1
|
Wang L, Zhang G, Bu S, Lin Z, Wu J, Yan F, Peng J. Development of a pod pepper vein yellows virus-based expression vector for the production of heterologous protein or virus like particles in Nicotiana benthamiana. Virus Res 2025; 355:199559. [PMID: 40118217 PMCID: PMC11979914 DOI: 10.1016/j.virusres.2025.199559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
Plant viruses are emerging as a compelling alternative system for the heterologous production of pharmaceutical proteins, offering advantages in scalability, cost-effectiveness, and biological safety over traditional expression systems. They are increasingly recognized as effective platforms for biomedical applications, frequently used in the expression of human viral proteins and the display of peptides or proteins. The pod pepper vein yellows virus (PoPeVYV), classified within the genus Polerovirus of the Solemoviridae family, can substantially increase viral titers when co-infected with pod pepper vein yellows virus-associated RNA (PoPeVYVaRNA). This mixed infection methodology facilitates the formation of rod-shaped virus-like particles (VLPs), wherein modified green fluorescent protein (mGFP) is fused to the C-terminus of the coat protein (CP) from the pepper mild mottle virus (PMMoV). Notably, the expression of hepatitis B surface antigen (HBsAg) demonstrates a marked preference for plant viruses, allowing for enhanced expression via the PoPeVYV mixed infection system in Nicotiana benthamiana. Consequently, the PoPeVYV-based vector presents a promising alternative for the high-level production of heterologous proteins and rod-shaped VLPs in plants.
Collapse
Affiliation(s)
- Lujia Wang
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China
| | - Ge Zhang
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China
| | - Shan Bu
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China
| | - Zina Lin
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China
| | - Jian Wu
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China
| | - Fei Yan
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China.
| | - Jiejun Peng
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
2
|
Shu J, Cao K, Fei C, Dai H, Li Y, Cao Y, Zhou T, Yu M, Xia Z, An M, Wu Y. Antiviral Mechanisms of Anisomycin Produced by Streptomyces albulus SN40 on Potato Virus Y. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3506-3519. [PMID: 38346922 DOI: 10.1021/acs.jafc.3c07732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Microbial secondary metabolites produced by Streptomyces have diverse application prospects in the control of plant diseases. Herein, the fermentation filtrate of Streptomyces SN40 effectively inhibited the infection of tobacco mosaic virus (TMV) in Nicotiana glutinosa and systemic infection of potato virus Y (PVY) in Nicotiana benthamiana. Additionally, metabolomic analysis indicated that anisomycin (C14H19NO4) and trans-3-indoleacrylic acid (C11H9NO2) were highly abundant in the crude extract and that anisomycin effectively suppressed the infection of TMV as well as PVY. Subsequently, transcriptomic analysis was conducted to elucidate its mechanisms on the induction of host defense responses. Furthermore, the results of molecular docking suggested that anisomycin can potentially bind with the helicase domain (Hel) of TMV replicase, TMV coat protein (CP), and PVY helper component proteinase (HC-Pro). This study demonstrates new functions of anisomycin in virus inhibition and provides important theoretical significance for the development of new biological pesticides to control diverse plant viruses.
Collapse
Affiliation(s)
- Jing Shu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling, Shenyang 110866, China
| | - Kexin Cao
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling, Shenyang 110866, China
| | - Chuanjiang Fei
- Guizhou Qianxinan Prefectural Tobacco Company, Xingyi 562400, China
| | - Hui Dai
- Guizhou Qianxinan Prefectural Tobacco Company, Xingyi 562400, China
| | - Yuhang Li
- Guizhou Qianxinan Prefectural Tobacco Company, Xingyi 562400, China
| | - Yi Cao
- Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Tao Zhou
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling, Shenyang 110866, China
| | - Miao Yu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling, Shenyang 110866, China
| | - Zihao Xia
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling, Shenyang 110866, China
| | - Mengnan An
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling, Shenyang 110866, China
| | - Yuanhua Wu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling, Shenyang 110866, China
| |
Collapse
|
3
|
Zheng K, Zhang R, Wan Q, Zhang G, Lu Y, Zheng H, Yan F, Peng J, Wu J. Pepper mild mottle virus can infect and traffick within Nicotiana benthamiana plants in non-virion forms. Virology 2023; 587:109881. [PMID: 37703796 DOI: 10.1016/j.virol.2023.109881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Virions are responsible for the long-distance transport of many viruses, such as Pepper mild mottle virus (PMMoV). Emerging evidence indicates viral traffic in the form of ribonucleoprotein complexes (RNP), yet comprehensive analysis is scarce. In this study, we inoculated plants with PMMoV-GFP, both with and without the coding sequence for the coat protein (CP). PMMoV-GFP was detected in systemic leaves, even in the absence of the CP, despite the presence of much smaller infection areas. Moreover, using leaf extracts from PMMoV-infected plants to perform a root-irrigation experiment, we confirmed that PMMoV can infect plants through root transmission. Diluting the leaf extracts significantly diminished infectivity, and attempts to compensate for the dilution of other components by adding virions above the original level proved ineffective. Our findings strongly indicate that PMMoV can infect and traffick within plants in non-virion forms. Future studies should aim to identify the specific forms involved.
Collapse
Affiliation(s)
- Kaiyue Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Ruihao Zhang
- Horticulture Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, Yunnan, China
| | - Qionglian Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China; School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi, 653100, Yunnan, China
| | - Ge Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Jian Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
4
|
He M, He CQ, Ding NZ. Evolution of cucurbit-infecting tobamoviruses: Recombination and codon usage bias. Virus Res 2023; 323:198970. [PMID: 36273733 PMCID: PMC10194277 DOI: 10.1016/j.virusres.2022.198970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022]
Abstract
Currently, there are seven cucurbit-infecting tobamoviruses comprising cucumber green mottle mosaic virus (CGMMV), Kyuri green mottle mosaic virus (KGMMV), cucumber fruit mottle mosaic virus (CFMMV), zucchini green mottle mosaic virus (ZGMMV), cucumber mottle virus (CMoV), watermelon green mottle mosaic virus (WGMMV), and Trichosanthes mottle mosaic virus (TrMMV). To gain more insights into their evolution, recombination analyses were conducted. Four CGMMV isolates and one KGMMV isolate were suggested to be recombinants. And there was an interspecies recombination event between CGMMV and ZGMMV. Phylogenetic incongruence was also observed for CGMMV and KGMMV. A probable ancestral pattern was inferred for the gene junction region between RdRp and MP. Codon usage bias analysis revealed that the viral genes had additional influence independent of compositional constraint. In codon preference, the seven viruses were both similar to and different from the host cucumber (Cucumis sativus). Moreover, the viruses were not deficient in CpG and UpA dinucleotides.
Collapse
Affiliation(s)
- Mei He
- Dongying Institute, Shandong Normal University, Dongying 257000, China; College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Cheng-Qiang He
- Dongying Institute, Shandong Normal University, Dongying 257000, China; College of Life Science, Shandong Normal University, Jinan 250014, China.
| | - Nai-Zheng Ding
- Dongying Institute, Shandong Normal University, Dongying 257000, China; College of Life Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
5
|
Bi X, Guo H, Li X, Zheng L, An M, Xia Z, Wu Y. A novel strategy for improving watermelon resistance to cucumber green mottle mosaic virus by exogenous boron application. MOLECULAR PLANT PATHOLOGY 2022; 23:1361-1380. [PMID: 35671152 PMCID: PMC9366068 DOI: 10.1111/mpp.13234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The molecular mode controlling cucumber green mottle mosaic virus (CGMMV)-induced watermelon blood flesh disease (WBFD) is largely unknown. In this study, we have found that application of exogenous boron suppressed CGMMV infection in watermelon fruit and alleviated WBFD symptoms. Our transcriptome analysis showed that the most up-regulated differentially expressed genes (DEGs) were associated with polyamine and auxin biosynthesis, abscisic acid catabolism, defence-related pathways, cell wall modification, and energy and secondary metabolism, while the down-regulated DEGs were mostly involved in ethylene biosynthesis, cell wall catabolism, and plasma membrane functions. Our virus-induced gene silencing results showed that silencing of SPDS expression in watermelon resulted in a higher putrescine content and an inhibited CGMMV infection correlating with no WBFD symptoms. SBT and TUBB1 were also required for CGMMV infection. In contrast, silencing of XTH23 and PE/PEI7 (low-level lignin, cellulose and pectin) and ATPS1 (low-level glutathione) promoted CGMMV accumulation. Furthermore, RAP2-3, MYB6, WRKY12, H2A, and DnaJ11 are likely to participate in host antiviral resistance. In addition, a higher (spermidine + spermine):putrescine ratio, malondialdehyde content, and lactic acid content were responsible for fruit decay and acidification. Our results provide new knowledge on the roles of boron in watermelon resistance to CGMMV-induced WBFD. This new knowledge can be used to design better control methods for CGMMV in the field and to breed CGMMV resistant watermelon and other cucurbit crops.
Collapse
Affiliation(s)
- Xinyue Bi
- Liaoning Key Laboratory of Plant Pathology, College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - Huiyan Guo
- Liaoning Key Laboratory of Plant Pathology, College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - Xiaodong Li
- Liaoning Key Laboratory of Plant Pathology, College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
- Centre for Biological Disaster Prevention and ControlNational Forestry and Grassland AdministrationShenyangChina
| | - Lijiao Zheng
- Xinmin City Agricultural Technology Extension CentreShenyangChina
| | - Mengnan An
- Liaoning Key Laboratory of Plant Pathology, College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - Zihao Xia
- Liaoning Key Laboratory of Plant Pathology, College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - Yuanhua Wu
- Liaoning Key Laboratory of Plant Pathology, College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| |
Collapse
|
6
|
Shi J, He H, Liu Z, Hu D. Pepper Mild Mottle Virus Coat Protein as a Novel Target to Screen Antiviral Drugs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8233-8242. [PMID: 35770794 DOI: 10.1021/acs.jafc.2c02667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pepper mild mottle virus (PMMoV) has caused serious economic losses to crop production in many countries. The coat protein (CP) of PMMoV is a multifunctional protein proved to be a determining factor in the assignment of virulence type. Therefore, we studied the interaction between drugs and PMMoV CP as a method to screen anti-PMMoV agents. In this study, vanisulfane (6f) exhibited good inactivation activity (68.5%) by biological activity screening. Meanwhile, the green fluorescent protein and PMMoV CP expression changes of vanisulfane against PMMoV were verified by western blot and qRT-PCR experiments. The affinity between vanisulfane and PMMoV CP was predicted to be the best by autodocking and molecular dynamics simulation. PMMoV CP was purified for the first time from the soluble fraction, and the strong affinity between vanisulfane and CP was further verified by interaction experiments. Therefore, this study found that vanisulfane is a potential anti-PMMoV drug targeting PMMoV CP.
Collapse
Affiliation(s)
- Jing Shi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Hongfu He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhengjun Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
7
|
Venturuzzi AL, Rodriguez MC, Conti G, Leone M, Caro MDP, Montecchia JF, Zavallo D, Asurmendi S. Negative modulation of SA signaling components by the capsid protein of tobacco mosaic virus is required for viral long-distance movement. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:896-912. [PMID: 33837606 DOI: 10.1111/tpj.15268] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
An important aspect of plant-virus interaction is the way viruses dynamically move over long distances and how plant immunity modulates viral systemic movement. Salicylic acid (SA), a well-characterized hormone responsible for immune responses against virus, is activated through different transcription factors including TGA and WRKY. In tobamoviruses, evidence suggests that capsid protein (CP) is required for long-distance movement, although its precise role has not been fully characterized yet. Previously, we showed that the CP of Tobacco Mosaic Virus (TMV)-Cg negatively modulates the SA-mediated defense. In this study, we analyzed the impact of SA-defense mechanism on the long-distance transport of a truncated version of TMV (TMV ∆CP virus) that cannot move to systemic tissues. The study showed that the negative modulation of NPR1 and TGA10 factors allows the long-distance transport of TMV ∆CP virus. Moreover, we observed that the stabilization of DELLA proteins promotes TMV ∆CP systemic movement. We also characterized a group of genes, part of a network modulated by CP, involved in TMV ∆CP long-distance transport. Altogether, our results indicate that CP-mediated downregulation of SA signaling pathway is required for the virus systemic movement, and this role of CP may be linked to its ability to stabilize DELLA proteins.
Collapse
Affiliation(s)
- Andrea Laura Venturuzzi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, B1686IGC, Argentina
| | - Maria Cecilia Rodriguez
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, B1686IGC, Argentina
| | - Gabriela Conti
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, B1686IGC, Argentina
| | - Melisa Leone
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, B1686IGC, Argentina
| | - Maria Del Pilar Caro
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, B1686IGC, Argentina
| | - Juan Francisco Montecchia
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, B1686IGC, Argentina
| | - Diego Zavallo
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, B1686IGC, Argentina
| | - Sebastian Asurmendi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, B1686IGC, Argentina
| |
Collapse
|