1
|
Chaudhary S, Sindhu SS. Iron sensing, signalling and acquisition by microbes and plants under environmental stress: Use of iron-solubilizing bacteria in crop biofortification for sustainable agriculture. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112496. [PMID: 40222392 DOI: 10.1016/j.plantsci.2025.112496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/12/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
Iron is very crucial micronutrient prerequisite for growth of all cellular organisms including plants, microbes, animals and humans. Though iron (Fe) is present in abundance in earth's crust, but most of its forms present in soil are biologically unavailable, thus putting a constraint to utilize it. Plants and microorganisms maintain iron homeostasis to balance the supply of enough Fe for metabolism from their surrounding environments and to avoid excessive toxic levels. Microorganisms and plants employ different strategies for sensing, signaling, transportation and uptake of Fe under different types of stressed environments. Microbial communities present in soil and vicinity of roots contribute in biogeochemical cycling and uptake of different nutrients including Fe resulting into improved soil fertility and plant health. In this review, the regulation of iron uptake and transport under different kinds of biotic and abiotic stresses is described. In addition, the insights have been provided for enhancing bioavailability of Fe in sustainable agriculture practices. The inoculation of different crop plants with iron solubilizing microbes improved bioavailablilty of Fe in soil and increased plant growth and crop yield. Insights were provided about possible role of recent bioengineering techniques to improve Fe availability and uptake by plants. However, well-planned and large-scale field trials are required before recommending particular iron solubilizing microbes as biofertilizers for increasing Fe availability, improving plant development and crop yields in sustainable agriculture.
Collapse
Affiliation(s)
- Suman Chaudhary
- CSIR-Institute of Microbial Technology, Sector - 39A, Chandigarh, India
| | - Satyavir S Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, Haryana 125004, India.
| |
Collapse
|
2
|
Marceau F, Lamothe-Sibold M, Farci S, Ouchane S, Cassier-Chauvat C, Chauvat F. First Characterization of a Cyanobacterial Xi-Class Glutathione S-Transferase in Synechocystis PCC 6803. Antioxidants (Basel) 2024; 13:1577. [PMID: 39765904 PMCID: PMC11673678 DOI: 10.3390/antiox13121577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Glutathione S-transferases (GSTs) are evolutionarily conserved enzymes crucial for cell detoxication. They are viewed as having evolved in cyanobacteria, the ancient photosynthetic prokaryotes that colonize our planet and play a crucial role for its biosphere. Xi-class GSTs, characterized by their specific glutathionyl-hydroquinone reductase activity, have been observed in prokaryotes, fungi and plants, but have not yet been studied in cyanobacteria. In this study, we have analyzed the presumptive Xi-class GST, designated as Slr0605, of the unicellular model cyanobacterium Synechocystis PCC 6803. We report that Slr0605 is a homodimeric protein that has genuine glutathionyl-hydroquinone reductase activity. Though Slr0605 is not essential for cell growth under standard photoautotrophic conditions, it plays a prominent role in the protection against not only benzoquinone, but also cobalt-excess stress. Indeed, Slr0605 acts in defense against the cobalt-elicited disturbances of iron homeostasis, iron-sulfur cluster repair, catalase activity and the level of reactive oxygen species, which are all crucial for cell life.
Collapse
Affiliation(s)
| | | | | | | | | | - Franck Chauvat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France; (F.M.); (M.L.-S.); (S.F.); (S.O.); (C.C.-C.)
| |
Collapse
|
3
|
Duersch BG, Soini SA, Luo Y, Liu X, Chen S, Merk VM. Nanoscale elemental and morphological imaging of nitrogen-fixing cyanobacteria. Metallomics 2024; 16:mfae040. [PMID: 39271453 PMCID: PMC11450467 DOI: 10.1093/mtomcs/mfae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/12/2024] [Indexed: 09/15/2024]
Abstract
Nitrogen-fixing cyanobacteria bind atmospheric nitrogen and carbon dioxide using sunlight. This experimental study focused on a laboratory-based model system, Anabaena sp., in nitrogen-depleted culture. When combined nitrogen is scarce, the filamentous prokaryotes reconcile photosynthesis and nitrogen fixation by cellular differentiation into heterocysts. To better understand the influence of micronutrients on cellular function, 2D and 3D synchrotron X-ray fluorescence mappings were acquired from whole biological cells in their frozen-hydrated state at the Bionanoprobe, Advanced Photon Source. To study elemental homeostasis within these chain-like organisms, biologically relevant elements were mapped using X-ray fluorescence spectroscopy and energy-dispersive X-ray microanalysis. Higher levels of cytosolic K+, Ca2+, and Fe2+ were measured in the heterocyst than in adjacent vegetative cells, supporting the notion of elevated micronutrient demand. P-rich clusters, identified as polyphosphate bodies involved in nutrient storage, metal detoxification, and osmotic regulation, were consistently co-localized with K+ and occasionally sequestered Mg2+, Ca2+, Fe2+, and Mn2+ ions. Machine-learning-based k-mean clustering revealed that P/K clusters were associated with either Fe or Ca, with Fe and Ca clusters also occurring individually. In accordance with XRF nanotomography, distinct P/K-containing clusters close to the cellular envelope were surrounded by larger Ca-rich clusters. The transition metal Fe, which is a part of nitrogenase enzyme, was detected as irregularly shaped clusters. The elemental composition and cellular morphology of diazotrophic Anabaena sp. was visualized by multimodal imaging using atomic force microscopy, scanning electron microscopy, and fluorescence microscopy. This paper discusses the first experimental results obtained with a combined in-line optical and X-ray fluorescence microscope at the Bionanoprobe.
Collapse
Affiliation(s)
- Bobby G Duersch
- Department of Chemistry and Biochemistry, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL, USA
| | - Steven A Soini
- Department of Chemistry and Biochemistry, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL, USA
| | - Yanqi Luo
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Xiaoyang Liu
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Si Chen
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Vivian M Merk
- Department of Chemistry and Biochemistry, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
4
|
Hahn V, Zühlke D, Winter H, Landskron A, Bernhardt J, Sievers S, Schmidt M, von Woedtke T, Riedel K, Kolb JF. Proteomic profiling of antibiotic-resistant Escherichia coli GW-AmxH19 isolated from hospital wastewater treated with physical plasma. Proteomics 2024; 24:e2300494. [PMID: 38644344 DOI: 10.1002/pmic.202300494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024]
Abstract
Microorganisms which are resistant to antibiotics are a global threat to the health of humans and animals. Wastewater treatment plants are known hotspots for the dissemination of antibiotic resistances. Therefore, novel methods for the inactivation of pathogens, and in particular antibiotic-resistant microorganisms (ARM), are of increasing interest. An especially promising method could be a water treatment by physical plasma which provides charged particles, electric fields, UV-radiation, and reactive species. The latter are foremost responsible for the antimicrobial properties of plasma. Thus, with plasma it might be possible to reduce the amount of ARM and to establish this technology as additional treatment stage for wastewater remediation. However, the impact of plasma on microorganisms beyond a mere inactivation was analyzed in more detail by a proteomic approach. Therefore, Escherichia coli GW-AmxH19, isolated from hospital wastewater in Germany, was used. The bacterial solution was treated by a plasma discharge ignited between each of four pins and the liquid surface. The growth of E. coli and the pH-value decreased during plasma treatment in comparison with the untreated control. Proteome and antibiotic resistance profile were analyzed. Concentrations of nitrite and nitrate were determined as long-lived indicative products of a transient chemistry associated with reactive nitrogen species (RNS). Conversely, hydrogen peroxide served as indicator for reactive oxygen species (ROS). Proteome analyses revealed an oxidative stress response as a result of plasma-generated RNS and ROS as well as a pH-balancing reaction as key responses to plasma treatment. Both, the generation of reactive species and a decreased pH-value is characteristic for plasma-treated solutions. The plasma-mediated changes of the proteome are discussed also in comparison with the Gram-positive bacterium Bacillus subtilis. Furthermore, no effect of the plasma treatment, on the antibiotic resistance of E. coli, was determined under the chosen conditions. The knowledge about the physiological changes of ARM in response to plasma is of fundamental interest to understand the molecular basis for the inactivation. This will be important for the further development and implementation of plasma in wastewater remediation.
Collapse
Affiliation(s)
- Veronika Hahn
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Daniela Zühlke
- Institute of Marine Biotechnology, Greifswald, Germany
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Hauke Winter
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Annchristin Landskron
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Jörg Bernhardt
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Susanne Sievers
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Michael Schmidt
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Institute for Hygiene and Environmental Medicine, Greifswald University Medicine, Greifswald, Germany
| | - Katharina Riedel
- Institute of Marine Biotechnology, Greifswald, Germany
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Juergen F Kolb
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| |
Collapse
|
5
|
Bak DW, Weerapana E. Proteomic strategies to interrogate the Fe-S proteome. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119791. [PMID: 38925478 PMCID: PMC11365765 DOI: 10.1016/j.bbamcr.2024.119791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/23/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Iron‑sulfur (Fe-S) clusters, inorganic cofactors composed of iron and sulfide, participate in numerous essential redox, non-redox, structural, and regulatory biological processes within the cell. Though structurally and functionally diverse, the list of all proteins in an organism capable of binding one or more Fe-S clusters is referred to as its Fe-S proteome. Importantly, the Fe-S proteome is highly dynamic, with continuous cluster synthesis and delivery by complex Fe-S cluster biogenesis pathways. This cluster delivery is balanced out by processes that can result in loss of Fe-S cluster binding, such as redox state changes, iron availability, and oxygen sensitivity. Despite continued expansion of the Fe-S protein catalogue, it remains a challenge to reliably identify novel Fe-S proteins. As such, high-throughput techniques that can report on native Fe-S cluster binding are required to both identify new Fe-S proteins, as well as characterize the in vivo dynamics of Fe-S cluster binding. Due to the recent rapid growth in mass spectrometry, proteomics, and chemical biology, there has been a host of techniques developed that are applicable to the study of native Fe-S proteins. This review will detail both the current understanding of the Fe-S proteome and Fe-S cluster biology as well as describing state-of-the-art proteomic strategies for the study of Fe-S clusters within the context of a native proteome.
Collapse
Affiliation(s)
- Daniel W Bak
- Department of Chemistry, Boston College, Chestnut Hill, MA, United States of America.
| | - Eranthie Weerapana
- Department of Chemistry, Boston College, Chestnut Hill, MA, United States of America.
| |
Collapse
|
6
|
Syed K. Ferredoxins: Functions, Evolution, Potential Applications, and Challenges of Subtype Classification. Curr Issues Mol Biol 2024; 46:9659-9673. [PMID: 39329926 PMCID: PMC11430716 DOI: 10.3390/cimb46090574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024] Open
Abstract
Ferredoxins are proteins found in all biological kingdoms and are involved in essential biological processes including photosynthesis, lipid metabolism, and biogeochemical cycles. Ferredoxins are classified into different groups based on the iron-sulfur (Fe-S) clusters that they contain. A new subtype classification and nomenclature system, based on the spacing between amino acids in the Fe-S binding motif, has been proposed in order to better understand ferredoxins' biological diversity and evolutionary linkage across different organisms. This new classification system has revealed an unparalleled diversity between ferredoxins and has helped identify evolutionarily linked ferredoxins between species. The current review provides the latest insights into ferredoxin functions and evolution, and the new subtype classification, outlining their potential biotechnological applications and the future challenges in streamlining the process.
Collapse
Affiliation(s)
- Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, KwaDlangezwa, Empangeni 3886, South Africa
| |
Collapse
|
7
|
Tripathi J, Gautam S. Unravelling the key steps impairing the metabolic state of Xanthomonas cells undergoing programmed cell death. Int Microbiol 2024; 27:1285-1296. [PMID: 38190087 DOI: 10.1007/s10123-023-00471-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/23/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024]
Abstract
Programmed cell death (PCD) has been reported in Xanthomonas axonopodis pv. glycines (Xag) wild type earlier and was indirectly shown to be induced by metabolic stress; however, deciphering the key proteins regulating the metabolic stress remained unrevealed. In this study, transcriptomic and proteomic analyses were performed to investigate the prominent pathways, having a role in the induction of metabolic stress in Xag cells undergoing PCD. A comprehensive analysis of transcriptome and proteome data revealed the major involvement of metabolic pathways related to branched chain amino acid degradation, such as acyl-CoA dehydrogenase and energy-yielding, ubiquinol:cytochrome c oxidoreductase complex, in Xag cells undergoing PCD. Consequently, oxidative stress response genes showed major upregulation in Xag cells in PCD-inducing medium; however, no such upregulation was observed at the protein level, indicative of depleted protein levels under excessive stress conditions. Activation of stress response and DNA repair proteins was also observed in Xag cells grown in PCD-inducing medium, which is indicative of excessive cellular damage. Thus, the findings indicate that programmed cell death in Xag is an outcome of metabolic stress in nutrient condition not suitable for a plant pathogen like Xanthomonas, which is more acclimatised with altogether a different nutritional requirement predominantly having an enriched carbohydrate source.
Collapse
Affiliation(s)
- Jyoti Tripathi
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Satyendra Gautam
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, 400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
8
|
Kratzl F, Urban M, Pandhal J, Shi M, Meng C, Kleigrewe K, Kremling A, Pflüger-Grau K. Pseudomonas putida as saviour for troubled Synechococcus elongatus in a synthetic co-culture - interaction studies based on a multi-OMICs approach. Commun Biol 2024; 7:452. [PMID: 38609451 PMCID: PMC11014904 DOI: 10.1038/s42003-024-06098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
In their natural habitats, microbes rarely exist in isolation; instead, they thrive in consortia, where various interactions occur. In this study, a defined synthetic co-culture of the cyanobacterium S. elongatus cscB, which supplies sucrose to the heterotrophic P. putida cscRABY, is investigated to identify potential interactions. Initial experiments reveal a remarkable growth-promoting effect of the heterotrophic partner on the cyanobacterium, resulting in an up to 80% increase in the growth rate and enhanced photosynthetic capacity. Vice versa, the presence of the cyanobacterium has a neutral effect on P. putida cscRABY, highlighting the resilience of pseudomonads against stress and their potential as co-culture partners. Next, a suitable reference process reinforcing the growth-promoting effect is established in a parallel photobioreactor system, which sets the basis for the analysis of the co-culture at the transcriptome, proteome, and metabolome levels. In addition to several moderate changes, including alterations in the metabolism and stress response in both microbes, this comprehensive multi-OMICs approach strongly hints towards the exchange of further molecules beyond the unidirectional feeding with sucrose. Taken together, these findings provide valuable insights into the complex dynamics between both co-culture partners, indicating multi-level interactions, which can be employed for further streamlining of the co-cultivation system.
Collapse
Affiliation(s)
- Franziska Kratzl
- Professorship for Systems Biotechnology, TUM School of Engineering and Design, Technical University of Munich, Garching, Germany
| | - Marlene Urban
- Professorship for Systems Biotechnology, TUM School of Engineering and Design, Technical University of Munich, Garching, Germany
| | - Jagroop Pandhal
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Mengxun Shi
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Andreas Kremling
- Professorship for Systems Biotechnology, TUM School of Engineering and Design, Technical University of Munich, Garching, Germany
| | - Katharina Pflüger-Grau
- Professorship for Systems Biotechnology, TUM School of Engineering and Design, Technical University of Munich, Garching, Germany.
| |
Collapse
|
9
|
Ma S, Mao S, Shi J, Zou J, Zhang J, Liu Y, Wang X, Ma Z, Yu C. Exploring the synergistic interplay of sulfur metabolism and electron transfer in Cr(VI) and Cd(II) removal by Clostridium thiosulfatireducens: Genomic and mechanistic insights. CHEMOSPHERE 2024; 352:141289. [PMID: 38281604 DOI: 10.1016/j.chemosphere.2024.141289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/13/2023] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
In this study, a sulfate-reducing bacterium, Clostridium thiosulfatireducens (CT) was reported and the performance and removal mechanism of Cr(VI) and Cd(II) removal were investigated. It is noteworthy that the dsrAB gene is absent in this strain, but the strain is capable of producing sulfide. The conversion rate of Cr(VI) by CT was 84.24 % at a concentration of 25 mg/L, and the conversion rate of Cd(II) was 94.19 % at a concentration of 28 mg/L. The complete genome is 6,106,624 bp and the genome consisted of a single chromosome. The GC content of the chromosomes was 29.65 %. The mechanism of heavy metal removal by CT bacteria mainly includes biosorption, electron transfer and redox, with reduction combined with S2- precipitation as the main pathway. The product characterization results showed that the formation of mainly ionic crystals and precipitates (CdS, Cd(OH)2, Cr(OH)3, Cr2O3) after adsorption. Genome-wide techniques have shown that the clearance of Cr(VI) and Cd(II) by CT is largely dependent on sulfate transport, sulfur metabolism, and energy metabolism to some extent. In addition, genes related to ATP binding, electron carrier activity, transporter protein genes, and DNA repair are also important factors to improve the heavy metal resistance and transformation ability of CT strains. Both the Fe-S cycle and the ROS-resistant system can enhance the electron transfer activity and thus slow down the damage of heavy metals to microorganisms. This study fills the gap in the understanding of the basic properties and heavy metal transformation mechanism of CT.
Collapse
Affiliation(s)
- Suya Ma
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China
| | - Shuaixian Mao
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China
| | - Jinshuai Shi
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China
| | - Jiacheng Zou
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China
| | - Jiale Zhang
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China
| | - Yingchao Liu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China
| | - Xinrong Wang
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China
| | - Zizhen Ma
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China
| | - Caihong Yu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China.
| |
Collapse
|
10
|
Williams SM, Chatterji D. Dps Functions as a Key Player in Bacterial Iron Homeostasis. ACS OMEGA 2023; 8:34299-34309. [PMID: 37779979 PMCID: PMC10536872 DOI: 10.1021/acsomega.3c03277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023]
Abstract
Iron plays a vital role in the maintenance of life, being central to various cellular processes, from respiration to gene regulation. It is essential for iron to be stored in a nontoxic and readily available form. DNA binding proteins under starvation (Dps) belong to the ferritin family of iron storage proteins and are adept at storing iron in their hollow protein shells. Existing solely in prokaryotes, these proteins have the additional functions of DNA binding and protection from oxidative stress. Iron storage proteins play a functional role in storage, release, and transfer of iron and therefore are central to the optimal functioning of iron homeostasis. Here we review the multifarious properties of Dps through relevant biochemical and structural studies with a focus on iron storage and ferroxidation. We also examine the role of Dps as a possible candidate as an iron donor to iron-sulfur (Fe-S) clusters, which are ubiquitous to many biological processes.
Collapse
Affiliation(s)
- Sunanda Margrett Williams
- Institute
of Structural and Molecular Biology, Birkbeck,
University of London, Malet Street, London WC1E
7HX, United Kingdom
| | - Dipankar Chatterji
- Molecular
Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
11
|
Tsutsumi E, Niwa S, Takeda R, Sakamoto N, Okatsu K, Fukai S, Ago H, Nagao S, Sekiguchi H, Takeda K. Structure of a putative immature form of a Rieske-type iron-sulfur protein in complex with zinc chloride. Commun Chem 2023; 6:190. [PMID: 37689761 PMCID: PMC10492824 DOI: 10.1038/s42004-023-01000-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023] Open
Abstract
Iron-sulfur clusters are prosthetic groups of proteins involved in various biological processes. However, details of the immature state of the iron-sulfur cluster into proteins have not yet been elucidated. We report here the first structural analysis of the Zn-containing form of a Rieske-type iron-sulfur protein, PetA, from Thermochromatium tepidum (TtPetA) by X-ray crystallography and small-angle X-ray scattering analysis. The Zn-containing form of TtPetA was indicated to be a dimer in solution. The zinc ion adopts a regular tetra-coordination with two chloride ions and two cysteine residues. Only a histidine residue in the cluster-binding site exhibited a conformational difference from the [2Fe-2S] containing form. The Zn-containing structure indicates that the conformation of the cluster binding site is already constructed and stabilized before insertion of [2Fe-2S]. The binding mode of ZnCl2, similar to the [2Fe-2S] cluster, suggests that the zinc ions might be involved in the insertion of the [2Fe-2S] cluster.
Collapse
Affiliation(s)
- Erika Tsutsumi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Satomi Niwa
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Ryota Takeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Natsuki Sakamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kei Okatsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Shuya Fukai
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hideo Ago
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Satoshi Nagao
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Hiroshi Sekiguchi
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Kazuki Takeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
12
|
Müller B. Iron transport mechanisms and their evolution focusing on chloroplasts. JOURNAL OF PLANT PHYSIOLOGY 2023; 288:154059. [PMID: 37586271 DOI: 10.1016/j.jplph.2023.154059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
Iron (Fe) is an essential element for photosynthetic organisms, required for several vital biological functions. Photosynthesis, which takes place in the chloroplasts of higher plants, is the major Fe consumer. Although the components of the root Fe uptake system in dicotyledonous and monocotyledonous plants have been extensively studied, the Fe transport mechanisms of chloroplasts in these two groups of plants have received little attention. This review focuses on the comparative analysis of Fe transport processes in the evolutionary ancestors of chloroplasts (cyanobacteria) with the processes in embryophytes and green algae (Viridiplantae). The aim is to summarize how chloroplasts are integrated into cellular Fe homeostasis and how Fe transporters and Fe transport mechanisms have been modified by evolution.
Collapse
Affiliation(s)
- Brigitta Müller
- Department of Plant Physiology and Molecular Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary.
| |
Collapse
|
13
|
Schumann C, Fernández Méndez J, Berggren G, Lindblad P. Novel concepts and engineering strategies for heterologous expression of efficient hydrogenases in photosynthetic microorganisms. Front Microbiol 2023; 14:1179607. [PMID: 37502399 PMCID: PMC10369191 DOI: 10.3389/fmicb.2023.1179607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/09/2023] [Indexed: 07/29/2023] Open
Abstract
Hydrogen is considered one of the key enablers of the transition towards a sustainable and net-zero carbon economy. When produced from renewable sources, hydrogen can be used as a clean and carbon-free energy carrier, as well as improve the sustainability of a wide range of industrial processes. Photobiological hydrogen production is considered one of the most promising technologies, avoiding the need for renewable electricity and rare earth metal elements, the demands for which are greatly increasing due to the current simultaneous electrification and decarbonization goals. Photobiological hydrogen production employs photosynthetic microorganisms to harvest solar energy and split water into molecular oxygen and hydrogen gas, unlocking the long-pursued target of solar energy storage. However, photobiological hydrogen production has to-date been constrained by several limitations. This review aims to discuss the current state-of-the art regarding hydrogenase-driven photobiological hydrogen production. Emphasis is placed on engineering strategies for the expression of improved, non-native, hydrogenases or photosynthesis re-engineering, as well as their combination as one of the most promising pathways to develop viable large-scale hydrogen green cell factories. Herein we provide an overview of the current knowledge and technological gaps curbing the development of photobiological hydrogenase-driven hydrogen production, as well as summarizing the recent advances and future prospects regarding the expression of non-native hydrogenases in cyanobacteria and green algae with an emphasis on [FeFe] hydrogenases.
Collapse
Affiliation(s)
- Conrad Schumann
- Molecular Biomimetics, Department of Chemistry - Ångström, Uppsala University, Uppsala, Sweden
| | - Jorge Fernández Méndez
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Uppsala, Sweden
| | - Gustav Berggren
- Molecular Biomimetics, Department of Chemistry - Ångström, Uppsala University, Uppsala, Sweden
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Gunawardana D, Wanigatunge RP, Wewalwela JJ, Vithanage M, Wijeyaratne C. Sulfur is in the Air: Cyanolichen Marriages and Pollution. Acta Biotheor 2023; 71:14. [PMID: 37148405 DOI: 10.1007/s10441-023-09465-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/15/2023] [Indexed: 05/08/2023]
Abstract
Cyanolichens are symbiotic organisms involving cyanobacteria and fungi (bipartite) or with the addition of an algal partner (tripartite). Cyanolichens are known for their heightened susceptibility to environmental pollution. We focus here on the impacts on cyanolichens due to rising air pollution; we are especially interested in the role of sulfur dioxide on cyanolichen biology. Cyanolichens due to air pollution including sulfur dioxide exposure, show symptomatic changes including degradation of chlorophyll, lipid membrane peroxidation, decrease in ATP production, changes in respiration rate, and alteration of endogenous auxins and ethylene production, although symptoms are known to vary with species and genotype. Sulfur dioxide has been shown to be damaging to photosynthesis but is relatively benign on nitrogen fixation which proposes as a hypothesis that the algal partner may be more in harm's way than the cyanobiont. In fact, the Nostoc cyanobiont of sulfur dioxide-susceptible Lobaria pulmonaria carries a magnified set of sulfur (alkane sulfonate) metabolism genes capable of alkane sulfonate transport and assimilation, which were only unraveled by genome sequencing, a technology unavailable in the 1950-2000 epoch, where most physiology- based studies were performed. There is worldwide a growing corpus of evidence that sulfur has an important role to play in biological symbioses including rhizobia-legumes, mycorrhizae-roots and cyanobacteria-host plants. Furthermore, the fungal and algal partners of L. pulmonaria appear not to have the sulfonate transporter genes again providing the roles of ambient-sulfur (alkanesulfonate metabolism etc.) mediated functions primarily to the cyanobacterial partner. In conclusion, we have addressed here the role of the atmospheric pollutant sulfur dioxide to tripartite cyanolichen viability and suggest that the weaker link is likely to be the photosynthetic algal (chlorophyte) partner and not the nitrogen-fixing cyanobiont.
Collapse
Affiliation(s)
- Dilantha Gunawardana
- Research Council, University of Sri Jayewardenepura, Nugegoda, Sri Jayewardenepura Kotte, 10250, Sri Lanka.
| | - Rasika P Wanigatunge
- Department of Plant and Molecular Biology, Faculty of Science, University of Kelaniya, Kelaniya, Sri Lanka
| | - Jayani J Wewalwela
- Department of Agricultural Technology, Faculty of Technology, University of Colombo, Colombo, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Jayewardenepura Kotte, 10250, Sri Lanka
| | - Chandrani Wijeyaratne
- Department of Botany, University of Sri Jayewardenepura, Nugegoda, Sri Jayewardenepura Kotte, 10250, Sri Lanka
| |
Collapse
|
15
|
Mihelj P, Abreu I, Moreyra T, González-Guerrero M, Raimunda D. Functional Characterization of the Co 2+ Transporter AitP in Sinorhizobium meliloti: A New Player in Fe 2+ Homeostasis. Appl Environ Microbiol 2023; 89:e0190122. [PMID: 36853042 PMCID: PMC10057888 DOI: 10.1128/aem.01901-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/27/2023] [Indexed: 03/01/2023] Open
Abstract
Co2+ induces the increase of the labile-Fe pool (LIP) by Fe-S cluster damage, heme synthesis inhibition, and "free" iron import, which affects cell viability. The N2-fixing bacteria, Sinorhizobium meliloti, is a suitable model to determine the roles of Co2+-transporting cation diffusion facilitator exporters (Co-eCDF) in Fe2+ homeostasis because it has a putative member of this subfamily, AitP, and two specific Fe2+-export systems. An insertional mutant of AitP showed Co2+ sensitivity and accumulation, Fe accumulation and hydrogen peroxide sensitivity, but not Fe2+ sensitivity, despite AitP being a bona fide low affinity Fe2+ exporter as demonstrated by the kinetic analyses of Fe2+ uptake into everted membrane vesicles. Suggesting concomitant Fe2+-dependent induced stress, Co2+ sensitivity was increased in strains carrying mutations in AitP and Fe2+ exporters which did not correlate with the Co2+ accumulation. Growth in the presence of sublethal Fe2+ and Co2+ concentrations suggested that free Fe-import might contribute to Co2+ toxicity. Supporting this, Co2+ induced transcription of Fe-import system and genes associated with Fe homeostasis. Analyses of total protoporphyrin content indicates Fe-S cluster attack as the major source for LIP. AitP-mediated Fe2+-export is likely counterbalanced via a nonfutile Fe2+-import pathway. Two lines of evidence support this: (i) an increased hemin uptake in the presence of Co2+ was observed in wild-type (WT) versus AitP mutant, and (ii) hemin reversed the Co2+ sensitivity in the AitP mutant. Thus, the simultaneous detoxification mediated by AitP aids cells to orchestrate an Fe-S cluster salvage response, avoiding the increase in the LIP caused by the disassembly of Fe-S clusters or free iron uptake. IMPORTANCE Cross-talk between iron and cobalt has been long recognized in biological systems. This is due to the capacity of cobalt to interfere with proper iron utilization. Cells can detoxify cobalt by exporting mechanisms involving membrane proteins known as exporters. Highlighting the cross-talk, the capacity of several cobalt exporters to also export iron is emerging. Although biologically less important than Fe2+, Co2+ induces toxicity by promoting intracellular Fe release, which ultimately causes additional toxic effects. In this work, we describe how the rhizobia cells solve this perturbation by clearing Fe through a Co2+ exporter, in order to reestablish intracellular Fe levels by importing nonfree Fe, heme. This piggyback-ride type of transport may aid bacterial cells to survive in free-living conditions where high anthropogenic Co2+ content may be encountered.
Collapse
Affiliation(s)
- Paula Mihelj
- Instituto de Investigación Médica Mercedes y Martín Ferreyra-INIMEC-CONICET, UNC, Córdoba, Argentina
| | - Isidro Abreu
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
| | - Tomás Moreyra
- Instituto de Investigación Médica Mercedes y Martín Ferreyra-INIMEC-CONICET, UNC, Córdoba, Argentina
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Daniel Raimunda
- Instituto de Investigación Médica Mercedes y Martín Ferreyra-INIMEC-CONICET, UNC, Córdoba, Argentina
| |
Collapse
|
16
|
Schulz V, Freibert SA, Boss L, Mühlenhoff U, Stehling O, Lill R. Mitochondrial [2Fe-2S] ferredoxins: new functions for old dogs. FEBS Lett 2023; 597:102-121. [PMID: 36443530 DOI: 10.1002/1873-3468.14546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022]
Abstract
Ferredoxins (FDXs) comprise a large family of iron-sulfur proteins that shuttle electrons from NADPH and FDX reductases into diverse biological processes. This review focuses on the structure, function and specificity of mitochondrial [2Fe-2S] FDXs that are related to bacterial FDXs due to their endosymbiotic inheritance. Their classical function in cytochrome P450-dependent steroid transformations was identified around 1960, and is exemplified by mammalian FDX1 (aka adrenodoxin). Thirty years later the essential function in cellular Fe/S protein biogenesis was discovered for the yeast mitochondrial FDX Yah1 that is additionally crucial for the formation of haem a and ubiquinone CoQ6 . In mammals, Fe/S protein biogenesis is exclusively performed by the FDX1 paralog FDX2, despite the high structural similarity of both proteins. Recently, additional and specific roles of human FDX1 in haem a and lipoyl cofactor biosyntheses were described. For lipoyl synthesis, FDX1 transfers electrons to the radical S-adenosyl methionine-dependent lipoyl synthase to kickstart its radical chain reaction. The high target specificity of the two mammalian FDXs is contained within small conserved sequence motifs, that upon swapping change the target selection of these electron donors.
Collapse
Affiliation(s)
- Vinzent Schulz
- Institut für Zytobiologie, Philipps-Universität Marburg, Germany.,Zentrum für Synthetische Mikrobiologie Synmikro, Marburg, Germany
| | - Sven-A Freibert
- Institut für Zytobiologie, Philipps-Universität Marburg, Germany.,Zentrum für Synthetische Mikrobiologie Synmikro, Marburg, Germany
| | - Linda Boss
- Institut für Zytobiologie, Philipps-Universität Marburg, Germany.,Zentrum für Synthetische Mikrobiologie Synmikro, Marburg, Germany
| | - Ulrich Mühlenhoff
- Institut für Zytobiologie, Philipps-Universität Marburg, Germany.,Zentrum für Synthetische Mikrobiologie Synmikro, Marburg, Germany
| | - Oliver Stehling
- Institut für Zytobiologie, Philipps-Universität Marburg, Germany.,Zentrum für Synthetische Mikrobiologie Synmikro, Marburg, Germany
| | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Germany.,Zentrum für Synthetische Mikrobiologie Synmikro, Marburg, Germany
| |
Collapse
|
17
|
Iron-Sulfur Clusters: A Key Factor of Regulated Cell Death in Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7449941. [PMID: 36338346 PMCID: PMC9629928 DOI: 10.1155/2022/7449941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/23/2022] [Accepted: 10/07/2022] [Indexed: 11/21/2022]
Abstract
Iron-sulfur clusters are ancient cofactors that play crucial roles in myriad cellular functions. Recent studies have shown that iron-sulfur clusters are closely related to the mechanisms of multiple cell death modalities. In addition, numerous previous studies have demonstrated that iron-sulfur clusters play an important role in the development and treatment of cancer. This review first summarizes the close association of iron-sulfur clusters with cell death modalities such as ferroptosis, cuprotosis, PANoptosis, and apoptosis and their potential role in cancer activation and drug resistance. This review hopes to generate new cancer therapy ideas and overcome drug resistance by modulating iron-sulfur clusters.
Collapse
|
18
|
Garcia PS, D'Angelo F, Ollagnier de Choudens S, Dussouchaud M, Bouveret E, Gribaldo S, Barras F. An early origin of iron-sulfur cluster biosynthesis machineries before Earth oxygenation. Nat Ecol Evol 2022; 6:1564-1572. [PMID: 36109654 DOI: 10.1038/s41559-022-01857-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/22/2022] [Indexed: 11/09/2022]
Abstract
Iron-sulfur (Fe-S) clusters are ubiquitous cofactors essential for life. It is largely thought that the emergence of oxygenic photosynthesis and progressive oxygenation of the atmosphere led to the origin of multiprotein machineries (ISC, NIF and SUF) assisting Fe-S cluster synthesis in the presence of oxidative stress and shortage of bioavailable iron. However, previous analyses have left unclear the origin and evolution of these systems. Here, we combine exhaustive homology searches with genomic context analysis and phylogeny to precisely identify Fe-S cluster biogenesis systems in over 10,000 archaeal and bacterial genomes. We highlight the existence of two additional and clearly distinct 'minimal' Fe-S cluster assembly machineries, MIS (minimal iron-sulfur) and SMS (SUF-like minimal system), which we infer in the last universal common ancestor (LUCA) and we experimentally validate SMS as a bona fide Fe-S cluster biogenesis system. These ancestral systems were kept in archaea whereas they went through stepwise complexification in bacteria to incorporate additional functions for higher Fe-S cluster synthesis efficiency leading to SUF, ISC and NIF. Horizontal gene transfers and losses then shaped the current distribution of these systems, driving ecological adaptations such as the emergence of aerobic lifestyles in archaea. Our results show that dedicated machineries were in place early in evolution to assist Fe-S cluster biogenesis and that their origin is not directly linked to Earth oxygenation.
Collapse
Affiliation(s)
- Pierre Simon Garcia
- Department of Microbiology, Unit Stress Adaptation and Metabolism in Enterobacteria, Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Paris, France
- Department of Microbiology, Unit Evolutionary Biology of the Microbial Cell, Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Paris, France
| | - Francesca D'Angelo
- Department of Microbiology, Unit Stress Adaptation and Metabolism in Enterobacteria, Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Paris, France
| | | | - Macha Dussouchaud
- Department of Microbiology, Unit Stress Adaptation and Metabolism in Enterobacteria, Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Paris, France
| | - Emmanuelle Bouveret
- Department of Microbiology, Unit Stress Adaptation and Metabolism in Enterobacteria, Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Paris, France
| | - Simonetta Gribaldo
- Department of Microbiology, Unit Evolutionary Biology of the Microbial Cell, Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Paris, France.
| | - Frédéric Barras
- Department of Microbiology, Unit Stress Adaptation and Metabolism in Enterobacteria, Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Paris, France.
| |
Collapse
|
19
|
Priya P, Aneesh B, Sivakumar KC, Harikrishnan K. Comparative proteomic analysis of saline tolerant, phosphate solubilizing endophytic Pantoea sp., and Pseudomonas sp. isolated from Eichhornia rhizosphere. Microbiol Res 2022; 265:127217. [DOI: 10.1016/j.micres.2022.127217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 02/07/2023]
|
20
|
Truchon AN, Hendrich CG, Bigott AF, Dalsing BL, Allen C. NorA, HmpX, and NorB Cooperate to Reduce NO Toxicity during Denitrification and Plant Pathogenesis in Ralstonia solanacearum. Microbiol Spectr 2022; 10:e0026422. [PMID: 35377234 PMCID: PMC9045102 DOI: 10.1128/spectrum.00264-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022] Open
Abstract
Ralstonia solanacearum, which causes bacterial wilt disease of many crops, requires denitrifying respiration to survive in its plant host. In the hypoxic environment of plant xylem vessels, this pathogen confronts toxic oxidative radicals like nitric oxide (NO), which is generated by both bacterial denitrification and host defenses. R. solanacearum has multiple distinct mechanisms that could mitigate this stress, including putative NO-binding protein (NorA), nitric oxide reductase (NorB), and flavohaemoglobin (HmpX). During denitrification and tomato pathogenesis and in response to exogenous NO, R. solanacearum upregulated norA, norB, and hmpX. Single mutants lacking ΔnorB, ΔnorA, or ΔhmpX increased expression of many iron and sulfur metabolism genes, suggesting that the loss of even one NO detoxification system demands metabolic compensation. Single mutants suffered only moderate fitness reductions in host plants, possibly because they upregulated their remaining protective genes. However, ΔnorA/norB, ΔnorB/hmpX, and ΔnorA/hmpX double mutants grew poorly in denitrifying culture and in planta. It is likely that the loss of norA, norB, and hmpX is lethal, since the methods used to construct the double mutants could not generate a triple mutant. Functional aconitase activity assays showed that NorA, HmpX, and especially NorB are important for maintaining iron-sulfur cluster proteins. Additionally, plant defense genes were upregulated in tomatoes infected with the NO-overproducing ΔnorB mutant, suggesting that bacterial detoxification of NO reduces the ability of the plant host to perceive the presence of the pathogen. Thus, R. solanacearum's three NO detoxification systems each contribute to and are collectively essential for overcoming metabolic nitrosative stress during denitrification, for virulence and growth in the tomato, and for evading host plant defenses. IMPORTANCE The soilborne plant pathogen Ralstonia solanacearum (Rs) causes bacterial wilt, a serious and widespread threat to global food security. Rs is metabolically adapted to low-oxygen conditions, using denitrifying respiration to survive in the host and cause disease. However, bacterial denitrification and host defenses generate nitric oxide (NO), which is toxic and also alters signaling pathways in both the pathogen and its plant hosts. Rs mitigates NO with a trio of mechanistically distinct proteins: NO-reductase (NorB), predicted iron-binding (NorA), and oxidoreductase (HmpX). This redundancy, together with analysis of mutants and in-planta dual transcriptomes, indicates that maintaining low NO levels is integral to Rs fitness in tomatoes (because NO damages iron-cluster proteins) and to evading host recognition (because bacterially produced NO can trigger plant defenses).
Collapse
Affiliation(s)
- Alicia N. Truchon
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Connor G. Hendrich
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Adam F. Bigott
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Beth L. Dalsing
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
21
|
Chaiyarat A, Saejung C. Photosynthetic bacteria with iron oxide nanoparticles as catalyst for cooking oil removal and valuable products recovery with heavy metal co-contamination. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 140:81-89. [PMID: 35074534 DOI: 10.1016/j.wasman.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/18/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Waste cooking oil discharge causes environmental pollution in receiving waters, particularly when associated with heavy metals that can lead to formation of hazardous organometallic compounds. This study combined iron oxide nanomaterial and the anoxygenic photosynthetic bacterium Rhodopseudomonas faecalis PA2 for removal of cooking oil in the presence of heavy metals. R. faecalis PA2, with known capability to generate beneficial substances from several wastes, was capable of cooking oil removal with production of valuable products. Oil removal, biomass, protein, and carotenoid production were 82.38%, 1.48 g/L, 1,600.19 mg/L, and 1,046.33 mg/L, respectively, under optimal conditions (cooking oil as carbon source and 30% inoculum density). Iron (Fe) stimulates growth of R. faecalis; in this study, Fe3O4 nanoparticles were synthesized and used as a catalyst to facilitate interaction and high reactivity between Fe and R. faecalis PA2. Size measurement by transmission electron microscopy (17.44 nm), X-ray diffraction peaks, and magnetic susceptibility confirmed that the synthesized nanoparticles were magnetite Fe3O4. Biomass, protein, and carotenoid production of the Fe3O4 supplemented experiment increased by 61.56%, 70.78%, and 57.2%, respectively, when compared with the control. When different concentrations of heavy metals (Pb, Ni, Co, and Zn) were supplemented in the media containing cooking oil, Fe3O4 addition increased heavy metal tolerance, improved bacterial growth, and enhanced valuable products when compared with the non-supplemented group. This study reports the positive impact of nanoparticle application as a catalyst for valorization of cooking oil waste with heavy metal co-contamination by the photosynthetic bacterium R. faecalis PA2.
Collapse
Affiliation(s)
- Anuwat Chaiyarat
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chewapat Saejung
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Research Center for Environmental and Hazardous Substance Management (EHSM), Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
22
|
Spectroscopic and functional characterization of the [2Fe-2S] scaffold protein Nfu from Synechocystis PCC6803. Biochimie 2022; 192:51-62. [PMID: 34582998 PMCID: PMC8724361 DOI: 10.1016/j.biochi.2021.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/03/2023]
Abstract
Iron-sulfur clusters are ubiquitous cofactors required for various essential metabolic processes. Conservation of proteins required for their biosynthesis and trafficking allows for simple bacteria to be used as models to aid in exploring these complex pathways in higher organisms. Cyanobacteria are among the most investigated organisms for these processes, as they are unicellular and can survive under photoautotrophic and heterotrophic conditions. Herein, we report the potential role of Synechocystis PCC6803 NifU (now named SyNfu) as the principal scaffold protein required for iron-sulfur cluster biosynthesis in that organism. SyNfu is a well-folded protein with distinct secondary structural elements, as evidenced by circular dichroism and a well-dispersed pattern of 1H-15N HSQC NMR peaks, and readily reconstitutes as a [2Fe-2S] dimeric protein complex. Cluster exchange experiments show that glutathione can extract the cluster from holo-SyNfu, but the transfer is unidirectional. We also confirm the ability of SyNfu to transfer cluster to both human ferredoxin 1 and ferredoxin 2, while also demonstrating the capacity to deliver cluster to both monothiol glutaredoxin 3 and dithiol glutaredoxin 2. This evidence supports the hypothesis that SyNfu indeed serves as the main scaffold protein in Synechocystis, as it has been shown to be the only protein required for viability in the absence of photoautotrophic conditions. Similar to other NFU-type cluster donors and other scaffold and carrier proteins, such as ISCU, SyNfu is shown by DSC to be structurally less stable than regular protein donors, while retaining a relatively well-defined tertiary structure as represented by 1H-15N HSQC NMR experiments.
Collapse
|
23
|
Riediger M, Hernández-Prieto MA, Song K, Hess WR, Futschik ME. Genome-wide identification and characterization of Fur-binding sites in the cyanobacteria Synechocystis sp. PCC 6803 and PCC 6714. DNA Res 2021; 28:6407143. [PMID: 34672328 PMCID: PMC8634477 DOI: 10.1093/dnares/dsab023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/16/2021] [Indexed: 11/16/2022] Open
Abstract
The Ferric uptake regulator (Fur) is crucial to both pathogenic and non-pathogenic bacteria for the maintenance of iron homeostasis as well as the defence against reactive oxygen species. Based on datasets from the genome-wide mapping of transcriptional start sites and transcriptome data, we identified a high confidence regulon controlled by Fur for the model cyanobacterium Synechocystis sp. PCC 6803 and its close relative, strain 6714, based on the conserved strong iron starvation response and Fur-binding site occurrence. This regulon comprises 33 protein-coding genes and the sRNA IsaR1 that are under the control of 16 or 14 individual promoters in strains 6803 and 6714, respectively. The associated gene functions are mostly restricted to transporters and enzymes involved in the uptake and storage of iron ions, with few exceptions or unknown functional relevance. Within the isiABC operon, we identified a previously neglected gene encoding a small cysteine-rich protein, which we suggest calling, IsiE. The regulation of iron uptake, storage, and utilization ultimately results from the interplay between the Fur regulon, several other transcription factors, the FtsH3 protease, and the sRNA IsaR1.
Collapse
Affiliation(s)
- Matthias Riediger
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Miguel A Hernández-Prieto
- ARC Centre of Excellence for Translational Photosynthesis & School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Kuo Song
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Wolfgang R Hess
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Matthias E Futschik
- SysBioLab, Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139 Faro, Portugal.,MRC London Institute of Medical Sciences (LMS), Faculty of Medicine, Imperial College London, London W12 0NN, UK
| |
Collapse
|
24
|
Biochemical elucidation of citrate accumulation in Synechocystis sp. PCC 6803 via kinetic analysis of aconitase. Sci Rep 2021; 11:17131. [PMID: 34429477 PMCID: PMC8385029 DOI: 10.1038/s41598-021-96432-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/04/2021] [Indexed: 12/03/2022] Open
Abstract
A unicellular cyanobacterium Synechocystis sp. PCC 6803 possesses a unique tricarboxylic acid (TCA) cycle, wherein the intracellular citrate levels are approximately 1.5–10 times higher than the levels of other TCA cycle metabolite. Aconitase catalyses the reversible isomerisation of citrate and isocitrate. Herein, we biochemically analysed Synechocystis sp. PCC 6803 aconitase (SyAcnB), using citrate and isocitrate as the substrates. We observed that the activity of SyAcnB for citrate was highest at pH 7.7 and 45 °C and for isocitrate at pH 8.0 and 53 °C. The Km value of SyAcnB for citrate was higher than that for isocitrate under the same conditions. The Km value of SyAcnB for isocitrate was 3.6-fold higher than the reported Km values of isocitrate dehydrogenase for isocitrate. Therefore, we suggest that citrate accumulation depends on the enzyme kinetics of SyAcnB, and 2-oxoglutarate production depends on the chemical equilibrium in this cyanobacterium.
Collapse
|
25
|
Gastoldi L, Ward LM, Nakagawa M, Giordano M, McGlynn SE. Changes in ATP Sulfurylase Activity in Response to Altered Cyanobacteria Growth Conditions. Microbes Environ 2021; 36. [PMID: 34039816 PMCID: PMC8209453 DOI: 10.1264/jsme2.me20145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We investigated variations in cell growth and ATP Sulfurylase (ATPS) activity when two cyanobacterial strains-Synechocystis sp. PCC6803 and Synechococcus sp. WH7803-were grown in conventional media, and media with low ammonium, low sulfate and a high CO2/low O2 atmosphere. In both organisms, a transition and adaptation to the reconstructed environmental media resulted in a decrease in ATPS activity. This variation appears to be decoupled from growth rate, suggesting the enzyme is not rate-limiting in S assimilation and raising questions about the role of ATPS redox regulation in cell physiology and throughout Earth history.
Collapse
Affiliation(s)
- Lucia Gastoldi
- Laboratory of Algal and Plant Physiology, Department of Life and Environmental Sciences (DISVA), Università Politecnica delle Marche (UNIVPM)
| | - Lewis M Ward
- Department of Earth and Planetary Sciences, Harvard University.,Earth-Life Science Institute, Tokyo Institute of Technology
| | | | - Mario Giordano
- Laboratory of Algal and Plant Physiology, Department of Life and Environmental Sciences (DISVA), Università Politecnica delle Marche (UNIVPM)
| | | |
Collapse
|
26
|
Ellepola K, Huang X, Riley RP, Bitoun JP, Wen ZT. Streptococcus mutans Lacking sufCDSUB Is Viable, but Displays Major Defects in Growth, Stress Tolerance Responses and Biofilm Formation. Front Microbiol 2021; 12:671533. [PMID: 34248879 PMCID: PMC8264796 DOI: 10.3389/fmicb.2021.671533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
Streptococcus mutans appears to possess a sole iron-sulfur (Fe-S) cluster biosynthesis system encoded by the sufCDSUB cluster. This study was designed to examine the role of sufCDSUB in S. mutans physiology. Allelic exchange mutants deficient of the whole sufCDSUB cluster and in individual genes were constructed. Compared to the wild-type, UA159, the sufCDSUB-deficient mutant, Δsuf::kanr, had a significantly reduced growth rate, especially in medium with the absence of isoleucine, leucine or glutamate/glutamine, amino acids that require Fe-S clusters for biosynthesis and when grown with medium adjusted to pH 6.0 and under oxidative and nitrosative stress conditions. Relative to UA159, Δsuf::kanr had major defects in stress tolerance responses with reduced survival rate of > 2-logs following incubation at low pH environment or after hydrogen peroxide challenge. When compared to UA159, Δsuf::kanr tended to form aggregates in broth medium and accumulated significantly less biofilm. As shown by luciferase reporter fusion assays, the expression of sufCDSUB was elevated by > 5.4-fold when the reporter strain was transferred from iron sufficient medium to iron-limiting medium. Oxidative stress induced by methyl viologen increased sufCDSUB expression by > 2-fold, and incubation in a low pH environment led to reduction of sufCDSUB expression by > 7-fold. These results suggest that lacking of SufCDSUB in S. mutans causes major defects in various cellular processes of the deficient mutant, including growth, stress tolerance responses and biofilm formation. In addition, the viability of the deficient mutant also suggests that SUF, the sole Fe-S cluster machinery identified is non-essential in S. mutans, which is not known in any other bacterium lacking the NIF and/or ISC system. However, how the bacterium compensates the Fe-S deficiency and if any novel Fe-S assembly systems exist in this bacterium await further investigation.
Collapse
Affiliation(s)
- Kassapa Ellepola
- Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Xiaochang Huang
- Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Ryan P Riley
- Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Jacob P Bitoun
- Department of Microbiology, Tulane University, New Orleans, LA, United States
| | - Zezhang Tom Wen
- Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
27
|
Occurrence, Evolution and Specificities of Iron-Sulfur Proteins and Maturation Factors in Chloroplasts from Algae. Int J Mol Sci 2021; 22:ijms22063175. [PMID: 33804694 PMCID: PMC8003979 DOI: 10.3390/ijms22063175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 01/08/2023] Open
Abstract
Iron-containing proteins, including iron-sulfur (Fe-S) proteins, are essential for numerous electron transfer and metabolic reactions. They are present in most subcellular compartments. In plastids, in addition to sustaining the linear and cyclic photosynthetic electron transfer chains, Fe-S proteins participate in carbon, nitrogen, and sulfur assimilation, tetrapyrrole and isoprenoid metabolism, and lipoic acid and thiamine synthesis. The synthesis of Fe-S clusters, their trafficking, and their insertion into chloroplastic proteins necessitate the so-called sulfur mobilization (SUF) protein machinery. In the first part, we describe the molecular mechanisms that allow Fe-S cluster synthesis and insertion into acceptor proteins by the SUF machinery and analyze the occurrence of the SUF components in microalgae, focusing in particular on the green alga Chlamydomonas reinhardtii. In the second part, we describe chloroplastic Fe-S protein-dependent pathways that are specific to Chlamydomonas or for which Chlamydomonas presents specificities compared to terrestrial plants, putting notable emphasis on the contribution of Fe-S proteins to chlorophyll synthesis in the dark and to the fermentative metabolism. The occurrence and evolutionary conservation of these enzymes and pathways have been analyzed in all supergroups of microalgae performing oxygenic photosynthesis.
Collapse
|
28
|
The ATP-Binding Cassette (ABC) Transport Systems in Mycobacterium tuberculosis: Structure, Function, and Possible Targets for Therapeutics. BIOLOGY 2020; 9:biology9120443. [PMID: 33291531 PMCID: PMC7761784 DOI: 10.3390/biology9120443] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 12/22/2022]
Abstract
Simple Summary Mycobacterium tuberculosis is a bacterium of great medical importance because it causes tuberculosis, a disease that affects millions of people worldwide. Two important features are related to this bacterium: its ability to infect and survive inside the host, minimizing the immune response, and the burden of clinical isolates that are highly resistant to antibiotics treatment. These two phenomena are directly affected by cell envelope proteins, such as proteins from the ATP-Binding Cassette (ABC transporters) superfamily. In this review, we have compiled information on all the M. tuberculosis ABC transporters described so far, both from a functional and structural point of view, and show their relevance for the bacillus and the potential targets for studies aiming to control the microorganism and structural features. Abstract Mycobacterium tuberculosis is the etiological agent of tuberculosis (TB), a disease that affects millions of people in the world and that is associated with several human diseases. The bacillus is highly adapted to infect and survive inside the host, mainly because of its cellular envelope plasticity, which can be modulated to adapt to an unfriendly host environment; to manipulate the host immune response; and to resist therapeutic treatment, increasing in this way the drug resistance of TB. The superfamily of ATP-Binding Cassette (ABC) transporters are integral membrane proteins that include both importers and exporters. Both types share a similar structural organization, yet only importers have a periplasmic substrate-binding domain, which is essential for substrate uptake and transport. ABC transporter-type importers play an important role in the bacillus physiology through the transport of several substrates that will interfere with nutrition, pathogenesis, and virulence. Equally relevant, exporters have been involved in cell detoxification, nutrient recycling, and antibiotics and drug efflux, largely affecting the survival and development of multiple drug-resistant strains. Here, we review known ABC transporters from M. tuberculosis, with particular focus on the diversity of their structural features and relevance in infection and drug resistance.
Collapse
|
29
|
Braymer JJ, Freibert SA, Rakwalska-Bange M, Lill R. Mechanistic concepts of iron-sulfur protein biogenesis in Biology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118863. [PMID: 33007329 DOI: 10.1016/j.bbamcr.2020.118863] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 02/08/2023]
Abstract
Iron-sulfur (Fe/S) proteins are present in virtually all living organisms and are involved in numerous cellular processes such as respiration, photosynthesis, metabolic reactions, nitrogen fixation, radical biochemistry, protein synthesis, antiviral defense, and genome maintenance. Their versatile functions may go back to the proposed role of their Fe/S cofactors in the origin of life as efficient catalysts and electron carriers. More than two decades ago, it was discovered that the in vivo synthesis of cellular Fe/S clusters and their integration into polypeptide chains requires assistance by complex proteinaceous machineries, despite the fact that Fe/S proteins can be assembled chemically in vitro. In prokaryotes, three Fe/S protein biogenesis systems are known; ISC, SUF, and the more specialized NIF. The former two systems have been transferred by endosymbiosis from bacteria to mitochondria and plastids, respectively, of eukaryotes. In their cytosol, eukaryotes use the CIA machinery for the biogenesis of cytosolic and nuclear Fe/S proteins. Despite the structural diversity of the protein constituents of these four machineries, general mechanistic concepts underlie the complex process of Fe/S protein biogenesis. This review provides a comprehensive and comparative overview of the various known biogenesis systems in Biology, and summarizes their common or diverging molecular mechanisms, thereby illustrating both the conservation and diverse adaptions of these four machineries during evolution and under different lifestyles. Knowledge of these fundamental biochemical pathways is not only of basic scientific interest, but is important for the understanding of human 'Fe/S diseases' and can be used in biotechnology.
Collapse
Affiliation(s)
- Joseph J Braymer
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany
| | - Sven A Freibert
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany
| | | | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany; SYNMIKRO Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35043 Marburg, Germany.
| |
Collapse
|