1
|
Frigoli M, Lowdon JW, Cleij TJ, Diliën H, Eersels K, van Grinsven B. Detection of antibiotic sulfamethoxazole residues in milk using a molecularly imprinted polymer-based thermal biosensor. Food Chem 2025; 476:143525. [PMID: 39999504 DOI: 10.1016/j.foodchem.2025.143525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025]
Abstract
Antibiotic resistance is a growing concern, partly due to inadequate inspections in the food safety chain. The accumulation of antibiotics like sulfamethoxazole (SMX) in animal products contributes to the rise of resistant microorganisms, posing a global health challenge. This work focuses on developing a thermal sensor to quickly and affordably detect SMX residues in milk samples. Molecularly imprinted polymers (MIPs) were synthesized and immobilized on an aluminum chip to measure thermal changes using the heat-transfer method (HTM). The sensor's detection limit in calcium chloride solutions was 261 ± 12 pmol L-1, well below regulatory limits for sulfonamides in dairy. The sensor also showed good selectivity when tested against antibiotics from different classes, and good performances in spiked milk samples. These results indicate that the thermal sensor provides a sensitive, low-cost alternative for detecting sulfamethoxazole traces in dairy products, contributing to improved food safety.
Collapse
Affiliation(s)
- Margaux Frigoli
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, the Netherlands.
| | - Joseph W Lowdon
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, the Netherlands
| | - Thomas J Cleij
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, the Netherlands
| | - Hanne Diliën
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, the Netherlands
| | - Kasper Eersels
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, the Netherlands
| | - Bart van Grinsven
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, the Netherlands
| |
Collapse
|
2
|
Zhu X, Angelidaki I, Zhang T, Ju F. Metagenomics Disentangles Differential Resistome Traits and Risks in Full-Scale Anaerobic Digestion Plants under Ambient, Mesophilic, and Thermophilic Conditions. ACS ENVIRONMENTAL AU 2025; 5:183-196. [PMID: 40125276 PMCID: PMC11926754 DOI: 10.1021/acsenvironau.4c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 03/25/2025]
Abstract
Anaerobic digestion (AD) systems are vital for converting organic waste to green bioenergy but also serve as a non-negligible environmental reservoir for antibiotic-resistance genes (ARGs) and resistant bacteria of environmental and human health concerns. This study profiles the antibiotic resistome of 90 full-scale biogas reactors and reveals that AD microbiomes harbor at least 30 types and 1257 subtypes of ARGs, of which 16% are located on plasmids showing potential mobility. The total abundance of AD-ARGs ranges widely from 0.13 to 7.81 copies per cell and is distributed into 42-739 subtypes, significantly influenced (P < 0.05) by operational conditions like digestion temperature and substrate types. Compared with the ambient and mesophilic digesters, the thermophilic digesters harbor a significantly lower abundance and diversity as well as greatly reduced mobility and host pathogenicity levels (all P < 0.05) of ARGs, revealing that a higher digestion temperature mitigates the overall resistome risks. The comprehensive analysis of basic traits and key traits of the AD resistome is demonstrated to provide crucial quantitative and qualitative insights into the diversity, distribution pattern, and health risks of ARGs in full-scale AD systems. The revealed knowledge offers new guidance for improving environmental resistome management and developing oriented mitigation strategies to minimize the unwanted spread of clinically important antimicrobial resistance from AD systems.
Collapse
Affiliation(s)
- Xinyu Zhu
- Westlake
Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou 310024, China
- Environmental
Microbiome and Biotechnology Laboratory, School of Engineering, Westlake University, Hangzhou, 310030 Zhejiang, China
- Center
of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, 310030 Zhejiang, China
| | - Irini Angelidaki
- Department
of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Tong Zhang
- Environmental
Microbiome Engineering and Biotechnology Laboratory, Department of
Civil Engineering, The University of Hong
Kong, Pokfulam Road, Pokfulam 999077, Hong Kong, China
| | - Feng Ju
- Westlake
Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou 310024, China
- Environmental
Microbiome and Biotechnology Laboratory, School of Engineering, Westlake University, Hangzhou, 310030 Zhejiang, China
- Center
of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, 310030 Zhejiang, China
- Institute
of Advanced Technology, Westlake Institute
for Advanced Study, 18
Shilongshan Road, Hangzhou, 310024 Zhejiang, China
| |
Collapse
|
3
|
Wang X, Wang Y, Zhang Z, Tian L, Zhu T, Zhao Y, Tong Y, Yang Y, Sun P, Liu Y. Effect, Fate and Remediation of Pharmaceuticals and Personal Care Products (PPCPs) during Anaerobic Sludge Treatment: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19095-19114. [PMID: 39428634 DOI: 10.1021/acs.est.4c06760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Biomass energy recovery from sewage sludge through anaerobic treatment is vital for environmental sustainability and a circular economy. However, large amounts of pharmaceutical and personal care products (PPCPs) remain in sludge, and their interactions with microbes and enzymes would affect resource recovery. This article reviews the effects and mechanisms of PPCPs on anaerobic sludge treatment. Most PPCPs posed adverse impacts on methane production, while certain low-toxicity PPCPs could stimulate volatile fatty acids and biohydrogen accumulation. Changes in the microbial community structure and functional enzyme bioactivities were also summarized with PPCPs exposure. Notably, PPCPs such as carbamazepine could bind with the active sites of the enzyme and induce microbial stress responses. The fate of various PPCPs during anaerobic sludge treatment indicated that PPCPs featuring electron-donating groups (e.g., ·-NH2 and ·-OH), hydrophilicity, and low molecular weight were more susceptible to microbial utilization. Key biodegrading enzymes (e.g., cytochrome P450 and amidase) were crucial for PPCP degradation, although several PPCPs remain refractory to biotransformation. Therefore, remediation technologies including physical pretreatment, chemicals, bioaugmentation, and their combinations for enhancing PPCPs degradation were outlined. Among these strategies, advanced oxidation processes and combined strategies effectively removed complex and refractory PPCPs mainly by generating free radicals, providing recommendations for improving sludge detoxification.
Collapse
Affiliation(s)
- Xiaomin Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Zixin Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Lixin Tian
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yongkui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
4
|
Visca A, Di Gregorio L, Clagnan E, Bevivino A. Sustainable strategies: Nature-based solutions to tackle antibiotic resistance gene proliferation and improve agricultural productivity and soil quality. ENVIRONMENTAL RESEARCH 2024; 248:118395. [PMID: 38307185 DOI: 10.1016/j.envres.2024.118395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
The issue of antibiotic resistance is now recognized by the World Health Organisation (WHO) as one of the major problems in human health. Although its effects are evident in the healthcare settings, the root cause should be traced back to the One Health link, extending from animals to the environment. In fact, the use of organic fertilizers in agroecosystems represents one, if not the primary, cause of the introduction of antibiotics and antibiotic-resistant bacteria into the soil. Since the concentrations of antibiotics introduced into the soil are residual, the agroecosystem has become a perfect environment for the selection and proliferation of antibiotic resistance genes (ARGs). The continuous influx of these emerging contaminants (i.e., antibiotics) into the agroecosystem results in the selection and accumulation of ARGs in soil bacteria, occasionally giving rise to multi-resistant bacteria. These bacteria may harbour ARGs related to various antibiotics on their plasmids. In this context, these bacteria can potentially enter the human sphere when individuals consume food from contaminated agroecosystems, leading to the acquisition of multi-resistant bacteria. Once introduced into the nosocomial environment, these bacteria pose a significant threat to human health. In this review, we analyse how the use of digestate as an organic fertilizer can mitigate the spread of ARGs in agroecosystems. Furthermore, we highlight how, according to European guidelines, digestate can be considered a Nature-Based Solution (NBS). This NBS not only has the ability to mitigate the spread of ARGs in agroecosystems but also offers the opportunity to further improve Microbial-Based Solutions (MBS), with the aim of enhancing soil quality and productivity.
Collapse
Affiliation(s)
- Andrea Visca
- Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy.
| | - Luciana Di Gregorio
- Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
| | - Elisa Clagnan
- Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
| | - Annamaria Bevivino
- Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
| |
Collapse
|
5
|
Garbini GL, Barra Caracciolo A, Rolando L, Visca A, Borello D, Cosentini C, Gagliardi G, Ieropoulos I, Grenni P. Effects of municipal waste compost on microbial biodiversity and energy production in terrestrial microbial fuel cells. N Biotechnol 2023; 78:131-140. [PMID: 37875210 DOI: 10.1016/j.nbt.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 10/12/2023] [Accepted: 10/21/2023] [Indexed: 10/26/2023]
Abstract
Microbial Fuel Cells (MFCs) transform organic matter into electricity through microbial electrochemical reactions catalysed on anodic and cathodic half-cells. Terrestrial MFCs (TMFCs) are a bioelectrochemical system for bioelectricity production as well as soil remediation. In TMFCs, the soil is the ion-exchange electrolyte, whereas a biofilm on the anode oxidises organic matter through electroactive bacteria. Little is known of the overall microbial community composition in a TMFC, which impedes complete exploitation of the potential to generate energy in different soil types. In this context, an experiment was performed to reveal the prokaryotic community structure in single chamber TMFCs with soil in the presence and absence of a municipal waste compost (3% w/v). The microbial community was assessed on the anode and cathode and in bulk soil at the end of the experiment (54 days). Moreover, TMFC electrical performance (voltage and power) was also evaluated over the experimental period, varying the external resistance to improve performance. Compost stimulated soil microbial activity, in line with a general increase in voltage and power. Significant differences were observed in the microbial communities between initial soil conditions and TMFCs, and between the anode, cathode and bulk soil in the presence of the compost. Several electroactive genera (Bacillus, Fulvivirga, Burkholdeira and Geobacter) were found at the anode in the presence of compost. Overall, the use of municipal waste compost significantly increased the performance of the MFCs in terms of electrical power and voltage generated, not least thanks to the selective pressure towards electroactive bacteria on the anode.
Collapse
Affiliation(s)
- Gian Luigi Garbini
- Water research Institute, National Research Council, via Salaria km 29.300, Monterotondo, Rome, Italy
| | - Anna Barra Caracciolo
- Water research Institute, National Research Council, via Salaria km 29.300, Monterotondo, Rome, Italy.
| | - Ludovica Rolando
- Water research Institute, National Research Council, via Salaria km 29.300, Monterotondo, Rome, Italy
| | - Andrea Visca
- Water research Institute, National Research Council, via Salaria km 29.300, Monterotondo, Rome, Italy
| | - Domenico Borello
- Department of Mechanical and Aerospace Engineering (DIMA), Sapienza University of Rome, RM, Italy
| | - Carlotta Cosentini
- Department of Mechanical and Aerospace Engineering (DIMA), Sapienza University of Rome, RM, Italy
| | - Gabriele Gagliardi
- Department of Mechanical and Aerospace Engineering (DIMA), Sapienza University of Rome, RM, Italy
| | - Ioannis Ieropoulos
- Water & Environmental Engineering Group, School of Engineering, University of Southampton, Bolderwood Campus, SO16 7QF, UK
| | - Paola Grenni
- Water research Institute, National Research Council, via Salaria km 29.300, Monterotondo, Rome, Italy
| |
Collapse
|
6
|
Saha S, Xiong JQ, Patil SM, Ha GS, Hoh JK, Park HK, Chung W, Chang SW, Khan MA, Park HB, Jeon BH. Dissemination of sulfonamide resistance genes in digester microbiome during anaerobic digestion of food waste leachate. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131200. [PMID: 36958158 DOI: 10.1016/j.jhazmat.2023.131200] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 05/03/2023]
Abstract
The preeminence of sulfonamide drug resistance genes in food waste (FW) and the increased utilization of high-strength organic FW in anaerobic digestion (AD) to enhance methane production have raised severe public health concerns in wastewater treatment plants worldwide. In this regard, the dissemination patterns of different sulfonamide resistance genes (sul1 and sul2) and their impact on the digester core microbiota during AD of FW leachate (FWL) were evaluated. The presence of various sulfonamide antibiotics (SAs) in FWL digesters improved the final methane yield by 37 % during AD compared with FWL digesters without SAs. Microbial population shifts towards hydrolytic, acidogenic, and acetogenic bacteria in the phyla Actinobacteriota, Bacteroidota, Chloroflexi, Firmicutes, Proteobacteria, and Synergistota occurred due to SA induced substrate digestion and absorption through active transport; butanoate, propanoate, and pyruvate metabolism; glycolysis; gluconeogenesis; the citrate cycle; and pentose phosphate pathway. The initial dominance of Methanosaeta (89-96 %) declined to 47-53 % as AD progressed and shifted towards Methanosarcina (40 %) in digesters with the highest SA concentrations at the end of AD. Dissemination of sul1 depended on class 1 integron gene (intl1)-based horizontal gene transfer to pathogenic members of Chloroflexi, Firmicutes, and Patescibacteria, whereas sul2 was transmitted to Synergistota independent of intl1. Low susceptibility and ability to utilize SAs during methanogenesis shielded methanogenic archaea against selection pressure, thus preventing them from interacting with sul or intl1 genes, thereby minimizing the risk of antibiotic resistance development. The observed emergence of cationic antimicrobial peptide, vancomycin, and β-lactam resistance in the core microbiota during AD of FWL in the presence of SAs suggests that multidrug resistance caused by bacterial transformation could lead to an increase in the environmental resistome through wastewater sludge treatment.
Collapse
Affiliation(s)
- Shouvik Saha
- Natural Resources Research Institute, University of Minnesota Duluth, Duluth, MN 55812, USA; Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, the Republic of Korea
| | - Jiu-Qiang Xiong
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong, China
| | - Swapnil M Patil
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, the Republic of Korea
| | - Geon-Soo Ha
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, the Republic of Korea
| | - Jeong-Kyu Hoh
- Department of Obstetrics and Gynecology, College of Medicine, Hanyang University, Seoul 04763, the Republic of Korea
| | - Hyun-Kyung Park
- Department of Pediatrics, College of Medicine, Hanyang University, Seoul 04763, the Republic of Korea
| | - Woojin Chung
- Department of Environmental Energy Engineering, Kyonggi University, Suwon 16227, the Republic of Korea
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, Suwon 16227, the Republic of Korea
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ho Bum Park
- Department of Energy Engineering, Hanyang University, Seoul 04763, the Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, the Republic of Korea.
| |
Collapse
|
7
|
Chen P, Jiang J, Zhang S, Wang X, Guo X, Li F. Enzymatic response and antibiotic resistance gene regulation by microbial fuel cells to resist sulfamethoxazole. CHEMOSPHERE 2023; 325:138410. [PMID: 36925019 DOI: 10.1016/j.chemosphere.2023.138410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/28/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Microbial fuel cells (MFCs) are a promising and sustainable technology which can generate electricity and treat antibiotic wastewater simultaneously. However, the antibiotic resistance genes (ARGs) induced by antibiotics in MFCs increase risks to ecosystems and human health. In this study, the activities of enzymes and regulation genes related to ARGs in MFCs spiked with sulfamethoxazole (SMX) were evaluated to explore the induction mechanism of ARGs. Under lower doses of SMX (10 mg/L and 20 mg/L SMX in this study), microorganisms tend to up regulate catalase and RpoS regulon to induce sul1, sul3 and intI1. The microorganisms exposed to higher doses of SMX (30 mg/L and 40 mg/L SMX in this study) tend to up regulate superoxide dismutase and SOS response to generate sul2 and sulA. Moreover, the exposure concentrations of SMX had no significant effect on the electricity production of MFCs. This work suggested that the ARGs in MFCs might be inhibited by affecting enzymatic activities and regulatory genes according to the antibiotic concentration without affecting the electricity production.
Collapse
Affiliation(s)
- Ping Chen
- Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin, 300350, China
| | - Jiwei Jiang
- Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin, 300350, China
| | - Shixuan Zhang
- Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin, 300350, China
| | - Xinyu Wang
- Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin, 300350, China; Department of Environmental Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Xiaoyan Guo
- Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin, 300350, China
| | - Fengxiang Li
- Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin, 300350, China.
| |
Collapse
|
8
|
Barra Caracciolo A, Visca A, Rauseo J, Spataro F, Garbini GL, Grenni P, Mariani L, Mazzurco Miritana V, Massini G, Patrolecco L. Bioaccumulation of antibiotics and resistance genes in lettuce following cattle manure and digestate fertilization and their effects on soil and phyllosphere microbial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120413. [PMID: 36243186 DOI: 10.1016/j.envpol.2022.120413] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The degradation and bioaccumulation of selected antibiotics such as the sulfonamide sulfamethoxazole (SMX) and the fluoroquinolones enrofloxacin (ENR) and ciprofloxacin (CIP) were investigated in soil microcosm experiments where Lactuca sativa was grown with manure or digestate (1%) and spiked with a mixture of the three antibiotics (7.5 mg/kg each). The soil, rhizosphere and leaf phyllosphere were sampled (at 0 and 46 days) from each microcosm to analyze the antibiotic concentrations, main resistance genes (sul1, sul2, qnrS, aac-(6')-Ib-crand qepA), the intI1and tnpA mobile genetic elements and the microbial community structure.Overall results showed that SMX and CIP decreased (70-85% and 55-79%, respectively), and ENR was quite persistent during the 46-day experiment. In plant presence, CIP and ENR were partially up-taken from soil to plant. In fact the bioaccumulation factors were > 1, with higher values in manure than digestate amended soils. The most abundant gene in soil was sul2 in digestate- and aac-(6')-Ib-cr in the manure-amended microcosms. In soil, neither sulfamethoxazole-resistance (sul1 and sul2), nor fluoroquinolone-resistance (aac-(6')-Ib-cr, qepA and qnrS) gene abundances were correlated with any antibiotic concentration. On the contrary, in lettuce leaves, the aac-(6')-Ib-cr gene was the most abundant, in accordance with the fluoroquinolone bioaccumulation. Finally, digestate stimulated a higher soil microbial biodiversity, introducing and promoting more bacterial genera associated with antibiotic degradation and involved in soil fertility and decreased fluoroquinolone bioaccumulation.
Collapse
Affiliation(s)
| | - Andrea Visca
- Water Research Institute - National Research Council (IRSA-CNR), Rome, Italy.
| | - Jasmin Rauseo
- Institute of Polar Sciences, National Research Council (ISP-CNR), Rome, Italy
| | - Francesca Spataro
- Institute of Polar Sciences, National Research Council (ISP-CNR), Rome, Italy
| | - Gian Luigi Garbini
- Water Research Institute - National Research Council (IRSA-CNR), Rome, Italy
| | - Paola Grenni
- Water Research Institute - National Research Council (IRSA-CNR), Rome, Italy
| | - Livia Mariani
- Water Research Institute - National Research Council (IRSA-CNR), Rome, Italy
| | - Valentina Mazzurco Miritana
- Water Research Institute - National Research Council (IRSA-CNR), Rome, Italy; Department of Energy Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Giulia Massini
- Water Research Institute - National Research Council (IRSA-CNR), Rome, Italy; Department of Energy Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Luisa Patrolecco
- Institute of Polar Sciences, National Research Council (ISP-CNR), Rome, Italy
| |
Collapse
|
9
|
Hazra M, Joshi H, Williams JB, Watts JEM. Antibiotics and antibiotic resistant bacteria/genes in urban wastewater: A comparison of their fate in conventional treatment systems and constructed wetlands. CHEMOSPHERE 2022; 303:135148. [PMID: 35640694 DOI: 10.1016/j.chemosphere.2022.135148] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/09/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
There is a growing concern that the use and misuse of antibiotics can increase the detection of antibiotic resistant genes (ARGs) in wastewater. Conventional wastewater treatment plants provide a pathway for ARGs and antibiotic resistant bacteria (ARB) to be released into natural water bodies. Research has indicated that conventional primary and secondary treatment systems can reduce ARGs/ARB to varying degrees. However, in developing/low-income countries, only 8-28% of wastewater is treated via conventional treatment processes, resulting in the environment being exposed to high levels of ARGs, ARB and pharmaceuticals in raw sewage. The use of constructed wetlands (CWs) has the potential to provide a low-cost solution for wastewater treatment, with respect to removal of nutrients, pathogens, ARB/ARGs either as a standalone treatment process or when integrated with conventional treatment systems. Recently, CWs have also been employed for the reduction of antibiotic residues, pharmaceuticals, and emerging contaminants. Given the benefits of ARG removal, low cost of construction, maintenance, energy requirement, and performance efficiencies, CWs offer a promising solution for developing/low-income countries. This review promotes a better understanding of the performance efficiency of treatment technologies (both conventional systems and CWs) for the reduction of antibiotics and ARGs/ARB from wastewater and explores workable alternatives.
Collapse
Affiliation(s)
- Moushumi Hazra
- Department of Hydrology, Indian Institute of Technology, Roorkee, Uttarakhand, India.
| | - Himanshu Joshi
- Department of Hydrology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - John B Williams
- School of Civil Engineering and Surveying, University of Portsmouth, United Kingdom
| | - Joy E M Watts
- School of Biological Sciences, University of Portsmouth, United Kingdom
| |
Collapse
|
10
|
Miritana VM, Patrolecco L, Barra Caracciolo A, Visca A, Piccinini F, Signorini A, Rosa S, Grenni P, Garbini GL, Spataro F, Rauseo J, Massini G. Effects of Ciprofloxacin Alone or in Mixture with Sulfamethoxazole on the Efficiency of Anaerobic Digestion and Its Microbial Community. Antibiotics (Basel) 2022; 11:1111. [PMID: 36009981 PMCID: PMC9404932 DOI: 10.3390/antibiotics11081111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 01/04/2023] Open
Abstract
Some livestock farms rely on anaerobic digestion (AD) technology for manure disposal, thus obtaining energy (biogas) and fertilizer (digestate). Mixtures of antibiotics used for animal health often occur in organic waste and their possible synergistic/antagonistic effects on microorganisms involved in AD are still poorly studied. This work focuses on the effects of adding ciprofloxacin, alone (5 mg L-1) and in combination with sulfamethoxazole (2.5-5-10 mg L-1), on AD efficiency and microbial community structure. The experiment consisted of 90-day cattle manure batch tests and antibiotic removal percentages were assessed. Adding antibiotics always promoted CH4 and H2 production compared to untreated controls; however, CH4 production was lowered with the highest ciprofloxacin (CIP) concentrations. The overall results show antibiotic degradation caused by acidogenic Bacteria, and CH4 was mainly produced through the hydrogenotrophic-pathway by methanogenic Archaea. Shifts in microbial community abundance (DAPI counts) and composition (Illumina-MiSeq and FISH analyses) were observed.
Collapse
Affiliation(s)
- Valentina Mazzurco Miritana
- Department of Energy Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy
- Water Research Institute—National Research Council (IRSA-CNR), SP 35d, km 0.7, Montelibretti, 00010 Rome, Italy
| | - Luisa Patrolecco
- Institute of Polar Sciences—National Research Council (ISP-CNR), SP 35d, km 0.7, Montelibretti, 00010 Rome, Italy
| | - Anna Barra Caracciolo
- Water Research Institute—National Research Council (IRSA-CNR), SP 35d, km 0.7, Montelibretti, 00010 Rome, Italy
| | - Andrea Visca
- Water Research Institute—National Research Council (IRSA-CNR), SP 35d, km 0.7, Montelibretti, 00010 Rome, Italy
| | - Flavia Piccinini
- Department of Energy Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy
| | - Antonella Signorini
- Department of Energy Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy
| | - Silvia Rosa
- Department of Energy Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy
| | - Paola Grenni
- Water Research Institute—National Research Council (IRSA-CNR), SP 35d, km 0.7, Montelibretti, 00010 Rome, Italy
| | - Gian Luigi Garbini
- Water Research Institute—National Research Council (IRSA-CNR), SP 35d, km 0.7, Montelibretti, 00010 Rome, Italy
| | - Francesca Spataro
- Institute of Polar Sciences—National Research Council (ISP-CNR), SP 35d, km 0.7, Montelibretti, 00010 Rome, Italy
| | - Jasmin Rauseo
- Institute of Polar Sciences—National Research Council (ISP-CNR), SP 35d, km 0.7, Montelibretti, 00010 Rome, Italy
| | - Giulia Massini
- Department of Energy Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy
- Water Research Institute—National Research Council (IRSA-CNR), SP 35d, km 0.7, Montelibretti, 00010 Rome, Italy
| |
Collapse
|
11
|
Flores-Orozco D, Levin D, Kumar A, Sparling R, Cicek N. A meta-analysis reveals that operational parameters influence levels of antibiotic resistance genes during anaerobic digestion of animal manures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152711. [PMID: 34974005 DOI: 10.1016/j.scitotenv.2021.152711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Anaerobic digestion (AD) has shown the potential to reduce the numbers and types of antibiotic-resistance genes (ARG) present in animal manures. However, the variability of the results has limited the ability to draw solid conclusions. To address this issue, we performed a series of meta-analyses to evaluate how AD of pig, cattle, and dairy manures affects ARG levels and how different parameters, such as temperature, pH, digestion times, and the addition of other substances (e.g., solids, antibiotics) influence ARG changes. Twenty studies with enough details on changes in ARG levels during the AD process were identified and used for the meta-analyses. The results suggested that AD could significantly reduce ARG levels regardless of the conditions of the process. Also, thermophilic AD was more effective than mesophilic AD at reducing ARGs, although this difference was only significant for pig manures. The results also suggested that long digestion times (>50 days) yielded better ARG reduction rates, and that the addition of solids from an external source (co-digestion) negatively affected the efficiency of ARG reduction. In general, the results suggested that ARG changes during AD could be linked to the abundance and activity of hydrolytic communities.
Collapse
Affiliation(s)
- Daniel Flores-Orozco
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, Manitoba R3T 5V6, Canada.
| | - David Levin
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, Manitoba R3T 5V6, Canada
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Richard Sparling
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Nazim Cicek
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, Manitoba R3T 5V6, Canada
| |
Collapse
|
12
|
Abstract
The present paper reviews the most recent advances regarding the effects of chemical and organic fertilizers on soil microbial communities. Based on the results from the articles considered, some details are presented on how the use of various types of fertilizers affects the composition and activity of soil microbial communities. Soil microbes have different responses to fertilization based on differences in the total carbon (C), nitrogen (N) and phosphorus (P) contents in the soil, along with soil moisture and the presence of plant species. These articles show that the use of chemical fertilizers changes the abundance of microbial populations and stimulates their growth thanks to the nutrient supply added. Overall, however, the data revealed that chemical fertilizers have no significant influence on the richness and diversity of the bacteria and fungi. Instead, the abundance of individual bacterial or fungal species was sensitive to fertilization and was mainly attributed to the changes in the soil chemical properties induced by chemical or organic fertilization. Among the negative effects of chemical fertilization, the decrease in enzymatic activity has been highlighted by several papers, especially in soils that have received the largest amounts of fertilizers together with losses in organic matter.
Collapse
|
13
|
Effects of Sulfamethoxazole on Growth and Antibiotic Resistance of A Natural Microbial Community. WATER 2021. [DOI: 10.3390/w13091262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Diffuse environmental antibiotic and antibiotic resistance gene contamination is increasing human and animal exposure to these emerging compounds with a consequent risk of reduction in antibiotic effectiveness. The present work investigated the effect of the antibiotic sulfamethoxazole (SMX) on growth and antibiotic resistance genes of a microbial community collected from an anaerobic digestion plant fed with cattle manure. Digestate samples were used as inoculum for concentration-dependent experiments using SMX at various concentrations. The antibiotic concentrations affecting the mixed microbial community in terms of growth and spread of resistant genes (sul1, sul2) were investigated through OD (Optical Density) measures and qPCR assays. Moreover, SMX biodegradation was assessed by LC-MS/MS analysis. The overall results showed that SMX concentrations in the range of those found in the environment did not affect the microbial community growth and did not select for antibiotic-resistant gene (ARG) maintenance or spread. Furthermore, the microorganisms tested were able to degrade SMX in only 24 h. This study confirms the complexity of antibiotic resistance spread in real matrices where different microorganisms coexist and suggests that antibiotic biodegradation needs to be included for fully understanding the resistance phenomena among bacteria.
Collapse
|
14
|
Anaerobic Digestion and Removal of Sulfamethoxazole, Enrofloxacin, Ciprofloxacin and Their Antibiotic Resistance Genes in a Full-Scale Biogas Plant. Antibiotics (Basel) 2021; 10:antibiotics10050502. [PMID: 33925011 PMCID: PMC8146758 DOI: 10.3390/antibiotics10050502] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
Anaerobic digestion is one of the best ways to re-use animal manure and agricultural residues, through the production of combustible biogas and digestate. However, the use of antibiotics for preventing and treating animal diseases and, consequently, their residual concentrations in manure, could introduce them into anaerobic digesters. If the digestate is applied as a soil fertilizer, antibiotic residues and/or their corresponding antibiotic resistance genes (ARGs) could reach soil ecosystems. This work investigated three common soil emerging contaminants, i.e., sulfamethoxazole (SMX), ciprofloxacin (CIP), enrofloxacin (ENR), their ARGs sul1, sul2, qnrS, qepA, aac-(6′)-Ib-cr and the mobile genetic element intI1, for one year in a full scale anaerobic plant. Six samplings were performed in line with the 45-day hydraulic retention time (HRT) of the anaerobic plant, by collecting input and output samples. The overall results show both antibiotics and ARGs decreased during the anaerobic digestion process. In particular, SMX was degraded by up to 100%, ENR up to 84% and CIP up to 92%, depending on the sampling time. In a similar way, all ARGs declined significantly (up to 80%) in the digestate samples. This work shows how anaerobic digestion can be a promising practice for lowering antibiotic residues and ARGs in soil.
Collapse
|
15
|
Xiao L, Wang Y, Lichtfouse E, Li Z, Kumar PS, Liu J, Feng D, Yang Q, Liu F. Effect of Antibiotics on the Microbial Efficiency of Anaerobic Digestion of Wastewater: A Review. Front Microbiol 2021; 11:611613. [PMID: 33584577 PMCID: PMC7875893 DOI: 10.3389/fmicb.2020.611613] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Recycling waste into new materials and energy is becoming a major challenge in the context of the future circular economy, calling for advanced methods of waste treatment. For instance, microbially-mediated anaerobic digestion is widely used for conversion of sewage sludge into biomethane, fertilizers and other products, yet the efficiency of microbial digestion is limited by the occurrence of antibiotics in sludges, originating from drug consumption for human and animal health. Here we present antibiotic levels in Chinese wastewater, then we review the effects of antibiotics on hydrolysis, acidogenesis and methanogenesis, with focus on macrolides, tetracyclines, β-lactams and antibiotic mixtures. We detail effects of antibiotics on fermentative bacteria and methanogenic archaea. Most results display adverse effects of antibiotics on anaerobic digestion, yet some antibiotics promote hydrolysis, acidogenesis and methanogenesis.
Collapse
Affiliation(s)
- Leilei Xiao
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, China
| | - Yiping Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Eric Lichtfouse
- Aix-Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix en Provence, France.,State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Zhenkai Li
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
| | - Jian Liu
- Shandong Key Laboratory of Biophysics, Shandong Engineering Laboratory of Swine Health Big Data and Intelligent Monitoring, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Dawei Feng
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Fanghua Liu
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, China
| |
Collapse
|