soy milk beverages exhibited potent prebiotic activity, having the ability to support the growth of probiotics, and the potential to raise the content of several bioactive substances. The higher prebiotics activity score showed that the higher the growth rate of probiotics microorganism, the lower the growth of pathogen. For acidic tolerance, all fermented soy milk managed to meet the minimal requirement of 106 viable probiotic cells per milliliter at pH 2 (8.13, 8.26, 8.30, and 8.45 logs CFU/mL, respectively) and pH 3.5 (8.11, 8.07, 8.39, and 9.01 log CFU/mL, respectively). The survival rate of soy milk LAB isolates on bile for 3 h ranged from 84.64 to 89.60%. The study concluded that lactobacilli could thrive in gastrointestinal tract. The sensory evaluation scores for body and texture, color, flavor, and overall acceptability showed a significant difference (p < 0.05) between the fermented probiotic soy milk and control samples. Soy milk fermented with a combination of L. plantarum MTCC 25432 & MTCC 25433 demonstrated the highest acceptability with the least amount of beany flavor. The findings of the study suggest soy milk's potential in plant-based beverage market.
Collapse
Affiliation(s)
- Ananya Rana
- Department of Interdisciplinary Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| | - Neetu Kumra Taneja
- Department of Interdisciplinary Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| | - Sehad N. Alarifi
- Department of Food and Nutrition Science, Al-Quwayiyah College of Sciences and Humanities, Shaqra University, Shaqra, Saudi Arabia
| | | | - Maria João Lima
- CERNAS Research Centre, Polytechnic University of Viseu, Viseu, Portugal
| | | | - Tejpal Dhewa
- Department of Nutrition Biology, Central University of Haryana, Mahendragarh, Haryana, India
| |
Collapse
|
6
|
Kumari V. B. C, Huligere S, M. K. J, Goh KW, Desai SM, H. L. K, Ramu R. Characterization of Lactobacillus spp. as Probiotic and Antidiabetic Potential Isolated from Boza, Traditional Fermented Beverage in Turkey. Int J Microbiol 2024; 2024:2148676. [PMID: 38962395 PMCID: PMC11221989 DOI: 10.1155/2024/2148676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 02/16/2024] [Accepted: 05/07/2024] [Indexed: 07/05/2024] Open
Abstract
Boza, a cereal-based beverage popular in southeast Europe, is fortified with probiotics and is believed to positively impact the composition of the gut microflora. This investigation focused on fermented cereal-based beverage boza to identify strains of probiotic Lactobacillus spp. capable of inhibiting carbohydrate-hydrolysing enzymes α-glucosidase (AG) and α-amylase (AA). The isolated bacterial strains underwent a comprehensive assessment, including biochemical, molecular, and probiotic trait analyses such as tolerance survivability, adhesion, safety, and health-promoting attributes. We evaluated the inhibitory potential of the supernatant, cell lysate, and intact cells of Lactobacillus spp. Molecular analysis has revealed that isolates RAMULAB30 and RAMULAB29 exhibit a significant genetic similarity (>97%) to Lacticaseibacillus paracasei and Limosilactobacillus fermentum, respectively. These findings are documented in the NCBI database. They exhibited significant resistance to gastrointestinal and intestinal fluids, also indicating their potential for adhesion. Additionally, the isolates showed a significant antibacterial activity, particularly against Micrococcus luteus. They showed resistance to vancomycin and methicillin antibiotics but were more susceptible to streptomycin and ampicillin. Furthermore, the strains demonstrated antioxidant properties. To ensure their safety, a haemolytic assay was conducted despite their general recognition as safe (GRAS) status. The study primarily aimed to evaluate the inhibitory effects of the extract on enzymes AG and AA. Bacterial isolates demonstrated a significant inhibitory activity against both enzyme AG (32%-67% inhibition) and enzyme AA (18%-46% inhibition) in different forms, including supernatant (CS), lysed extract (CE), and intact cell (IC). These findings underscore the potential of bacterial isolates to inhibit the enzyme activity effectively. Furthermore, the L. fermentum RAMULAB29 and L. paracasei RAMULAB30 strains exhibit remarkable antidiabetic potential. Food products incorporating these strains have promising prospects as nutraceuticals, providing improved health benefits.
Collapse
Affiliation(s)
- Chandana Kumari V. B.
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore 570015, Karnataka, India
| | - Sujay Huligere
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore 570015, Karnataka, India
| | - Jayanthi M. K.
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysore 570015, Karnataka, India
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Sudhanva M. Desai
- Department of Chemical Engineering, Dayananda Sagar College of Engineering, Bengaluru, Karnataka, India
| | - Kalabharthi H. L.
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysore 570015, Karnataka, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore 570015, Karnataka, India
| |
Collapse
|
7
|
da Anunciação TA, Guedes JDS, Tavares PPLG, de Melo Borges FE, Ferreira DD, Costa JAV, Umsza-Guez MA, Magalhães-Guedes KT. Biological Significance of Probiotic Microorganisms from Kefir and Kombucha: A Review. Microorganisms 2024; 12:1127. [PMID: 38930509 PMCID: PMC11205597 DOI: 10.3390/microorganisms12061127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
(1) Background: The human microbiota is essential for maintaining a healthy body. The gut microbiota plays a protective role against pathogenic bacteria. Probiotics are live microorganisms capable of preventing and controlling gastrointestinal and balancing the immune system. They also aid in better nutrients and vitamins absorption. Examples of natural probiotic cultures are kefir and kombucha. (2) Methods: Therefore, the aim of this review was to address the beneficial properties of probiotic kefir and kombucha using a Boxplot analysis to search for scientific data in the online literature up to January 2024: (Latin American and Caribbean Health Sciences (LILACS), PubMed, Medical Literature Analysis (MED-LINE), Science Direct, Google Scholar/Google Academic, Bioline Inter-national and Springer Link). Boxplots showed the summary of a set of data "Index Terms-Keywords" on kefir and kombucha in three languages (English, Portuguese and Spanish). (3) Results: Google Scholar was the database with the highest number of articles found, when the search for the keywords used in the study (containing ~4 × 106-~4 million articles available). This was Followed by the Science Direct database, containing ~3 × 106-~3 million articles available, and the BVS databases-Biblioteca Virtual de Saúde (Virtual Health Library) e Lilacs, both containing a value of ~2 × 106-~2 million articles available. The databases containing the smallest number of articles found were Nutrients and Medline, both containing a value of ≤0.1 × 106-≤100 thousand articles. (4) Conclusions: Scientific studies indicate that kefir and kombucha certainly contain various functional properties, such as antimicrobial, antitumor, anticarcinogenic and immunomodulatory activity, in addition to having a microbiological composition of probiotic bacteria and yeasts. Kefir and kombucha represent key opportunities in the food and clinic/medical fields.
Collapse
Affiliation(s)
- Talita Andrade da Anunciação
- Post-Graduate Program in Food Science, Bromatological Analysis Department, Pharmacy Faculty, Federal University of Bahia (UFBA), Barão of Jeremoabo Street, s/n, Ondina, Salvador 40171-970, BA, Brazil; (T.A.d.A.); (P.P.L.G.T.)
| | - Juan Diego Silva Guedes
- Post-Graduate Program in Industrial Engineering, Polytechnic School, Federal University of Bahia (UFBA), Street Professor Aristídes Novis, 02, Federação, Salvador 40210-630, BA, Brazil;
| | - Pedro Paulo Lordelo Guimarães Tavares
- Post-Graduate Program in Food Science, Bromatological Analysis Department, Pharmacy Faculty, Federal University of Bahia (UFBA), Barão of Jeremoabo Street, s/n, Ondina, Salvador 40171-970, BA, Brazil; (T.A.d.A.); (P.P.L.G.T.)
| | - Fernando Elias de Melo Borges
- Post-Graduate Program in Systems Engineering and Automation, Department of Engineering, Federal University of Lavras (UFLA), University Campus, Lavras 37000-200, MG, Brazil; (F.E.d.M.B.); (D.D.F.)
| | - Danton Diego Ferreira
- Post-Graduate Program in Systems Engineering and Automation, Department of Engineering, Federal University of Lavras (UFLA), University Campus, Lavras 37000-200, MG, Brazil; (F.E.d.M.B.); (D.D.F.)
| | - Jorge Alberto Vieira Costa
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande (FURG), Rio Grande 474-96203-900, RS, Brazil;
| | - Marcelo Andrés Umsza-Guez
- Post-Graduate Program in Food Science, Bromatological Analysis Department, Pharmacy Faculty, Federal University of Bahia (UFBA), Barão of Jeremoabo Street, s/n, Ondina, Salvador 40171-970, BA, Brazil; (T.A.d.A.); (P.P.L.G.T.)
| | - Karina Teixeira Magalhães-Guedes
- Post-Graduate Program in Food Science, Bromatological Analysis Department, Pharmacy Faculty, Federal University of Bahia (UFBA), Barão of Jeremoabo Street, s/n, Ondina, Salvador 40171-970, BA, Brazil; (T.A.d.A.); (P.P.L.G.T.)
| |
Collapse
|
8
|
Li YK, Xiao CL, Ren H, Li WR, Guo Z, Luo JQ. Comparison of the effectiveness of probiotic supplementation in glucose metabolism, lipid profile, inflammation and oxidative stress in pregnant women. Food Funct 2024; 15:3479-3495. [PMID: 38456359 DOI: 10.1039/d3fo04456d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Objective: The optimal probiotic supplementation in pregnant women has not been thoroughly evaluated. By employing a network meta-analysis (NMA) approach, we compared the effectiveness of different probiotic supplementation strategies for pregnant women. Methods: A comprehensive search across multiple databases was performed to identify studies comparing the efficacy of probiotic supplements with each other or the control (placebo) among pregnant women. Results: This NMA, including 32 studies, systematically evaluated 6 probiotic supplement strategies: Lactobacillus, Lacticaseibacillus rhamnosus and Bifidobacterium (LRB), Lactobacillus acidophilus and Bifidobacterium (LABB), Lactobacillus acidophilus, Lacticaseibacillus casei, and Bifidobacterium bifidum (LLB), multi-combination of four probiotics (MP1), and multi-combination of six or more probiotics (MP2). Among these strategies, LLB, MP1, and MP2 all contain LABB. The NMA findings showed that MP1 was the most effective in reducing fasting blood sugar (FBS) (surface under the cumulative ranking curve [SUCRA]: 80.5%). In addition, MP2 was the most efficacious in lowering the homeostasis model assessment of insulin resistance (HOMA-IR) (SUCRA: 89.1%). LABB was ranked as the most effective in decreasing low-density lipoprotein cholesterol (LDLC) (SUCRA: 95.5%), total cholesterol (TC) (SUCRA: 95.5%), and high-sensitivity C-reactive protein (hs-CRP) (SUCRA: 94.8%). Moreover, LLB was ranked as the most effective in raising total antioxidant capacity (TAC) (SUCRA: 98.5%). Conclusion: Multi-combination of probiotic strains, especially those strategies containing LABB, may be more effective than a single probiotic strain in glycolipid metabolism, inflammation, and oxidative stress of pregnant women.
Collapse
Affiliation(s)
- Yi-Ke Li
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha 410011, China.
| | - Chen-Lin Xiao
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha 410011, China.
| | - Huan Ren
- Department of Pharmacy, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, China
| | - Wen-Ru Li
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha 410011, China.
| | - Zhen Guo
- Hunan Provincial Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, China
| | - Jian-Quan Luo
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha 410011, China.
| |
Collapse
|
9
|
Liu X, Zhao H, Wong A. Accounting for the health risk of probiotics. Heliyon 2024; 10:e27908. [PMID: 38510031 PMCID: PMC10950733 DOI: 10.1016/j.heliyon.2024.e27908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
Probiotics have long been associated with a myriad of health benefits, so much so that their adverse effects whether mild or severe, are often neglected or overshadowed by the enormous volume of articles describing their beneficial effects in the current literature. Recent evidence has demonstrated several health risks of probiotics that warrant serious reconsideration of their applications and further investigations. This review aims to highlight studies that report on how probiotics might cause opportunistic systemic and local infections, detrimental immunological effects, metabolic disturbance, allergic reactions, and facilitating the spread of antimicrobial resistance. To offer a recent account of the literature, articles within the last five years were prioritized. The narration of these evidence was based on the nature of the studies in the following order of preference: clinical studies or human samples, in vivo or animal models, in situ, in vitro and/or in silico. We hope that this review will inform consumers, food scientists, and medical practitioners, on the health risks, while also encouraging research that will focus on and clarify the adverse effects of probiotics.
Collapse
Affiliation(s)
- Xiangyi Liu
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Department of Biology, Dorothy and George Hennings College of Science, Mathematics and Technology, Kean, University, 1000 Morris Ave, Union, NJ, 07083, USA
| | - Haiyi Zhao
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Department of Biology, Dorothy and George Hennings College of Science, Mathematics and Technology, Kean, University, 1000 Morris Ave, Union, NJ, 07083, USA
| | - Aloysius Wong
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Department of Biology, Dorothy and George Hennings College of Science, Mathematics and Technology, Kean, University, 1000 Morris Ave, Union, NJ, 07083, USA
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Ouhai, Wenzhou, Zhejiang Province, 325060, China
| |
Collapse
|
10
|
Dziedzic A, Saluk J. Probiotics and Commensal Gut Microbiota as the Effective Alternative Therapy for Multiple Sclerosis Patients Treatment. Int J Mol Sci 2022; 23:ijms232214478. [PMID: 36430954 PMCID: PMC9699268 DOI: 10.3390/ijms232214478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
The gut-brain axis (GBA) refers to the multifactorial interactions between the intestine microflora and the nervous, immune, and endocrine systems, connecting brain activity and gut functions. Alterations of the GBA have been revealed in people with multiple sclerosis (MS), suggesting a potential role in disease pathogenesis and making it a promising therapeutic target. Whilst research in this field is still in its infancy, a number of studies revealed that MS patients are more likely to exhibit modified microbiota, altered levels of short-chain fatty acids, and enhanced intestinal permeability. Both clinical and preclinical trials in patients with MS and animal models revealed that the administration of probiotic bacteria might improve cognitive, motor, and mental behaviors by modulation of GBA molecular pathways. According to the newest data, supplementation with probiotics may be associated with slower disability progression, reduced depressive symptoms, and improvements in general health in patients with MS. Herein, we give an overview of how probiotics supplementation may have a beneficial effect on the course of MS and its animal model. Hence, interference with the composition of the MS patient's intestinal microbiota may, in the future, be a grip point for the development of diagnostic tools and personalized microbiota-based adjuvant therapy.
Collapse
|
11
|
Dou W, Abdalla HB, Chen X, Sun C, Chen X, Tian Q, Wang J, Zhou W, Chi W, Zhou X, Ye H, Bi C, Tian X, Yang Y, Wong A. ProbResist: a database for drug-resistant probiotic bacteria. Database (Oxford) 2022; 2022:6665407. [PMID: 35962763 PMCID: PMC9375527 DOI: 10.1093/database/baac064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 07/04/2022] [Accepted: 08/06/2022] [Indexed: 11/13/2022]
Abstract
Drug resistance remains a global threat, and the rising trend of consuming probiotic-containing foods, many of which harbor antibiotic resistant determinants, has raised serious health concerns. Currently, the lack of accessibility to location-, drug- and species-specific information of drug-resistant probiotics has hampered efforts to combat the global spread of drug resistance. Here, we describe the development of ProbResist, which is a manually curated online database that catalogs reports of probiotic bacteria that have been experimentally proven to be resistant to antibiotics. ProbResist allows users to search for information of drug resistance in probiotics by querying with the names of the bacteria, antibiotic or location. Retrieved results are presented in a downloadable table format containing the names of the antibiotic, probiotic species, resistant determinants, region where the study was conducted and digital article identifiers (PubMed Identifier and Digital Object Identifier) hyperlinked to the original sources. The webserver also presents a simple analysis of information stored in the database. Given the increasing reports of drug-resistant probiotics, an exclusive database is necessary to catalog them in one platform. It will enable medical practitioners and experts involved in policy making to access this information quickly and conveniently, thus contributing toward the broader goal of combating drug resistance.
Collapse
Affiliation(s)
- Wanying Dou
- Department of Computer Science, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Hemn Barzan Abdalla
- Department of Computer Science, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Xu Chen
- Department of Computer Science, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Changyi Sun
- Department of Biology, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Xuefei Chen
- Department of Biology, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Qiwen Tian
- Department of Biology, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Junyi Wang
- Department of Biology, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Wei Zhou
- Department of Biology, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Wei Chi
- Department of Biology, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Xuan Zhou
- Department of Biology, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Hailv Ye
- Department of Biology, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Chuyun Bi
- Department of Biology, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics , Ouhai, Wenzhou, Zhejiang 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center , Ouhai, Wenzhou, Zhejiang 325060, China
| | - Xuechen Tian
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics , Ouhai, Wenzhou, Zhejiang 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center , Ouhai, Wenzhou, Zhejiang 325060, China
| | - Yixin Yang
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics , Ouhai, Wenzhou, Zhejiang 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center , Ouhai, Wenzhou, Zhejiang 325060, China
| | - Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics , Ouhai, Wenzhou, Zhejiang 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center , Ouhai, Wenzhou, Zhejiang 325060, China
- Department of Computer Science, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| |
Collapse
|
12
|
Kumari V. B. C, Huligere SS, Shbeer AM, Ageel M, M. K. J, S. JC, Ramu R. Probiotic Potential Lacticaseibacillus casei and Limosilactobacillus fermentum Strains Isolated from Dosa Batter Inhibit α-Glucosidase and α-Amylase Enzymes. Microorganisms 2022; 10:1195. [PMID: 35744713 PMCID: PMC9228708 DOI: 10.3390/microorganisms10061195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
Fermented food plays a major role in gastrointestinal health, as well as possesses other health benefits, such as beneficiary effects in the management of diabetes. Probiotics are thought to be viable sources for enhancing the microbiome of the human gut. In the present study, using biochemical, physiological, and molecular approaches, the isolated Lactobacillus spp. from dosa batter were identified. The cell-free supernatant (CS), cell-free extract (CE), and intact cells (IC) were evaluated for their inhibitory potential against the carbohydrate hydrolyzing enzymes α-glucosidase and α-amylase. Then, 16S rDNA amplification and sequencing were used to identify the species. A homology search in NCBI database was performed that suggests the isolates are >95% similar to Limosilactobacillus fermentum and Lacticaseibacillus casei. Different standard parameters were used to evaluate the probiotic potential of strains RAMULAB07, RAMULAB08, RAMULAB09, RAMULAB10, RAMULAB11, and RAMULAB12. The strains expressed a significant tolerance to the gastric and intestinal juices with a higher survival rate (>98%). A high adhesion capability was observed by the isolates exhibited through hydrophobicity (>65%), aggregation assays (>75%), and adherence assay on HT-29 cells (>82%) and buccal epithelial cells. In addition, the isolates expressed antibacterial and antibiotic properties. Safety assessments (DNase and hemolytic assay) revealed that the isolates could be classified as safe. α-glucosidase and α-amylase inhibition of the isolates for CS, CE, and IC ranged from 7.50% to 65.01% and 20.21% to 56.91%, respectively. The results suggest that these species have exceptional antidiabetic potential, which may be explained by their use as foods that can have health-enhancing effects beyond basic nutrition.
Collapse
Affiliation(s)
- Chandana Kumari V. B.
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (C.K.V.B.); (S.S.H.)
| | - Sujay S. Huligere
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (C.K.V.B.); (S.S.H.)
| | - Abdullah M. Shbeer
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia; (A.M.S.); (M.A.)
| | - Mohammed Ageel
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia; (A.M.S.); (M.A.)
| | - Jayanthi M. K.
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India;
| | - Jagadeep Chandra S.
- Department of Microbiology, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India;
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (C.K.V.B.); (S.S.H.)
| |
Collapse
|
13
|
Nguyen TT, Nguyen PT, Pham MN, Razafindralambo H, Hoang QK, Nguyen HT. Synbiotics: a New Route of Self-production and Applications to Human and Animal Health. Probiotics Antimicrob Proteins 2022; 14:980-993. [PMID: 35650337 DOI: 10.1007/s12602-022-09960-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 01/17/2023]
Abstract
Synbiotics are preparations in which prebiotics are added to probiotics to achieve superior performance and benefits on the host. A new route of their formation is to induce the prebiotic biosynthesis within the probiotic for synbiotic self-production or autologous synbiotics. The aim of this review paper is first to overview the basic concept and (updated) definitions of synergistic synbiotics, and then to focus particularly on the prebiotic properties of probiotic wall components while describing the environmental factors/stresses that stimulate autologous synbiotics, that is, the biosynthesis of prebiotic-forming microcapsule by probiotic bacteria, and finally to present some of their applications to human and animal health.
Collapse
Affiliation(s)
- Thi-Tho Nguyen
- Hutech Institute of Applied Science, HUTECH University, Ho Chi Minh City, Vietnam
| | - Phu-Tho Nguyen
- An Giang University, An Giang, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Minh-Nhut Pham
- Hutech Institute of Applied Science, HUTECH University, Ho Chi Minh City, Vietnam
| | | | - Quoc-Khanh Hoang
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Huu-Thanh Nguyen
- An Giang University, An Giang, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
14
|
Ascone L, Garcia Forlim C, Gallinat J, Kühn S. Effects of a multi-strain probiotic on hippocampal structure and function, cognition, and emotional well-being in healthy individuals: a double-blind randomised-controlled trial. Psychol Med 2022; 52:1-11. [PMID: 35513910 DOI: 10.1017/s0033291722000988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Animal studies have shown beneficial effects of probiotic supplementation on the hippocampus (HC) and cognitive performance. Evidence in humans is scarce. It was hypothesised that probiotic supplementation is associated with enhanced hippocampal (HC) regional grey matter volume (rGMV), as well as HC functional connectivity (FC). Relatedly improvements in mnestic and navigational performance, or emotional well-being, were expected to be observed in healthy human volunteers. METHODS A randomised-controlled, double-blind trial (RCT) was conducted in N = 59 volunteers (age Mean = 27.1, s.d. = 6.7), applying a multi-strain probiotic (Vivomixx®) v. non-probiotic milk-powder placebo, each with 4.4 g/day, for 4 weeks. Volumetric data was extracted from 3T structural magnetic resonance images of total HC and -subfields. Voxel-based morphometry (VBM) and FreeSurfer-based analyses were performed. Potential neuroplastic change beyond HC was explored using whole-brain-VBM for white- and GMV. Seed-based FC was calculated based on HC. Cognitive tests included visual, map-based, object-location, and verbal memory, and spatial navigation. Mental health status (stress, anxiety, depression, and emotion-regulation) was assessed using self-reports. RESULTS There were no changes in HC-total, -subfield GMV, or FC, through probiotics. VBM revealed no changes at a whole-brain-level. There were no effects on cognitive performance or mental health. Evidence in favor of the null-hypothesis, using Bayesian statistics, was consistent. CONCLUSIONS The applied multi-strain probiotic did not elicit any effects concerning hippocampal structural plasticity, cognition, or mental well-being in young, healthy adults. For future studies, longer application/observation RCTs, perhaps in stressed, otherwise psychologically/ cognitively vulnerable, or ageing groups, with well-founded strain selection and investigation of mechanism, are advised.
Collapse
Affiliation(s)
- Leonie Ascone
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Caroline Garcia Forlim
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Jürgen Gallinat
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Simone Kühn
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- Max Planck Institute for Human Development, Lise Meitner Group for Environmental Neuroscience, Lentzeallee 94, 14195 Berlin, Germany
| |
Collapse
|
15
|
Chaturvedi S, Chakraborty S. Evaluation of prebiotic properties of legume‐based synbiotic beverages. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Smriti Chaturvedi
- Department of Food Engineering and Technology Institute of Chemical Technology Mumbai India
| | - Snehasis Chakraborty
- Department of Food Engineering and Technology Institute of Chemical Technology Mumbai India
| |
Collapse
|
16
|
Magalhães-Guedes KT. Psychobiotic Therapy: Method to Reinforce the Immune System. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2022; 20:17-25. [PMID: 35078945 PMCID: PMC8813313 DOI: 10.9758/cpn.2022.20.1.17] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/15/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022]
Abstract
Psychobiotics are probiotic microorganisms that beneficially affect the central nervous system functions mediated by the gut-brain axis, improving the host’s immune system. Psychobiotic microorganisms can regulate brain pathways and serotonin production (mood controller). The main microbial genera with psychobiotic characteristics are Lactobacillus, Lactococcus and Bifidobacterium. The daily consumption of psychobiotics is called “Psychobiotic Therapy”. Psychobio-tic therapy has proven antidepressant/anxiolytic properties. Psychobiotic therapy can be used to boost the host’s immune balance against pathogens, for example: virus, bacteria and fungus. Thus, psychobiotic therapy can be a promising strategy to improve and/or maintain the quality of life of people who are healthy or who suffer from anxiety/stress disorders, intestinal dysbiosis and even immunosuppressed people. This is such a hot theme it can surely only be a matter of time for psychobiotic therapy offers an “alternative treatment”, but scientific, for people diagnosed with a variety of mental/immunological disorders. Instead of targeting the mind (brain), we could go for the gut. “This new way of looking at mental health linked to gut health is literally looking at health upside down”.
Collapse
Affiliation(s)
- Karina Teixeira Magalhães-Guedes
- Department of Bromatological Analysis, Pharmacy Faculty, Post-Graduate Program in Food Science, Federal University of Bahia (UFBA), Salvador, Brazil
| |
Collapse
|
17
|
Alibeik N, Pishgar E, Bozorgmehr R, Aghaaliakbari F, Rahimian N. Potential role of gut microbiota in patients with COVID-19, its relationship with lung axis, central nervous system (CNS) axis, and improvement with probiotic therapy. IRANIAN JOURNAL OF MICROBIOLOGY 2022; 14:1-9. [PMID: 35611351 PMCID: PMC9085538 DOI: 10.18502/ijm.v14i1.8794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Coronavirus Disease 2019 (COVID-19) is a pandemic disease caused by a new corona virus. COVID-19 affects different people in different ways. COVID-19 could affect the gastrointestinal system via gut microbiota impairment. Gut microbiota could affect lung health through a relationship between gut and lung microbiota, which is named gut-lung axis. Gut microbiota impairment plays a role in pathogenesis of various pulmonary disease states, so GI diseases were found to be associated with respiratory diseases. Moreover, most infected people will develop mild to moderate gastrointestinal (GI) symptoms such as diarrhea, vomiting, and stomachache, which is caused by impairment in gut microbiota. Therefore, the current study aimed to review potential role of gut microbiota in patients with COVID-19, its relation with lung axis, Central Nervous System (CNS) axis and improvement with probiotic therapy. Also, this review can be a guide for potential role of gut microbiota in patients with COVID-19.
Collapse
Affiliation(s)
- Nazanin Alibeik
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Pishgar
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ramin Bozorgmehr
- Department of Surgery, School of Medicine, Shahid Madani Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Farshad Aghaaliakbari
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Rahimian
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
18
|
Wang Y, Dong J, Wang J, Chi W, Zhou W, Tian Q, Hong Y, Zhou X, Ye H, Tian X, Hu R, Wong A. Assessing the drug resistance profiles of oral probiotic lozenges. J Oral Microbiol 2022; 14:2019992. [PMID: 35024089 PMCID: PMC8745366 DOI: 10.1080/20002297.2021.2019992] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Probiotic lozenges have been developed to harvest the benefits of probiotics for oral health, but their long-term consumption may encourage the transfer of resistance genes from probiotics to commensals, and eventually to disease-causing bacteria. Aim To screen commercial probiotic lozenges for resistance to antibiotics, characterize the resistance determinants, and examine their transferability in vitro. Results Probiotics of all lozenges were resistant to glycopeptide, sulfonamide, and penicillin antibiotics, while some were resistant to aminoglycosides and cephalosporins. High minimum inhibitory concentrations (MICs) were detected for streptomycin (>128 µg/mL) and chloramphenicol (> 512 µg/mL) for all probiotics but only one was resistant to piperacillin (MIC = 32 µg/mL). PCR analysis detected erythromycin (erm(T), ermB or mefA) and fluoroquinolone (parC or gyr(A)) resistance genes in some lozenges although there were no resistant phenotypes. The dfrD, cat-TC, vatE, aadE, vanX, and aph(3")-III or ant(2")-I genes conferring resistance to trimethoprim, chloramphenicol, quinupristin/dalfopristin, vancomycin, and streptomycin, respectively, were detected in resistant probiotics. The rifampicin resistance gene rpoB was also present. We found no conjugal transfer of streptomycin resistance genes in our co-incubation experiments. Conclusion Our study represents the first antibiotic resistance profiling of probiotics from oral lozenges, thus highlighting the health risk especially in the prevailing threat of drug resistance globally.
Collapse
Affiliation(s)
- Yi Wang
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, University Town, Wenzhou, Zhejiang Province, China
| | - Jingya Dong
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, University Town, Wenzhou, Zhejiang Province, China
| | - Junyi Wang
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Wei Chi
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Wei Zhou
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Qiwen Tian
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Yue Hong
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, University Town, Wenzhou, Zhejiang Province, China
| | - Xuan Zhou
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Hailv Ye
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Xuechen Tian
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou, Zhejiang Province, China.,Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang Province, China
| | - Rongdang Hu
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, University Town, Wenzhou, Zhejiang Province, China
| | - Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China.,Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou, Zhejiang Province, China.,Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang Province, China
| |
Collapse
|
19
|
Strati F, Lattanzi G, Amoroso C, Facciotti F. Microbiota-targeted therapies in inflammation resolution. Semin Immunol 2022; 59:101599. [PMID: 35304068 DOI: 10.1016/j.smim.2022.101599] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/24/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023]
Abstract
Gut microbiota has been shown to systemically shape the immunological landscape, modulate homeostasis and play a role in both health and disease. Dysbiosis of gut microbiota promotes inflammation and contributes to the pathogenesis of several major disorders in gastrointestinal tract, metabolic, neurological and respiratory diseases. Much effort is now focused on understanding host-microbes interactions and new microbiota-targeted therapies are deeply investigated as a means to restore health or prevent disease. This review details the immunoregulatory role of the gut microbiota in health and disease and discusses the most recent strategies in manipulating individual patient's microbiota for the management and prevention of inflammatory conditions.
Collapse
Affiliation(s)
- Francesco Strati
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Georgia Lattanzi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Chiara Amoroso
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| |
Collapse
|
20
|
Abstract
OBJECTIVE Extensive research and important discoveries on the microbiome have led to a growth in media coverage. This study explores how the microbiome has been portrayed in press sources popular among American and Canadian audiences. DESIGN Content analysis. METHODS Using the FACTIVA Database, we compiled a finalised data set of (N=830) articles from press sources popular among American and Canadian audiences which were published between 1 January 2018 and 11 October 2019 and which contained at least one of the following search terms: 'microbiome', 'microbiota', 'gut health', 'healthy gut', 'unhealthy gut', 'gut bacteria', 'probiotic' or 'probiotics.' We performed content analysis on the articles to determine how often ideas of the microbiome were presented as beneficial, in which health contexts, and whether actions could be taken to reap stated benefits. We compared this portrayal of benefits with critical portrayals of the microbiome. RESULTS Almost all of the articles (94%) described health benefits associated with the microbiome with many (79%) describing actions which could be taken to reap stated benefits. Articles most often described health benefits in more broad, general context (34%) and most commonly outlined actions related to food/drug (45%) as well as probiotic (27%) intake. Only some articles (19%) provided microbiome-related critiques or limitations. Some of the articles (22%) were focused on highlighting specific research developments, and in these articles, critiques or limitations were more common. CONCLUSIONS Articles discussing the microbiome published for American and Canadian audiences typically hype the microbiome's impact and popularise gut health trends while only offering a little in the way of communicating microbiome science. Lifestyle choices including nutrition, taking probiotics, stress management and exercise are often promoted as means of reaping the microbiome-related health benefits. The trend of actionable 'gut health' is foregrounded over more evidence-based descriptions of microbiome science.
Collapse
Affiliation(s)
| | - Stuart Turvey
- Division of Allergy and Immunology, Department of Pediatrics Faculty of Medicine, University of British Columbia, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | | |
Collapse
|
21
|
Jani K, Sharma A. Targeted amplicon sequencing reveals the probiotic potentials of microbial communities associated with traditional fermented foods of northeast India. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Siciliano RA, Reale A, Mazzeo MF, Morandi S, Silvetti T, Brasca M. Paraprobiotics: A New Perspective for Functional Foods and Nutraceuticals. Nutrients 2021; 13:1225. [PMID: 33917707 PMCID: PMC8068161 DOI: 10.3390/nu13041225] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/15/2022] Open
Abstract
Probiotics are live microorganisms that confer health benefits on the host. However, in recent years, several concerns on their use have been raised. In particular, industrial processing and storage of probiotic products are still technological challenges as these could severely impair cell viability. On the other hand, safety of live microorganisms should be taken into account, especially when administered to vulnerable people, such as the elderly and immunodeficient individuals. These drawbacks have enhanced the interest toward new products based on non-viable probiotics such as paraprobiotics and postbiotics. In particular, paraprobiotics, defined as "inactivated microbial cells (non-viable) that confer a health benefit to the consumer," hold the ability to regulate the adaptive and innate immune systems, exhibit anti-inflammatory, antiproliferative and antioxidant properties and exert antagonistic effect against pathogens. Moreover, paraprobiotics can exhibit enhanced safety, assure technological and practical benefits and can also be used in products suitable for people with weak immunity and the elderly. These features offer an important opportunity to prompt the market with novel functional foods or nutraceuticals that are safer and more stable. This review provides an overview of central issues on paraprobiotics and highlights the urgent need for further studies aimed at assessing safety and efficacy of these products and their mechanisms of action in order to support decisions of regulatory authorities. Finally, a definition is proposed that unambiguously distinguishes paraprobiotics from postbiotics.
Collapse
Affiliation(s)
- Rosa Anna Siciliano
- Institute of Food Sciences, National Research Council (CNR-ISA), Via Roma 64, 83100 Avellino, Italy; (R.A.S.); (A.R.)
| | - Anna Reale
- Institute of Food Sciences, National Research Council (CNR-ISA), Via Roma 64, 83100 Avellino, Italy; (R.A.S.); (A.R.)
| | - Maria Fiorella Mazzeo
- Institute of Food Sciences, National Research Council (CNR-ISA), Via Roma 64, 83100 Avellino, Italy; (R.A.S.); (A.R.)
| | - Stefano Morandi
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Celoria 2, 20133 Milan, Italy; (S.M.); (M.B.)
| | - Tiziana Silvetti
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Celoria 2, 20133 Milan, Italy; (S.M.); (M.B.)
| | - Milena Brasca
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Celoria 2, 20133 Milan, Italy; (S.M.); (M.B.)
| |
Collapse
|
23
|
Jiang S, Cai L, Lv L, Li L. Pediococcus pentosaceus, a future additive or probiotic candidate. Microb Cell Fact 2021; 20:45. [PMID: 33593360 PMCID: PMC7885583 DOI: 10.1186/s12934-021-01537-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Background Pediococcus pentosaceus, a promising strain of lactic acid bacteria (LAB), is gradually attracting attention, leading to a rapid increase in experimental research. Due to increased demand for practical applications of microbes, the functional and harmless P. pentosaceus might be a worthwhile LAB strain for both the food industry and biological applications. Results As an additive, P. pentosaceus improves the taste and nutrition of food, as well as the storage of animal products. Moreover, the antimicrobial abilities of Pediococcus strains are being highlighted. Evidence suggests that bacteriocins or bacteriocin-like substances (BLISs) produced by P. pentosaceus play effective antibacterial roles in the microbial ecosystem. In addition, various strains of P. pentosaceus have been highlighted for probiotic use due to their anti-inflammation, anticancer, antioxidant, detoxification, and lipid-lowering abilities. Conclusions Therefore, it is necessary to continue studying P. pentosaceus for further use. Thorough study of several P. pentosaceus strains should clarify the benefits and drawbacks in the future.
Collapse
Affiliation(s)
- Shiman Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lingzhi Cai
- The Infectious Diseases Department, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
24
|
Perillo F, Amoroso C, Strati F, Giuffrè MR, Díaz-Basabe A, Lattanzi G, Facciotti F. Gut Microbiota Manipulation as a Tool for Colorectal Cancer Management: Recent Advances in Its Use for Therapeutic Purposes. Int J Mol Sci 2020; 21:E5389. [PMID: 32751239 PMCID: PMC7432108 DOI: 10.3390/ijms21155389] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a multifaceted disease influenced by both environmental and genetic factors. A large body of literature has demonstrated the role of gut microbes in promoting inflammatory responses, creating a suitable microenvironment for the development of skewed interactions between the host and the gut microbiota and cancer initiation. Even if surgery is the primary therapeutic strategy, patients with advanced disease or cancer recurrence after surgery remain difficult to cure. Therefore, the gut microbiota has been proposed as a novel therapeutic target in light of recent promising data in which it seems to modulate the response to cancer immunotherapy. The use of microbe-targeted therapies, including antibiotics, prebiotics, live biotherapeutics, and fecal microbiota transplantation, is therefore considered to support current therapies in CRC management. In this review, we will discuss the importance of host-microbe interactions in CRC and how promoting homeostatic immune responses through microbe-targeted therapies may be useful in preventing/treating CRC development.
Collapse
Affiliation(s)
- Federica Perillo
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy; (F.P.); (C.A.); (M.R.G.); (A.D.-B.); (G.L.)
| | - Chiara Amoroso
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy; (F.P.); (C.A.); (M.R.G.); (A.D.-B.); (G.L.)
| | - Francesco Strati
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy; (F.P.); (C.A.); (M.R.G.); (A.D.-B.); (G.L.)
| | - Maria Rita Giuffrè
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy; (F.P.); (C.A.); (M.R.G.); (A.D.-B.); (G.L.)
| | - Angélica Díaz-Basabe
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy; (F.P.); (C.A.); (M.R.G.); (A.D.-B.); (G.L.)
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20135 Milan, Italy
| | - Georgia Lattanzi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy; (F.P.); (C.A.); (M.R.G.); (A.D.-B.); (G.L.)
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20135 Milan, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy; (F.P.); (C.A.); (M.R.G.); (A.D.-B.); (G.L.)
| |
Collapse
|
25
|
A critical review of antibiotic resistance in probiotic bacteria. Food Res Int 2020; 136:109571. [PMID: 32846610 DOI: 10.1016/j.foodres.2020.109571] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022]
Abstract
Probiotics are defined as live microorganisms that, when administered in adequate amounts, confer a health benefit upon the host. At present, probiotics are gaining popularity worldwide and are widely used in food and medicine. Consumption of probiotics is increasing with further in-depth research on the relationship between intestinal flora and host health. Most people pay more attention to the function of probiotics but ignore their potential risks, such as infection and antibiotic resistance transfer to pathogenic microbes. Physiological functions, effects and mechanisms of action of probiotics were covered in this review, as well as the antibiotic resistance phenotypes, mechanisms and genes found in probiotics. Typical cases of antibiotic resistance of probiotics were also highlighted, as well as the potential risks (including pathogenicity, infectivity and excessive immune response) and corresponding strategies (dosage, formulation, and administration route). This timely study provides an avenue for further research, development and application of probiotics.
Collapse
|