1
|
Du Z, Bai S, Qian J, Zhan P, Hu F, Peng X. Iron-carbon enhanced constructed wetland microbial fuel cells for tetracycline wastewater treatment: Efficacy, power generation, and the role of iron-carbon. BIORESOURCE TECHNOLOGY 2025; 430:132578. [PMID: 40268101 DOI: 10.1016/j.biortech.2025.132578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/08/2025] [Accepted: 04/20/2025] [Indexed: 04/25/2025]
Abstract
Tetracycline (TC) antibiotics wastewater is a serious threat to human health and environment. In this study, four groups of laboratory-scale constructed wetlands (CWs) with different configurations were constructed to evaluate the removal efficiency of iron-carbon (Ic) coupled constructed wetland microbial fuel cells (CW-MFC) system for different pollutants removal and bioelectricity production. The results showed that the addition of Ic significantly promoted the removal of contaminants. The maximum removal rates of COD, TN, NH4+-N, and TP were 86.13 %, 81.60 %, 79.07 %, and 97.35 %, respectively. In particular, the removal rates of TC reached 100 %. 3D-EEM analysis further confirmed the role of Ic in promoting organic degradation. The Ic-CW-MFC system also showed superiority in power generation performance with peak power density of 7.90 mW/m2 (internal resistance is 10 Ω), 88.07 % higher than the traditional CW-MFC, while the internal resistance was 68.21 % lower. Therefore, when Ic is used as the substrate of CW-MFC system, its decontamination and electricity generation performance is the best. Analysis of RDA was used to elucidate the relationship of four CWs, dominant strains and environmental factors (pH, ORP and DO). The performance of traditional CWs decreased significantly after TC addition (5-20 mg/L), but Ic-CW-MFC could effectively alleviate the inhibition effect caused by high-concentration TC wastewater. The working mechanism of Ic-CW-MFC in TC wastewater was further analyzed through typical cycle experiment and characterization. The results showed that Ic-CW-MFC is an efficient and economical wastewater treatment technology, which has great potential application value in the treatment of wastewater containing TC.
Collapse
Affiliation(s)
- Zhiyuan Du
- School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, PR China
| | - Sai Bai
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, PR China
| | - Jin Qian
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, PR China.
| | - Peng Zhan
- Jiangxi Water Resources Institute, Nanchang 330013, PR China
| | - Fengping Hu
- School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, PR China
| | - Xiaoming Peng
- School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, PR China.
| |
Collapse
|
2
|
You J, Ye L, Zhang S, Zhao J, Zhao Y, He Y, Chen J, Kennes C, Chen D. Electrode functional microorganisms in bioelectrochemical systems and its regulation: A review. Biotechnol Adv 2025; 79:108521. [PMID: 39814087 DOI: 10.1016/j.biotechadv.2025.108521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 12/03/2024] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Bioelectrochemical systems (BES) as environmental remediation biotechnologies have boomed in the last two decades. Although BESs combined technologies with electro-chemistry, -biology, and -physics, microorganisms and biofilms remain at their core. In this review, various functional microorganisms in BESs for CO2 reduction, dehalogenation, nitrate, phosphate, and sulfate reduction, metal removal, and volatile organic compound oxidation are summarized and compared in detail. Moreover, interrelationship regulation approaches for functional microorganisms and methods for electroactive biofilm development, such as targeted electrode surface modification, chemical treatment, physical revealing, biological optimization, and genetic programming are pointed out. This review provides promising guidance and suggestions for the selection of microbial inoculants and provides an analysis of the role of individual microorganisms in mixed microbial communities and its metabolisms.
Collapse
Affiliation(s)
- Juping You
- Zhejiang Key Laboratory of Pullution control for Port-Petrochemical Industry, Zhejiang Ocean University, Zhoushan 316022, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Zhejiang Shuren University, Hangzhou 312028, China
| | - Lei Ye
- Zhejiang Key Laboratory of Pullution control for Port-Petrochemical Industry, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shihan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jingkai Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yan Zhao
- Zhejiang Key Laboratory of Pullution control for Port-Petrochemical Industry, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yaxue He
- Zhejiang Key Laboratory of Pullution control for Port-Petrochemical Industry, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jianmeng Chen
- School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310018, China
| | - Christian Kennes
- Chemical Engineering Laboratory and Center for Advance Scientific Research (CICA), Faculty of Sciences, Universidade da Coruña, Spain
| | - Dongzhi Chen
- Zhejiang Key Laboratory of Pullution control for Port-Petrochemical Industry, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
3
|
Biswas A, Chakraborty S. Variation in bioelectricity production in integrated CW-MFC: An insight into coliform inactivation affected by HRT and power density. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123527. [PMID: 39626384 DOI: 10.1016/j.jenvman.2024.123527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/08/2024] [Accepted: 11/27/2024] [Indexed: 01/15/2025]
Abstract
In the current study, domestic wastewater was treated in three identical vertical up-flow reactors; R1 (constructed wetland), R2 (CW-MFC), and R3 (unplanted CW-MFC) under different HRTs of 36 h (Phase 1), 24 h (Phase 2), and 18h (Phase 3). Periodic reduction of HRT from Phase 1 to Phase 3 resulted in deteriorated organics and fecal coliform removal by the reactors. R2 showed higher pollutant removal and voltage generation in every phase of the study compared to R1 and R3. R2 exerted 93%, 87%, and 57% mean COD removal during Phase 1, Phase 2, and Phase 3; with maximum open circuit voltage generated as 925 mV, 695 mV, and 429 mV respectively. Linear regression analysis showed that operating voltage and power density had significant effects on the variance of effluent fecal coliform concentration. The regression analysis also revealed that 36 h-24 h HRT was critical where power density influenced the pathogen inactivation considerably. Multiple batch studies revealed the main role of reactor media and plant roots was to support the attached microbial growth for biodegradation of the organics. Radial oxygen loss did not affect the anaerobic environment at the anode after 800 days of reactor operation.
Collapse
Affiliation(s)
- Anjishnu Biswas
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Saswati Chakraborty
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
4
|
Rusyn I, Gómora-Hernández JC. Constructed wetland microbial fuel cell as enhancing pollutants treatment technology to produce green energy. Biotechnol Adv 2024; 77:108468. [PMID: 39437879 DOI: 10.1016/j.biotechadv.2024.108468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/02/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
The persistent challenge of water pollution, exacerbated by slow progress in ecofriendly technologies and accumulating pollutants, underscores the need for innovative solutions. Constructed Wetland Microbial Fuel Cell (CW-MFC) emerges as an intriguing environmental technology capable of adressing this issue by eliminating contaminants from wastewater while simultaneously producing green energy as an additional bonus. In recent years, CW-MFC technology has gained attention due to its sustainability and promising prospects for a circular waste-free industry. However, due to various technological and biological challenges, it has not yet achieved wide-scale application. This review examines the current state of CW-MFC technology and identifies both biotic and abiotic strategies for optimization through operational and structural improvements affecting biocomponents. Our review highlights several key findings: (1) Plants play an important role in reducing the system's inner resistance through mechanisms such as radial oxygen loss, evapotranspiration, and high photosynthetic flow, which facilitate electroactive bacteria and affect redox potential. (2) Plant characteristics such as root porosity, phloem and aerenchyma development, chlorophyll content, and plant biomass are key indicators of CW-MFC performance and significantly impact both pollutant removal and energy harvesting. (3) We expand the criteria for selecting suitable plants to include mesophytes and C3 pollutant-tolerant species, in addition to traditional aquatic and C4 plants. Additionally, the review presents several technical approaches that enhance CW-MFC efficiency: (1) design optimization, (2) use of novel materials, and (3) application of external electrical fields, aeration, light, and temperature adjustments. CW-MFCs are capable of nearly complete elimination of a wide range of contaminants, including organic matter (84 % ± 10), total nitrogen (80 % ± 7) and phosphorus (79 % ± 18) compounds, metals (86 % ± 10), pharmaceuticals (87 % ± 7), dyes (90 % ± 8), and other complex pollutants, while generating green energy. We hope our findings will be useful in optimizing CW-MFC design and providing insights for researchers aiming to advance the technology and facilitate its future scaling.
Collapse
Affiliation(s)
- Iryna Rusyn
- Department of Ecology and Sustainable Environmental Management, Viacheslav Chornovil Institute of Sustainable Development, Lviv Polytechnic National University, Stepan Bandera St., 12, Lviv 79013, Ukraine.
| | - Julio César Gómora-Hernández
- Division of Environmental Engineering, National Technological Institute of Mexico (TecNM) / Technological of Higher Studies of Tianguistenco, Tianguistenco 52650, Mexico.
| |
Collapse
|
5
|
Yadav RK, Chaudhary S, Patil SA. Distinct microbial communities enriched in water-saturated and unsaturated reactors influence performance of integrated hydroponics-microbial electrochemical technology. BIORESOURCE TECHNOLOGY 2024; 406:130976. [PMID: 38879056 DOI: 10.1016/j.biortech.2024.130976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/03/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
This study aimed to understand the wastewater treatment and electricity generation performance besides the microbial communities of the integrated Hydroponics-Microbial Electrochemical Technology (iHydroMET) systems operated with water-saturated and water-unsaturated reactors. The organics removal was slightly higher in the water-unsaturated system (93 ± 4 %) than in the water-saturated system (87 ± 2 %). The total nitrogen removal and electric voltage were considerably higher in the water-saturated system (42 ± 5 %; 111 ± 8 V per reactor) than in the water-unsaturated system (18 ± 3 %; 95 ± 9 V per reactor). The enhanced organics and nitrogen removal and high voltage output in respective conditions were due to the dominance of polysaccharide-degrading aerobes (e.g., Pirellula), anammox bacteria (e.g., Anammoximicrobium), denitrifiers (e.g., Thauera and Rheinheimera), and electroactive microorganisms (e.g., Geobacter). The differential performance governed by distinct microbial communities under the tested conditions indicates that an appropriate balancing of water saturation and unsaturation in reactors is crucial to achieving optimum iHydroMET performance.
Collapse
Affiliation(s)
- Ravi K Yadav
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Knowledge City, Sector 81, SAS Nagar, 140306, Punjab, India
| | - Srishti Chaudhary
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Knowledge City, Sector 81, SAS Nagar, 140306, Punjab, India
| | - Sunil A Patil
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Knowledge City, Sector 81, SAS Nagar, 140306, Punjab, India.
| |
Collapse
|
6
|
Fahim R, Cheng L, Mishra S. Structural and functional perspectives of carbon filter media in constructed wetlands for pollutants abatement from wastewater. CHEMOSPHERE 2023; 345:140514. [PMID: 37879377 DOI: 10.1016/j.chemosphere.2023.140514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/04/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Constructed wetlands (CWs) represent the most viable artificial wastewater treatment system that works on the principles of natural wetlands. Filter media are integrally linked to CWs and have substantial impacts on their performance for pollutant removal. Carbon-derived substrates have been in the spotlight for decades due to their abundance, sustainability, reusability, and potential to treat complex contaminants. However, the efficiency and feasibility of carbon substrates have not been fully explored, and there are only a few studies that have rigorously analyzed their performance for wastewater treatment. This critical synthesis of the literature review offers comprehensive insights into the utilization of carbon-derived substrates in the context of pollutant removal, intending to enhance the efficiency and sustainability of CWs. It also compares several carbon-based substrates with non-carbon substrates with respect to physiochemical properties, pollutant removal efficiency, and cost-benefit analysis. Furthermore, it addresses the concerns and possible remedies about carbon filtration materials such as configuration, clogging minimization, modification, and reusability to improve the efficacy of substrates and CWs. Recommendations made to address these challenges include pretreatment of wastewater, use of a substrate with smaller pore size, incorporation of multiple filter media, the introduction of earthworms, and cultivation of plants. A current scientific scenario has been presented for identifying the research gaps to investigate the functional mechanisms of modified carbon substrates and their interaction with other CW components.
Collapse
Affiliation(s)
- Raana Fahim
- College of Environment, Hohai University, Nanjing, 210098, China.
| | - Liu Cheng
- Key Laboratory of Integrated Regulation and Resource Development Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Saurabh Mishra
- College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
7
|
Gupta S, Patro A, Mittal Y, Dwivedi S, Saket P, Panja R, Saeed T, Martínez F, Yadav AK. The race between classical microbial fuel cells, sediment-microbial fuel cells, plant-microbial fuel cells, and constructed wetlands-microbial fuel cells: Applications and technology readiness level. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162757. [PMID: 36931518 DOI: 10.1016/j.scitotenv.2023.162757] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/05/2023] [Accepted: 03/05/2023] [Indexed: 05/17/2023]
Abstract
Microbial fuel cell (MFC) is an interesting technology capable of converting the chemical energy stored in organics to electricity. It has raised high hopes among researchers and end users as the world continues to face climate change, water, energy, and land crisis. This review aims to discuss the journey of continuously progressing MFC technology from the lab to the field so far. It evaluates the historical development of MFC, and the emergence of different variants of MFC or MFC-associated other technologies such as sediment-microbial fuel cell (S-MFC), plant-microbial fuel cell (P-MFC), and integrated constructed wetlands-microbial fuel cell (CW-MFC). This review has assessed primary applications and challenges to overcome existing limitations for commercialization of these technologies. In addition, it further illustrates the design and potential applications of S-MFC, P-MFC, and CW-MFC. Lastly, the maturity and readiness of MFC, S-MFC, P-MFC, and CW-MFC for real-world implementation were assessed by multicriteria-based assessment. Wastewater treatment efficiency, bioelectricity generation efficiency, energy demand, cost investment, and scale-up potential were mainly considered as key criteria. Other sustainability criteria, such as life cycle and environmental impact assessments were also evaluated.
Collapse
Affiliation(s)
- Supriya Gupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Ashmita Patro
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Yamini Mittal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Saurabh Dwivedi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Palak Saket
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore- 453552, India
| | - Rupobrata Panja
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Tanveer Saeed
- Department of Civil Engineering, University of Asia Pacific, Dhaka 1205, Bangladesh
| | - Fernando Martínez
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, Móstoles 28933, Madrid, Spain
| | - Asheesh Kumar Yadav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India; Department of Chemical and Environmental Technology, Rey Juan Carlos University, Móstoles 28933, Madrid, Spain.
| |
Collapse
|
8
|
Li Z, Qiu Y, Yu Y, Ji Y, Li H, Liao M, Li D, Liang D, Liu G, Feng Y. Long-term operation of cathode-enhanced ecological floating bed coupled with microbial electrochemical system for urban surface water remediation: From lab-scale research to engineering application. WATER RESEARCH 2023; 237:119967. [PMID: 37104934 DOI: 10.1016/j.watres.2023.119967] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/27/2023] [Accepted: 04/09/2023] [Indexed: 05/09/2023]
Abstract
Ecological floating bed coupled with microbial electrochemical system (ECOFB-MES) has great application potential in micro-polluted water remediation yet limited by low electron transfer efficiency on the microbial/electrode interface. Here, an innovative cathode-enhanced EOCFB-MES was constructed with nano-Fe3O4 modification and applied for in-situ remediation both at lab scale (6 L, 62-day operation) and demonstration scale (2300 m2, 1-year operation). The cathode-enhanced ECOFB-MES exhibited superior removal in TOC (81.43 ± 2.05%), TN (85.12% ± 1.46%) and TP (59.80 ± 2.27%), much better than those of original ECOFB-MES and anode-enhanced ECOFB-MES in the laboratory test. Meanwhile, cathode-enhanced ECOFB-MES boosted current output by 33% than that of original ECOFB-MES, which made a great contribution to the improvement of ectopic electronic compensation for pollutant decontamination. Notably, cathode-enhanced ECOFB-MES presented high efficiency, stability and durability in the demonstration test, and fulfilled the average concentration of COD (9.5 ± 2.81 mg/L), TN (1.00 ± 0.21 mg/L) and TP (0.10 ± 0.04 mg/L) of effluent water to meet the Grade III (GB 3838-2002) with stable operation stage. Based on the KOSIM calculation, the removal loads of cathode-enhanced ECOFB-MES in carbon, nitrogen and phosphorus could reach 37.14 g COD/(d·m2), 2.62 g TN/(d·m2) and 0.55 g TP/(d·m2), respectively. According to the analysis of microbial communities and functional genes, the cathode modified by Fe3O4 made a sensible enrichment in electroactive bacteria (EAB) and nitrogen-converting bacteria (NCB) as well as facilitated the functional genes expression in electron transfer and nitrogen metabolism, resulting in the synergistic removal of carbon in sediment and nitrite in water. This study provided a brandnew technique reference for in-situ remediation of surface water in practical application.
Collapse
Affiliation(s)
- Zeng Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, No.73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Ye Qiu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, No.73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Yanling Yu
- School of Chemistry & Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Yunlong Ji
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, No.73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Henan Li
- North China Municipal Engineering Design & Research Institute Co., Ltd., No. 99 Qixiangtai Road, Hexi District, Tianjin 300000, PR China
| | - Menglong Liao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, No.73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Da Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, No.73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Dandan Liang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, No.73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Guohong Liu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, No.73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| | - Yujie Feng
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, No.73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| |
Collapse
|
9
|
Vo NXP, Dang Nguyen Hoang D, Doan Huu T, Doan Van T, Lam Pham Thanh H, Vo Nguyen Xuan Q. Performance of vertical up-flow-constructed wetlands integrating with microbial fuel cell (VFCW-MFC) treating ammonium in domestic wastewater. ENVIRONMENTAL TECHNOLOGY 2023; 44:1822-1837. [PMID: 34859740 DOI: 10.1080/09593330.2021.2014574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Vertical up-flow-constructed wetlands integrating with microbial fuel cell (VFCW-MFC) were evaluated for NH4+-N removal and bioelectricity recovery. The experiments were carried out in lab-scale VFCW-MFC microcosms treating synthetic domestic wastewater under different operational conditions of pH, hydraulic retention time, and mass loading rate. Effects of wild ornamental grass (Cenchrus setaceus) on treatment performance and voltage output were investigated simultaneously. Experiments demonstrated that the neutral pH of influents favoured NH4+-N removal and power generation. Extended retention time improved treatment capacity and power output but likely depended on the substrate availability. COD removal and power output increased, while NH4+-N removal decreased with increasing mass loading rates. At the loading rate of 88.31 mg COD/L.day, planted VFCW-MFCs exhibited better NH4+-N treatment performance (36.9%) and higher voltage output (132%-143%) than unplanted systems. Plants did not affect the COD removal efficiency of VFCW-MFCs (>95%). Power density was in the range of 1.26-1.59 mW/m2 in planted microcosms with a maximum CE of 13.6%. The anode layer accounted for a major proportion of NH4+-N removal in VFCW-MFCs. This study implies that NH4+-N in domestic wastewaters with relatively high COD:N ratios can be treated effectively in up-flow CW-MFCs via anaerobic processes, including anammox and heterotrophic denitrifying processes. The mass loading rate could be a critical parameter to balance different microbial processes, thus, coincidently determining the potential of power recovery from wastewaters.
Collapse
Affiliation(s)
| | - Dat Dang Nguyen Hoang
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thuy Doan Huu
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | - Hien Lam Pham Thanh
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Que Vo Nguyen Xuan
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
10
|
Cheng Z, Xu D, Zhang Q, Tao Z, Hong R, Chen Y, Tang X, Zeng S, Wang S. Enhanced nickel removal and synchronous bioelectricity generation based on substrate types in microbial fuel cell coupled with constructed wetland: performance and microbial response. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:19725-19736. [PMID: 36239892 DOI: 10.1007/s11356-022-23458-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
In this study, an attempt was made to clarify the impact of substrates on the microbial fuel cell coupled with constructed wetland (CW-MFC) towards the treatment of nickel-containing wastewater. Herein, zeolite (ZEO), coal cinder (COA), ceramsite (CER), and granular activated carbon (GAC) were respectively introduced into lab-scaled CW-MFCs to systematically investigate the operational performances and microbial community response. GAC was deemed as the most effective substrate, and the corresponding device yielded favorable nickel removal efficiencies over 99% at different initial concentrations of nickel. GAC-CW-MFC likewise produced a maximum output voltage of 573 mV, power density of 8.95 mW/m2, and internal resistance of 177.9 Ω, respectively. The strong adsorptive capacity of nickel by GAC, accounting for 54.5% of total contaminant content, was mainly responsible for the favorable nickel removal performances of device GAC-CW-MFC. The high-valence Ni2+ was partially reduced to elemental Ni0 on the cathode, which provided evidence for the removal of heavy metals via the cathodic reduction of CW-MFC. The microbial community structure varied considerably as a result of substrates addition. For an introduction of GAC into the CW-MFC, a remarkably enriched population of genera Thermincola, norank_f__Geobacteraceae, Anaerovorax, Bacillus, etc. was noted. This study was dedicated to providing a theoretical guidance for an effective regulation of CW-MFC treatment on nickel-containing wastewater and accompanied by bioelectricity generation via the introduction of optimal substrate.
Collapse
Affiliation(s)
- Zhan Cheng
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Dayong Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China.
| | - Qingyun Zhang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Zhengkai Tao
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Ran Hong
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Yu Chen
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Xiaolu Tang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Shuai Zeng
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Siyu Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| |
Collapse
|
11
|
Treatment of swine wastewater using multi-soil-layer based constructed wetland: Substrates assessment and efficiency improvement. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Saeed T, Majed N, Miah MJ, Yadav AK. A comparative landfill leachate treatment performance in normal and electrodes integrated hybrid constructed wetlands under unstable pollutant loadings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155942. [PMID: 35580676 DOI: 10.1016/j.scitotenv.2022.155942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
This study provides a comparative pollutant removal performance assessment between organic or construction materials-based four hybrid wetland systems that received landfill leachate. The hybrid systems included vertical flow (VF) followed by horizontal flow (HF)-based unplanted and planted systems, and planted electrodes incorporated microbial fuel cell (MFC) integrated hybrid wetlands systems. All the systems were run in free-draining mode. Overall mean chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) removal percentage of the hybrid systems ranged between 81 and 99%, 82 and 96%, 74 and 99%, respectively, under unstable input pollutant loading conditions. Additionally, up to 27% organic and up to 14% nitrogen removal improvement was observed in electrodes integrated free-draining VF wetlands. Free-draining and additional oxygen availability from atmospheric diffusion, rootzone improved the removal performance of MFC-based VF wetlands. Input load increment decreased organic, nutrient removals in second stage HF units due to saturated media. The chemical composition of the employed media supported biotic, abiotic organic, nutrient removal pathways. Nutrient accumulation percentage in plants tissue was very low, i.e., ≤3%. Bioenergy production across the MFC-based VF-HF wetlands decreased with input pollutant load increment. The single anode electrode-based VF wetland achieved maximum power density production, i.e., 294 mW/m2.. The electrodes integrated hybrid systems achieved comparatively stable removal performance despite input pollutant/hydraulic load variation.
Collapse
Affiliation(s)
- Tanveer Saeed
- Department of Civil Engineering, University of Asia Pacific, Dhaka 1205, Bangladesh.
| | - Nehreen Majed
- Department of Civil Engineering, University of Asia Pacific, Dhaka 1205, Bangladesh
| | - Md Jihad Miah
- Department of Civil Engineering, University of Asia Pacific, Dhaka 1205, Bangladesh
| | - Asheesh Kumar Yadav
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, Mostoles, 28933, Madrid, Spain
| |
Collapse
|
13
|
Saeed T, Miah MJ, Yadav AK. Development of electrodes integrated hybrid constructed wetlands using organic, construction, and rejected materials as filter media: Landfill leachate treatment. CHEMOSPHERE 2022; 303:135273. [PMID: 35688201 DOI: 10.1016/j.chemosphere.2022.135273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/21/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
This study developed microbial fuel cell (MFC)-based hybrid constructed wetland systems using different filter media, i.e., organic (biochar), construction (sand), and rejected (iron particle, concrete particle, and stone dust) materials, and evaluated the performance of the developed systems for treating landfill leachate. The mean ammonium nitrogen (NH4-N), total nitrogen (TN), total phosphorus (TP), biochemical oxygen demand (BOD), chemical oxygen demand (COD) removal percentages within the hybrid systems ranged between 91 and 98%, 90 and 98%, 97 and 99%, 88 and 93%, 93 and 97%, respectively, despite higher pollutants concentration in leachate wastewater. The aerobic environment in the cathode compartment (due to intermittent load) and free-draining of wastewater (from cathode to anode compartment) supported electrochemically inactive, active pollutants removal in the electrodes integrated first stage vertical flow (VF) wetlands. The second stage electrodes integrated horizontal flow (HF) wetlands supported electrochemical-based organic removal and nitrification because of efficient organic removal in the previous VF wetland stages. Nitrogen, phosphorus accumulation percentages in plant tissues ranged between 0.3 and 7%, 0.4 and 14%, respectively. Nutrient removal was achieved through chemical and microbial routes. The biochar-packed VF wetland produced a maximum power density of 20.6 mW/m2. The coexistence of unsaturated, saturated media in the partially saturated HF wetland maintained the required environmental gradient between the electrodes and improved operational performance.
Collapse
Affiliation(s)
- Tanveer Saeed
- Department of Civil Engineering, University of Asia Pacific, Dhaka, 1205, Bangladesh.
| | - Md Jihad Miah
- Department of Civil Engineering, University of Asia Pacific, Dhaka, 1205, Bangladesh
| | - Asheesh Kumar Yadav
- Department of Environmental and Sustainability, CSIR-Institute Minerals and Materials Technology, Bhubaneswar, India; Department of Chemical and Environmental Technology, Rey Juan Carlos University, Móstoles, Spain
| |
Collapse
|
14
|
Yang H, Chen J, Yu L, Li W, Huang X, Qin Q, Zhu S. Performance optimization and microbial community evaluation for domestic wastewater treatment in a constructed wetland-microbial fuel cell. ENVIRONMENTAL RESEARCH 2022; 212:113249. [PMID: 35421392 DOI: 10.1016/j.envres.2022.113249] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/17/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Constructed wetland-microbial fuel cell system (CW-MFC), an attractive technology still under study, has shown to improve domestic wastewater treatment efficiency and generate bioelectricity. This work investigated the effect of multiple factors on the performance optimization for the pollutants removal and bioelectricity production compared to a traditional CW, including influent chemical oxygen demand (COD) concentration, hydraulic retention time (HRT) and external resistance. The results showed that the optimal operating conditions of COD concentration, HRT and external resistance for CW-MFC were 200 mg/L, 24 h and 1000 Ω, respectively. The average COD, NH4+-N, NO3--N and TP removal efficiencies were 6.06%, 3.85%, 3.68% and 3.68% higher than these in CW system, respectively. Meanwhile, the maximum output voltage and power density of CW-MFC were 388 ± 12 mV and 107.54 mW/m3. In addition, the microbial community analysis indicated that the pollution removal and bioelectricity generation might benefit from the gradual enrichment of electroactive bacteria (Tolumonas) and denitrifying bacteria (Denitratisoma, Methylotenera and Sulfuritales). The findings can provide the optimum operation parameters and mechanism insight for the performance of CW-MFC systems.
Collapse
Affiliation(s)
- Houyun Yang
- Key Laboratory of Water Pollution Control and Wastewater Reuse of Anhui Province, Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, China.
| | - Jian Chen
- Key Laboratory of Water Pollution Control and Wastewater Reuse of Anhui Province, Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, China
| | - Li Yu
- Key Laboratory of Water Pollution Control and Wastewater Reuse of Anhui Province, Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, China
| | - Weihua Li
- Key Laboratory of Water Pollution Control and Wastewater Reuse of Anhui Province, Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, China
| | - Xianhuai Huang
- Key Laboratory of Water Pollution Control and Wastewater Reuse of Anhui Province, Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, China
| | - Qian Qin
- Key Laboratory of Water Pollution Control and Wastewater Reuse of Anhui Province, Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, China
| | - Shuguang Zhu
- Key Laboratory of Water Pollution Control and Wastewater Reuse of Anhui Province, Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, China
| |
Collapse
|
15
|
Yadav A, Jadhav DA, Ghangrekar MM, Mitra A. Effectiveness of constructed wetland integrated with microbial fuel cell for domestic wastewater treatment and to facilitate power generation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51117-51129. [PMID: 34826088 DOI: 10.1007/s11356-021-17517-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/09/2021] [Indexed: 02/05/2023]
Abstract
Constructed wetlands (CWs) have gained a lot of attention for wastewater treatment due to robustness and natural pollutant mitigation characteristics. This widely acknowledged technology possesses enough merits to derive direct electricity in collaboration with microbial fuel cell (MFC), thus taking advantage of microbial metabolic activities in the anoxic zone of CWs. In the present study, two identical lab-scale CWs were selected, each having 56 L capacity. One of the CW integrated with MFC (CW-MFC) contains two pairs of electrodes, i.e., carbon felt and graphite plate. The first pair of CW-MFC consists of a carbon felt cathode with a graphite plate anode, and the second pair contains a graphite plate cathode with a carbon felt anode. The other CW was not integrated with MFC and operated as a traditional CW for evaluating the performance. CW-MFC and CW were operated in continuous up-flow mode with a hydraulic retention time of 3 days and at different organic loading rates (OLRs) per unit surface area, such as 1.45 g m-2 day-1 (OLR-1), 2.43 g m-2 day-1 (OLR-2), and 7.25 g m-2 day-1 (OLR-3). The CW-MFC was able to reduce the organic matter, phosphate, and total nitrogen by 92%, 93%, and 70%, respectively, at OLR of 1.45 g m-2 day-1, which was found to be higher than that obtained in conventional CW. With increase in electrochemical redox activities, the second pair of electrodes made way for 3 times higher power density of 16.33 mW m-2 as compared to the first pair of electrodes in CW-MFC (5.35 mW m-2), asserting carbon felt as a good anode material to be used in CW-MFC. The CW-MFC with carbon felt as an anode material is proposed to improve the electro-kinetic activities for scalable applications to achieve efficient domestic wastewater treatment and electricity production.
Collapse
Affiliation(s)
- Anamika Yadav
- Department of Agricultural Engineering, Triguna Sen School of Technology, Assam University Silchar, Assam, 788011, India
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, 721302, India
| | - Dipak A Jadhav
- School of Water Resources, Indian Institute of Technology, Kharagpur, 721302, India.
- Department of Agricultural Engineering, Maharashtra Institute of Technology, Aurangabad, Maharashtra, 431010, India.
| | - Makarand M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology, Kharagpur, 721302, India.
| | - Arunabha Mitra
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, 721302, India
| |
Collapse
|
16
|
Wang Y, Zhang X, Lin H. Removal of Cr(vi) and p-chlorophenol and generation of electricity using constructed wetland-microbial fuel cells based on Leersia hexandra Swartz: p-chlorophenol concentration and hydraulic retention time effects. RSC Adv 2022; 12:15123-15132. [PMID: 35702437 PMCID: PMC9112668 DOI: 10.1039/d2ra01828d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/12/2022] [Indexed: 01/16/2023] Open
Abstract
Heavy metals and phenolic compounds existing in polluted wastewater are a threat to the environment and human safety. A downflow Leersia hexandra Swartz constructed wetland-microbial fuel cell (DLCW-MFC) was designed to treat polluted wastewater containing Cr(vi) and p-chlorophenol (4-CP). To determine the effect of 4-CP concentration and hydraulic retention time (HRT) on the performance of the DLCW-MFC system, the wastewater purification, electricity generation, electrochemical performance, and L. hexandra growth status were studied. Addition of 17.9 mg L-1 4-CP improved the power density (72.04 mW m-2) and the charge transfer capacity (exchange current, 4.72 × 10-3 A) of DLCW-MFC. The removal rates of Cr(vi) and 4-CP at a 4-CP concentration of 17.9 mg L-1 were 98.8% and 38.1%, respectively. The Cr content in L. hexandra was 17.66 mg/10 plants. However, a 4-CP concentration of 35.7 mg L-1 inhibited the removal of Cr(vi) and the growth of L. hexandra, and decreased the electricity generation (2.5 mW m-2) as well as exchange current (1.21 × 10-3 A) of DLCW-MFC. An increase in power density and removal of Cr(vi) and 4-CP, along with an enhanced transport coefficient of L. hexandra, was observed with HRT. At an optimal HRT of 6.5 d, the power density, coulomb efficiency, and exchange current of DLCW-MFC were 72.25 mW m-2, 2.38%, and 4.99 × 10-3 A, respectively. The removal rates of Cr(vi) and 4-CP were 99.0% and 78.6%, respectively. The Cr content and transport coefficient of L. hexandra were 4.56 mg/10 plants and 0.451, respectively. Thus, DLCW-MFC is a promising technology that can be used to detoxify polluted wastewater containing composite mixtures and synchronously generate electricity.
Collapse
Affiliation(s)
- Yian Wang
- College of Environmental Science and Engineering, Guilin University of Technology 319 Yanshan Street Guilin 541000 China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology 319 Yanshan Street Guilin 541000 China
| | - Xuehong Zhang
- College of Environmental Science and Engineering, Guilin University of Technology 319 Yanshan Street Guilin 541000 China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology 319 Yanshan Street Guilin 541000 China
| | - Hua Lin
- College of Environmental Science and Engineering, Guilin University of Technology 319 Yanshan Street Guilin 541000 China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology 319 Yanshan Street Guilin 541000 China
| |
Collapse
|
17
|
Apollon W, Rusyn I, González-Gamboa N, Kuleshova T, Luna-Maldonado AI, Vidales-Contreras JA, Kamaraj SK. Improvement of zero waste sustainable recovery using microbial energy generation systems: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153055. [PMID: 35032528 DOI: 10.1016/j.scitotenv.2022.153055] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Microbial energy generation systems, i.e., bioelectrochemical systems (BESs) are promising sustainable technologies that have been used in different fields of application such as biofuel production, biosensor, nutrient recovery, wastewater treatment, and heavy metals removal. However, BESs face great challenges such as large-scale application in real time, low power performance, and suitable materials for their configuration. This review paper aimed to discuss the use of BES systems such as conventional microbial fuel cells (MFCs), as well as plant microbial fuel cell (P-MFC), sediment microbial fuel cell (S-MFC), constructed wetland microbial fuel cell (CW-MFC), osmotic microbial fuel cell (OsMFC), photo-bioelectrochemical fuel cell (PBFC), and MFC-Fenton systems in the zero waste sustainable recovery process. Firstly, the configuration and electrode materials used in BESs as the main sources to improve the performance of these technologies are discussed. Additionally, zero waste recovery process from solid and wastewater feedstock, i.e., energy recovery: electricity generation (from 12 to 26,680 mW m-2) and fuel generation, i.e., H2 (170 ± 2.7 L-1 L-1 d-1) and CH4 (107.6 ± 3.2 mL-1 g-1), nutrient recovery of 100% (PO43-P), and 13-99% (NH4+-N), heavy metal removal/recovery: water recovery, nitrate (100%), sulfate (53-99%), and sulfide recovery/removal (99%), antibiotic, dye removal, and other product recovery are critically analyzed in this review paper. Finally, the perspective and challenges, and future outlook are highlighted. There is no doubt that BES technologies are an economical option for the simultaneous zero waste elimination and energy recovery. However, more research is required to carry out the large-scale application of BES, as well as their commercialization.
Collapse
Affiliation(s)
- Wilgince Apollon
- Department of Agricultural and Food Engineering, Faculty of Agronomy, Autonomous University of Nuevo León, Francisco Villa S/N, Ex-Hacienda El Canadá, General Escobedo, Nuevo León 66050, Mexico.
| | - Iryna Rusyn
- Department of Ecology and Sustainaible Environmental Management, Viacheslav Chornovil Institute of Sustainable Development, Lviv Polytechnic National University, Stepan Bandera st., 12, Lviv 79013, Ukraine
| | - Nancy González-Gamboa
- Renewable Energy Unit, Yucatan Center for Scientist Research, Carretera Sierra Papacal-Chuburná Puerto Km 5, CP 97302 Sierra Papacal, Yucatan, Mexico
| | - Tatiana Kuleshova
- Agrophysical Research Institute, Department of Plant Lightphysiology and Agroecosystem Bioproductivity, 195220 Saint-Petersburg 14, Grazhdanskiy pr., Russia
| | - Alejandro Isabel Luna-Maldonado
- Department of Agricultural and Food Engineering, Faculty of Agronomy, Autonomous University of Nuevo León, Francisco Villa S/N, Ex-Hacienda El Canadá, General Escobedo, Nuevo León 66050, Mexico
| | - Juan Antonio Vidales-Contreras
- Department of Agricultural and Food Engineering, Faculty of Agronomy, Autonomous University of Nuevo León, Francisco Villa S/N, Ex-Hacienda El Canadá, General Escobedo, Nuevo León 66050, Mexico
| | - Sathish-Kumar Kamaraj
- TecNM-Instituto Tecnológico El Llano Aguascalientes (ITEL), Laboratorio de Medio Ambiente Sostenible, Km.18 Carretera Aguascalientes-San Luis Potosí, El Llano Ags. C.P. 20330, Mexico.
| |
Collapse
|
18
|
Su D, Chen Y. Advanced bioelectrochemical system for nitrogen removal in wastewater. CHEMOSPHERE 2022; 292:133206. [PMID: 34922956 DOI: 10.1016/j.chemosphere.2021.133206] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) pollution in water has become a serious issue that cannot be ignored due to the harm posed by excessive nitrogen to environmental safety and human health; as such, N concentrations in water are strictly limited. The bioelectrochemical system (BES) is a new method to remove excessive N from water, and has attracted considerable attention. Compared with other methods, it is highly efficient and has low energy consumption. However, the BES has not been applied for N removal in practice due to lack of in-depth research on the mechanism and construction of high-performance electrodes, separators, and reactor configurations; this highlights a need to review and examine the efforts in this field. This paper provides a comprehensive review on the current BES research for N removal focusing on the reaction principles, reactor configurations, electrodes and separators, and treatment of actual wastewater; the corresponding performances in these realms are also discussed. Finally, the prospects for N removal in water using the BES are presented.
Collapse
Affiliation(s)
- Dexin Su
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, PR China
| | - Yupeng Chen
- School of Chemistry, Beihang University, Beijing, 100191, PR China.
| |
Collapse
|
19
|
Wang L, Xu D, Zhang Q, Liu T, Tao Z. Simultaneous removal of heavy metals and bioelectricity generation in microbial fuel cell coupled with constructed wetland: an optimization study on substrate and plant types. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:768-778. [PMID: 34341922 DOI: 10.1007/s11356-021-15688-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
A microbial fuel cell coupled with constructed wetland (CW-MFC) was built to remove heavy metals (Zn and Ni) from sludge. The performance for the effects of substrates (granular activated carbon (GAC), ceramsite) and plants (Iris pseudacorus, water hyacinth) towards the heavy metal treatment as well as electricity generation was systematically investigated to determine the optimal constructions of CW-MFCs. The CW-MFC systems possessed higher Zn and Ni removal efficiencies as compared to CW. The maximal removal rates of Zn (76.88%) and Ni (66.02%) were obtained in system CW-MFC based on GAC and water hyacinth (GAC- and WH-CW-MFC). Correspondingly, the system produced the maximum voltage of 534.30 mV and power density of 70.86 mW·m-3, respectively. Plant roots and electrodes contributed supremely to the removal of heavy metals, especially for GAC- and WH-CW-MFC systems. The coincident enrichment rates of Zn and Ni reached 21.10% and 26.04% for plant roots and 14.48% and 16.50% for electrodes, respectively. A majority of the heavy metals on the sludge surface were confirmed as Zn and Ni. Furthermore, the high-valence Zn and Ni were effectively reduced to low-valence or elemental metals. This study provides a theoretical guidance for the optimal construction of CW-MFC and the resource utilization of sludge containing heavy metals.
Collapse
Affiliation(s)
- Lu Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Dayong Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Qingyun Zhang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China.
| | - Tingting Liu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Zhengkai Tao
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| |
Collapse
|
20
|
Ebrahimi A, Sivakumar M, McLauchlan C. A taxonomy of design factors in constructed wetland-microbial fuel cell performance: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 291:112723. [PMID: 33940362 DOI: 10.1016/j.jenvman.2021.112723] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
The past decade has seen the rapid development of constructed wetland-microbial fuel cell (CW-MFC) technology in many aspects. The first publication on the combination of constructed wetland (CW) and microbial fuel cell (MFC) appeared in 2012, subsequently, research on the subject has grown exponentially to improve the performance of CW-MFCs in their dual roles of wastewater treatment and power generation. Although significant research has been conducted on this technology worldwide, a comprehensive and critical review of effective controlling parameters is lacking. More broadly, research is needed to draw up-to-date conclusions on recent developments and to identify knowledge gaps for further studies. This review paper systematically enumerates and reviews research studies published in this area to determine the key design factors and their role in CW-MFC performance. Moreover, a taxonomy of all CW-MFC design parameters has been synthesised from the literature. Importantly, this original work provides a comprehensive conceptual framework for future researchers, designers, builders, and users to understand CW-MFC technology. Within the taxonomy, parameters are placed in three main categories (physical/environmental, chemical, and biological/electrochemical) and comprehensive details are given for each parameter. Finally, a comprehensive summary of the parameters has been tabulated showing their impact on CW-MFC operation, design recommendations from literature, and the significant research gaps that this review has identified within the existing literature. It is hoped that this paper will provide a clear and rich picture of this technology at its current stage of development and furthermore, will facilitate a deeper understanding of CW-MFC performance for long-term and large-scale development.
Collapse
Affiliation(s)
- Atieh Ebrahimi
- School of Civil, Mining, and Environmental Engineering, University of Wollongong, NSW, 2522, Australia.
| | - Muttucumaru Sivakumar
- School of Civil, Mining, and Environmental Engineering, University of Wollongong, NSW, 2522, Australia
| | - Craig McLauchlan
- Faculty of Engineering and Information Sciences, University of Wollongong, NSW, 2522, Australia
| |
Collapse
|
21
|
Guo H, Han S, Lee DJ. Genomic studies on natural and engineered aquatic denitrifying eco-systems: A research update. BIORESOURCE TECHNOLOGY 2021; 326:124740. [PMID: 33497924 DOI: 10.1016/j.biortech.2021.124740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Excess nitrogenous compounds in municipal or industrial wastewaters can stimulate growth of denitrifying bacteria, in return, to convert potentially hazardous nitrate to inorganic nitrogen gas. To explore the community structure, distributions and succession of functional strains, and their interactions with other microbial communities, contemporary studies were performed based on detailed genomic analysis. This mini-review updated contemporary genomic studies on denitrifying genes in natural and engineered aquatic systems, with the constructed wetlands being the demonstrative system for the latter. Prospects for the employment of genomic studies on denitrifying systems for process design, optimization and development of novel denitrifying processes were discussed.
Collapse
Affiliation(s)
- Hongliang Guo
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Song Han
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; College of Technology and Engineering, National Taiwan Normal University, Taipei 10610, Taiwan; College of Engineering, Tunghai University, Taichung 40070, Taiwan.
| |
Collapse
|