1
|
Hardy JG. Articular cartilage loss is an unmitigated risk of human spaceflight. NPJ Microgravity 2024; 10:104. [PMID: 39543227 PMCID: PMC11564753 DOI: 10.1038/s41526-024-00445-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024] Open
Abstract
Microgravity and space radiation are hazards of spaceflight that have deleterious effects on articular cartilage. Since it is not widely monitored or protected through dedicated countermeasures, articular cartilage loss is an unmitigated risk of human spaceflight. Spaceflight-induced cartilage loss will affect an astronaut's performance during a mission and long-term health after a mission. Addressing concerns for cartilage health will be critical to the continued safe and successful exploration of space.
Collapse
Affiliation(s)
- John G Hardy
- KBR, 2400 E NASA Parkway, Houston, TX, 77058, USA.
| |
Collapse
|
2
|
Nickerson CA, McLean RJC, Barrila J, Yang J, Thornhill SG, Banken LL, Porterfield DM, Poste G, Pellis NR, Ott CM. Microbiology of human spaceflight: microbial responses to mechanical forces that impact health and habitat sustainability. Microbiol Mol Biol Rev 2024; 88:e0014423. [PMID: 39158275 PMCID: PMC11426028 DOI: 10.1128/mmbr.00144-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
SUMMARYUnderstanding the dynamic adaptive plasticity of microorganisms has been advanced by studying their responses to extreme environments. Spaceflight research platforms provide a unique opportunity to study microbial characteristics in new extreme adaptational modes, including sustained exposure to reduced forces of gravity and associated low fluid shear force conditions. Under these conditions, unexpected microbial responses occur, including alterations in virulence, antibiotic and stress resistance, biofilm formation, metabolism, motility, and gene expression, which are not observed using conventional experimental approaches. Here, we review biological and physical mechanisms that regulate microbial responses to spaceflight and spaceflight analog environments from both the microbe and host-microbe perspective that are relevant to human health and habitat sustainability. We highlight instrumentation and technology used in spaceflight microbiology experiments, their limitations, and advances necessary to enable next-generation research. As spaceflight experiments are relatively rare, we discuss ground-based analogs that mimic aspects of microbial responses to reduced gravity in spaceflight, including those that reduce mechanical forces of fluid flow over cell surfaces which also simulate conditions encountered by microorganisms during their terrestrial lifecycles. As spaceflight mission durations increase with traditional astronauts and commercial space programs send civilian crews with underlying health conditions, microorganisms will continue to play increasingly critical roles in health and habitat sustainability, thus defining a new dimension of occupational health. The ability of microorganisms to adapt, survive, and evolve in the spaceflight environment is important for future human space endeavors and provides opportunities for innovative biological and technological advances to benefit life on Earth.
Collapse
Affiliation(s)
- Cheryl A. Nickerson
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | | | - Jennifer Barrila
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - Jiseon Yang
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | | | - Laura L. Banken
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - D. Marshall Porterfield
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, Indiana, USA
| | - George Poste
- Complex Adaptive Systems Initiative, Arizona State University, Tempe, Arizona, USA
| | | | - C. Mark Ott
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, Texas, USA
| |
Collapse
|
3
|
Kaur J, Kaur J, Nigam A. Extremophiles in Space Exploration. Indian J Microbiol 2024; 64:418-428. [PMID: 39010991 PMCID: PMC11246395 DOI: 10.1007/s12088-024-01297-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/28/2024] [Indexed: 07/17/2024] Open
Abstract
In the era of deep space exploration, extremophile research represents a key area of research w.r.t space survival. This review thus delves into the intriguing realm of 'Space and Astro Microbiology', providing insights into microbial survival, resilience, and behavioral adaptations in space-like environments. This discussion encompasses the modified behavior of extremophilic microorganisms, influencing virulence, stress resistance, and gene expression. It then shifts to recent studies on the International Space Station and simulated microgravity, revealing microbial responses that impact drug susceptibility, antibiotic resistance, and its commercial implications. The review then transitions into Astro microbiology, exploring the possibilities of interplanetary transit, lithopanspermia, and terraforming. Debates on life's origin and recent Martian meteorite discoveries are noted. We also discuss Proactive Inoculation Protocols for selecting adaptable microorganisms as terraforming pioneers. The discussion concludes with a note on microbes' role as bioengineers in bioregenerative life support systems, in recycling organic waste for sustainable space travel; and in promoting optimal plant growth to prepare Martian and lunar basalt. This piece emphasizes the transformative impact of microbes on the future of space exploration.
Collapse
Affiliation(s)
- Jasvinder Kaur
- Gargi College, University of Delhi, Siri Fort Road, New Delhi, 110 049 India
| | - Jaspreet Kaur
- Maitreyi College, University of Delhi, New Delhi, 110 021 India
| | - Aeshna Nigam
- Shivaji College, University of Delhi, New Delhi, 110 027 India
| |
Collapse
|
4
|
Sharma G, Zee PC, Zea L, Curtis PD. Whole genome-scale assessment of gene fitness of Novosphingobium aromaticavorans during spaceflight. BMC Genomics 2023; 24:782. [PMID: 38102595 PMCID: PMC10725011 DOI: 10.1186/s12864-023-09799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023] Open
Abstract
In microgravity, bacteria undergo intriguing physiological adaptations. There have been few attempts to assess global bacterial physiological responses to microgravity, with most studies only focusing on a handful of individual systems. This study assessed the fitness of each gene in the genome of the aromatic compound-degrading Alphaproteobacterium Novosphingobium aromaticavorans during growth in spaceflight. This was accomplished using Comparative TnSeq, which involves culturing the same saturating transposon mutagenized library under two different conditions. To assess gene fitness, a novel comparative TnSeq analytical tool was developed, named TnDivA, that is particularly useful in leveraging biological replicates. In this approach, transposon diversity is represented numerically using a modified Shannon diversity index, which was then converted into effective transposon density. This transformation accounts for variability in read distribution between samples, such as cases where reads were dominated by only a few transposon inserts. Effective density values were analyzed using multiple statistical methods, including log2-fold change, least-squares regression analysis, and Welch's t-test. The results obtained across applied statistical methods show a difference in the number of significant genes identified. However, the functional categories of genes important to growth in microgravity showed similar patterns. Lipid metabolism and transport, energy production, transcription, translation, and secondary metabolite biosynthesis and transport were shown to have high fitness during spaceflight. This suggests that core metabolic processes, including lipid and secondary metabolism, play an important role adapting to stress and promoting growth in microgravity.
Collapse
Affiliation(s)
- Gayatri Sharma
- Department of Biology, University of Mississippi, 402 Shoemaker Hall, University, MS, 38677, USA
| | - Peter C Zee
- Department of Biology, University of Mississippi, 402 Shoemaker Hall, University, MS, 38677, USA
| | - Luis Zea
- Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Patrick D Curtis
- Department of Biology, University of Mississippi, 402 Shoemaker Hall, University, MS, 38677, USA.
| |
Collapse
|
5
|
Su X, Fang T, Fang L, Wang D, Jiang X, Liu C, Zhang H, Guo R, Wang J. Effects of short-term exposure to simulated microgravity on the physiology of Bacillus subtilis and multiomic analysis. Can J Microbiol 2023; 69:464-478. [PMID: 37463516 DOI: 10.1139/cjm-2023-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
In our study, Bacillus subtilis was disposed to a simulated microgravity (SMG) environment in high-aspect ratio rotating-wall vessel bioreactors for 14 days, while the control group was disposed to the same bioreactors in a normal gravity (NG) environment for 14 days. The B. subtilis strain exposed to the SMG (labeled BSS) showed an enhanced growth ability, increased biofilm formation ability, increased sensitivity to ampicillin sulbactam and cefotaxime, and some metabolic alterations compared with the B. subtilis strain under NG conditions (labeled BSN) and the original strain of B. subtilis (labeled BSO). The differentially expressed proteins (DEPs) associated with an increased growth rate, such as DNA strand exchange activity, oxidoreductase activity, proton-transporting ATP synthase complex, and biosynthetic process, were significantly upregulated in BSS. The enhanced biofilm formation ability may be related with the DEPs of spore germination and protein processing in BSS, and differentially expressed genes involved in protein localization and peptide secretion were also significantly enriched. The results revealed that SMG may increase the level of related functional proteins by upregulating or downregulating affiliated genes to change physiological characteristics and modulate growth ability, biofilm formation ability (epsB, epsC, epsN), antibiotic sensitivity (penP) and metabolism. Our experiment may gives new ideas for the study of space microbiology.
Collapse
Affiliation(s)
- Xiaolei Su
- Department of Otorhinolaryngology Head and Neck Surgery, Air Force Medical Center, PLA, Beijing, China
| | - Tingzheng Fang
- Sixth Department of Health Care, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Lin Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Air Force Medical Center, PLA, Beijing, China
| | - Dapeng Wang
- Department of Respiratory and Critical Care Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Xuege Jiang
- Department of Respiratory and Critical Care Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Changting Liu
- Department of Respiratory and Critical Care Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Honglei Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Air Force Medical Center, PLA, Beijing, China
| | - Rui Guo
- Department of Otorhinolaryngology Head and Neck Surgery, Air Force Medical Center, PLA, Beijing, China
| | - Junfeng Wang
- Department of Respiratory and Critical Care Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Prescott RD, Chan YL, Tong EJ, Bunn F, Onouye CT, Handel C, Lo CC, Davenport K, Johnson S, Flynn M, Saito JA, Lee H, Wong K, Lawson BN, Hiura K, Sager K, Sadones M, Hill EC, Esibill D, Cockell CS, Santomartino R, Chain PS, Decho AW, Donachie SP. Bridging Place-Based Astrobiology Education with Genomics, Including Descriptions of Three Novel Bacterial Species Isolated from Mars Analog Sites of Cultural Relevance. ASTROBIOLOGY 2023; 23:1348-1367. [PMID: 38079228 PMCID: PMC10750312 DOI: 10.1089/ast.2023.0072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/27/2023] [Indexed: 12/22/2023]
Abstract
Democratizing genomic data science, including bioinformatics, can diversify the STEM workforce and may, in turn, bring new perspectives into the space sciences. In this respect, the development of education and research programs that bridge genome science with "place" and world-views specific to a given region are valuable for Indigenous students and educators. Through a multi-institutional collaboration, we developed an ongoing education program and model that includes Illumina and Oxford Nanopore sequencing, free bioinformatic platforms, and teacher training workshops to address our research and education goals through a place-based science education lens. High school students and researchers cultivated, sequenced, assembled, and annotated the genomes of 13 bacteria from Mars analog sites with cultural relevance, 10 of which were novel species. Students, teachers, and community members assisted with the discovery of new, potentially chemolithotrophic bacteria relevant to astrobiology. This joint education-research program also led to the discovery of species from Mars analog sites capable of producing N-acyl homoserine lactones, which are quorum-sensing molecules used in bacterial communication. Whole genome sequencing was completed in high school classrooms, and connected students to funded space research, increased research output, and provided culturally relevant, place-based science education, with participants naming three novel species described here. Students at St. Andrew's School (Honolulu, Hawai'i) proposed the name Bradyrhizobium prioritasuperba for the type strain, BL16AT, of the new species (DSM 112479T = NCTC 14602T). The nonprofit organization Kauluakalana proposed the name Brenneria ulupoensis for the type strain, K61T, of the new species (DSM 116657T = LMG = 33184T), and Hawai'i Baptist Academy students proposed the name Paraflavitalea speifideiaquila for the type strain, BL16ET, of the new species (DSM 112478T = NCTC 14603T).
Collapse
Affiliation(s)
- Rebecca D. Prescott
- Department of Biology, University of Mississippi, University, Mississippi, USA
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
- National Aeronautics and Space Administration, Johnson Space Center, Houston, Texas, USA
| | - Yvonne L. Chan
- Office of Community Science, ‘Iolani School, Honolulu, Hawai‘i, USA
| | - Eric J. Tong
- Office of Community Science, ‘Iolani School, Honolulu, Hawai‘i, USA
| | - Fiona Bunn
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, United Kingdom
| | - Chiyoko T. Onouye
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
| | - Christy Handel
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
| | - Chien-Chi Lo
- Los Alamos National Laboratory, Biosciences Division, Los Alamos, New Mexico, USA
| | - Karen Davenport
- Los Alamos National Laboratory, Biosciences Division, Los Alamos, New Mexico, USA
| | - Shannon Johnson
- Los Alamos National Laboratory, Biosciences Division, Los Alamos, New Mexico, USA
| | - Mark Flynn
- Los Alamos National Laboratory, Biosciences Division, Los Alamos, New Mexico, USA
| | - Jennifer A. Saito
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
| | - Herb Lee
- Pacific American Foundation, Kailua, Hawai‘i, USA
| | | | - Brittany N. Lawson
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
| | - Kayla Hiura
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
| | - Kailey Sager
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
| | - Mia Sadones
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
| | - Ethan C. Hill
- Office of Community Science, ‘Iolani School, Honolulu, Hawai‘i, USA
| | | | - Charles S. Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, United Kingdom
| | - Rosa Santomartino
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, United Kingdom
| | - Patrick S.G. Chain
- Los Alamos National Laboratory, Biosciences Division, Los Alamos, New Mexico, USA
| | - Alan W. Decho
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Stuart P. Donachie
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
| |
Collapse
|
7
|
Marra D, Karapantsios T, Caserta S, Secchi E, Holynska M, Labarthe S, Polizzi B, Ortega S, Kostoglou M, Lasseur C, Karapanagiotis I, Lecuyer S, Bridier A, Noirot-Gros MF, Briandet R. Migration of surface-associated microbial communities in spaceflight habitats. Biofilm 2023; 5:100109. [PMID: 36909662 PMCID: PMC9999172 DOI: 10.1016/j.bioflm.2023.100109] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/05/2023] [Accepted: 02/17/2023] [Indexed: 02/26/2023] Open
Abstract
Astronauts are spending longer periods locked up in ships or stations for scientific and exploration spatial missions. The International Space Station (ISS) has been inhabited continuously for more than 20 years and the duration of space stays by crews could lengthen with the objectives of human presence on the moon and Mars. If the environment of these space habitats is designed for the comfort of astronauts, it is also conducive to other forms of life such as embarked microorganisms. The latter, most often associated with surfaces in the form of biofilm, have been implicated in significant degradation of the functionality of pieces of equipment in space habitats. The most recent research suggests that microgravity could increase the persistence, resistance and virulence of pathogenic microorganisms detected in these communities, endangering the health of astronauts and potentially jeopardizing long-duration manned missions. In this review, we describe the mechanisms and dynamics of installation and propagation of these microbial communities associated with surfaces (spatial migration), as well as long-term processes of adaptation and evolution in these extreme environments (phenotypic and genetic migration), with special reference to human health. We also discuss the means of control envisaged to allow a lasting cohabitation between these vibrant microscopic passengers and the astronauts.
Collapse
Affiliation(s)
- Daniele Marra
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPi), University of Naples, Federico II, Piazzale Tecchio 80, 80125, Naples, Italy
- CEINGE, Advanced Biotechnologies, Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | - Thodoris Karapantsios
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece
| | - Sergio Caserta
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPi), University of Naples, Federico II, Piazzale Tecchio 80, 80125, Naples, Italy
- CEINGE, Advanced Biotechnologies, Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | - Eleonora Secchi
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, 8093, Zurich, Switzerland
| | | | - Simon Labarthe
- University of Bordeaux, IMB, UMR 5251, CNRS, IMB, Memphis Team, INRIA, Talence, France
| | - Bastien Polizzi
- Laboratoire de Mathématiques de Besançon, Université Bourgogne Franche-Comté, CNRS UMR-6623, Besançon, France
| | | | - Margaritis Kostoglou
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece
| | | | - Ioannis Karapanagiotis
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece
| | | | - Arnaud Bridier
- Fougères Laboratory, Antibiotics, Biocides, Residues and Resistance Unit, ANSES, Fougères, France
| | | | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
8
|
Recupido F, Petala M, Caserta S, Marra D, Kostoglou M, Karapantsios TD. Forced Wetting Properties of Bacteria-Laden Droplets Experiencing Initial Evaporation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37079897 DOI: 10.1021/acs.langmuir.3c00179] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Microbial adhesion and spreading on surfaces are crucial aspects in environmental and industrial settings being also the early stage of complex surface-attached microbial communities known as biofilms. In this work, Pseudomonas fluorescens-laden droplets on hydrophilic substrates (glass coupons) are allowed to partially evaporate before running wetting measurements, to study the effect of evaporation on their interfacial behavior during spillover or splashing. Forced wetting is investigated by imposing controlled centrifugal forces, using a novel rotatory device (Kerberos). At a defined evaporation time, results for the critical tangential force required for the inception of sliding are presented. Microbe-laden droplets exhibit different wetting/spreading properties as a function of the imposed evaporation times. It is found that evaporation is slowed down in bacterial droplets with respect to nutrient medium ones. After sufficient drying times, bacteria accumulate at droplet edges, affecting the droplet shape and thus depinning during forced wetting tests. Droplet rear part does not pin during the rotation test, while only the front part advances and spreads along the force direction. Quantitative results obtained from the well-known Furmidge's equation reveal that force for sliding inception increases as evaporation time increases. This study can be of support for control of biofilm contamination and removal and possible design of antimicrobial/antibiofouling surfaces.
Collapse
Affiliation(s)
- Federica Recupido
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 54 124 Thessaloniki, Greece
| | - Maria Petala
- Department of Civil Engineering, Aristotle University of Thessaloniki, University Box 10, 54 124 Thessaloniki, Greece
| | - Sergio Caserta
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPI), Piazzale V. Tecchio 80, 80125 Naples, Italy
- CEINGE Advanced Biotechnology, Gaetano Salvatore 486, 80145 Naples, Italy
| | - Daniele Marra
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPI), Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Margaritis Kostoglou
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 54 124 Thessaloniki, Greece
| | - Thodoris D Karapantsios
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 54 124 Thessaloniki, Greece
| |
Collapse
|
9
|
Santomartino R, Averesch NJH, Bhuiyan M, Cockell CS, Colangelo J, Gumulya Y, Lehner B, Lopez-Ayala I, McMahon S, Mohanty A, Santa Maria SR, Urbaniak C, Volger R, Yang J, Zea L. Toward sustainable space exploration: a roadmap for harnessing the power of microorganisms. Nat Commun 2023; 14:1391. [PMID: 36944638 PMCID: PMC10030976 DOI: 10.1038/s41467-023-37070-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 03/01/2023] [Indexed: 03/23/2023] Open
Abstract
Finding sustainable approaches to achieve independence from terrestrial resources is of pivotal importance for the future of space exploration. This is relevant not only to establish viable space exploration beyond low Earth-orbit, but also for ethical considerations associated with the generation of space waste and the preservation of extra-terrestrial environments. Here we propose and highlight a series of microbial biotechnologies uniquely suited to establish sustainable processes for in situ resource utilization and loop-closure. Microbial biotechnologies research and development for space sustainability will be translatable to Earth applications, tackling terrestrial environmental issues, thereby supporting the United Nations Sustainable Development Goals.
Collapse
Affiliation(s)
- Rosa Santomartino
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK.
| | - Nils J H Averesch
- Department of Civil & Environmental Engineering, Stanford University, Stanford, CA, USA
- Center for Utilization of Biological Engineering in Space, Berkeley, CA, USA
| | | | - Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | | | - Yosephine Gumulya
- Centre for Microbiome Research, Queensland University of Technology, Brisbane, QLD, Australia
| | | | | | - Sean McMahon
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Anurup Mohanty
- Blue Marble Space Institute of Science, 600 1st Ave, Floor 1, Seattle, WA, 98104, USA
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, India
| | - Sergio R Santa Maria
- Space Biosciences, NASA Ames Research Center, Mountain View, CA, USA
- KBR, Moffett Field, Mountain View, CA, USA
| | - Camilla Urbaniak
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
- ZIN Technologies Inc, Middleburg Heights, OH, USA
| | - Rik Volger
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Jiseon Yang
- Biodesign Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Luis Zea
- BioServe Space Technologies, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
10
|
Vélez Justiniano YA, Goeres DM, Sandvik EL, Kjellerup BV, Sysoeva TA, Harris JS, Warnat S, McGlennen M, Foreman CM, Yang J, Li W, Cassilly CD, Lott K, HerrNeckar LE. Mitigation and use of biofilms in space for the benefit of human space exploration. Biofilm 2023; 5:100102. [PMID: 36660363 PMCID: PMC9843197 DOI: 10.1016/j.bioflm.2022.100102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/08/2023] Open
Abstract
Biofilms are self-organized communities of microorganisms that are encased in an extracellular polymeric matrix and often found attached to surfaces. Biofilms are widely present on Earth, often found in diverse and sometimes extreme environments. These microbial communities have been described as recalcitrant or protective when facing adversity and environmental exposures. On the International Space Station, biofilms were found in human-inhabited environments on a multitude of hardware surfaces. Moreover, studies have identified phenotypic and genetic changes in the microorganisms under microgravity conditions including changes in microbe surface colonization and pathogenicity traits. Lack of consistent research in microgravity-grown biofilms can lead to deficient understanding of altered microbial behavior in space. This could subsequently create problems in engineered systems or negatively impact human health on crewed spaceflights. It is especially relevant to long-term and remote space missions that will lack resupply and service. Conversely, biofilms are also known to benefit plant growth and are essential for human health (i.e., gut microbiome). Eventually, biofilms may be used to supply metabolic pathways that produce organic and inorganic components useful to sustaining life on celestial bodies beyond Earth. This article will explore what is currently known about biofilms in space and will identify gaps in the aerospace industry's knowledge that should be filled in order to mitigate or to leverage biofilms to the advantage of spaceflight.
Collapse
Affiliation(s)
- Yo-Ann Vélez Justiniano
- ECLSS Development Branch, NASA Marshall Space Flight Center, Huntsville, AL, USA,Corresponding author.
| | - Darla M. Goeres
- The Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA,Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| | | | - Birthe Veno Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA
| | - Tatyana A. Sysoeva
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, USA
| | - Jacob S. Harris
- Biomedical and Environmental Science Division, NASA Johnson Space Center, Houston, TX, USA
| | - Stephan Warnat
- The Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA,Mechanical Engineering, Montana State University, Bozeman, MT, USA
| | - Matthew McGlennen
- The Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA,Mechanical Engineering, Montana State University, Bozeman, MT, USA
| | - Christine M. Foreman
- The Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA,Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| | - Jiseon Yang
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA
| | - Wenyan Li
- Laboratory Support Services and Operations (LASSO), NASA Kennedy Space Center, Cape Canaveral, FL, USA
| | | | - Katelynn Lott
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, USA
| | - Lauren E. HerrNeckar
- ECLSS Development Branch, NASA Marshall Space Flight Center, Huntsville, AL, USA
| |
Collapse
|
11
|
Passive limitation of surface contamination by perFluoroDecylTrichloroSilane coatings in the ISS during the MATISS experiments. NPJ Microgravity 2022; 8:31. [PMID: 35927552 PMCID: PMC9352769 DOI: 10.1038/s41526-022-00218-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/15/2022] [Indexed: 11/08/2022] Open
Abstract
Future long-duration human spaceflight will require developments to limit biocontamination of surface habitats. The MATISS (Microbial Aerosol Tethering on Innovative Surfaces in the international Space Station) experiments allowed for exposing surface treatments in the ISS (International Space Station) using a sample-holder developed to this end. Three campaigns of FDTS (perFluoroDecylTrichloroSilane) surface exposures were performed over monthly durations during distinct periods. Tile scanning optical microscopy (×3 and ×30 magnifications) showed a relatively clean environment with a few particles on the surface (0.8 to 7 particles per mm2). The varied densities and shapes in the coarse area fraction (50-1500 µm2) indicated different sources of contamination in the long term, while the bacteriomorph shapes of the fine area fraction (0.5-15 µm2) were consistent with microbial contamination. The surface contamination rates correlate to astronauts' occupancy rates on board. Asymmetric particles density profiles formed throughout time along the air-flow. The higher density values were located near the flow entry for the coarse particles, while the opposite was the case for the fine particles, probably indicating the hydrophobic interaction of particles with the FDTS surface.
Collapse
|
12
|
Zhang B, Bai P, Wang D. Growth Behavior and Transcriptome Profile Analysis of Proteus mirabilis Strain Under Long- versus Short-Term Simulated Microgravity Environment. Pol J Microbiol 2022; 71:161-171. [PMID: 35635525 PMCID: PMC9252141 DOI: 10.33073/pjm-2022-015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/07/2022] [Indexed: 11/29/2022] Open
Abstract
Spaceflight missions affect the behavior of microbes that are inevitably introduced into space environments and may impact astronauts’ health. Current studies have mainly focused on the biological characteristics and molecular mechanisms of microbes after short-term or long-term spaceflight, but few have compared the impact of various lengths of spaceflight missions on the characteristics of microbes. Researchers generally agree that microgravity (MG) is the most critical factor influencing microbial physiology in space capsules during flight missions. This study compared the growth behavior and transcriptome profile of Proteus mirabilis cells exposed to long-term simulated microgravity (SMG) with those exposed to short-term SMG. The results showed that long-term SMG decreased the growth rate, depressed biofilm formation ability, and affected several transcriptomic profiles, including stress response, membrane transportation, metal ion transportation, biological adhesion, carbohydrate metabolism, and lipid metabolism in contrast to short-term SMG. This study improved the understanding of long-term versus short-term SMG effects on P. mirabilis behavior and provided relevant references for analyzing the influence of P. mirabilis on astronaut health during spaceflights.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital , Binzhou , China
| | - Po Bai
- Respiratory Diseases Department, PLA Rocket Force Characteristic Medical Center , Beijing , China
| | - Dapeng Wang
- Respiratory Diseases Department, The Second Medical Center of PLA General Hospital , Beijing , China
| |
Collapse
|
13
|
Napoli A, Micheletti D, Pindo M, Larger S, Cestaro A, de Vera JP, Billi D. Absence of increased genomic variants in the cyanobacterium Chroococcidiopsis exposed to Mars-like conditions outside the space station. Sci Rep 2022; 12:8437. [PMID: 35589950 PMCID: PMC9120168 DOI: 10.1038/s41598-022-12631-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/06/2022] [Indexed: 11/08/2022] Open
Abstract
Despite the increasing interest in using microbial-based technologies to support human space exploration, many unknowns remain not only on bioprocesses but also on microbial survivability and genetic stability under non-Earth conditions. Here the desert cyanobacterium Chroococcidiopsis sp. CCMEE 029 was investigated for robustness of the repair capability of DNA lesions accumulated under Mars-like conditions (UV radiation and atmosphere) simulated in low Earth orbit using the EXPOSE-R2 facility installed outside the International Space Station. Genomic alterations were determined in a space-derivate of Chroococcidiopsis sp. CCMEE 029 obtained upon reactivation on Earth of the space-exposed cells. Comparative analysis of whole-genome sequences showed no increased variant numbers in the space-derivate compared to triplicates of the reference strain maintained on the ground. This result advanced cyanobacteria-based technologies to support human space exploration.
Collapse
Affiliation(s)
- Alessandro Napoli
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica snc, 00133, Rome, Italy
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Diego Micheletti
- Edmund Mach Foundation, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Massimo Pindo
- Edmund Mach Foundation, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Simone Larger
- Edmund Mach Foundation, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Alessandro Cestaro
- Edmund Mach Foundation, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Jean-Pierre de Vera
- German Aerospace Center (DLR), Microgravity User Support Center, Linder Höhe, 51147, Cologne, Germany
| | - Daniela Billi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica snc, 00133, Rome, Italy.
| |
Collapse
|
14
|
An R, Lee JA. CAMDLES: CFD-DEM Simulation of Microbial Communities in Spaceflight and Artificial Microgravity. Life (Basel) 2022; 12:life12050660. [PMID: 35629329 PMCID: PMC9144607 DOI: 10.3390/life12050660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 12/02/2022] Open
Abstract
We present CAMDLES (CFD-DEM Artificial Microgravity Developments for Living Ecosystem Simulation), an extension of CFDEM®Coupling to model biological flows, growth, and mass transfer in artificial microgravity devices. For microbes that accompany humans into space, microgravity-induced alterations in the fluid environment are likely to be a major factor in the microbial experience of spaceflight. Computational modeling is needed to investigate how well ground-based microgravity simulation methods replicate that experience. CAMDLES incorporates agent-based modeling to study inter-species metabolite transport within microbial communities in rotating wall vessel bioreactors (RWVs). Preexisting CFD modeling of RWVs has not yet incorporated growth; CAMDLES employs the simultaneous modeling of biological, chemical, and mechanical processes in a micro-scale rotating reference frame environment. Simulation mass transfer calculations were correlated with Monod dynamic parameters to predict relative growth rates between artificial microgravity, spaceflight microgravity, and 1 g conditions. By simulating a microbial model community of metabolically cooperative strains of Escherichia coli and Salmonella enterica, we found that the greatest difference between microgravity and an RWV or 1 g gravity was when species colocalized in dense aggregates. We also investigated the influence of other features of the system on growth, such as spatial distribution, product yields, and diffusivity. Our simulation provides a basis for future laboratory experiments using this community for investigation in artificial microgravity and spaceflight microgravity. More broadly, our development of these models creates a framework for novel hypothesis generation and design of biological experiments with RWVs, coupling the effects of RWV size, rotation rate, and mass transport directly to bacterial growth in microbial communities.
Collapse
Affiliation(s)
- Rocky An
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14850, USA
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14850, USA
- Correspondence: (R.A.); (J.A.L.)
| | - Jessica Audrey Lee
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Correspondence: (R.A.); (J.A.L.)
| |
Collapse
|
15
|
Mapstone LJ, Leite MN, Purton S, Crawford IA, Dartnell L. Cyanobacteria and microalgae in supporting human habitation on Mars. Biotechnol Adv 2022; 59:107946. [DOI: 10.1016/j.biotechadv.2022.107946] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/21/2022] [Accepted: 03/15/2022] [Indexed: 12/16/2022]
|
16
|
Santomartino R, Zea L, Cockell CS. The smallest space miners: principles of space biomining. Extremophiles 2022; 26:7. [PMID: 34993644 PMCID: PMC8739323 DOI: 10.1007/s00792-021-01253-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/09/2021] [Indexed: 12/03/2022]
Abstract
As we aim to expand human presence in space, we need to find viable approaches to achieve independence from terrestrial resources. Space biomining of the Moon, Mars and asteroids has been indicated as one of the promising approaches to achieve in-situ resource utilization by the main space agencies. Structural and expensive metals, essential mineral nutrients, water, oxygen and volatiles could be potentially extracted from extraterrestrial regolith and rocks using microbial-based biotechnologies. The use of bioleaching microorganisms could also be applied to space bioremediation, recycling of waste and to reinforce regenerative life support systems. However, the science around space biomining is still young. Relevant differences between terrestrial and extraterrestrial conditions exist, including the rock types and ores available for mining, and a direct application of established terrestrial biomining techniques may not be a possibility. It is, therefore, necessary to invest in terrestrial and space-based research of specific methods for space applications to learn the effects of space conditions on biomining and bioremediation, expand our knowledge on organotrophic and community-based bioleaching mechanisms, as well as on anaerobic biomining, and investigate the use of synthetic biology to overcome limitations posed by the space environments.
Collapse
Affiliation(s)
- Rosa Santomartino
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK.
| | - Luis Zea
- BioServe Space Technologies, University of Colorado Boulder, Boulder, CO, USA
| | - Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK
| |
Collapse
|
17
|
Cockell CS. Bridging the gap between microbial limits and extremes in space: space microbial biotechnology in the next 15 years. Microb Biotechnol 2022; 15:29-41. [PMID: 34534397 PMCID: PMC8719799 DOI: 10.1111/1751-7915.13927] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/05/2021] [Indexed: 12/01/2022] Open
Abstract
The establishment of a permanent human settlement in space is one of humanity's ambitions. To achieve this, microorganisms will be used to carry out many functions such as recycling, food and pharmaceutical production, mining and other processes. However, the physical and chemical extremes in all locations beyond Earth exceed known growth limits of microbial life. Making microbes more tolerant of a greater range of extraterrestrial extremes will not produce organisms that can grow in unmodified extraterrestrial environments since in many of them not even liquid water can exist. However, by narrowing the gap, the engineering demands on bioindustrial processes can be reduced and greater robustness can be incorporated into the biological component. I identify and describe these required microbial biotechnological modifications and speculate on long-term possibilities such as microbial biotechnology on Saturn's moon Titan to support a human presence in the outer Solar System and bioprocessing of asteroids. A challenge for space microbial biotechnology in the coming decades is to narrow the microbial gap by systemically identifying the genes required to do this and incorporating them into microbial systems that can be used to carry out bioindustrial processes of interest.
Collapse
Affiliation(s)
- Charles S. Cockell
- UK Centre for AstrobiologySchool of Physics and AstronomyUniversity of EdinburghEdinburghUK
| |
Collapse
|
18
|
Jang H, Choi SY, Mun W, Jeong SH, Mitchell RJ. Predation of colistin- and carbapenem-resistant bacterial pathogenic populations and their antibiotic resistance genes in simulated microgravity. Microbiol Res 2021; 255:126941. [PMID: 34915266 DOI: 10.1016/j.micres.2021.126941] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
As mankind evaluates moving toward permanently inhabiting outer space and other planetary bodies, alternatives to antibiotic that can effectively control drug-resistant pathogens are needed. The activity of one such alternative, Bdellovibrio bacteriovorus HD100, was explored here, and was found to be as active or better in simulated microgravity (SMG) conditions as in flask and normal gravity (NG) cultures, with the prey viabilities decreasing by 3- to 7-log CFU/mL in 24 h. The activity of B. bacteriovorus HD100 under SMG was also appraised with three different carbapenem- and colistin-resistant pathogenic bacterial strains. In addition to being more efficient at killing two of these pathogens under SMG conditions (with losses of 5- to 6-log CFU/mL), we also explored the ability of B. bacteriovorus HD100 to hydrolyze the carbapenem- and colistin-resistant gene pools, i.e., mcr-1, blaKPC-2 and blaOXA-51, present in these clinical isolates. We found removal efficiencies of 97.4 ± 0.9 %, 97.8 ± 0.4 % and 99.3 ± 0.1 %, respectively, in SMG cultures, while similar reductions were also seen in the flask and NG cultures. These results illustrate the potential applicability of B. bacteriovorus HD100 as an antibiotic to combat the ever-growing threat of multidrug-resistant (MDR) pathogens during spaceflight, such as in the International Space Station (ISS).
Collapse
Affiliation(s)
- Hyochan Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Seong Yeol Choi
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Wonsik Mun
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul 06273, South Korea
| | - Robert J Mitchell
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea.
| |
Collapse
|
19
|
Keller RJ, Porter W, Goli K, Rosenthal R, Butler N, Jones JA. Biologically-Based and Physiochemical Life Support and In Situ Resource Utilization for Exploration of the Solar System-Reviewing the Current State and Defining Future Development Needs. Life (Basel) 2021; 11:844. [PMID: 34440588 PMCID: PMC8398003 DOI: 10.3390/life11080844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 12/02/2022] Open
Abstract
The future of long-duration spaceflight missions will place our vehicles and crew outside of the comfort of low-Earth orbit. Luxuries of quick resupply and frequent crew changes will not be available. Future missions will have to be adapted to low resource environments and be suited to use resources at their destinations to complete the latter parts of the mission. This includes the production of food, oxygen, and return fuel for human flight. In this chapter, we performed a review of the current literature, and offer a vision for the implementation of cyanobacteria-based bio-regenerative life support systems and in situ resource utilization during long duration expeditions, using the Moon and Mars for examples. Much work has been done to understand the nutritional benefits of cyanobacteria and their ability to survive in extreme environments like what is expected on other celestial objects. Fuel production is still in its infancy, but cyanobacterial production of methane is a promising front. In this chapter, we put forth a vision of a three-stage reactor system for regolith processing, nutritional and atmospheric production, and biofuel production as well as diving into what that system will look like during flight and a discussion on containment considerations.
Collapse
Affiliation(s)
- Ryan J. Keller
- Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA; (W.P.); (K.G.); (R.R.); (N.B.); (J.A.J.)
| | | | | | | | | | | |
Collapse
|
20
|
Cockell CS, Santomartino R, Finster K, Waajen AC, Nicholson N, Loudon CM, Eades LJ, Moeller R, Rettberg P, Fuchs FM, Van Houdt R, Leys N, Coninx I, Hatton J, Parmitano L, Krause J, Koehler A, Caplin N, Zuijderduijn L, Mariani A, Pellari S, Carubia F, Luciani G, Balsamo M, Zolesi V, Ochoa J, Sen P, Watt JAJ, Doswald-Winkler J, Herová M, Rattenbacher B, Wadsworth J, Everroad RC, Demets R. Microbially-Enhanced Vanadium Mining and Bioremediation Under Micro- and Mars Gravity on the International Space Station. Front Microbiol 2021; 12:641387. [PMID: 33868198 PMCID: PMC8047202 DOI: 10.3389/fmicb.2021.641387] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/04/2021] [Indexed: 11/30/2022] Open
Abstract
As humans explore and settle in space, they will need to mine elements to support industries such as manufacturing and construction. In preparation for the establishment of permanent human settlements across the Solar System, we conducted the ESA BioRock experiment on board the International Space Station to investigate whether biological mining could be accomplished under extraterrestrial gravity conditions. We tested the hypothesis that the gravity (g) level influenced the efficacy with which biomining could be achieved from basalt, an abundant material on the Moon and Mars, by quantifying bioleaching by three different microorganisms under microgravity, simulated Mars and Earth gravitational conditions. One element of interest in mining is vanadium (V), which is added to steel to fabricate high strength, corrosion-resistant structural materials for buildings, transportation, tools and other applications. The results showed that Sphingomonas desiccabilis and Bacillus subtilis enhanced the leaching of vanadium under the three gravity conditions compared to sterile controls by 184.92 to 283.22%, respectively. Gravity did not have a significant effect on mean leaching, thus showing the potential for biomining on Solar System objects with diverse gravitational conditions. Our results demonstrate the potential to use microorganisms to conduct elemental mining and other bioindustrial processes in space locations with non-1 × g gravity. These same principles apply to extraterrestrial bioremediation and elemental recycling beyond Earth.
Collapse
Affiliation(s)
- Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Rosa Santomartino
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Kai Finster
- Department of Biology - Microbiology, Aarhus University, Aarhus, Denmark
| | - Annemiek C Waajen
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Natasha Nicholson
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Claire-Marie Loudon
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Lorna J Eades
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - Ralf Moeller
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Köln, Germany
| | - Petra Rettberg
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Köln, Germany
| | - Felix M Fuchs
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Köln, Germany.,Institute of Electrical Engineering and Plasma Technology, Faculty of Electrical Engineering and Information Sciences, Ruhr University Bochum, Bochum, Germany
| | - Rob Van Houdt
- Microbiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Natalie Leys
- Microbiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Ilse Coninx
- Microbiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | - Jon Ochoa
- ESTEC, Noordwijk, Netherlands.,Space Application Services NV/SA, Noordwijk, Netherlands
| | - Pia Sen
- Earth and Environmental Sciences Department, Rutgers University, Newark, NJ, United States
| | - James A J Watt
- School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jeannine Doswald-Winkler
- BIOTESC, Hochschule Luzern Technik & Architektur, Lucerne School of Engineering and Architecture, Hergiswil, Switzerland
| | - Magdalena Herová
- BIOTESC, Hochschule Luzern Technik & Architektur, Lucerne School of Engineering and Architecture, Hergiswil, Switzerland
| | - Bernd Rattenbacher
- BIOTESC, Hochschule Luzern Technik & Architektur, Lucerne School of Engineering and Architecture, Hergiswil, Switzerland
| | - Jennifer Wadsworth
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, United States
| | - R Craig Everroad
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, United States
| | | |
Collapse
|
21
|
Simões MF, Antunes A. Microbial Pathogenicity in Space. Pathogens 2021; 10:450. [PMID: 33918768 PMCID: PMC8069885 DOI: 10.3390/pathogens10040450] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 12/25/2022] Open
Abstract
After a less dynamic period, space exploration is now booming. There has been a sharp increase in the number of current missions and also of those being planned for the near future. Microorganisms will be an inevitable component of these missions, mostly because they hitchhike, either attached to space technology, like spaceships or spacesuits, to organic matter and even to us (human microbiome), or to other life forms we carry on our missions. Basically, we never travel alone. Therefore, we need to have a clear understanding of how dangerous our "travel buddies" can be; given that, during space missions, our access to medical assistance and medical drugs will be very limited. Do we explore space together with pathogenic microorganisms? Do our hitchhikers adapt to the space conditions, as well as we do? Do they become pathogenic during that adaptation process? The current review intends to better clarify these questions in order to facilitate future activities in space. More technological advances are needed to guarantee the success of all missions and assure the reduction of any possible health and environmental risks for the astronauts and for the locations being explored.
Collapse
Affiliation(s)
- Marta Filipa Simões
- State Key Laboratory of Lunar and Planetary Sciences (SKLPlanets), Macau University of Science and Technology (MUST), Avenida Wai Long, Taipa, Macau, China;
- China National Space Administration (CNSA), Macau Center for Space Exploration and Science, Macau, China
| | - André Antunes
- State Key Laboratory of Lunar and Planetary Sciences (SKLPlanets), Macau University of Science and Technology (MUST), Avenida Wai Long, Taipa, Macau, China;
- China National Space Administration (CNSA), Macau Center for Space Exploration and Science, Macau, China
| |
Collapse
|
22
|
Cockell CS, Santomartino R, Finster K, Waajen AC, Eades LJ, Moeller R, Rettberg P, Fuchs FM, Van Houdt R, Leys N, Coninx I, Hatton J, Parmitano L, Krause J, Koehler A, Caplin N, Zuijderduijn L, Mariani A, Pellari SS, Carubia F, Luciani G, Balsamo M, Zolesi V, Nicholson N, Loudon CM, Doswald-Winkler J, Herová M, Rattenbacher B, Wadsworth J, Craig Everroad R, Demets R. Space station biomining experiment demonstrates rare earth element extraction in microgravity and Mars gravity. Nat Commun 2020; 11:5523. [PMID: 33173035 PMCID: PMC7656455 DOI: 10.1038/s41467-020-19276-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/07/2020] [Indexed: 11/24/2022] Open
Abstract
Microorganisms are employed to mine economically important elements from rocks, including the rare earth elements (REEs), used in electronic industries and alloy production. We carried out a mining experiment on the International Space Station to test hypotheses on the bioleaching of REEs from basaltic rock in microgravity and simulated Mars and Earth gravities using three microorganisms and a purposely designed biomining reactor. Sphingomonas desiccabilis enhanced mean leached concentrations of REEs compared to non-biological controls in all gravity conditions. No significant difference in final yields was observed between gravity conditions, showing the efficacy of the process under different gravity regimens. Bacillus subtilis exhibited a reduction in bioleaching efficacy and Cupriavidus metallidurans showed no difference compared to non-biological controls, showing the microbial specificity of the process, as on Earth. These data demonstrate the potential for space biomining and the principles of a reactor to advance human industry and mining beyond Earth. Rare earth elements are used in electronics, but increase in demand could lead to low supply. Here the authors conduct experiments on the International Space Station and show microbes can extract rare elements from rocks at low gravity, a finding that could extend mining potential to other planets.
Collapse
Affiliation(s)
- Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK.
| | - Rosa Santomartino
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Kai Finster
- Department of Bioscience-Microbiology, Ny Munkegade 116, Building 1540, 129, 8000, Aarhus C, Denmark
| | - Annemiek C Waajen
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Lorna J Eades
- School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - Ralf Moeller
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Linder Hoehe, Köln, Germany
| | - Petra Rettberg
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Linder Hoehe, Köln, Germany
| | - Felix M Fuchs
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Linder Hoehe, Köln, Germany.,Institute of Electrical Engineering and Plasma Technology, Faculty of Electrical Engineering and Information Sciences, Ruhr University Bochum, Bochum, Germany
| | - Rob Van Houdt
- Microbiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Natalie Leys
- Microbiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Ilse Coninx
- Microbiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Jason Hatton
- ESTEC, Keplerlaan 1, 2201 AZ, Noordwijk, Netherlands
| | | | - Jutta Krause
- ESTEC, Keplerlaan 1, 2201 AZ, Noordwijk, Netherlands
| | | | - Nicol Caplin
- ESTEC, Keplerlaan 1, 2201 AZ, Noordwijk, Netherlands
| | | | | | | | - Fabrizio Carubia
- Kayser Italia S.r.l., Via di Popogna, 501, 57128, Livorno, Italy
| | - Giacomo Luciani
- Kayser Italia S.r.l., Via di Popogna, 501, 57128, Livorno, Italy
| | - Michele Balsamo
- Kayser Italia S.r.l., Via di Popogna, 501, 57128, Livorno, Italy
| | - Valfredo Zolesi
- Kayser Italia S.r.l., Via di Popogna, 501, 57128, Livorno, Italy
| | - Natasha Nicholson
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Claire-Marie Loudon
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Jeannine Doswald-Winkler
- BIOTESC, Hochschule Luzern Technik & Architektur, Lucerne School of Engineering and Architecture, Obermattweg 9, 6052, Hergiswil, Switzerland
| | - Magdalena Herová
- BIOTESC, Hochschule Luzern Technik & Architektur, Lucerne School of Engineering and Architecture, Obermattweg 9, 6052, Hergiswil, Switzerland
| | - Bernd Rattenbacher
- BIOTESC, Hochschule Luzern Technik & Architektur, Lucerne School of Engineering and Architecture, Obermattweg 9, 6052, Hergiswil, Switzerland
| | | | - R Craig Everroad
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, USA
| | - René Demets
- ESTEC, Keplerlaan 1, 2201 AZ, Noordwijk, Netherlands
| |
Collapse
|