1
|
Li Z, Cai H, Xu B, Dong Q, Jia K, Lin Z, Wang X, Liu Y, Qin X. Prevalence, antibiotic resistance, resistance and virulence determinants of Campylobacter jejuni in China: A systematic review and meta-analysis. One Health 2025; 20:100990. [PMID: 40027923 PMCID: PMC11871471 DOI: 10.1016/j.onehlt.2025.100990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025] Open
Abstract
Campylobacter jejuni (C. jejuni) is recognized as a serious food contaminant that extensively results in foodborne diseases. Numerous studies have been conducted on the prevalence and antibiotic resistance of C. jejuni, but there is a lack of comprehensive analysis of published data. This study provides a comprehensive overview of the epidemiology, antibiotic resistance, and virulence determinants of C. jejuni in China through a systematic review and meta-analysis. The prevalence levels of C. jejuni from low to high were the humans (5.2 %, 95 % CI: 4.2-6.4 %), foods (12.5 %, 95 % CI: 9.7-15.6 %), animals (15.4 %, 95 % CI: 13.2-17.6 %), and environment (17.8 %, 95 % CI: 9.7-27.7 %), respectively. Furthermore, C. jejuni exhibits high resistance rates to antibiotics such as cefoperazone, nalidixic acid, ciprofloxacin, cefradine, and tetracycline. The overall multi-drug resistance rate (MDR) of C. jejuni was 72.8 % (95 % CI: 62.4-82.2 %), indicating a serious problem with MDR. The resistance of C. jejuni to most antibiotics has increased in the last 20 years. Among the main resistance determinants of C. jejuni, gyrA_T86I and tet(O) had a higher pooled prevalence of 94.8 % (95 % CI: 88.7-99.0 %) and 79.0 % (95 % CI: 66.9-89.2 %), respectively. Furthermore, the high prevalence of virulence-related genes was shown in C. jejuni, such as adhesion (cadF, racR), invasion (ciaB, iamA, ceuE), and toxin (cdtB, cdtC). In summary, C. jejuni has a high prevalence with regional characteristics, and antibiotic resistance of this bacterium especially animal sources remains a serious problem in China. Comprehensive monitoring and control measures for this pathogen are urgently needed to ensure food safety and public health.
Collapse
Affiliation(s)
- Zhao Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hua Cai
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Biyao Xu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Kai Jia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zijie Lin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yangtai Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiaojie Qin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
2
|
Kuang S, Wang Z, Hu X, Dong Z, Wang C, Xiao Y, Li Z, Shi D, Li S, Zhou Z. Prevalence and genetic characteristics of Campylobacter jejuni from laying-hens in Hubei Province, China. BMC Vet Res 2025; 21:84. [PMID: 39987068 PMCID: PMC11846460 DOI: 10.1186/s12917-025-04600-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/14/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Campylobacter jejuni (C. jejuni), a major global cause of foodborne bacterial diseases, accounts for more than 90% of all reported cases. Poultry is considered a major reservoir for the transmission of Campylobacter to humans. While extensive research has been conducted abroad on the occurrence and epidemiology of C. jejuni in laying hens, there are scant reports on its prevalence in layer chickens in China. The present study was designed to isolate C. jejuni from 482 cloacal swabs collected from seven laying hen farms located in Hubei Province between January and March 2024. Furthermore, the study aimed to explore the genetic diversity, antibiotic resistance, and virulence gene profiles of the isolated strains. RESULTS The overall prevalence of C. jejuni amounted to 4.36% (21/482). Whole-genome sequencing of these 21 isolates revealed 11 distinct sequence types (STs) and eight clonal complexes (CCs), with ST-6522 and CC-443 emerging as the predominant genotypes. Antimicrobial susceptibility testing against 11 antibiotics revealed high resistance rates among C. jejuni isolates, particularly towards ceftriaxone and enrofloxacin, where resistance was universal (100%). Similarly, high resistance levels were also observed for doxycycline (95.24%), ceftiofur (80.95%), tilmicosin (76.19%), and amoxicillin-clavulanic acid (57.14%). Through genomic resistance gene prediction, a total of eighteen resistance genes were identified within the 21 C. jejuni isolates. The most frequently occurring resistance genes were the gyrA (T86I) point mutation (95.14%), cmeR (95.14%), and tet(O) (95.14%). Notably, a robust correlation was discernibled between enrofloxacin resistance and the gyrA (T86I) point mutation, as well as between resistance to ceftriaxone and tilmicosin and the presence of the cmeR gene. Conversely, the correlations between other antibiotic resistance phenotypes and their corresponding resistance genes were less robust. A comprehensive analysis of virulence genes isolated from C. jejuni strains revealed a total of 117 virulence genes, categorized according to their functional roles. These categories encompass adhesion (cadF, jlpA, porA, pebA), invasion (ciaB), motility (flaA, flgB, flhB), toxin production (cdtA, cdtB, cdtC), and immune modulation (htrB, wlaN). CONCLUSIONS Our results revealed the high resistance rate of C. jejuni from laying-hens in hubei Province, China, which will help the farms take the necessary action to develop effective mitigation strategies for reducing Campylobacter infection in poultry.
Collapse
Affiliation(s)
- Shichang Kuang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Lab of Agricultural Microbiology of State, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Lab of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhaoyang Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Lab of Agricultural Microbiology of State, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Lab of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xiuzhong Hu
- Wuhan Academy of Agricultural Sciences, Wuhan, Hubei, 430070, China
| | - Zeyuan Dong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Lab of Agricultural Microbiology of State, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Lab of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Chun Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Lab of Agricultural Microbiology of State, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Lab of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yuncai Xiao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Lab of Agricultural Microbiology of State, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Lab of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zili Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Lab of Agricultural Microbiology of State, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Lab of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Deshi Shi
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Lab of Agricultural Microbiology of State, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Lab of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shaowen Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Lab of Agricultural Microbiology of State, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Lab of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zutao Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- Key Lab of Agricultural Microbiology of State, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- Key Lab of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
3
|
Ortega-Sanz I, Rovira J, Melero B. Whole-genome comparative analysis of the genetic, virulence and antimicrobial resistance diversity of Campylobacter spp. from Spain. Int J Food Microbiol 2025; 427:110940. [PMID: 39447227 DOI: 10.1016/j.ijfoodmicro.2024.110940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Whole-Genome Sequencing has the potential to be an effective method for surveillance of foodborne diseases. This study aims to determine the genetic relatedness and prevalence of virulence-associated genes and antimicrobial resistance determinants in 135 Campylobacter jejuni, seven Campylobacter coli and three Campylobacter lari isolates from the poultry supply chain and a hospital in Spain. The isolates showed a wide genetic diversity between and within species with Clonal Complex 21 the most frequent lineage found. Among species, C. jejuni showed the highest prevalence of virulence genes (287/333) in which a high occurring variability was observed in the capsule biosynthesis and transport, O-linked flagellar glycosylation and lipooligosaccharide biosynthesis loci, with a great impact of phase-variation that led to 72 different virulence gene patterns among all isolates. High prevalence (> 90 %) of blaOXA-type β-lactamase genes and mutations in DNA gyrase gene associated with fluoroquinolones resistance were observed, and at a frequency similar to the tet(O) gene in C. jejuni (93 %) and C. coli (86 %), both of which also harboured resistance determinants to aminoglycosides with a higher occurrence rate in C. coli (43 %), that was the only species in which mutations in the 23S ribosomal subunit conferring resistance to erythromycin were identified (43 %). The present study constitutes the largest genomic survey of Campylobacter isolates in Spain providing insight into the prevalence and diversity of the pathogen along the poultry supply chain in the country.
Collapse
Affiliation(s)
- Irene Ortega-Sanz
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain
| | - Jordi Rovira
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain
| | - Beatriz Melero
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain.
| |
Collapse
|
4
|
Wu X, Liping C, Dong F, Yan W, Shen Y, Ji L. Molecular typing and antimicrobial susceptibility profiles of Campylobacter jejuni and Campylobacter coli Isolates from Patients and raw meat in Huzhou, China, 2021-2022. PLoS One 2024; 19:e0311769. [PMID: 39661622 PMCID: PMC11633965 DOI: 10.1371/journal.pone.0311769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 09/24/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Campylobacter species are zoonotic pathogens, and are considered to be the major foodborne pathogen that causes outbreaks and sporadic gastrointestinal illnesses both in developed and developing countries. In this study, the molecular typing and antimicrobial susceptibility profiles of Campylobacter jejuni and Campylobacter coli isolates from patients and raw meat between 2021 and 2022 in Huzhou were analyzed by using pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST) and antimicrobial susceptibility testing. METHODS From September 1, 2021 to December 31, 2022, a total of 342 fecal specimens from diarrheal patients at a sentinel hospital in Huzhou and 168 samples of raw meat products collected from farmers' markets and supermarkets, were subjected to Campylobacter isolation and identification. The agar dilution method was used to determine resistance of the Campylobacter isolates to eleven antibiotics. In addition, pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were performed to compare their genetic relationships. RESULTS 78 Campylobacter isolates were recovered, comprising 58 isolates (74.36%, 58/78) of Campylobacter jejuni (34 patient isolates and 16 food isolates) and 20 isolates (25.64%, 20/78) of Campylobacter coli (6 patient isolates and 14 food isolates). Campylobacter has emerged as a predominant foodborne pathogen in the local region, with detection rate reached 11.70% among 342 diarrhea samples. The Campylobacter isolation rate in 168 raw meat was 22.62% (38/168), all originating from poultry meat, with chicken been the major source of infection (86.84%, 33/38). Both PGFE type and MLST data confirmed that Campylobacter stains circulating in Huzhou are genetically diverse, with Campylobacter jejuni isolates being more diverse than Campylobacter Coli. PFGE typing revealed 45 band patterns among 54 Campylobacter jejuni strains and 17 band patterns among 19 Campylobacter Coli strains. 50 Campylobacter jejuni strains from different sources were classified into 37 ST types, showing a dispersed distribution and encompassing over 12 clonal complexes (CCs), with CC-21 being the most prevalent CC (22.00%, 11/50). The distribution of ST types in the 18 Campylobacter Coli strains was relatively concentrated, with 83.33% (15/18) of isolates belonging to the CC-828. In this study, 2 groups of Campylobacter jejuni strains (PFGE J2-ST464 and PFGE J9-ST-2328) originated from humans and chickens showed high genetic homologies by comparing PFGE and MLST results. Besides, some disagreement between PFGE and MLST was observed for certain ST, indicating a weak correlation between PFGE and MLST for certain Campylobacter strains. Most of the Campylobacter isolates were highly resistant to nalidixic-acid, ciprofloxacin and tetracycline. The multiple antibiotic resistance of Campylobacter Coli (89.47%) is higher than Campylobacter jejuni (29.63%). CONCLUSION Campylobacter is an important foodborne pathogen in both diarrheal patients and raw meat products in Huzhou City, exhibiting multiple antibiotic resistance and high level of genetic diversity.
Collapse
Affiliation(s)
- Xiaofang Wu
- Huzhou Center for Disease Control and Prevention, Huzhou, China
| | - Chen Liping
- Huzhou Center for Disease Control and Prevention, Huzhou, China
| | - Fenfen Dong
- Huzhou Center for Disease Control and Prevention, Huzhou, China
| | - Wei Yan
- Huzhou Center for Disease Control and Prevention, Huzhou, China
| | - Yuehua Shen
- Huzhou Center for Disease Control and Prevention, Huzhou, China
| | - Lei Ji
- Huzhou Center for Disease Control and Prevention, Huzhou, China
| |
Collapse
|
5
|
Abramov VM, Kosarev IV, Machulin AV, Deryusheva EI, Priputnevich TV, Panin AN, Chikileva IO, Abashina TN, Manoyan AM, Ivanova OE, Papazyan TT, Nikonov IN, Suzina NE, Melnikov VG, Khlebnikov VS, Sakulin VK, Samoilenko VA, Gordeev AB, Sukhikh GT, Uversky VN, Karlyshev AV. Consortium of Lactobacillus crispatus 2029 and Ligilactobacillus salivarius 7247 Strains Shows In Vitro Bactericidal Effect on Campylobacter jejuni and, in Combination with Prebiotic, Protects Against Intestinal Barrier Dysfunction. Antibiotics (Basel) 2024; 13:1143. [PMID: 39766533 PMCID: PMC11672454 DOI: 10.3390/antibiotics13121143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives:Campylobacter jejuni (CJ) is the etiological agent of the world's most common intestinal infectious food-borne disease, ranging from mild symptoms to fatal outcomes. The development of innovative synbiotics that inhibit the adhesion and reproduction of multidrug-resistant (MDR) CJ in animals and humans, thereby preserving intestinal homeostasis, is relevant. We have created a synbiotic based on the consortium of Lactobacillus crispatus 2029 (LC2029), Ligilactobacillus salivarius 7247 (LS7247), and a mannan-rich prebiotic (Actigen®). The purpose of this work was to study the in vitro anti-adhesive and antagonistic activities of the created synbiotic against MDR CJ strains, along with its role in preventing intestinal barrier dysfunction, which disrupts intestinal homeostasis. Methods: A complex of microbiological, immunological, and molecular biological methods was used. The ability of the LC2029 and LS7247 consortium to promote intestinal homeostasis in vitro was assessed by the effectiveness of controlling CJ-induced TLR4 activation, secretion of pro-inflammatory cytokines, development of intestinal barrier dysfunction, and production of intestinal alkaline phosphatase (IAP). Results: All MDR CJ strains showed marked adhesion to human Caco-2, pig IPEC-J2, chicken CPCE, and bovine BPCE enterocytes. For the first time, we found that the prebiotic and cell-free culture supernatant (CFS) from the consortium of LC2029 and LS7247 strains exhibit an additive effect in inhibiting the adhesion of MDR strains of CJ to human and animal enterocytes. CFS from the LC2029 and LS7247 consortium increased the permeability of the outer and inner membranes of CJ cells, which led to extracellular leakage of ATP and provided access to the peptidoglycan of the pathogen for the peptidoglycan-degrading bacteriocins nisin and enterolysin A produced by LS7247. The LC2029 and LS7247 consortium showed a bactericidal effect on CJ strains. Co-cultivation of the consortium with CJ strains resulted in a decrease in the viability of the pathogen by 6 log. CFS from the LC2029 and LS7247 consortium prevented the growth of CJ-induced TLR4 mRNA expression in enterocytes. The LC2029 and LS7247 consortium inhibited a CJ-induced increase in IL-8 and TNF-α production in enterocytes, prevented CJ-induced intestinal barrier dysfunction, maintained the transepithelial electrical resistance of the enterocyte monolayers, and prevented an increase in intestinal paracellular permeability and zonulin secretion. CFS from the consortium stimulated IAP mRNA expression in enterocytes. The LC2029 and LS7247 consortium and the prebiotic Actigen represent a new synergistic synbiotic with anti-CJ properties that prevents intestinal barrier dysfunction and preserves intestinal homeostasis. Conclusions: These data highlight the potential of using a synergistic synbiotic as a preventive strategy for creating feed additives and functional nutrition products based on it to combat the prevalence of campylobacteriosis caused by MDR strains in animals and humans.
Collapse
Affiliation(s)
- Vyacheslav M. Abramov
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Igor V. Kosarev
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Andrey V. Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Tatiana V. Priputnevich
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Alexander N. Panin
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Irina O. Chikileva
- Blokhin National Research Center of Oncology, Ministry of Health, 115478 Moscow, Russia;
| | - Tatiana N. Abashina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Ashot M. Manoyan
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Olga E. Ivanova
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | | | - Ilia N. Nikonov
- Federal State Budgetary Educational Institution of Higher Education, St. Petersburg State University of Veterinary Medicine, 196084 Saint Petersburg, Russia
| | - Nataliya E. Suzina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Vyacheslav G. Melnikov
- Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia
| | | | - Vadim K. Sakulin
- Institute of Immunological Engineering, 142380 Lyubuchany, Russia
| | - Vladimir A. Samoilenko
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Alexey B. Gordeev
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Gennady T. Sukhikh
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Andrey V. Karlyshev
- Department of Biomolecular Sciences, School of Life Sciences, Chemistry and Pharmacy, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames KT1 2EE, UK;
| |
Collapse
|
6
|
Zarske M, Werckenthin C, Golz JC, Stingl K. The point mutation A1387G in the 16S rRNA gene confers aminoglycoside resistance in Campylobacter jejuni and Campylobacter coli. Antimicrob Agents Chemother 2024; 68:e0083324. [PMID: 39404347 PMCID: PMC11539217 DOI: 10.1128/aac.00833-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/10/2024] [Indexed: 11/07/2024] Open
Abstract
Thermotolerant Campylobacter spp. are the most frequent cause of foodborne bacterial diarrhea and high-priority antibiotic-resistant pathogens, according to the World Health Organization (WHO). Monitoring revealed current low prevalence of gentamicin resistance in European Campylobacter spp. isolates but substantial presence of gentamicin modifying genes circulating globally. Using a combined approach of natural transformation and whole-genome sequencing, we revealed a novel gentamicin resistance mechanism, namely the point mutation A1387G in the 16S rRNA gene, originally identified in a C. coli isolate from turkey caecal content. The transformation rate of the resistance using genomic DNA of the resistant donor to sensitive recipient C. jejuni and C. coli was ~2.5 log10 lower compared to the control rpsL-A128G point mutation conferring streptomycin resistance. Antimicrobial susceptibility tests showed cross-resistance to apramycin, kanamycin, and tobramycin, with transformants exhibiting more than 4- to 8-fold increased MICs to apramycin and tobramycin and over 64-fold higher MICs to kanamycin compared to wild-type isolates. Although transformants showed 177-1,235 variations relative to the recipient, only the A1387G point mutation in the 16S rRNA was in common. This mutation was causal for resistance, as transformation of a 16S rRNA_A1387G PCR fragment into susceptible isolates also led to resistant transformants. Sanger sequencing of the 16S rRNA genes and Oxford nanopore whole-genome sequencing of transformants identified clones harboring either all three copies with A1387G or a mixed population of wild-type and mutated 16S rRNA gene alleles. Within 15 passages on non-selective medium, transformants with mixed populations of the 16S rRNA gene copies partially reverted to wild type, both geno- and phenotypically. In contrast, transformants harboring the A1387G point mutation in all three 16S rRNA gene copies kept full resistance within at least 45 passages. We speculate that partial acquisition and rapid loss of the point mutation limited its spread among C. spp. isolates. In-depth knowledge on resistance mechanisms contributes to optimal diagnosis and preventative measures.
Collapse
Affiliation(s)
- Michael Zarske
- German Federal Institute for Risk Assessment (BfR), Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany
| | - Christiane Werckenthin
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Food and Veterinary Institute, Oldenburg, Germany
| | - Julia C. Golz
- German Federal Institute for Risk Assessment (BfR), Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany
| | - Kerstin Stingl
- German Federal Institute for Risk Assessment (BfR), Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany
| |
Collapse
|
7
|
Barata R, Saavedra MJ, Almeida G. A Decade of Antimicrobial Resistance in Human and Animal Campylobacter spp. Isolates. Antibiotics (Basel) 2024; 13:904. [PMID: 39335077 PMCID: PMC11429304 DOI: 10.3390/antibiotics13090904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Objectives: Campylobacter spp. remain a leading cause of bacterial gastroenteritis worldwide, with resistance to antibiotics posing significant challenges to treatment and public health. This study examines profiles in antimicrobial resistance (AMR) for Campylobacter isolates from human and animal sources over the past decade. Methods: We conducted a comprehensive review of resistance data from studies spanning ten years, analyzing profiles in resistance to key antibiotics, ciprofloxacin (CIP), tetracycline (TET), erythromycin (ERY), chloramphenicol (CHL), and gentamicin (GEN). Data were collated from various regions to assess global and regional patterns of resistance. Results: The analysis reveals a concerning trend of increasing resistance patterns, particularly to CIP and TET, across multiple regions. While resistance to CHL and GEN remains relatively low, the high prevalence of CIP resistance has significantly compromised treatment options for campylobacteriosis. Discrepancies in resistance patterns were observed between human and animal isolates, with variations across different continents and countries. Notably, resistance to ERY and CHL showed regional variability, reflecting potential differences in antimicrobial usage and management practices. Conclusions: The findings underscore the ongoing challenge of AMR in Campylobacter, highlighting the need for continued surveillance and research. The rising resistance prevalence, coupled with discrepancies in resistance patterns between human and animal isolates, emphasize the importance of a One Health approach to address AMR. Enhanced monitoring, novel treatment strategies, and global cooperation are crucial for mitigating the impact of resistance and ensuring the effective management of Campylobacter-related infections.
Collapse
Affiliation(s)
- Rita Barata
- National Institute of Agricultural and Veterinary Research (INIAV), 4485-655 Vila do Conde, Portugal;
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
- Center for Veterinary and Animal Research (CECAV), Associated Laboratory of Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Maria José Saavedra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
- Center for Veterinary and Animal Research (CECAV), Associated Laboratory of Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- AB2Unit—Antimicrobials, Biocides & Biofilms Unit, Veterinary Sciences Department, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
| | - Gonçalo Almeida
- National Institute of Agricultural and Veterinary Research (INIAV), 4485-655 Vila do Conde, Portugal;
- Center for Animal Science Studies (CECA-ICETA), Associated Laboratory of Animal and Veterinary Science (AL4AnimalS), University of Porto, 4099-002 Porto, Portugal
| |
Collapse
|
8
|
Lin Y, Liang S, Zhang Y, Yu Y. The antibacterial mechanism of (-)-epigallocatechin-3-gallate (EGCG) against Campylobacter jejuni through transcriptome profiling. J Food Sci 2024; 89:2384-2396. [PMID: 38389445 DOI: 10.1111/1750-3841.16966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024]
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) has been shown antibacterial activity against Campylobacter jejuni; however, the relevant antibacterial mechanism is unknown. In this study, phenotypic experiments and RNA sequencing were used to explore the antibacterial mechanism. The minimum inhibitory concentration of EGCG on C. jejuni was 32 µg/mL. EGCG-treated was able to increase intracellular reactive oxygen species levels and decline bacterial motility. The morphology and cell membrane of C. jejuni after EGCG treatment were observed collapsed, broken, and agglomerated by field emission scanning electron microscopy and fluorescent microscopy. The RNA-seq analysis presents that there are 36 and 72 differential expressed genes after C. jejuni was treated by EGCG with the concentration of 16 and 32 µg/mL, respectively. EGCG-treated increased the thioredoxin expression, which was a critical protein to resist oxidative stress. Moreover, downregulation of the flgH and flgM gene in flagellin biosynthesis of C. jejuni was able to impair the flagella, reducing cell motility and virulence. The primary antibacterial mechanism revealed by RNA-seq is that EGCG with iron-chelating activity competes with C. jejuni for iron, causing iron deficiency in C. jejuni, which potentially impacts the survival and virulence of C. jejuni. The results suggested a new direction for exploring the activity of EGCG against C. jejuni in the food industry. PRACTICAL APPLICATION: A deeper understanding of the antibacterial mechanism of EGCG against C. jejuni was more beneficial in improving the food safety, eliminating concerns about human health caused by C. jejuni in future food, and promoting the natural antibacterial agent EGCG application in the food industry.
Collapse
Affiliation(s)
- Yilin Lin
- Research Center of Food Safety and Detection, School of Food Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Siwei Liang
- Research Center of Food Safety and Detection, School of Food Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Yehui Zhang
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Yigang Yu
- Research Center of Food Safety and Detection, School of Food Sciences and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
9
|
Kim SY, An D, Jeong H, Kim J. Antimicrobial Susceptibility Patterns and Genetic Diversity of Campylobacter spp. Isolates from Patients with Diarrhea in South Korea. Microorganisms 2024; 12:94. [PMID: 38257921 PMCID: PMC10819060 DOI: 10.3390/microorganisms12010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
This study aimed to characterize the latest antimicrobial resistance patterns and genetic diversity of Campylobacter spp. isolated from patients with acute diarrhea in Korea. In total, 371 clinical isolates (361 Campylobacter jejuni and 10 Campylobacter coli) were collected from patients with diarrhea in 106 medical institutions of six provinces during the seasonal peak (April-September 2022) in South Korea. We then assessed their antimicrobial susceptibility to eight antimicrobial agents and performed multilocus sequence typing (MLST). This study investigated the antimicrobial resistance (AMR) profiles to tetracycline (32.3%), nalidixic acid (64.9%), and ciprofloxacin (83.3%), confirming high levels of the latter even after its Korean ban in 2010. However, tetracycline resistance displayed a decreasing trend. Alternatively, significantly lower resistance rates to clindamycin (0.8%), azithromycin (0.53%), erythromycin (0.53%), and gentamicin (0.53%) as well as absolute susceptibility to florfenicol (0%) were observed. Four C. jejuni and three C. coli isolates (7/371, 1.88%) were classified as multidrug-resistant (MDR) to at least three antimicrobial classes. MLST identified a high genetic diversity with 21 clonal complexes (CCs) and sixty-six sequence types (STs), including eight novel STs. The high CC frequency of C. jejuni comprised CC21 (37.7%), CC22 (13.8%), and CC206 (9.4%), while C. coli was predominated by CC828 (90%). The high CC21 and CC828 strain prevalence in this study was consistent with their worldwide distribution. This study highlights that quinolone- and tetracycline-resistant Campylobacter circulate in Korea with diverse genotypes, providing important information that could contribute to controlling and preventing increasing antimicrobial resistance in patients.
Collapse
Affiliation(s)
- So Yeon Kim
- Division of Zoonotic and Vector-Borne Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Cheongju 28160, Republic of Korea;
| | - Dongheui An
- Division of Clinical Microbiology, Department of Laboratory Medicine, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (D.A.); (H.J.)
| | - Hyemi Jeong
- Division of Clinical Microbiology, Department of Laboratory Medicine, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (D.A.); (H.J.)
| | - Jonghyun Kim
- Division of Zoonotic and Vector-Borne Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Cheongju 28160, Republic of Korea;
| |
Collapse
|
10
|
Huong LQ, Chisnall T, Rodgers JD, Cawthraw SA, Card RM. Prevalence, antibiotic resistance, and genomic characterisation of Campylobacter spp. in retail chicken in Hanoi, Vietnam. Microb Genom 2024; 10:001190. [PMID: 38294872 PMCID: PMC10868608 DOI: 10.1099/mgen.0.001190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/20/2024] [Indexed: 02/01/2024] Open
Abstract
Campylobacter spp. are a leading cause of bacterial foodborne zoonosis worldwide, with poultry meat and products recognised as a significant source of human infection. In Vietnam there are few data regarding the occurrence, antimicrobial resistance, and genomic diversity of Campylobacter in poultry and poultry meat. The aim of this study was to estimate the prevalence of Campylobacter in chicken meat at retail in Hanoi, determine antimicrobial sensitivities of the Campylobacter isolated, and assess their genetic diversity. A total of 120 chicken meat samples were collected from eight traditional retail markets (n=80) and four supermarkets (n=40). Campylobacter was isolated following ISO 10272-1 : 2017 and identification verified by PCR. The prevalence of Campylobacter was 38.3 % (46/120) and C. coli was the most prevalent species in both retail markets (74 %) and supermarkets (88 %). The minimum inhibitory concentrations for ciprofloxacin, erythromycin, gentamicin, nalidixic acid, streptomycin, and tetracycline were determined by broth microdilution for 32 isolates. All characterised Campylobacter were resistant to ciprofloxacin, nalidixic acid, and tetracycline, with corresponding resistance determinants detected in the sequenced genomes. Most C. coli were multidrug resistant (24/28) and two harboured the erythromycin resistance gene ermB on a multiple drug-resistance genomic island, a potential mechanism for dissemination of resistance. The 32 isolates belonged to clonal complexes associated with both poultry and people, such as CC828 for C. coli. These results contribute to the One Health approach for addressing Campylobacter in Vietnam by providing detailed new insights into a main source of human infection and can inform the design of future surveillance approaches.
Collapse
Affiliation(s)
- Luu Quynh Huong
- National Institute of Veterinary Research (NIVR), 86 Truong Chinh Road, Dong Da district, Hanoi, Vietnam
| | - Thomas Chisnall
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, UK
| | - John D. Rodgers
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, UK
| | - Shaun A. Cawthraw
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, UK
| | - Roderick M. Card
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, UK
| |
Collapse
|
11
|
Yao GF, Hu YL, Kong NQ, Liu JH, Luo YW, Li CY, Bi SL. Rapid Genotyping of Campylobacter coli Strains from Poultry Meat by PFGE, Sau-PCR, and fla-DGGE. Curr Microbiol 2023; 80:402. [PMID: 37930435 DOI: 10.1007/s00284-023-03517-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
The genotyping of Campylobacter coli was done using three methods, pulsed-field gel electrophoresis (PFGE), Sau-polymerase chain reaction (Sau-PCR), and denaturing gradient gel electrophoresis assay of flagellin gene (fla-DGGE) and the characteristics of these assays were compared. The results showed that a total of 53 strains of C. coli were isolated from chicken and duck samples in three markets. All isolates were clustered into 31, 33, and 15 different patterns with Simpson's index of diversity (SID) values of 0.972, 0.974, and 0.919, respectively. Sau-PCR assay was simpler, more rapid, and had higher discriminatory power than PFGE assay. Fla-DGGE assay could detect and illustrate the number of contamination types of C. jejuni and C. coli without cultivation, which saved more time and cost than Sau-PCR and PFGE assays. Therefore, Sau-PCR and fla-DGGE assays are both rapid, economical, and easy to perform, which have the potential to be promising and accessible for primary laboratories in genotyping C. coli strains.
Collapse
Affiliation(s)
- Ge-Feng Yao
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, China
- College of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi-Lin Hu
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, China
- College of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Nian-Qing Kong
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, China
- College of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jin-Hong Liu
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, China
- College of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yong-Wen Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Chu-Yi Li
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, China
| | - Shui-Lian Bi
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, China.
| |
Collapse
|
12
|
Zang X, Pascoe B, Mourkas E, Kong K, Jiao X, Sheppard SK, Huang J. Evidence of potential Campylobacter jejuni zooanthroponosis in captive macaque populations. Microb Genom 2023; 9:001121. [PMID: 37877958 PMCID: PMC10634442 DOI: 10.1099/mgen.0.001121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023] Open
Abstract
Non-human primates share recent common ancestry with humans and exhibit comparable disease symptoms. Here, we explored the transmission potential of enteric bacterial pathogens in monkeys exhibiting symptoms of recurrent diarrhoea in a biomedical research facility in China. The common zoonotic bacterium Campylobacter jejuni was isolated from macaques (Macaca mulatta and Macaca fascicularis) and compared to isolates from humans and agricultural animals in Asia. Among the monkeys sampled, 5 % (44/973) tested positive for C. jejuni, 11 % (5/44) of which displayed diarrhoeal symptoms. Genomic analysis of monkey isolates, and 1254 genomes from various sources in Asia, were used to identify the most likely source of human infection. Monkey and human isolates shared high average nucleotide identity, common MLST clonal complexes and clustered together on a phylogeny. Furthermore, the profiles of putative antimicrobial resistance genes were similar between monkeys and humans. Taken together these findings suggest that housed macaques became infected with C. jejuni either directly from humans or via a common contamination source.
Collapse
Affiliation(s)
- Xiaoqi Zang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, PR China
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
| | - Ben Pascoe
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, UK
| | - Evangelos Mourkas
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
| | - Ke Kong
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, PR China
| | - Samuel K. Sheppard
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
| | - Jinlin Huang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, PR China
| |
Collapse
|
13
|
Xiao J, Cheng Y, Zhang W, Lu Q, Guo Y, Hu Q, Wen G, Shao H, Luo Q, Zhang T. Genetic characteristics, antimicrobial susceptibility, and virulence genes distribution of Campylobacter isolated from local dual-purpose chickens in central China. Front Cell Infect Microbiol 2023; 13:1236777. [PMID: 37743858 PMCID: PMC10517862 DOI: 10.3389/fcimb.2023.1236777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Food-borne antibiotic-resistant Campylobacter poses a serious threat to public health. To understand the prevalence and genetic characteristics of Campylobacter in Chinese local dual-purpose (meat and eggs) chickens, the genomes of 30 Campylobacter isolates, including 13 C. jejuni and 17 C. coli from Jianghan-chickens in central China, were sequenced and tested for antibiotic susceptibility. The results showed that CC-354 and CC-828 were the dominant clonal complexes of C. jejuni and C. coli, respectively, and a phylogenetic analysis showed that three unclassified multilocus sequence types of C. coli were more closely genetically related to C. jejuni than to other C. coli in this study. Of the six antibiotics tested, the highest resistance rates were to ciprofloxacin and tetracycline (100%), followed by lincomycin (63.3%), erythromycin (30.0%), amikacin (26.7%), and cefotaxime (20.0%). The antibiotic resistance rate of C. coli was higher than that of C. jejuni. The GyrA T86I mutation and 15 acquired resistance genes were detected with whole-genome sequencing (WGS). Among those, the GyrA T86I mutation and tet(O) were most prevalent (both 96.7%), followed by the blaOXA-type gene (90.0%), ant(6)-Ia (26.7%), aac(6')-aph(3'') (23.3%), erm(B) (13.3%), and other genes (3.3%). The ciprofloxacin and tetracycline resistance phenotypes correlated strongly with the GyrA T86I mutation and tet(O)/tet(L), respectively, but for other antibiotics, the correlation between genes and resistance phenotypes were weak, indicating that there may be resistance mechanisms other than the resistance genes detected in this study. Virulence gene analysis showed that several genes related to adhesion, colonization, and invasion (including cadF, porA, ciaB, and jlpA) and cytolethal distending toxin (cdtABC) were only present in C. jejuni. Overall, this study extends our knowledge of the epidemiology and antibiotic resistance of Campylobacter in local Chinese dual-purpose chickens.
Collapse
Affiliation(s)
- Jia Xiao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yiluo Cheng
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wenting Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Qin Lu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yunqing Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Qiao Hu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Guoyuan Wen
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Huabin Shao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Qingping Luo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Hubei Hongshan Laboratory, Wuhan, China
| | - Tengfei Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
14
|
Gao F, Tu L, Chen M, Chen H, Zhang X, Zhuang Y, Luo J, Chen M. Erythromycin resistance of clinical Campylobacter jejuni and Campylobacter coli in Shanghai, China. Front Microbiol 2023; 14:1145581. [PMID: 37260688 PMCID: PMC10229067 DOI: 10.3389/fmicb.2023.1145581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/20/2023] [Indexed: 06/02/2023] Open
Abstract
Campylobacter species are zoonotic pathogens, as well as the prevalent cause of foodborne bacterial gastroenteritis. The spread of antimicrobial-resistant strains poses a serious threat to global public health and attracts attention worldwide, but information about clinical Campylobacter is relatively limited compared to isolates from food and animals. The current study illustrated the prevalence and antimicrobial resistance profiles of Campylobacter jejuni and Campylobacter coli isolates collected from a consecutive surveillance program between 2012 and 2019 in Shanghai, China, using antimicrobial susceptibility testing and whole-genome sequencing. Among the 891 Campylobacter strains (761 C. jejuni and 130 C. coli) isolates collected, high portions above 90% of resistance to ciprofloxacin, nalidixic acid, and tetracycline were observed for both C. jejuni and C. coli. The most common MDR profiles represented by C. jejuni and C. coli were combination of ciprofloxacin, tetracycline, florfenicol and nalidixic acid (5.39%), and azithromycin, ciprofloxacin, erythromycin, gentamicin, tetracycline, clindamycin, nalidixic acid (28.46%), respectively. The erythromycin resistance of C. coli (59.23%) is higher than C. jejuni (2.50%). A total of 76 erythromycin resistant isolates (16 C. jejuni and 60 C. coli) were sequenced using Illumina platform for determining the genotypes, antimicrobial resistance patterns and phylogeny analysis. Multilocus sequence typing (MLST) analysis showed a high genetic diversity with 47 sequence types (STs), including 4 novel alleles and 12 new STs. The most abundant clonal complexes (CCs) were CC-403 (31.25%) and CC-828 (88.33%) for C. jejuni and C. coli, respectively. Among the 76 erythromycin-resistant isolates, mutation A2075G in 23S rRNA and erm(B) gene were detected in 53.95 and 39.47%, respectively. The erm(B) gene was identified exclusively in 30 C. coli isolates. All these erm(B) positive isolates were multi-drug resistant. Furthermore, comparison of the erm(B)-carrying isolates of multiple sources worldwide demonstrated the possibility of zoonotic transmission of erm(B) in Campylobacter. These findings highlight the importance of continuous surveillance of erythromycin resistance dissemination in Campylobacter which may compromise the effectiveness of antimicrobial therapy.
Collapse
Affiliation(s)
- Fen Gao
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Lihong Tu
- Department of Public Health Service and Safety Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Mingliang Chen
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Hongyou Chen
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Xi Zhang
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Yuan Zhuang
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Jiayuan Luo
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Min Chen
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| |
Collapse
|
15
|
Concha-Toloza M, Lopez-Cantillo M, Molina-Mora JA, Collado L. Genomic Characterization of Antibiotic-Resistant Campylobacterales Isolated from Chilean Poultry Meat. Antibiotics (Basel) 2023; 12:917. [PMID: 37237819 PMCID: PMC10215856 DOI: 10.3390/antibiotics12050917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Due to the lack of knowledge about Campylobacterales in the Chilean poultry industry, the objective of this research was to know the prevalence, resistance, and genotypes of Campylobacter, Arcobacter and Helicobacter in 382 samples of chicken meat purchased in Valdivia, Chile. The samples were analyzed using three isolation protocols. Resistance to four antibiotics was evaluated by phenotypic methods. Genomic analyses were performed on selected resistant strains to detect resistance determinants and their genotypes. A total of 59.2% of the samples were positive. Arcobacter butzleri (37.4%) was the most prevalent species, followed by Campylobacter jejuni (19.6%), C. coli (11.3%), A. cryaerophilus (3.7%) and A. skirrowii (1.3%). Helicobacter pullorum (14%) was detected by PCR in a subset of samples. Campylobacter jejuni was resistant to ciprofloxacin (37.3%) and tetracycline (20%), while C. coli and A. butzleri were resistant to ciprofloxacin (55.8% and 2.8%), erythromycin (16.3% and 0.7%) and tetracycline (4.7% and 2.8%), respectively. Molecular determinants were consistent with phenotypic resistance. The genotypes of C. jejuni (CC-21, CC-48, CC-49, CC-257, CC-353, CC-443, CC-446 and CC-658) and C. coli (CC-828) coincided with genotypes of Chilean clinical strains. These findings suggest that besides C. jejuni and C. coli, chicken meat could play a role in the transmission of other pathogenic and antibiotic-resistant Campylobacterales.
Collapse
Affiliation(s)
- Macarena Concha-Toloza
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Mónica Lopez-Cantillo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Jose Arturo Molina-Mora
- Centro de Investigación en Enfermedades Tropicales (CIET) & Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Luis Collado
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile
| |
Collapse
|
16
|
Zhang D, Zhang X, Lyu B, Tian Y, Huang Y, Lin C, Yan H, Jia L, Qu M, Wang Q. Genomic Analysis and Antimicrobial Resistance of Campylobacter jejuni Isolated from Diarrheal Patients - Beijing Municipality, China, 2019-2021. China CDC Wkly 2023; 5:424-433. [PMID: 37275268 PMCID: PMC10235816 DOI: 10.46234/ccdcw2023.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/07/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Campylobacter jejuni (C. jejuni) is the leading cause of human bacterial gastroenteritis worldwide and has a major impact on global public health. The objective of the present study was to conduct whole genome sequencing (WGS) to determine the genetic diversity, virulence factors, and determinants of antimicrobial resistance of C. jejuni during a 3-year surveillance period in Beijing, China. Methods A total of 184 clinical isolates were obtained from sentinel hospital surveillance between 2019 and 2021. Antimicrobial susceptibility testing was conducted using the agar dilution method. WGS was employed to characterize the 184 C. jejuni strains. Results Multilocus sequence typing analysis revealed high genetic diversity among the 184 C. jejuni strains, identifying 71 sequence types (STs) and 19 clonal complexes (CCs). The most prevalent ST was ST760 (6.5%), and the most common CC was CC21 (24.5%), consisting of 11 STs. High resistance rates were observed for ciprofloxacin (76.6%), nalidixic acid (76.1%), and tetracycline (71.2%). A total of 77 C. jejuni isolates (41.8%) exhibited multidrug resistance with 43 resistance patterns. Virulome analysis disclosed the differential distribution of virulence factors related to adherence, colonization, chemotaxis, as well as lipo-oligosaccharide and capsular polysaccharide biosynthesis. Resistome analysis demonstrated widespread resistance to quinolones and tetracycline, but low rates of macrolides resistance. The phylogeny, based on whole genome single nucleotide polymorphisms, indicated a high degree of clonality and grouped the C. jejuni strains into six clades. Closely related isolates that were part of a genetic cluster mostly shared a homogenous clonal complex. Conclusions The present study emphasizes the rising resistance to quinolones and tetracycline, as well as the virulence potential and diverse genotypes identified among C. jejuni strains isolated from diarrheal patients in Beijing.
Collapse
Affiliation(s)
- Daitao Zhang
- Beijing Center for Disease Prevention and Control, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, China
| | - Xin Zhang
- Beijing Center for Disease Prevention and Control, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, China
| | - Bing Lyu
- Beijing Center for Disease Prevention and Control, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, China
| | - Yi Tian
- Beijing Center for Disease Prevention and Control, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, China
| | - Ying Huang
- Beijing Center for Disease Prevention and Control, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, China
| | - Changying Lin
- Beijing Center for Disease Prevention and Control, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, China
| | - Hanqiu Yan
- Beijing Center for Disease Prevention and Control, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, China
| | - Lei Jia
- Beijing Center for Disease Prevention and Control, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, China
| | - Mei Qu
- Beijing Center for Disease Prevention and Control, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, China
| | - Quanyi Wang
- Beijing Center for Disease Prevention and Control, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, China
- School of Public Health, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Genomic Insights into the Increased Occurrence of Campylobacteriosis Caused by Antimicrobial-Resistant Campylobacter coli. mBio 2022; 13:e0283522. [PMID: 36472434 PMCID: PMC9765411 DOI: 10.1128/mbio.02835-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Campylobacter is the leading bacterial cause of diarrheal illnesses worldwide. Campylobacter jejuni and C. coli are the most common species accounting for campylobacteriosis. Although the proportion of campylobacteriosis caused by C. coli is increasing rapidly in China, the underlying mechanisms of this emergence remain unclear. In this study, we analyzed the whole-genome sequences and associated environments of 1,195 C. coli isolates with human, poultry, or porcine origins from 1980 to 2021. C. coli isolates of human origin were closely related to those from poultry, suggesting that poultry was the main source of C. coli infection in humans. Analysis of antimicrobial resistance determinants indicated that the prevalence of multidrug-resistant C. coli has increased dramatically since the 2010s, coinciding with the shift in abundance from C. jejuni to C. coli in Chinese poultry. Compared with C. jejuni, drug-resistant C. coli strains were better adapted and showed increased proliferation in the poultry production environment, where multiple antimicrobial agents were frequently used. This study provides an empirical basis for the molecular mechanisms that have enabled C. coli to become the dominant Campylobacter species in poultry; we also emphasize the importance of poultry products as sources of campylobacteriosis caused by C. coli in human patients. IMPORTANCE The proportion of campylobacteriosis caused by C. coli is increasing rapidly in China. Coincidentally, the dominant species of Campylobacter occurring in poultry products has shifted from C. jejuni to C. coli. Here, we analyzed the whole-genome sequences of 1,195 C. coli isolates from different origins. The phylogenetic relationship among C. coli isolates suggests that poultry was the main source of C. coli infection in humans. Further analysis indicated that antimicrobial resistance in C. coli strains has increased dramatically since the 2010s, which could facilitate their adaptation in the poultry production environment, where multiple antimicrobial agents are frequently used. Thus, our findings suggest that the judicious use of antimicrobial agents could mitigate the emergence of multidrug-resistant C. coli strains and enhance clinical outcomes by restoring drug sensitivity in Campylobacter.
Collapse
|
18
|
Liu F, Lee SA, Xue J, Riordan SM, Zhang L. Global epidemiology of campylobacteriosis and the impact of COVID-19. Front Cell Infect Microbiol 2022; 12:979055. [PMID: 36519137 PMCID: PMC9742372 DOI: 10.3389/fcimb.2022.979055] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/21/2022] [Indexed: 11/29/2022] Open
Abstract
Campylobacteriosis is a gastroenteritis caused by pathogenic Campylobacter species and an important topic in public health. Here we review the global epidemiology of campylobacteriosis in the last eight years between 2014-2021, providing comprehensive and updated information on the reported incidence and outbreaks of Campylobacter infections. The government public health website of each of the 195 countries and publications from 2014 to September 2022 in public databases were searched. The reported incidence of campylobacteriosis in pre-COVID-19 years was compared to that during the COVID-19 pandemic in countries where data were available. Czech Republic had the highest reported incidence of campylobacteriosis worldwide (215 per 100,000 in 2019), followed by Australia (146.8 per 100,000 in 2016) and New Zealand (126.1 per 100,000 in 2019). Campylobacter was one of the most common human enteric pathogens in both developed and developing countries. About 90% of cases of campylobacteriosis were caused by Campylobacter jejuni, whereas less than 10% of cases were caused by Campylobacter coli. Other Campylobacter species were also isolated. The reported incidence and case numbers of campylobacteriosis in developed nations have remained steadily high prior to the COVID-19 pandemic, whilst some countries reported an increasing trend such as France and Japan. While outbreaks were more frequently reported in some countries, Campylobacter infections were mainly sporadic cases in most of the developed countries. Campylobacter infection was more common in summer in some but not all countries. Campylobacter infection was more common in males than females. The COVID-19 pandemic has reduced the reported incidence of campylobacteriosis in most countries where 2020 epidemiology data were available. In conclusion, Campylobacter infection remains a global health concern. Increased research and improved strategies are needed for prevention and reduction of Campylobacter infection.
Collapse
Affiliation(s)
- Fang Liu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Seul A. Lee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jessica Xue
- Faculty of Medicine, Monash University, Melbourne, VIC, Australia
| | - Stephen M. Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, University of New South Wales, Sydney, NSW, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
19
|
Mouftah SF, Pascoe B, Calland JK, Mourkas E, Tonkin N, Lefevre C, Deuker D, Smith S, Wickenden H, Hitchings MD, Sheppard SK, Elhadidy M. Local accessory gene sharing among Egyptian Campylobacter potentially promotes the spread of antimicrobial resistance. Microb Genom 2022; 8. [PMID: 35675117 PMCID: PMC9455717 DOI: 10.1099/mgen.0.000834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Campylobacter is the most common cause of bacterial gastroenteritis worldwide, and diarrhoeal disease is a major cause of child morbidity, growth faltering and mortality in low- and middle-income countries. Despite evidence of high incidence and differences in disease epidemiology, there is limited genomic data from studies in developing countries. In this study, we aimed to quantify the extent of gene sharing in local and global populations. We characterized the genetic diversity and accessory-genome content of a collection of Campylobacter isolates from the Cairo metropolitan area, Egypt. In total, 112 Campylobacter isolates were collected from broiler carcasses (n=31), milk and dairy products (n=24), and patients suffering from gastroenteritis (n=57). Among the most common sequence types (STs), we identified the globally disseminated host generalist ST-21 clonal complex (CC21) and the poultry specialists CC206, CC464 and CC48. Notably, CC45 and the cattle-specialist CC42 were under-represented, with a total absence of CC61. Core- and accessory-genome sharing was compared among isolates from Egypt and a comparable collection from the UK (Oxford). Lineage-specific accessory-genome sharing was significantly higher among isolates from the same country, particularly CC21, which demonstrated greater local geographical clustering. In contrast, no geographical clustering was noted in either the core or accessory genome of CC828, suggesting a highly admixed population. A greater proportion of Campylobacter coli isolates were multidrug resistant compared to Campylobacter jejuni. Our results suggest that there is more horizontal transfer of accessory genes between strains in Egypt. This has strong implications for controlling the spread of antimicrobial resistance among this important pathogen.
Collapse
Affiliation(s)
- Shaimaa F Mouftah
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Ben Pascoe
- Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK.,Chiang Mai University, Chiang Mai, Thailand
| | - Jessica K Calland
- Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK
| | - Evangelos Mourkas
- Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK
| | - Naomi Tonkin
- Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK
| | - Charlotte Lefevre
- Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK.,Present address: Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Danielle Deuker
- Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK.,Present address: Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, UK
| | - Sunny Smith
- Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK
| | - Harry Wickenden
- Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK
| | | | - Samuel K Sheppard
- Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK.,Department of Zoology, University of Oxford, Oxford, UK
| | - Mohamed Elhadidy
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt.,Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
20
|
Shelenkov A. Whole-Genome Sequencing of Pathogenic Bacteria-New Insights into Antibiotic Resistance Spreading. Microorganisms 2021; 9:2624. [PMID: 34946225 PMCID: PMC8708895 DOI: 10.3390/microorganisms9122624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 02/03/2023] Open
Abstract
In recent years, the acquisition of antimicrobial resistance (AMR) by both pathogenic and opportunistic bacteria has become a major problem worldwide, which was already noticed as a global healthcare threat by the World Health Organization [...].
Collapse
Affiliation(s)
- Andrey Shelenkov
- Central Research Institute of Epidemiology, Rospotrebnadzor, 111123 Moscow, Russia
| |
Collapse
|
21
|
Gomes CN, Barker DOR, Duque SDS, Che EV, Jayamanna V, Taboada EN, Falcão JP. Campylobacter coli isolated in Brazil typed by core genome Multilocus Sequence Typing shows high genomic diversity in a global context. INFECTION GENETICS AND EVOLUTION 2021; 95:105018. [PMID: 34332158 DOI: 10.1016/j.meegid.2021.105018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/21/2021] [Accepted: 07/25/2021] [Indexed: 11/29/2022]
Abstract
Campylobacter has been one of the most common causative agent of bacterial food-borne gastroenteritis in humans worldwide. However, in Brazil the campylobacteriosis has been a neglected disease and there is insufficient data to estimate the incidence of this pathogen in the country. AIMS The current study aimed to determine the phylogenetic relationships among Campylobacter coli strains isolated in Brazil and to compare them with international Campylobacter isolates available in some public databases. METHODS AND RESULTS A total of 63C. coli strains isolated in Brazil were studied. The MLST analysis showed 18 different STs including three STs not yet described in the PubMLST database. The cgMLST allocated the Brazilian strains studied into five main clusters and each cluster comprised groups of strains with nearly identical cgMLST profiles and with significant genetic distance observed among the distinct clusters. The comparison of the Brazilian strains with 3401 isolates from different countries showed a wide distribution of these strains isolated in this country. CONCLUSIONS The results showed a high similarity among some strains studied and a wide distribution of the Brazilian strains when compared to isolates from different countries, which is an interesting data set since it showed a high genetic diversity of these strains from Brazil in a global context. This study contributed for a better genomic characterization of C. coli strains isolated in Brazil and provided important information about the diversity of this clinically-relevant pathogen.
Collapse
Affiliation(s)
- Carolina Nogueira Gomes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | - Emily Victoria Che
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Vasena Jayamanna
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | | | - Juliana Pfrimer Falcão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
22
|
Antimicrobial Resistance Profiles and Macrolide Resistance Mechanisms of Campylobacter coli Isolated from Pigs and Chickens. Microorganisms 2021; 9:microorganisms9051077. [PMID: 34067855 PMCID: PMC8156767 DOI: 10.3390/microorganisms9051077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022] Open
Abstract
We identified 1218 Campylobacter coli isolates from fecal and carcass samples of pigs (n = 643) and chickens (n = 575) between 2010 and 2018. About 99% of the isolates were resistant to at least one antimicrobial agent. The isolates exhibited high resistance rates (>75%) to ciprofloxacin, nalidixic acid, and tetracycline. Azithromycin and erythromycin resistance rates were the highest in isolates from pigs (39.7% and 39.2%, respectively) compared to those of chickens (15.8% and 16.3%, respectively). Additionally, a low-to-moderate proportion of the isolates were resistant to florfenicol, gentamicin, clindamycin, and telithromycin. Multidrug resistance (MDR) was found in 83.1% of the isolates, and profiles of MDR usually included ciprofloxacin, nalidixic acid, and tetracycline. We found point mutation (A2075G) in domain V of the 23S rRNA gene in the majority of erythromycin-resistant isolates. Multilocus sequence typing of 137 erythromycin-resistant C. coli isolates revealed 37 previously reported sequence types (STs) and 8 novel STs. M192I, A103VI, and G74A substitutions were frequently noted in the ribosomal proteins L4 or L22. Further, we identified a considerable proportion (>90%) of erythromycin-resistant isolates carrying virulence factor genes: flaA, cadF, ceuE, and VirB. The prudent use of antimicrobials and regular microbiological investigation in food animals will be vital in limiting the public health hazards of C. coli in Korea.
Collapse
|
23
|
Sarhangi M, Bakhshi B, Peeraeyeh SN. High prevalence of Campylobacter jejuni CC21 and CC257 clonal complexes in children with gastroenteritis in Tehran, Iran. BMC Infect Dis 2021; 21:108. [PMID: 33485317 PMCID: PMC7824915 DOI: 10.1186/s12879-021-05778-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 01/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Campylobacter jejuni (C. jejuni) is a leading cause of acute gastroenteritis in human worldwide. The aim of study was to assess the distribution of sialylated lipooligosaccharide (LOS) classes and capsular genotypes in C. jejuni isolated from Iranian children with gastroenteritis. Furthermore, the level of dnaK gene expression in C. jejuni strains with selected capsular genotypes and LOS classes was intended. Moreover, a comprehensive study of C. jejuni MLST-genotypes and inclusive comparison with peer sequences worldwide was intended. METHODS Twenty clinical C. jejuni strains were isolated from fecal specimens of 280 children aged 0-5 years, suspected of bacterial gastroenteritis, which admitted to 3 children hospitals from May to October, 2018. Distribution of sialylated LOS classes and specific capsular genotypes were investigated in C. jejuni of clinical origin. The expression of dnaK in C. jejuni strains was measured by Real-Time-PCR. MLST-genotyping was performed to investigate the clonal relationship of clinical C. jejuni strains and comparison with inclusive sequences worldwide. RESULTS C. jejuni HS23/36c was the predominant genotype (45%), followed by HS2 (20%), and HS19 and HS4 (each 10%). A total of 80% of isolates were assigned to LOS class B and C. Higher expression level of dnaK gene was detected in strains with HS23/36c, HS2 and HS4 capsular genotypes and sialylated LOS classes B or C. MLST analysis showed that isolates were highly diverse and represented 6 different sequence types (STs) and 3 clonal complexes (CCs). CC21 and CC257 were the most dominant CCs (75%) among our C. jejuni strains. No new ST and no common ST with our neighbor countries was detected. CONCLUSIONS The C. jejuni isolates with LOS class B or C, and capsular genotypes of HS23/36, HS2, HS4 and HS19 were dominant in population under study. The CC21 and CC257 were the largest CCs among our isolates. In overall picture, CC21 and CC353 complexes were the most frequently and widely distributed clonal complexes worldwide, although members of CC353 were not detected in our isolates. This provides a universal picture of movement of dominant Campylobacter strains worldwide.
Collapse
Affiliation(s)
- Mahnaz Sarhangi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave, Tehran, 14117-13116 Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave, Tehran, 14117-13116 Iran
| | - Shahin Najar Peeraeyeh
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave, Tehran, 14117-13116 Iran
| |
Collapse
|