1
|
Ray AM, Tehel A, Rasgon JL, Paxton RJ, Grozinger CM. The intensity of the transcriptional response varies across infection with distinct viral strains in an insect host. BMC Genomics 2025; 26:175. [PMID: 39984832 PMCID: PMC11846320 DOI: 10.1186/s12864-025-11365-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 02/14/2025] [Indexed: 02/23/2025] Open
Abstract
Organisms respond to infectious agents through diverse immune strategies, and may need to cater a specific response to distinct pathogen challenges, such as various strains of a virus, to maximize fitness. Deformed wing virus (DWV) is one of the most damaging viruses of honey bees (Apis mellifera) across the globe, with variant DWV-B currently expanding at the expense of variant DWV-A. While previous research has characterized general host transcriptomic responses to viral exposure, host responses to different DWV strains have not been fully explored. Here, we performed experimental infections with the two dominant strains of DWV, A and B, as well as a mixed infection, and conducted transcriptomic analyses to compare differences in host molecular response to infection. We confirmed canonical anti-viral response to DWV infection, including upregulation of Toll pathway genes and the antimicrobial peptides abaecin and hymenoptaecin. Furthermore, our results suggest a potential role of aerobic glycolysis during viral infection in honey bees. DWV-A and mixed infections were associated with differential expression of a much larger number of host genes than infection with DWV-B. That DWV-B potentially elicits a reduced host immune response may provide a mechanistic explanation for its higher virulence and global emergence. Overall, this study provides the first evidence for strain-specific immune responses to DWV infection, and integrates these findings into the broader domain of insect immunity and host-pathogen dynamics.
Collapse
Affiliation(s)
- Allyson M Ray
- Department of Entomology, Pennsylvania State University, University Park, PA, USA.
| | - Anja Tehel
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Jason L Rasgon
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | - Robert J Paxton
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | |
Collapse
|
2
|
Norton AM, Buchmann G, Ashe A, Watson OT, Beekman M, Remnant EJ. Deformed wing virus genotypes A and B do not elicit immunologically different responses in naïve honey bee hosts. INSECT MOLECULAR BIOLOGY 2025; 34:33-51. [PMID: 39072811 PMCID: PMC11705515 DOI: 10.1111/imb.12948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
Iflavirus aladeformis (Picornavirales: Iflaviridae), commonly known as deformed wing virus(DWV), in association with Varroa destructor Anderson and Trueman (Mesostigmata: Varroidae), is a leading factor associated with honey bee (Apis mellifera L. [Hymenoptera: Apidae]) deaths. The virus and mite have a near global distribution, making it difficult to separate the effect of one from the other. The prevalence of two main DWV genotypes (DWV-A and DWV-B) has changed over time, leading to the possibility that the two strains elicit a different immune response by the host. Here, we use a honey bee population naïve to both the mite and the virus to investigate if honey bees show a different immunological response to DWV genotypes. We examined the expression of 19 immune genes by reverse transcription quantitative PCR (RT-qPCR) and analysed small RNA after experimental injection with DWV-A and DWV-B. We found no evidence that DWV-A and DWV-B elicit different immune responses in honey bees. RNA interference genes were up-regulated during DWV infection, and small interfering RNA (siRNA) responses were proportional to viral loads yet did not inhibit DWV accumulation. The siRNA response towards DWV was weaker than the response to another honey bee pathogen, Triatovirus nigereginacellulae (Picornavirales: Dicistroviridae; black queen cell virus), suggesting that DWV is comparatively better at evading host antiviral defences. There was no evidence for the production of virus-derived Piwi-interacting RNAs (piRNAs) in response to DWV. In contrast to previous studies, and in the absence of V. destructor, we found no evidence that DWV has an immunosuppressive effect. Overall, our results advance our understanding of the immunological effect that DWV in isolation elicits in honey bees.
Collapse
Affiliation(s)
- Amanda M. Norton
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- Present address:
Laboratories and Technical Support, AcademyJames Cook UniversityTownsvilleQueenslandAustralia
| | - Gabriele Buchmann
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- Present address:
Institute of Plant Genetics, Heinrich‐Heine UniversityDuesseldorfGermany
| | - Alyson Ashe
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Owen T. Watson
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Madeleine Beekman
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Emily J. Remnant
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
3
|
Chapman A, McAfee A, Tarpy DR, Fine J, Rempel Z, Peters K, Currie R, Foster LJ. Common viral infections inhibit egg laying in honey bee queens and are linked to premature supersedure. Sci Rep 2024; 14:17285. [PMID: 39068210 PMCID: PMC11283550 DOI: 10.1038/s41598-024-66286-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
With their long lives and extreme reproductive output, social insect queens have escaped the classic trade-off between fecundity and lifespan, but evidence for a trade-off between fecundity and immunity has been inconclusive. This is in part because pathogenic effects are seldom decoupled from effects of immune induction. We conducted parallel, blind virus infection experiments in the laboratory and in the field to interrogate the idea of a reproductive immunity trade-off in honey bee (Apis mellifera) queens and to better understand how these ubiquitous stressors affect honey bee queen health. We found that queens injected with infectious virus had smaller ovaries and were less likely to recommence egg-laying than controls, while queens injected with UV-inactivated virus displayed an intermediate phenotype. In the field, heavily infected queens had smaller ovaries and infection was a meaningful predictor of whether supersedure cells were observed in the colony. Immune responses in queens receiving live virus were similar to queens receiving inactivated virus, and several of the same immune proteins were negatively associated with ovary mass in the field. This work supports the hypothesized relationship between virus infection and symptoms associated with queen failure and suggests that a reproductive-immunity trade-off is partially, but not wholly responsible for these effects.
Collapse
Affiliation(s)
- Abigail Chapman
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, Canada.
| | - Alison McAfee
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - David R Tarpy
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Julia Fine
- Invasive Species and Pollinator Health Research Unit, USDA-ARS, Davis, CA, USA
| | - Zoe Rempel
- Department of Entomology, University of Manitoba, Winnipeg, MB, Canada
| | - Kira Peters
- Department of Entomology, University of Manitoba, Winnipeg, MB, Canada
| | - Rob Currie
- Department of Entomology, University of Manitoba, Winnipeg, MB, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| |
Collapse
|
4
|
Lopes AR, Low M, Martín-Hernández R, Pinto MA, De Miranda JR. Origins, diversity, and adaptive evolution of DWV in the honey bees of the Azores: the impact of the invasive mite Varroa destructor. Virus Evol 2024; 10:veae053. [PMID: 39119136 PMCID: PMC11306321 DOI: 10.1093/ve/veae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Deformed wing virus (DWV) is a honey bee virus, whose emergence from relative obscurity is driven by the recent host-switch, adaptation, and global dispersal of the ectoparasitic mite Varroa destructor (a highly efficient vector of DWV) to reproduction on honey bees (Apis mellifera). Our study examines how varroa affects the continuing evolution of DWV, using the Azores archipelago, where varroa is present on only three out of the eight Islands, as a natural experimental system for comparing different evolutionary conditions and trajectories. We combined qPCR of 494 honey bee colonies sampled across the archipelago with amplicon deep sequencing to reveal how the DWV genetic landscape is altered by varroa. Two of the varroa-free Islands were also free of DWV, while a further two Islands were intriguingly dominated by the rare DWV-C major variant. The other four Islands, including the three varroa-infested Islands, were dominated by the common DWV-A and DWV-B variants. The varroa-infested Islands had, as expected, an elevated DWV prevalence relative to the uninfested Islands, but not elevated DWV loads, due the relatively high prevalence and loads of DWV-C on the varroa-free Islands. This establishes the Azores as a stable refuge for DWV-C and provides the most convincing evidence to date that at least some major strains of DWV may be capable of not just surviving, but actually thriving in honey bees in the absence of varroa-mediated transmission. We did not detect any change in DWV genetic diversity associated with island varroa status but did find a positive association of DWV diversity with virus load, irrespective of island varroa status.
Collapse
Affiliation(s)
- Ana R Lopes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança 5300-253, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança 5300-253, Portugal
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, Porto 4050-313, Portugal
| | - Matthew Low
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 756-51, Sweden
| | - Raquel Martín-Hernández
- Centro de Investigación Apícola y Agroambiental (CIAPA), IRIAF. Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Marchamalo 19180, Spain
- Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-FEDER), Fundación Parque Científico y Tecnológico de Castilla—La Mancha, Albacete 02006, Spain
| | - M Alice Pinto
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança 5300-253, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança 5300-253, Portugal
| | - Joachim R De Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 756-51, Sweden
| |
Collapse
|
5
|
Barth S, Affeldt S, Blaurock C, Lobedank I, Netsch A, Seitz K, Rümenapf T, Lamp B. Characterization of a Molecular Clone of Deformed Wing Virus B. Viruses 2024; 16:980. [PMID: 38932270 PMCID: PMC11209315 DOI: 10.3390/v16060980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Honey bees (Apis mellifera) play a crucial role in agriculture through their pollination activities. However, they have faced significant health challenges over the past decades that can limit colony performance and even lead to collapse. A primary culprit is the parasitic mite Varroa destructor, known for transmitting harmful bee viruses. Among these viruses is deformed wing virus (DWV), which impacts bee pupae during their development, resulting in either pupal demise or in the emergence of crippled adult bees. In this study, we focused on DWV master variant B. DWV-B prevalence has risen sharply in recent decades and appears to be outcompeting variant A of DWV. We generated a molecular clone of a typical DWV-B strain to compare it with our established DWV-A clone, examining RNA replication, protein expression, and virulence. Initially, we analyzed the genome using RACE-PCR and RT-PCR techniques. Subsequently, we conducted full-genome RT-PCR and inserted the complete viral cDNA into a bacterial plasmid backbone. Phylogenetic comparisons with available full-length sequences were performed, followed by functional analyses using a live bee pupae model. Upon the transfection of in vitro-transcribed RNA, bee pupae exhibited symptoms of DWV infection, with detectable viral protein expression and stable RNA replication observed in subsequent virus passages. The DWV-B clone displayed a lower virulence compared to the DWV-A clone after the transfection of synthetic RNA, as evidenced by a reduced pupal mortality rate of only 20% compared to 80% in the case of DWV-A and a lack of malformations in 50% of the emerging bees. Comparable results were observed in experiments with low infection doses of the passaged virus clones. In these tests, 90% of bees infected with DWV-B showed no clinical symptoms, while 100% of pupae infected with DWV-A died. However, at high infection doses, both DWV-A and DWV-B caused mortality rates exceeding 90%. Taken together, we have generated an authentic virus clone of DWV-B and characterized it in animal experiments.
Collapse
Affiliation(s)
- Sandra Barth
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (S.B.); (S.A.); (C.B.); (I.L.); (A.N.)
| | - Sebastian Affeldt
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (S.B.); (S.A.); (C.B.); (I.L.); (A.N.)
| | - Claudia Blaurock
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (S.B.); (S.A.); (C.B.); (I.L.); (A.N.)
| | - Irmin Lobedank
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (S.B.); (S.A.); (C.B.); (I.L.); (A.N.)
| | - Anette Netsch
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (S.B.); (S.A.); (C.B.); (I.L.); (A.N.)
| | - Kerstin Seitz
- Institute of Virology, Department for Pathobiology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria; (K.S.); (T.R.)
| | - Till Rümenapf
- Institute of Virology, Department for Pathobiology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria; (K.S.); (T.R.)
| | - Benjamin Lamp
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (S.B.); (S.A.); (C.B.); (I.L.); (A.N.)
| |
Collapse
|
6
|
Rossi F, Del Matto I, Ricchiuti L, Marino L. Selection and Multiplexing of Reverse Transcription-Quantitative PCR Tests Targeting Relevant Honeybee Viral Pathogens. Microorganisms 2024; 12:1105. [PMID: 38930487 PMCID: PMC11205706 DOI: 10.3390/microorganisms12061105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Verifying the inclusivity of molecular detection methods gives indications about the reliability of viral infection diagnosis because of the tendency of viral pathogens to undergo sequence variation. This study was aimed at selecting inclusive probes based on reverse transcription-quantitative PCR (RT-qPCR) assays for the diagnosis of the most widespread and detrimental viruses infecting honeybees, namely the acute bee paralysis virus (ABPV), the black queen cell virus (BQCV), the chronic paralysis bee virus (CBPV), the deformed wing virus variants A (DWVA) and B (DWVB), and the sacbrood virus (SBV). Therefore, previously described detection methods were re-evaluated in silico for their specificity and inclusivity. Based on this evaluation, selected methods were modified, or new ones were designed and tested in duplex RT-qPCR reactions. The limits of detection (LODs), effect of multiplexing on sensitivity and the viral RNA quantification potential in bees and hive debris were assessed. This study made available diagnostic assays able to detect an increased number of virus variants compared with previously described tests and two viral pathogens in a single PCR reaction.
Collapse
Affiliation(s)
- Franca Rossi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Campo Boario, 64100 Teramo, Italy; (I.D.M.); (L.R.); (L.M.)
| | | | | | | |
Collapse
|
7
|
Doublet V, Oddie MAY, Mondet F, Forsgren E, Dahle B, Furuseth-Hansen E, Williams GR, De Smet L, Natsopoulou ME, Murray TE, Semberg E, Yañez O, de Graaf DC, Le Conte Y, Neumann P, Rimstad E, Paxton RJ, de Miranda JR. Shift in virus composition in honeybees ( Apis mellifera) following worldwide invasion by the parasitic mite and virus vector Varroa destructor. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231529. [PMID: 38204792 PMCID: PMC10776227 DOI: 10.1098/rsos.231529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
Invasive vectors can induce dramatic changes in disease epidemiology. While viral emergence following geographical range expansion of a vector is well known, the influence a vector can have at the level of the host's pathobiome is less well understood. Taking advantage of the formerly heterogeneous spatial distribution of the ectoparasitic mite Varroa destructor that acts as potent virus vector among honeybees Apis mellifera, we investigated the impact of its recent global spread on the viral community of honeybees in a retrospective study of historical samples. We hypothesized that the vector has had an effect on the epidemiology of several bee viruses, potentially altering their transmissibility and/or virulence, and consequently their prevalence, abundance, or both. To test this, we quantified the prevalence and loads of 14 viruses from honeybee samples collected in mite-free and mite-infested populations in four independent geographical regions. The presence of the mite dramatically increased the prevalence and load of deformed wing virus, a cause of unsustainably high colony losses. In addition, several other viruses became more prevalent or were found at higher load in mite-infested areas, including viruses not known to be actively varroa-transmitted, but which may increase opportunistically in varroa-parasitized bees.
Collapse
Affiliation(s)
- Vincent Doublet
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale) 061200, Germany
| | - Melissa A. Y. Oddie
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
- Norwegian Beekeepers Association, Kløfta 2040, Norway
| | - Fanny Mondet
- INRAE, UR 406 Abeilles et Environnement, Avignon 84914, France
| | - Eva Forsgren
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| | - Bjørn Dahle
- Norwegian Beekeepers Association, Kløfta 2040, Norway
| | - Elisabeth Furuseth-Hansen
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Ås 1432, Norway
| | - Geoffrey R. Williams
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern 3097, Switzerland
- Entomology & Plant Pathology, Auburn University, Auburn, AL 36832, USA
| | - Lina De Smet
- Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
| | - Myrsini E. Natsopoulou
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale) 061200, Germany
| | - Tomás E. Murray
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale) 061200, Germany
| | - Emilia Semberg
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| | - Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern 3097, Switzerland
| | - Dirk C. de Graaf
- Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
| | - Yves Le Conte
- INRAE, UR 406 Abeilles et Environnement, Avignon 84914, France
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern 3097, Switzerland
| | - Espen Rimstad
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Ås 1432, Norway
| | - Robert J. Paxton
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale) 061200, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Germany
| | - Joachim R. de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| |
Collapse
|
8
|
Damayo JE, McKee RC, Buchmann G, Norton AM, Ashe A, Remnant EJ. Virus replication in the honey bee parasite, Varroa destructor. J Virol 2023; 97:e0114923. [PMID: 37966226 PMCID: PMC10746231 DOI: 10.1128/jvi.01149-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE The parasitic mite Varroa destructor is a significant driver of worldwide colony losses of our most important commercial pollinator, the Western honey bee Apis mellifera. Declines in honey bee health are frequently attributed to the viruses that mites vector to honey bees, yet whether mites passively transmit viruses as a mechanical vector or actively participate in viral amplification and facilitate replication of honey bee viruses is debated. Our work investigating the antiviral RNA interference response in V. destructor demonstrates that key viruses associated with honey bee declines actively replicate in mites, indicating that they are biological vectors, and the host range of bee-associated viruses extends to their parasites, which could impact virus evolution, pathogenicity, and spread.
Collapse
Affiliation(s)
- James E. Damayo
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Rebecca C. McKee
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Gabriele Buchmann
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- Institute of Plant Genetics, Heinrich-Heine University, Duesseldorf, Germany
| | - Amanda M. Norton
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- Academic Support Unit, Research and Advanced Instrumentation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Alyson Ashe
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Emily J. Remnant
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Ray AM, Gordon EC, Seeley TD, Rasgon JL, Grozinger CM. Signatures of adaptive decreased virulence of deformed wing virus in an isolated population of wild honeybees ( Apis mellifera). Proc Biol Sci 2023; 290:20231965. [PMID: 37876196 PMCID: PMC10598435 DOI: 10.1098/rspb.2023.1965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/28/2023] [Indexed: 10/26/2023] Open
Abstract
Understanding the ecological and evolutionary processes that drive host-pathogen interactions is critical for combating epidemics and conserving species. The Varroa destructor mite and deformed wing virus (DWV) are two synergistic threats to Western honeybee (Apis mellifera) populations across the globe. Distinct honeybee populations have been found to self-sustain despite Varroa infestations, including colonies within the Arnot Forest outside Ithaca, NY, USA. We hypothesized that in these bee populations, DWV has been selected to produce an avirulent infection phenotype, allowing for the persistence of both host and disease-causing agents. To investigate this, we assessed the titre of viruses in bees from the Arnot Forest and managed apiaries, and assessed genomic variation and virulence differences between DWV isolates. Across groups, we found viral abundance was similar, but DWV genotypes were distinct. We also found that infections with isolates from the Arnot Forest resulted in higher survival and lower rates of symptomatic deformed wings, compared to analogous isolates from managed colonies, providing preliminary evidence to support the hypothesis of adaptive decreased viral virulence. Overall, this multi-level investigation of virus genotype and phenotype indicates that host ecological context can be a significant driver of viral evolution and host-pathogen interactions in honeybees.
Collapse
Affiliation(s)
- Allyson M. Ray
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802-1503, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37240-0002, USA
| | - Emma C. Gordon
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802-1503, USA
| | - Thomas D. Seeley
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14850, USA
| | - Jason L. Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802-1503, USA
| | - Christina M. Grozinger
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802-1503, USA
| |
Collapse
|
10
|
Chantaphanwattana T, Shafiey H, Phokasem P, Disayathanoowat T, Paxton RJ. The presence of identical deformed wing virus sequence variants in co-occurring Apis species in Northern Thailand may represent a potential epidemiological threat to native honey bees of Southeast Asia. J Invertebr Pathol 2023; 200:107957. [PMID: 37364674 DOI: 10.1016/j.jip.2023.107957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Widespread native honey bee species in South and East Asia (Apis cerana, Apis dorsata and Apis florea) and the imported western honey bee (Apis mellifera) share habitats and potentially also share pathogens. Chief among the threats facing A. mellifera in Europe and North America is deformed wing virus (DWV), including its two principal genotypes: A and B (DWV-A and DWV-B respectively). Though DWV-A has been recorded in Asia's native Apis species, it is not known if DWV-B, or both DWV-A and DWV-B, are currently widespread in Asia and, if so, whether viral transmission is primarily intraspecific or interspecific. This study aims to fill these knowledge gaps by (i) determining the DWV genotype in four co-occurring Apis host species using qPCR and (ii) inferring viral transmission between them using nucleotide sequences of DWV from Apis host species collected at three independent localities in Northern Thailand. We found DWV-A and -B in all four Apis species, the exotic A. mellifera and the native A. cerana, A. dorsata and A. florea. That DWV-A sequences were identical across Apis species at the same locality, with a similar pattern for DWV-B sequences, suggests that DWV's epidemiology is largely driven by ongoing interspecific transmission (spillover) of DWV across co-occurring native and exotic Apis species. Both genotypes of DWV represent a serious threat to Asia's exotic and native honey bee species.
Collapse
Affiliation(s)
- Thunyarat Chantaphanwattana
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Hassan Shafiey
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle, (Saale), Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| | - Patcharin Phokasem
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Terd Disayathanoowat
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Research Center in Deep Technology Associated with Beekeeping and Bee Products for Sustainable Development Goals, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Robert J Paxton
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle, (Saale), Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany.
| |
Collapse
|
11
|
Woodford L, Steketee PC, Evans DJ. Doomed drones? Using passage experiments and mathematical modelling to determine Deformed wing virus population dynamics in male honeybees. Proc Biol Sci 2023; 290:20231010. [PMID: 37339741 PMCID: PMC10281807 DOI: 10.1098/rspb.2023.1010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/25/2023] [Indexed: 06/22/2023] Open
Abstract
Varroa destructor is an ectoparasitic mite of honeybees which vectors a range of pathogenic viruses, the most notable being Deformed wing virus (DWV). Mites parasitise bees during pupal development and male honeybees, drones, have a longer development cycle than female workers (24 versus 21 days), allow for more progeny mites to develop per foundress (1.6-2.5 compared to 0.7-1.45). How this longer exposure time influences evolution of the transmitted virus population is unknown. Using uniquely tagged viruses recovered from cDNA we investigated the replication, competition and morbidity of DWV genotypes in drones. Assays examining virus replication and morbidity revealed drones are highly susceptible to both predominant genotypes of DWV. In virus passage studies using an equimolar inocula of major DNA genotypes and their recombinants, the recombinant form dominated but did not reach 100% of the virus population within 10 passages. Using an in-silico model of the virus-mite-bee system we examined bottlenecks during virus acquisition by the mite and subsequent injection of viruses into the host, which may play a significant role in shaping virus diversity. This study furthers our understanding of the variables influencing DWV diversity changes and provides insight into areas of future research in the mite-virus-bee system.
Collapse
Affiliation(s)
- Luke Woodford
- Department of Biology, University of St. Andrews, Biomedical Sciences Research Complex, St. Andrews, None KY16 9ST, UK
| | - Pieter C. Steketee
- The Roslin Institute, Easter Bush Campus, Midlothian, Edinburgh, EH25 9RG, UK
| | - David J. Evans
- Department of Biology, University of St. Andrews, Biomedical Sciences Research Complex, St. Andrews, None KY16 9ST, UK
| |
Collapse
|
12
|
Durand T, Bonjour-Dalmon A, Dubois E. Viral Co-Infections and Antiviral Immunity in Honey Bees. Viruses 2023; 15:1217. [PMID: 37243302 PMCID: PMC10220773 DOI: 10.3390/v15051217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Over the past few decades, honey bees have been facing an increasing number of stressors. Beyond individual stress factors, the synergies between them have been identified as a key factor in the observed increase in colony mortality. However, these interactions are numerous and complex and call for further research. Here, in line with our need for a systemic understanding of the threats that they pose to bee health, we review the interactions between honey bee viruses. As viruses are obligate parasites, the interactions between them not only depend on the viruses themselves but also on the immune responses of honey bees. Thus, we first summarise our current knowledge of the antiviral immunity of honey bees. We then review the interactions between specific pathogenic viruses and their interactions with their host. Finally, we draw hypotheses from the current literature and suggest directions for future research.
Collapse
Affiliation(s)
- Tristan Durand
- National Research Institute for Agriculture Food and Environement, INRAE, UR 406 Abeilles et Environnement, Site Agroparc, 84914 Avignon, France;
- French Agency for Food, Environmental and Occupational Health Safety, ANSES, 06902 Sophia Antipolis, France
| | - Anne Bonjour-Dalmon
- National Research Institute for Agriculture Food and Environement, INRAE, UR 406 Abeilles et Environnement, Site Agroparc, 84914 Avignon, France;
| | - Eric Dubois
- French Agency for Food, Environmental and Occupational Health Safety, ANSES, 06902 Sophia Antipolis, France
| |
Collapse
|
13
|
Transmission of deformed wing virus between Varroa destructor foundresses, mite offspring and infested honey bees. Parasit Vectors 2022; 15:333. [PMID: 36151583 PMCID: PMC9502634 DOI: 10.1186/s13071-022-05463-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Background Varroa destructor is the major ectoparasite of the western honey bee (Apis mellifera). Through both its parasitic life-cycle and its role as a vector of viral pathogens, it can cause major damage to honey bee colonies. The deformed wing virus (DWV) is the most common virus transmitted by this ectoparasite, and the mite is correlated to increased viral prevalence and viral loads in infested colonies. DWV variants A and B (DWV-A and DWV-B, respectively) are the two major DWV variants, and they differ both in their virulence and transmission dynamics. Methods We studied the transmission of DWV between bees, parasitic mites and their offspring by quantifying DWV loads in bees and mites collected in in vitro and in situ environments. In vitro, we artificially transmitted DWV-A to mites and quantified both DWV-A and DWV-B in mites and bees. In situ, we measured the natural presence of DWV-B in bees, mites and mites’ offspring. Results Bee and mite viral loads were correlated, and mites carrying both variants were associated with higher mortality of the infected host. Mite infestation increased the DWV-B loads and decreased the DWV-A loads in our laboratory conditions. In situ, viral quantification in the mite offspring showed that, after an initially non-infected egg stage, the DWV-B loads were more closely correlated with the foundress (mother) mites than with the bee hosts. Conclusions The association between mites and DWV-B was highlighted in this study. The parasitic history of a mite directly impacts its DWV infection potential during the rest of its life-cycle (in terms of variant and viral loads). Regarding the mite’s progeny, we hypothesize that the route of contamination is likely through the feeding site rather than by vertical transmission, although further studies are needed to confirm this hypothesis. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05463-9.
Collapse
|
14
|
Paxton RJ, Schäfer MO, Nazzi F, Zanni V, Annoscia D, Marroni F, Bigot D, Laws-Quinn ER, Panziera D, Jenkins C, Shafiey H. Epidemiology of a major honey bee pathogen, deformed wing virus: potential worldwide replacement of genotype A by genotype B. Int J Parasitol Parasites Wildl 2022; 18:157-171. [PMID: 35592272 PMCID: PMC9112108 DOI: 10.1016/j.ijppaw.2022.04.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/16/2022] [Accepted: 04/29/2022] [Indexed: 01/10/2023]
Abstract
The western honey bee (Apis mellifera) is of major economic and ecological importance, with elevated rates of colony losses in temperate regions over the last two decades thought to be largely caused by the exotic ectoparasitic mite Varroa destructor and deformed wing virus (DWV), which the mite transmits. DWV currently exists as two main genotypes: the formerly widespread DWV-A and the more recently described and rapidly expanding DWV-B. It is an excellent system to understand viral evolution and the replacement of one viral variant by another. Here we synthesise published results on the distribution and prevalence of DWV-A and -B over the period 2008-2021 and present novel data for Germany, Italy and the UK to suggest that (i) DWV-B has rapidly expanded worldwide since its first description in 2004 and (ii) that it is potentially replacing DWV-A. Both genotypes are also found in wild bee species. Based on a simple mathematical model, we suggest that interference between viral genotypes when co-infecting the same host is key to understanding their epidemiology. We finally discuss the consequences of genotype replacement for beekeeping and for wild pollinator species.
Collapse
Affiliation(s)
- Robert J. Paxton
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
| | - Marc O. Schäfer
- Institute of Infectology Medicine, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Francesco Nazzi
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Virginia Zanni
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Desiderato Annoscia
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Fabio Marroni
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Diane Bigot
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Eoin R. Laws-Quinn
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Delphine Panziera
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Christina Jenkins
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Hassan Shafiey
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
| |
Collapse
|
15
|
Penn HJ, Simone-Finstrom MD, Chen Y, Healy KB. Honey Bee Genetic Stock Determines Deformed Wing Virus Symptom Severity but not Viral Load or Dissemination Following Pupal Exposure. Front Genet 2022; 13:909392. [PMID: 35719388 PMCID: PMC9204523 DOI: 10.3389/fgene.2022.909392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/22/2022] [Indexed: 12/15/2022] Open
Abstract
Honey bees exposed to Varroa mites incur substantial physical damage in addition to potential exposure to vectored viruses such as Deformed wing virus (DWV) that exists as three master variants (DWV-A, DWV-B, and DWV-C) and recombinants. Although mite-resistant bees have been primarily bred to mitigate the impacts of Varroa mites, mite resistance may be associated with increased tolerance or resistance to the vectored viruses. The goal of our study is to determine if five honey bee stocks (Carniolan, Italian, Pol-Line, Russian, and Saskatraz) differ in their resistance or tolerance to DWV based on prior breeding for mite resistance. We injected white-eyed pupae with a sublethal dose (105) of DWV or exposed them to mites and then evaluated DWV levels and dissemination and morphological symptoms upon adult emergence. While we found no evidence of DWV resistance across stocks (i.e., similar rates of viral replication and dissemination), we observed that some stocks exhibited reduced symptom severity suggestive of differential tolerance. However, DWV tolerance was not consistent across mite-resistant stocks as Russian bees were most tolerant, while Pol-Line exhibited the most severe symptoms. DWV variants A and B exhibited differential dissemination patterns that interacted significantly with the treatment group but not bee stock. Furthermore, elevated DWV-B levels reduced adult emergence time, while both DWV variants were associated with symptom likelihood and severity. These data indicate that the genetic differences underlying bee resistance to Varroa mites are not necessarily correlated with DWV tolerance and may interact differentially with DWV variants, highlighting the need for further work on mechanisms of tolerance and bee stock-specific physiological interactions with pathogen variants.
Collapse
Affiliation(s)
- Hannah J. Penn
- United States Department of Agriculture, Agricultural Research Service, Sugarcane Research Unit, Houma, LA, United States
| | - Michael D. Simone-Finstrom
- United States Department of Agriculture, Agricultural Research Service, Honey Bee Breeding, Genetics and Physiology Research Unit, Baton Rouge, LA, United States
| | - Yanping Chen
- United States Department of Agriculture, Agricultural Research Service, Bee Research Laboratory, Beltsville, MD, United States
| | - Kristen B. Healy
- Department of Entomology, Louisiana State University and AgCenter, Baton Rouge, LA, United States
| |
Collapse
|
16
|
Lester PJ, Felden A, Baty JW, Bulgarella M, Haywood J, Mortensen AN, Remnant EJ, Smeele ZE. Viral communities in the parasite Varroa destructor and in colonies of their honey bee host (Apis mellifera) in New Zealand. Sci Rep 2022; 12:8809. [PMID: 35614309 PMCID: PMC9133037 DOI: 10.1038/s41598-022-12888-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/11/2022] [Indexed: 11/11/2022] Open
Abstract
The parasitic mite Varroa destructor is a leading cause of mortality for Western honey bee (Apis mellifera) colonies around the globe. We sought to confirm the presence and likely introduction of only one V. destructor haplotype in New Zealand, and describe the viral community within both V. destructor mites and the bees that they parasitise. A 1232 bp fragment from mitochondrial gene regions suggests the likely introduction of only one V. destructor haplotype to New Zealand. Seventeen viruses were found in bees. The most prevalent and abundant was the Deformed wing virus A (DWV-A) strain, which explained 95.0% of the variation in the viral community of bees. Black queen cell virus, Sacbrood virus, and Varroa destructor virus 2 (VDV-2) played secondary roles. DWV-B and the Israeli acute paralysis virus appeared absent from New Zealand. Ten viruses were observed in V. destructor, with > 99.9% of viral reads from DWV-A and VDV-2. Substantially more variation in viral loads was observed in bees compared to mites. Where high levels of VDV-2 occurred in mites, reduced DWV-A occurred in both the mites and the bees co-occurring within the same hive. Where there were high loads of DWV-A in mites, there were typically high viral loads in bees.
Collapse
Affiliation(s)
- Philip J Lester
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand.
| | - Antoine Felden
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand
| | - James W Baty
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand
| | - Mariana Bulgarella
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand
| | - John Haywood
- School of Mathematics and Statistics, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand
| | - Ashley N Mortensen
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 3230, Waikato Mail Centre, Hamilton, 3240, New Zealand
| | - Emily J Remnant
- Behaviour, Ecology and Evolution Laboratory, School of Life and Environmental Sciences, University of Sydney, Science Road, Sydney, NSW, 2006, Australia
| | - Zoe E Smeele
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand
| |
Collapse
|
17
|
The Virome of Healthy Honey Bee Colonies: Ubiquitous Occurrence of Known and New Viruses in Bee Populations. mSystems 2022; 7:e0007222. [PMID: 35532210 PMCID: PMC9239248 DOI: 10.1128/msystems.00072-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Western honey bee,
Apis mellifera
, is a vital part of our ecosystem as well as cultural heritage. Annual colony losses endanger beekeeping.
Collapse
|
18
|
Piot N, Smagghe G. Critical View on the Importance of Host Defense Strategies on Virus Distribution of Bee Viruses: What Can We Learn from SARS-CoV-2 Variants? Viruses 2022; 14:503. [PMID: 35336909 PMCID: PMC8951442 DOI: 10.3390/v14030503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 02/05/2023] Open
Abstract
Bees, both wild and domesticated ones, are hosts to a plethora of viruses, with most of them infecting a wide range of bee species and genera. Although viral discovery and research on bee viruses date back over 50 years, the last decade is marked by a surge of new studies, new virus discoveries, and reports on viral transmission in and between bee species. This steep increase in research on bee viruses was mainly initiated by the global reports on honeybee colony losses and the worldwide wild bee decline, where viruses are regarded as one of the main drivers. While the knowledge gained on bee viruses has significantly progressed in a short amount of time, we believe that integration of host defense strategies and their effect on viral dynamics in the multi-host viral landscape are important aspects that are currently still missing. With the large epidemiological dataset generated over the last two years on the SARS-CoV-2 pandemic, the role of these defense mechanisms in shaping viral dynamics has become eminent. Integration of these dynamics in a multi-host system would not only greatly aid the understanding of viral dynamics as a driver of wild bee decline, but we believe bee pollinators and their viruses provide an ideal system to study the multi-host viruses and their epidemiology.
Collapse
Affiliation(s)
- Niels Piot
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
19
|
Lang S, Simone-Finstrom M, Healy K. Context-Dependent Viral Transgenerational Immune Priming in Honey Bees (Hymenoptera: Apidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:19. [PMID: 35137131 PMCID: PMC8826052 DOI: 10.1093/jisesa/ieac001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Indexed: 06/01/2023]
Abstract
Transgenerational immune priming is the process of increased resistance to infection in offspring due to parental pathogen exposure. Honey bees (Apis mellifera L. (Hymenoptera: Apidae)) are hosts to multiple pathogens, and this complex immune function could help protect against overwhelming infection. Honey bees have demonstrated transgenerational immune priming for the bacterial pathogen Paenibacillus larvae; however, evidence for viral transgenerational immune priming is lacking across insects in general. Here we test for the presence of transgenerational immune priming in honey bees with Deformed wing virus (DWV) by injecting pupae from DWV-exposed queens and measuring virus titer and immune gene expression. Our data suggest that there is evidence for viral transgenerational immune priming in honey bees, but it is highly context-dependent based on route of maternal exposure and potentially host genetics or epigenetic factors.
Collapse
Affiliation(s)
- Sarah Lang
- Department of Entomology, Louisiana State University and AgCenter Louisiana State University 404 Life Sciences Building, Louisiana State University, Baton Rouge, LA 70803, USA
- USDA ARS Honey Bee, Breeding and Physiology Lab, 1157 Ben Hur Road, Baton Rouge, LA 70820, USA
| | - Michael Simone-Finstrom
- USDA ARS Honey Bee, Breeding and Physiology Lab, 1157 Ben Hur Road, Baton Rouge, LA 70820, USA
| | - Kristen Healy
- Department of Entomology, Louisiana State University and AgCenter Louisiana State University 404 Life Sciences Building, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
20
|
Gusachenko ON, Woodford L, Balbirnie-Cumming K, Evans DJ. First come, first served: superinfection exclusion in Deformed wing virus is dependent upon sequence identity and not the order of virus acquisition. THE ISME JOURNAL 2021; 15:3704-3713. [PMID: 34193965 PMCID: PMC8630095 DOI: 10.1038/s41396-021-01043-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Deformed wing virus (DWV) is the most important globally distributed pathogen of honey bees and, when vectored by the ectoparasite Varroa destructor, is associated with high levels of colony losses. Divergent DWV types may differ in their pathogenicity and are reported to exhibit superinfection exclusion upon sequential infections, an inevitability in a Varroa-infested colony. We used a reverse genetic approach to investigate competition and interactions between genetically distinct or related virus strains, analysing viral load over time, tissue distribution with reporter gene-expressing viruses and recombination between virus variants. Transient competition occurred irrespective of the order of virus acquisition, indicating no directionality or dominance. Over longer periods, the ability to compete with a pre-existing infection correlated with the genetic divergence of the inoculae. Genetic recombination was observed throughout the DWV genome with recombinants accounting for ~2% of the population as determined by deep sequencing. We propose that superinfection exclusion, if it occurs at all, is a consequence of a cross-reactive RNAi response to the viruses involved, explaining the lack of dominance of one virus type over another. A better understanding of the consequences of dual- and superinfection will inform development of cross-protective honey bee vaccines and landscape-scale DWV transmission and evolution.
Collapse
Affiliation(s)
- Olesya N. Gusachenko
- grid.11914.3c0000 0001 0721 1626Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, UK
| | - Luke Woodford
- grid.11914.3c0000 0001 0721 1626Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, UK
| | - Katharin Balbirnie-Cumming
- grid.11914.3c0000 0001 0721 1626Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, UK
| | - David J. Evans
- grid.11914.3c0000 0001 0721 1626Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, UK
| |
Collapse
|
21
|
Penn HJ, Simone-Finstrom M, Lang S, Chen J, Healy K. Host Genotype and Tissue Type Determine DWV Infection Intensity. FRONTIERS IN INSECT SCIENCE 2021; 1:756690. [PMID: 38468897 PMCID: PMC10926404 DOI: 10.3389/finsc.2021.756690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/12/2021] [Indexed: 03/13/2024]
Abstract
Varroa mite-vectored viruses such as Deformed wing virus (DWV) are of great concern for honey bee health as they can cause disease in individuals and increase colony mortality. Two genotypes of DWV (A and B) are prevalent in the United States and may have differential virulence and pathogenicity. Honey bee genetic stocks bred to resist Varroa mites also exhibit differential infection responses to the Varroa mite-vectored viruses. The goal of this project was to determine if interactions between host genotype could influence the overall infection levels and dissemination of DWV within honey bees. To do this, we injected DWV isolated from symptomatic adult bees into mite-free, newly emerged adult bees from five genetic stocks with varying levels of resistance to Varroa mites. We measured DWV-A and DWV-B dissemination among tissues chosen based on relevance to general health outcomes for 10 days. Injury from sham injections did not increase DWV-A levels but did increase DWV-B infections. DWV injection increased both DWV-A and DWV-B levels over time with significant host stock interactions. While we did not observe any differences in viral dissemination among host stocks, we found differences in virus genotype dissemination to different body parts. DWV-A exhibited the highest initial levels in heads and legs while the highest initial levels of DWV-B were found in heads and abdomens. These interactions underscore the need to evaluate viral genotype and tissue specificity in conjunction with host genotype, particularly when the host has been selected for traits relative to virus-vector and virus resistance.
Collapse
Affiliation(s)
- Hannah J. Penn
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS), Sugarcane Research Unit, Houma, LA, United States
| | - Michael Simone-Finstrom
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS), Honey Bee Breeding, Genetics and Physiology Research Laboratory, Baton Rouge, LA, United States
| | - Sarah Lang
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS), Honey Bee Breeding, Genetics and Physiology Research Laboratory, Baton Rouge, LA, United States
| | - Judy Chen
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS), Bee Research Laboratory, Beltsville, MD, United States
| | - Kristen Healy
- Department of Entomology, Louisiana State University Agriculture Center, Baton Rouge, LA, United States
| |
Collapse
|
22
|
Ray AM, Davis SL, Rasgon JL, Grozinger CM. Simulated vector transmission differentially influences dynamics of two viral variants of deformed wing virus in honey bees ( Apis mellifera). J Gen Virol 2021; 102:001687. [PMID: 34816791 PMCID: PMC8742989 DOI: 10.1099/jgv.0.001687] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/21/2021] [Indexed: 12/31/2022] Open
Abstract
Understanding how vectors alter the interactions between viruses and their hosts is a fundamental question in virology and disease ecology. In honey bees, transmission of deformed wing virus (DWV) by parasitic Varroa mites has been associated with elevated disease and host mortality, and Varroa transmission has been hypothesized to lead to increased viral titres or select for more virulent variants. Here, we mimicked Varroa transmission by serially passaging a mixed population of two DWV variants, A and B, by injection through in vitro reared honey bee pupae and tracking these viral populations through five passages. The DWV-A and DWV-B variant proportions shifted dynamically through passaging, with DWV-B outcompeting DWV-A after one passage, but levels of both variants becoming equivalent by Passage 5. Sequencing analysis revealed a dominant, recombinant DWV-B strain (DWV-A derived 5' IRES region with the rest of the genome DWV-B), with low nucleotide diversity that decreased through passaging. DWV-A populations had higher nucleotide diversity compared to DWV-B, but this also decreased through passaging. Selection signatures were found across functional regions of the DWV-A and DWV-B genomes, including amino acid mutations in the putative capsid protein region. Simulated vector transmission differentially impacted two closely related viral variants which could influence viral interactions with the host, demonstrating surprising plasticity in vector-host-viral dynamics.
Collapse
Affiliation(s)
- Allyson M. Ray
- Molecular, Cellular, and Integrative Biosciences Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Entomology, Center for Infectious Disease Dynamics, Center for Pollinator Research, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Sheldon L. Davis
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Jason L. Rasgon
- Molecular, Cellular, and Integrative Biosciences Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Entomology, Center for Infectious Disease Dynamics, Center for Pollinator Research, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Christina M. Grozinger
- Molecular, Cellular, and Integrative Biosciences Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Entomology, Center for Infectious Disease Dynamics, Center for Pollinator Research, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
23
|
Wilfert L. Viral adaptations to vector-borne transmission can result in complex host-vector-pathogen interactions. J Anim Ecol 2021; 90:2230-2233. [PMID: 34609752 DOI: 10.1111/1365-2656.13570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/20/2021] [Indexed: 01/04/2023]
Abstract
Research Highlight: Norton, A. M., Remnant, E. J., Tom, J., Buchmann, G., Blacquiere, T., & Beekman, M. (2021). Adaptation to vector-based transmission in a honeybee virus. Journal of Animal Ecology, 90, https://besjournals.onlinelibrary.wiley.com/doi/10.1111/1365-2656.13493. In their paper on the adaptation to vector-based transmission via the mite Varroa destructor in a honeybee virus, Norton et al. study how high versus low levels of a viral vector affect viral load and potential competition between two strains of Deformed Wing Virus, an important highly virulent bee virus with the potential to spill-over into other pollinators and bee-associated insect species. This paper addresses two very timely issues, on the one hand on viral evolutionary ecology in response to vector-borne transmission, and on the other hand providing much needed information on an important honey bee pathogen. Using a complex natural system, this study shows that vector-borne transmission, and the control of the vector, can select for complex host-pathogen-vector interactions and that adaptations to changing transmission landscapes in fast evolving pathogens can create conditions for emerging pathogens to transition to endemic diseases.
Collapse
Affiliation(s)
- Lena Wilfert
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| |
Collapse
|
24
|
Deformed wing virus variant shift from 2010 to 2016 in managed and feral UK honey bee colonies. Arch Virol 2021; 166:2693-2702. [PMID: 34275024 PMCID: PMC8421296 DOI: 10.1007/s00705-021-05162-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/18/2021] [Indexed: 11/13/2022]
Abstract
Deformed wing virus (DWV) has been linked to the global decline of honey bees. DWV exists as three master variants (DWV-A, DWV-B, and DWV-C), each with differing outcomes for the honey bee host. Research in the USA showed a shift from DWV-A to DWV-B between 2010 to 2016 in honey bee colonies. Likewise, in the UK, a small study in 2007 found only DWV-A, whereas in 2016, DWV-B was the most prevalent variant. This suggests a shift from DWV-A to DWV-B might have occurred in the UK between 2007 and 2016. To investigate this further, data from samples collected in 2009/10 (n = 46) were compared to existing data from 2016 (n = 42). These samples also allowed a comparison of DWV variants between Varroa-untreated (feral) and Varroa-treated (managed) colonies. The results revealed that, in the UK, DWV-A was far more prevalent in 2009/10 (87%) than in 2016 (43%). In contrast, DWV-B was less prevalent in 2009/10 (76%) than in 2016 (93%). Regardless if colonies had been treated for Varroa (managed) or not (feral), the same trend from DWV-A to DWV-B occurred. Overall, the results reveal a decrease in DWV-A and an increase in DWV-B in UK colonies.
Collapse
|
25
|
Grindrod I, Kevill JL, Villalobos EM, Schroeder DC, Martin SJ. Ten Years of Deformed Wing Virus (DWV) in Hawaiian Honey Bees ( Apis mellifera), the Dominant DWV-A Variant Is Potentially Being Replaced by Variants with a DWV-B Coding Sequence. Viruses 2021; 13:969. [PMID: 34073733 PMCID: PMC8225128 DOI: 10.3390/v13060969] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022] Open
Abstract
The combination of Deformed wing virus (DWV) and Varroa destructor is arguably one of the greatest threats currently facing western honey bees, Apis mellifera. Varroa's association with DWV has decreased viral diversity and increased loads of DWV within honey bee populations. Nowhere has this been better studied than in Hawaii, where the arrival of Varroa progressively led to the dominance of the single master variant (DWV-A) on both mite-infested Hawaiian Islands of Oahu and Big Island. Now, exactly 10 years following the original study, we find that the DWV population has changed once again, with variants containing the RdRp coding sequence pertaining to the master variant B beginning to co-dominate alongside variants with the DWV-A RdRp sequence on the mite-infested islands of Oahu and Big Island. In speculation, based on other studies, it appears this could represent a stage in the journey towards the complete dominance of DWV-B, a variant that appears better adapted to be transmitted within honey bee colonies.
Collapse
Affiliation(s)
- Isobel Grindrod
- School of Environment and Life Sciences, University of Salford, Manchester M5 4WX, UK;
| | - Jessica L. Kevill
- Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA;
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK;
| | - Ethel M. Villalobos
- College of Tropical Agriculture and Human Resources, University of Hawaii at Mānoa, 3050 Maile Way, Honolulu, HI 96822, USA;
| | - Declan C. Schroeder
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK;
- Environmental Biology (Virology), School of Biological Sciences, University of Reading, Reading RG6 6AH, UK
| | - Stephen John Martin
- School of Environment and Life Sciences, University of Salford, Manchester M5 4WX, UK;
| |
Collapse
|
26
|
Castelli L, Genchi García ML, Dalmon A, Arredondo D, Antúnez K, Invernizzi C, Reynaldi FJ, Le Conte Y, Beaurepaire A. Intra-Colonial Viral Infections in Western Honey Bees ( Apis Mellifera). Microorganisms 2021; 9:1087. [PMID: 34070128 PMCID: PMC8158351 DOI: 10.3390/microorganisms9051087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/01/2021] [Accepted: 05/11/2021] [Indexed: 01/11/2023] Open
Abstract
RNA viruses play a significant role in the current high losses of pollinators. Although many studies have focused on the epidemiology of western honey bee (Apis mellifera) viruses at the colony level, the dynamics of virus infection within colonies remains poorly explored. In this study, the two main variants of the ubiquitous honey bee virus DWV as well as three major honey bee viruses (SBV, ABPV and BQCV) were analyzed from Varroa-destructor-parasitized pupae. More precisely, RT-qPCR was used to quantify and compare virus genome copies across honey bee pupae at the individual and subfamily levels (i.e., patrilines, sharing the same mother queen but with different drones as fathers). Additionally, virus genome copies were compared in cells parasitized by reproducing and non-reproducing mite foundresses to assess the role of this vector. Only DWV was detected in the samples, and the two variants of this virus significantly differed when comparing the sampling period, colonies and patrilines. Moreover, DWV-A and DWV-B exhibited different infection patterns, reflecting contrasting dynamics. Altogether, these results provide new insight into honey bee diseases and stress the need for more studies about the mechanisms of intra-colonial disease variation in social insects.
Collapse
Affiliation(s)
- Loreley Castelli
- Laboratorio de Microbiología y Salud de las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; (L.C.); (D.A.); (K.A.)
| | - María Laura Genchi García
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata 1900, Buenos Aires, Argentina; (M.L.G.G.); (F.J.R.)
- Instituto Multidisciplinario de Biología Celular (IMBICE), La Plata 1900, Buenos Aires, Argentina
- Laboratorio de Virología, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (LAVIR-FCV-UNLP), La Plata 1900, Buenos Aires, Argentina
| | - Anne Dalmon
- Abeilles et Environnement, INRAE, 84000 Avignon, France; (A.D.); (Y.L.C.)
| | - Daniela Arredondo
- Laboratorio de Microbiología y Salud de las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; (L.C.); (D.A.); (K.A.)
| | - Karina Antúnez
- Laboratorio de Microbiología y Salud de las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; (L.C.); (D.A.); (K.A.)
| | - Ciro Invernizzi
- Sección Etología, Facultad de Ciencias, Montevideo 11400, Uruguay;
| | - Francisco José Reynaldi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata 1900, Buenos Aires, Argentina; (M.L.G.G.); (F.J.R.)
- Laboratorio de Virología, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (LAVIR-FCV-UNLP), La Plata 1900, Buenos Aires, Argentina
| | - Yves Le Conte
- Abeilles et Environnement, INRAE, 84000 Avignon, France; (A.D.); (Y.L.C.)
| | - Alexis Beaurepaire
- Abeilles et Environnement, INRAE, 84000 Avignon, France; (A.D.); (Y.L.C.)
- Institute of Bee Health, University of Bern, 3003 Bern, Switzerland
| |
Collapse
|
27
|
Norton AM, Remnant EJ, Tom J, Buchmann G, Blacquiere T, Beekman M. Adaptation to vector-based transmission in a honeybee virus. J Anim Ecol 2021; 90:2254-2267. [PMID: 33844844 DOI: 10.1111/1365-2656.13493] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 04/06/2021] [Indexed: 11/27/2022]
Abstract
Global pollinator declines as a result of emerging infectious diseases are of major concern. Managed honeybees Apis mellifera are susceptible to numerous parasites and pathogens, many of which appear to be transmissible to sympatric non-Apis taxa. The ectoparasitic mite Varroa destructor is considered to be the most significant threat to honeybees due to its role in vectoring RNA viruses, particularly Deformed wing virus (DWV). Vector transmission of DWV has resulted in the accumulation of high viral loads in honeybees and is often associated with colony death. DWV has two main genotypes, A and B. DWV-A was more prevalent during the initial phase of V. destructor establishment. In recent years, the global prevalence of DWV-B has increased, suggesting that DWV-B is better adapted to vector transmission than DWV-A. We aimed to determine the role vector transmission plays in DWV genotype prevalence at a colony level. We experimentally increased or decreased the number of V. destructor mites in honeybee colonies, and tracked DWV-A and DWV-B loads over a period of 10 months. Our results show that the two DWV genotypes differ in their response to mite numbers. DWV-A accumulation in honeybees was positively correlated with mite numbers yet DWV-A was largely undetected in the absence of the mite. In contrast, colonies had high loads of DWV-B even when mite numbers were low. DWV-B loads persisted in miticide-treated colonies, indicating that this genotype has a competitive advantage over DWV-A irrespective of mite numbers. Our findings suggest that the global increase in DWV-B prevalence is not driven by selective pressure by the vector. Rather, DWV-B is able to persist in colonies at higher viral loads relative to DWV-A in the presence and absence of V. destructor. The interplay between V. destructor and DWV genotypes within honeybee colonies may have broad consequences upon viral diversity in sympatric taxa as a result of spillover.
Collapse
Affiliation(s)
- Amanda M Norton
- Behaviour, Ecology and Evolution (BEE) Laboratory, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Emily J Remnant
- Behaviour, Ecology and Evolution (BEE) Laboratory, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Jolanda Tom
- Wageningen University and Research, Wageningen, The Netherlands
| | - Gabriele Buchmann
- Behaviour, Ecology and Evolution (BEE) Laboratory, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | | | - Madeleine Beekman
- Behaviour, Ecology and Evolution (BEE) Laboratory, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.,Wissenschaftskolleg zu Berlin, Berlin, Germany
| |
Collapse
|
28
|
Woodford L, Evans DJ. Deformed wing virus: using reverse genetics to tackle unanswered questions about the most important viral pathogen of honey bees. FEMS Microbiol Rev 2020; 45:6035241. [PMID: 33320949 DOI: 10.1093/femsre/fuaa070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/11/2020] [Indexed: 12/31/2022] Open
Abstract
Deformed wing virus (DWV) is the most important viral pathogen of honey bees. It usually causes asymptomatic infections but, when vectored by the ectoparasitic mite Varroa destructor, it is responsible for the majority of overwintering colony losses globally. Although DWV was discovered four decades ago, research has been hampered by the absence of an in vitro cell culture system or the ability to culture pure stocks of the virus. The recent developments of reverse genetic systems for DWV go some way to addressing these limitations. They will allow the investigation of specific questions about strain variation, host tropism and pathogenesis to be answered, and are already being exploited to study tissue tropism and replication in Varroa and non-Apis pollinators. Three areas neatly illustrate the advances possible with reverse genetic approaches: (i) strain variation and recombination, in which reverse genetics has highlighted similarities rather than differences between virus strains; (ii) analysis of replication kinetics in both honey bees and Varroa, in studies that likely explain the near clonality of virus populations often reported; and (iii) pathogen spillover to non-Apis pollinators, using genetically tagged viruses to accurately monitor replication and infection.
Collapse
Affiliation(s)
- Luke Woodford
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, UK
| | - David J Evans
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, UK
| |
Collapse
|
29
|
Guichard M, Dietemann V, Neuditschko M, Dainat B. Advances and perspectives in selecting resistance traits against the parasitic mite Varroa destructor in honey bees. Genet Sel Evol 2020; 52:71. [PMID: 33246402 PMCID: PMC7694340 DOI: 10.1186/s12711-020-00591-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 11/13/2020] [Indexed: 01/01/2023] Open
Abstract
Background In spite of the implementation of control strategies in honey bee (Apis mellifera) keeping, the invasive parasitic mite Varroa destructor remains one of the main causes of colony losses in numerous countries. Therefore, this parasite represents a serious threat to beekeeping and agro-ecosystems that benefit from the pollination services provided by honey bees. To maintain their stocks, beekeepers have to treat their colonies with acaricides every year. Selecting lineages that are resistant to infestations is deemed to be a more sustainable approach. Review Over the last three decades, numerous selection programs have been initiated to improve the host–parasite relationship and to support honey bee survival in the presence of the parasite without the need for acaricide treatments. Although resistance traits have been included in the selection strategy of honey bees, it has not been possible to globally solve the V. destructor problem. In this study, we review the literature on the reasons that have potentially limited the success of such selection programs. We compile the available information to assess the relevance of selected traits and the potential environmental effects that distort trait expression and colony survival. Limitations to the implementation of these traits in the field are also discussed. Conclusions Improving our knowledge of the mechanisms underlying resistance to V. destructor to increase trait relevance, optimizing selection programs to reduce environmental effects, and communicating selection outcomes are all crucial to efforts aiming at establishing a balanced relationship between the invasive parasite and its new host.
Collapse
Affiliation(s)
- Matthieu Guichard
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, 3003, Bern, Switzerland.
| | - Vincent Dietemann
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, 3003, Bern, Switzerland.,Department of Ecology and Evolution, Biophore, UNIL-Sorge, University of Lausanne, 1015, Lausanne, Switzerland
| | - Markus Neuditschko
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, 3003, Bern, Switzerland
| | - Benjamin Dainat
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, 3003, Bern, Switzerland
| |
Collapse
|
30
|
OneHealth implications of infectious diseases of wild and managed bees. J Invertebr Pathol 2020; 186:107506. [PMID: 33249062 DOI: 10.1016/j.jip.2020.107506] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/27/2020] [Accepted: 11/20/2020] [Indexed: 01/23/2023]
Abstract
The OneHealth approach aims to further our understanding of the drivers of human, animal and environmental health, and, ultimately, to improve them by combining approaches and knowledge from medicine, biology and fields beyond. Wild and managed bees are essential pollinators of crops and wild flowers. Their health thus directly impacts on human and environmental health. At the same time, these bee species represent highly amenable and relevant model organisms for a OneHealth approach that aims to study fundamental epidemiological questions. In this review, we focus on how infectious diseases of wild and managed bees can be used as a OneHealth model system, informing fundamental questions on ecological immunology and disease transmission, while addressing how this knowledge can be used to tackle the issues facing pollinator health.
Collapse
|
31
|
Deformed wing virus prevalence and load in honeybees in South Africa. Arch Virol 2020; 166:237-241. [PMID: 33136209 PMCID: PMC7815608 DOI: 10.1007/s00705-020-04863-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/16/2020] [Indexed: 11/03/2022]
Abstract
Deformed wing virus (DWV) is an emerging honeybee pathogen that has appeared across the globe in the past 40 years. When transmitted by the parasitic varroa mite, it has been associated with the collapse of millions of colonies throughout the Northern Hemisphere. However, despite the presence of the mite in the Southern Hemisphere, infested colonies survive. This study investigated the prevalence of DWV genotypes A, B and C along with their viral loads in South Africa and compared the findings with recent data from Brazil, the UK and the USA. We found that DWV-B was the most prevalent genotype throughout South Africa, although the total DWV viral load was significantly lower (2.8E+07) than found in the Northern Hemisphere (2.8E+07 vs. 2.7E+10, p > 0.00001) and not significantly different to that found in Brazil (5E+06, p = 0.13). The differences in viral load can be explained by the mite resistance in Brazil and South Africa, since mite-infested cells containing high viral loads are removed by the bees, thus lowering the colony's viral burden. This behaviour is much less developed in the vast majority of honeybees in the Northern Hemisphere.
Collapse
|
32
|
Brettell LE, Schroeder DC, Martin SJ. RNAseq of Deformed Wing Virus and Other Honey Bee-Associated Viruses in Eight Insect Taxa with or without Varroa Infestation. Viruses 2020; 12:E1229. [PMID: 33138298 PMCID: PMC7692275 DOI: 10.3390/v12111229] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
The global spread of a parasitic mite (Varroa destructor) has resulted in Deformed wing virus (DWV), a previously rare pathogen, now dominating the viromes in honey bees and contributing to large-scale honey bee colony losses. DWV can be found in diverse insect taxa and has been implicated in spilling over from honey bees into associated ("apiary") and other ("non-apiary") insects. Here we generated next generation sequence data from 127 insect samples belonging to diverse taxa collected from Hawaiian islands with and without Varroa to identify whether the mite has indirectly affected the viral landscapes of key insect taxa across bees, wasps, flies and ants. Our data showed that, while Varroa was associated with a dramatic increase in abundance of (predominantly recombinant) DWV in honey bees (and no other honey bee-associated RNA virus), this change was not seen in any other taxa sampled. Honey bees share their environment with other insect populations and exist as a homogenous group, frequently sharing common viruses, albeit at low levels. Our data suggest that the threat of Varroa to increase viral load in an apiary does not automatically translate to an increase in virus load in other insects living in the wider community.
Collapse
Affiliation(s)
- Laura E. Brettell
- Hawkesbury Institute for the Environment, Western Sydney University, Locked bag 1797, Penrith, NSW 2751, Australia
- School of Environment and life Sciences, University of Salford, Manchester M5 5WT, UK;
| | - Declan C. Schroeder
- Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108, USA;
- School of Biological Sciences, University of Reading, Reading RG6 6LA, UK
| | - Stephen J. Martin
- School of Environment and life Sciences, University of Salford, Manchester M5 5WT, UK;
| |
Collapse
|
33
|
Roberts JMK, Simbiken N, Dale C, Armstrong J, Anderson DL. Tolerance of Honey Bees to Varroa Mite in the Absence of Deformed Wing Virus. Viruses 2020; 12:E575. [PMID: 32456246 PMCID: PMC7290856 DOI: 10.3390/v12050575] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/31/2022] Open
Abstract
The global spread of the parasitic mite Varroa destructor has emphasized the significance of viruses as pathogens of honey bee (Apis mellifera) populations. In particular, the association of deformed wing virus (DWV) with V. destructor and its devastating effect on honey bee colonies has led to that virus now becoming one of the most well-studied insect viruses. However, there has been no opportunity to examine the effects of Varroa mites without the influence of DWV. In Papua New Guinea (PNG), the sister species, V. jacobsoni, has emerged through a host-shift to reproduce on the local A. mellifera population. After initial colony losses, beekeepers have maintained colonies without chemicals for more than a decade, suggesting that this bee population has an unknown mite tolerance mechanism. Using high throughput sequencing (HTS) and target PCR detection, we investigated whether the viral landscape of the PNG honey bee population is the underlying factor responsible for mite tolerance. We found A. mellifera and A. cerana from PNG and nearby Solomon Islands were predominantly infected by sacbrood virus (SBV), black queen cell virus (BQCV) and Lake Sinai viruses (LSV), with no evidence for any DWV strains. V. jacobsoni was infected by several viral homologs to recently discovered V. destructor viruses, but Varroa jacobsoni rhabdovirus-1 (ARV-1 homolog) was the only virus detected in both mites and honey bees. We conclude from these findings that A. mellifera in PNG may tolerate V. jacobsoni because the damage from parasitism is significantly reduced without DWV. This study also provides further evidence that DWV does not exist as a covert infection in all honey bee populations, and remaining free of this serious viral pathogen can have important implications for bee health outcomes in the face of Varroa.
Collapse
Affiliation(s)
- John M. K. Roberts
- Commonwealth Scientific and Industrial Research Organisation, Canberra 2601, Australia;
| | - Nelson Simbiken
- Coffee Industry Corporation Ltd., Goroka 441, Papua New Guinea;
| | - Chris Dale
- Department of Agriculture, Water and the Environment, Canberra 2601, Australia;
| | - Joel Armstrong
- Commonwealth Scientific and Industrial Research Organisation, Canberra 2601, Australia;
| | - Denis L. Anderson
- Research and Development Division, Abu Dhabi Agriculture & Food Safety Authority, Al Ain, UAE;
| |
Collapse
|