1
|
Schuenzel EL. Meta-transcriptomes of the microbial communities of the different developmental life stages of Anastrepha ludens (Diptera: Tephritidae). INSECT SCIENCE 2025. [PMID: 40275455 DOI: 10.1111/1744-7917.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 04/26/2025]
Abstract
The Mexican fruit fly, Anastrepha ludens, is a polyphagous pest that is a constant threat to US agriculture because of its proximity to citrus production in border region of the United States and Mexico. Sterile Insect Technique has been used to manage and eradicate of the Mexican Fruit Fly. SIT, however, requires millions of sterile male flies to be released each week from mass-rearing facilities. The mass-reared colonies must deal with microbial infections that reduce survivorship, fecundity and male-male competition. Meta-transcriptomics joins culturing and next generation DNA sequencing techniques to understand these changing microbial communities. This study uses advances in microbial meta-transcriptome sequencing to analyze the microbial communities from the four major developmental stages of A. ludens. The composition of the microbial communities was analyzed and revealed the large transcriptional presence of the phyla Microsporidia, a known animal pathogen. Clustering and ordination analyses revealed groupings based on developmental phase for egg, larvae and pupa. Adult samples had little clustering; a not unexpected result given the known turn-over in microbial community that occurs in the first 5 d after pupation. The transcriptional activity of three known pathogens of A. ludens between developmental phases were investigated. Two of the three pathogens had significant transcriptional differences between the phases with the larvae phase having the most activity. This increase in transcriptional activity agrees with culture-based surveillance and current mitigation strategies employed in the mass-rearing facility. This result reinforces the utility of transcriptomics in combating microbial threats.
Collapse
Affiliation(s)
- Erin L Schuenzel
- School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, West University Drive, Edinburg, Texas, USA
| |
Collapse
|
2
|
Li X, Jia JJ, An JL, Meng FX, Liu TX, Zhang SZ. Effect of Cotesia ruficrus Parasitization on Diversity and Community Composition of Intestinal Bacteria in Spodoptera frugiperda. INSECTS 2024; 15:570. [PMID: 39194775 DOI: 10.3390/insects15080570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Parasitoids have the potential to alter the gut microbiota of their host insects post-parasitization, thereby influencing the host's physiological functions and creating a more favorable environment for the survival of the parasitoid's progeny. Cotesia ruficrus is a native enemy of the important invasive fall armyworm (FAW) pest, Spodoptera frugiperda, in China, exhibiting significant pest control capabilities. To investigate the impact of C. ruficrus on the gut bacteria of FAW caterpillars following parasitism, we used 16S rRNA sequencing technology to analyze the diversity and richness of gut bacteria in both long-term laboratory and short-term laboratory FAW caterpillars. The results revealed Enterococcus as the predominant bacteria across all treatments, while no significant differences were observed in the diversity and richness of gut bacteria between non-parasitized and parasitized long-term laboratory FAW caterpillars. Similarly, while the diversity of gut bacteria in non-parasitized and parasitized short-term laboratory FAWs showed no significant variance, a marked discrepancy in richness was noted. Moreover, the richness of gut bacteria in short-term laboratory FAW caterpillars surpassed that of their long-term laboratory counterparts. In addition, it was found that Corynebacterium existed only in the intestinal tract of FAW caterpillars that were parasitized by C. ruficrus. These results substantiate that C. ruficrus parasitization can alter the gut microbiota of FAW caterpillars, providing valuable insights into the interplay between gut microbiota and the dynamics of parasitoid-host interactions.
Collapse
Affiliation(s)
- Xian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Jing-Jing Jia
- Institute of Plant Protection, Hainan Academy of Agricultural Sciences, Research Center of Quality Safety and Standards for Agro-Products, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Jun-Long An
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Fan-Xin Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Tong-Xian Liu
- Institute of Entomology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Shi-Ze Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
3
|
Caravantes-Villatoro LA, Liedo P, Guillén-Navarro K, Rojas JC. Effect of a Probiotic-Enriched Diet on Sexual Competitiveness, Pheromone Emission, and Cuticular Hydrocarbons of Sterile and Fertile Anastrepha ludens (Diptera: Tephritidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1490-1498. [PMID: 35848878 DOI: 10.1093/jee/toac105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 06/15/2023]
Abstract
The sterile insect technique has been used for the eradication or control of numerous tephritid fruit flies. However, mass-rearing and sterilization can affect the microbiota and sexual performance of male tephritid fruit flies. Despite the addition of postteneral protein food which contributes to the enhancement of the sexual performance of mass-reared males, in some cases, they are less competitive than their wild counterparts. Alternatively, the addition of probiotics may improve the sexual performance of mass-reared sterile males. In this study, we evaluated the effect of a postteneral Lactobacillus casei-enriched diet on the sexual competitivity, pheromone emission, and cuticular hydrocarbons of mass-reared sterile and fertile Anastrepha ludens (Loew) (Diptera: Tephritidae) males. Flies were fed either with sugar, standard diet (sugar and protein, 3:1), sugar + probiotic, or standard diet + probiotic. The addition of the probiotic improved the sexual competitivity of fertile and sterile males that were devoid of protein but led to a negative effect on males fed with a standard diet. As compared to males that were fed with the standard diet + probiotic/only sugar, the males fed with the standard diet or those fed on sugar + probiotic displayed a higher number of mating instances. Sterile males that fed on sugar + probiotic had a higher relative amount of anastrephine, epianastrephine, n-methyl octacosane, and 2-methyl triacontane than those fed on sugar only. Overall, these compounds were common in the treatments where males had the best sexual performance. Our results suggest that the probiotics offer nutritional advantages to males whose food lacks protein.
Collapse
Affiliation(s)
| | - Pablo Liedo
- El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km, Tapachula, Chiapas, Mexico
| | - Karina Guillén-Navarro
- El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km, Tapachula, Chiapas, Mexico
| | - Julio C Rojas
- El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km, Tapachula, Chiapas, Mexico
| |
Collapse
|
4
|
Ochoa-Sánchez M, Cerqueda-García D, Moya A, Ibarra-Laclette E, Altúzar-Molina A, Desgarennes D, Aluja M. Bitter friends are not always toxic: The loss of acetic acid bacteria and the absence of Komagataeibacter in the gut microbiota of the polyphagous fly Anastrepha ludens could inhibit its development in Psidium guajava in contrast to A. striata and A. fraterculus that flourish in this host. Front Microbiol 2022; 13:979817. [PMID: 36246214 PMCID: PMC9554433 DOI: 10.3389/fmicb.2022.979817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The gut microbiota is key for the homeostasis of many phytophagous insects, but there are few studies comparing its role on host use by stenophagous or polyphagous frugivores. Guava (Psidium guajava) is a fruit infested in nature by the tephritids Anastrepha striata and A. fraterculus. In contrast, the extremely polyphagous A. ludens infests guava only under artificial conditions, but unlike A. striata and the Mexican A. fraterculus, it infests bitter oranges (Citrus x aurantium). We used these models to analyze whether the gut microbiota could explain the differences in host use observed in these flies. We compared the gut microbiota of the larvae of the three species when they developed in guava and the microbiota of the fruit pulp larvae fed on. We also compared the gut microbiota of A. ludens developing in C. x aurantium with the pulp microbiota of this widely used host. The three flies modified the composition of the host pulp microbiota (i.e., pulp the larvae fed on). We observed a depletion of Acetic Acid Bacteria (AAB) associated with a deleterious phenotype in A. ludens when infesting P. guajava. In contrast, the ability of A. striata and A. fraterculus to infest this fruit is likely associated to a symbiotic interaction with species of the Komagataeibacter genus, which are known to degrade a wide spectrum of tannins and polyphenols. The three flies establish genera specific symbiotic associations with AABs. In the case of A. ludens, the association is with Gluconobacter and Acetobacter, but importantly, it cannot be colonized by Komagataeibacter, a factor likely inhibiting its development in guava.
Collapse
Affiliation(s)
- Manuel Ochoa-Sánchez
- Red de Manejo Biorracional de Plagas y Vectores, Clúster Científico y Tecnológico Biomimic, Instituto de Ecología, A.C., Xalapa, Mexico
| | - Daniel Cerqueda-García
- Red de Manejo Biorracional de Plagas y Vectores, Clúster Científico y Tecnológico Biomimic, Instituto de Ecología, A.C., Xalapa, Mexico
- *Correspondence: Daniel Cerqueda-García,
| | - Andrés Moya
- Instituto de Biología Integrativa de Sistemas (I2SysBio), Universidad de Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Valencia, Spain
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico Biomimic, Instituto de Ecología, A.C., Xalapa, Mexico
| | - Alma Altúzar-Molina
- Red de Manejo Biorracional de Plagas y Vectores, Clúster Científico y Tecnológico Biomimic, Instituto de Ecología, A.C., Xalapa, Mexico
| | - Damaris Desgarennes
- Red de Biodiversidad y Sistemática, Clúster Científico y Tecnológico Biomimic, Instituto de Ecología, A.C., Xalapa, Mexico
| | - Martín Aluja
- Red de Manejo Biorracional de Plagas y Vectores, Clúster Científico y Tecnológico Biomimic, Instituto de Ecología, A.C., Xalapa, Mexico
- Martín Aluja,
| |
Collapse
|
5
|
Bel Mokhtar N, Catalá-Oltra M, Stathopoulou P, Asimakis E, Remmal I, Remmas N, Maurady A, Britel MR, García de Oteyza J, Tsiamis G, Dembilio Ó. Dynamics of the Gut Bacteriome During a Laboratory Adaptation Process of the Mediterranean Fruit Fly, Ceratitis capitata. Front Microbiol 2022; 13:919760. [PMID: 35847076 PMCID: PMC9283074 DOI: 10.3389/fmicb.2022.919760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Laboratory adaptation process used in sterile insect technique (SIT) programs can exert a significant impact on the insect-gut microbiome relationship, which may negatively impact the quality and performance of the fly. In the present study, changes in the gut microbiota that occur through laboratory adaptation of two Ceratitis capitata populations were investigated: Vienna 8 genetic sexing strain (GSS), a long-established control line, and a wild population recently introduced to laboratory conditions. The bacterial profiles were studied for both strains using amplicon sequencing of the 16S rRNA V3-V4 hypervariable region in larvae and in the gastrointestinal tract of teneral (1 day) and adults (5 and 15 days) reared under laboratory conditions for 14 generations (F0-F13). Findings demonstrated the development of distinct bacterial communities across the generations with differences in the bacterial composition, suggesting a strong impact of laboratory adaptation on the fly bacteriome. Moreover, different bacterial profiles were observed between wild and Vienna 8 FD-GSS displaying different patterns between the developmental stages. Proteobacteria, mainly members of the Enterobacteriaceae family, represented the major component of the bacterial community followed by Firmicutes (mainly in Vienna 8 FD-GSS adults) and Chlamydiae. The distribution of these communities is dynamic across the generations and seems to be strain- and age-specific. In the Vienna 8 FD-GSS population, Providencia exhibited high relative abundance in the first three generations and decreased significantly later, while Klebsiella was relatively stable. In the wild population, Klebsiella was dominant across most of the generations, indicating that the wild population was more resistant to artificial rearing conditions compared with the Vienna 8 FD-GSS colony. Analysis of the core bacteriome revealed the presence of nine shared taxa between most of the examined medfly samples including Klebsiella, Providencia, Pantoea, and Pseudomonas. In addition, the operational taxonomic unit co-occurrence and mutual exclusion networks of the wild population indicated that most of the interactions were classified as co-presence, while in the Vienna 8 FD-GSS population, the number of mutual exclusions and co-presence interactions was equally distributed. Obtained results provided a thorough study of the dynamics of gut-associated bacteria during the laboratory adaptation of different Ceratitis capitata populations, serving as guidance for the design of colonization protocols, improving the effectiveness of artificial rearing and the SIT application.
Collapse
Affiliation(s)
- Naima Bel Mokhtar
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
- Laboratory of Innovative Technology, National School of Applied Sciences of Tangier, Abdelmalek Essâadi University, Tétouan, Morocco
| | - Marta Catalá-Oltra
- Empresa de Transformación Agraria S.A., S.M.E., M.P. (TRAGSA), Paterna, Spain
| | - Panagiota Stathopoulou
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Elias Asimakis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Imane Remmal
- Laboratory of Innovative Technology, National School of Applied Sciences of Tangier, Abdelmalek Essâadi University, Tétouan, Morocco
| | - Nikolaos Remmas
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Xanthi, Greece
| | - Amal Maurady
- Laboratory of Innovative Technology, National School of Applied Sciences of Tangier, Abdelmalek Essâadi University, Tétouan, Morocco
- Faculty of Sciences and Technology of Tangier, Abdelmalek Essâadi University, Tétouan, Morocco
| | - Mohammed Reda Britel
- Laboratory of Innovative Technology, National School of Applied Sciences of Tangier, Abdelmalek Essâadi University, Tétouan, Morocco
| | | | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Óscar Dembilio
- Empresa de Transformación Agraria S.A., S.M.E., M.P. (TRAGSA), Paterna, Spain
| |
Collapse
|
6
|
Goane L, Salgueiro J, Medina Pereyra P, Arce OEA, Ruiz MJ, Nussenbaum AL, Segura DF, Vera MT. Antibiotic treatment reduces fecundity and nutrient content in females of Anastrepha fraterculus (Diptera: Tephritidae) in a diet dependent way. JOURNAL OF INSECT PHYSIOLOGY 2022; 139:104396. [PMID: 35447135 DOI: 10.1016/j.jinsphys.2022.104396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/11/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Insect microbiota, particularly, gut bacteria has recently gained especial attention in Tephritidae fruit flies, being Enterobacteriaceae the predominant bacterial group. This bacterial group has been postulated to contribute to the fitness of fruit flies through several life-history traits. Particularly in Anastrepha fraterculus, removal of Enterobacteria from male gut via antibiotic treatment impaired their mating behavior. Because the impact of gut bacteria on female reproduction was not yet addressed, we here analysed the effect of antibiotic treatment on female fecundity and nutritional status, and further explored the role of bacteria under different dietary regimes. The removal of culturable Enterobacteria from the gut of females was associated to a reduction in fecundity as well as in the protein and lipid reserves. However, fecundity reduction depended on the dietary regime; being more pronounced when females fed a poor diet. Our results suggest that nutrient reserves of females are determined, at least to some extent, by intestinal bacteria (particularly Enterobacteria). The effect of antibiotics on fecundity could be explained, thus, as a consequence of a poorer nutritional status in antibiotic-treated females compared to control females. Our results contribute to understand the interaction between gut bacteria and Tephritidae fruit flies. Considering the relevance of this insect as fruit pest and the widespread use of the sterile insect technique to control them, these findings may lead to practical applications, such as development of efficient mass rearing protocols of A. fraterculus that supplement the adult diet with probiotics.
Collapse
Affiliation(s)
- Lucía Goane
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, Tucumán, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Julieta Salgueiro
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética "E.A. Favret" (IGEAF), Centro de Investigación en Ciencias Veterinarias y Agronómicas- Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | - Osvaldo E A Arce
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - M Josefina Ruiz
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, Tucumán, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Ana L Nussenbaum
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética "E.A. Favret" (IGEAF), Centro de Investigación en Ciencias Veterinarias y Agronómicas- Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Diego F Segura
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética "E.A. Favret" (IGEAF), Centro de Investigación en Ciencias Veterinarias y Agronómicas- Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - M Teresa Vera
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, Tucumán, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
7
|
Salgueiro J, Nussenbaum AL, Milla FH, Asimakis E, Goane L, Ruiz MJ, Bachmann GE, Vera MT, Stathopoulou P, Bourtzis K, Deutscher AT, Lanzavecchia SB, Tsiamis G, Segura DF. Analysis of the Gut Bacterial Community of Wild Larvae of Anastrepha fraterculus sp. 1: Effect of Host Fruit, Environment, and Prominent Stable Associations of the Genera Wolbachia, Tatumella, and Enterobacter. Front Microbiol 2022; 13:822990. [PMID: 35359740 PMCID: PMC8960962 DOI: 10.3389/fmicb.2022.822990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
The genus Anastrepha (Diptera Tephritidae) includes some of the most important fruit fly pests in the Americas. Here, we studied the gut bacterial community of 3rd instar larvae of Anastrepha fraterculus sp. 1 through Next Generation Sequencing (lllumina) of the V3-V4 hypervariable region within the 16S rRNA gene. Gut bacterial communities were compared between host species (guava and peach), and geographical origins (Concordia and Horco Molle in Argentina) representing distinct ecological scenarios. In addition, we explored the effect of spatial scale by comparing the samples collected from different trees within each geographic origin and host species. We also addressed the effect of fruit size on bacterial diversity. The gut bacterial community was affected both by host species and geographic origin. At smaller spatial scales, the gut bacterial profile differed among trees of the same species and location at least in one host-location combination. There was no effect of fruit size on the larval gut bacteriome. Operational Taxonomic Units (OTUs) assigned to Wolbachia, Tatumella and Enterobacter were identified in all samples examined, which suggest potential, non-transient symbioses. Better knowledge on the larval gut bacteriome contributes valuable information to develop sustainable control strategies against A. fraterculus targeting key symbionts as the Achilles' heel to control this important fruit fly pest.
Collapse
Affiliation(s)
- Julieta Salgueiro
- Instituto de Genética “Ewald A. Favret” (INTA) – GV IABIMO (CONICET), Hurlingham, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - A. Laura Nussenbaum
- Instituto de Genética “Ewald A. Favret” (INTA) – GV IABIMO (CONICET), Hurlingham, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Fabián H. Milla
- Instituto de Genética “Ewald A. Favret” (INTA) – GV IABIMO (CONICET), Hurlingham, Argentina
| | - Elias Asimakis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Lucía Goane
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - M. Josefina Ruiz
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Guillermo E. Bachmann
- Instituto de Genética “Ewald A. Favret” (INTA) – GV IABIMO (CONICET), Hurlingham, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María T. Vera
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Panagiota Stathopoulou
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Center of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Ania T. Deutscher
- Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute (EMAI), Menangle, NSW, Australia
| | - Silvia B. Lanzavecchia
- Instituto de Genética “Ewald A. Favret” (INTA) – GV IABIMO (CONICET), Hurlingham, Argentina
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Diego F. Segura
- Instituto de Genética “Ewald A. Favret” (INTA) – GV IABIMO (CONICET), Hurlingham, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|