1
|
Tian S, Kim MS, Zhao J, Heber K, Hao F, Koslicki D, Tian S, Singh V, Patterson AD, Bisanz JE. A designed synthetic microbiota provides insight to community function in Clostridioides difficile resistance. Cell Host Microbe 2025; 33:373-387.e9. [PMID: 40037353 PMCID: PMC11911935 DOI: 10.1016/j.chom.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/19/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025]
Abstract
Clostridioides difficile, a major cause of antibiotic-associated diarrhea, is suppressed by the gut microbiome, but the precise mechanisms are not fully described. Through a meta-analysis of 12 human studies, we designed a synthetic fecal microbiota transplant (sFMT1) by reconstructing microbial networks negatively associated with C. difficile colonization. This lab-built 37-strain consortium formed a functional community suppressing C. difficile in vitro and in animal models. Using sFMT1 as a tractable model system, we find that bile acid 7α-dehydroxylation is not a determinant of sFMT1 efficacy while one strain performing Stickland fermentation-a pathway of competitive nutrient utilization-is both necessary and sufficient for the suppression of C. difficile, replicating the efficacy of a human fecal transplant in a gnotobiotic mouse model. Our data illustrate the significance of nutrient competition in suppression of C. difficile and a generalizable approach to interrogating complex community function through robust methods to leverage publicly available sequencing data.
Collapse
Affiliation(s)
- Shuchang Tian
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Min Soo Kim
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jingcheng Zhao
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kerim Heber
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Fuhua Hao
- One Health Microbiome Center, Huck Life Sciences Institute, The Pennsylvania State University, University Park, PA 16802, USA; Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - David Koslicki
- One Health Microbiome Center, Huck Life Sciences Institute, The Pennsylvania State University, University Park, PA 16802, USA; Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sangshan Tian
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Vishal Singh
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew D Patterson
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; One Health Microbiome Center, Huck Life Sciences Institute, The Pennsylvania State University, University Park, PA 16802, USA; Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jordan E Bisanz
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; One Health Microbiome Center, Huck Life Sciences Institute, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
2
|
Correa Lopes B, Turck J, Tolbert MK, Giaretta PR, Suchodolski JS, Pilla R. Prolonged storage reduces viability of Peptacetobacter (Clostridium) hiranonis and core intestinal bacteria in fecal microbiota transplantation preparations for dogs. Front Microbiol 2025; 15:1502452. [PMID: 39839105 PMCID: PMC11747423 DOI: 10.3389/fmicb.2024.1502452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction Fecal microbiota transplantation (FMT) has been described useful as an adjunct treatment for chronic enteropathy in dogs. Different protocols can be used to prepare and store FMT preparations, however, the effect of these methods on microbial viability is unknown. We aimed (1) to assess the viability of several core intestinal bacterial species by qPCR and (2) to assess Peptacetobacter (Clostridium) hiranonis viability through culture to further characterize bacterial viability in different protocols for FMT preparations. Methods Bacterial abundances were assessed in feces from six healthy dogs by qPCR after propidium monoazide (PMA-qPCR) treatment for selective quantitation of viable bacteria. Conservation methods tested included lyophilization (stored at 4°C and at -20°C) and freezing with glycerol-saline solution (12.5%) and without any cryoprotectant (stored at -20°C). Additionally, the abundance of P. hiranonis was quantified using bacterial culture. Results Using PMA-qPCR, the viability of Faecalibacterium, Escherichia coli, Streptococcus, Blautia, Fusobacterium, and P. hiranonis was reduced in lyophilized fecal samples kept at 4°C and -20°C up to 6 months (p < 0.05). In frozen feces without cryoprotectant, only Streptococcus and E. coli were not significantly reduced for up to 3 months (p > 0.05). Lastly, no differences were observed in the viability of those species in glycerol-preserved samples up to 6 months (p > 0.05). When using culture to evaluate the viability of P. hiranonis, we observed that P. hiranonis abundance was lower in lyophilized samples kept at 4°C than -20°C; and P. hiranonis abundance was higher in glycerol-preserved samples for up to 6 months than in samples preserved without glycerol for up to 3 months. Moreover, the highest abundance of P. hiranonis was observed in glycerol-preserved feces. After 3 months, P. hiranonis was undetectable by culture in 83% (5/6) of the frozen samples without glycerol. Discussion While the lyophilization procedure initially reduced P. hiranonis abundance, P. hiranonis viability was stable thereafter for up to 6 months at -20°C. The higher bacterial viability detected in fecal samples preserved with glycerol confirms the use of this cryoprotectant as a reliable method to keep bacteria alive in the presence of fecal matrix for FMT purposes.
Collapse
Affiliation(s)
- Bruna Correa Lopes
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Jonathan Turck
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - M. Katherine Tolbert
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Paula R. Giaretta
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
- Department of Veterinary Pathology, Hygiene and Public Health, University of Milan, Milan, Italy
| |
Collapse
|
3
|
Ataollahi Eshkoor S, Fanijavadi S. Dysbiosis-epigenetics-immune system interaction and ageing health problems. J Med Microbiol 2024; 73. [PMID: 39606883 DOI: 10.1099/jmm.0.001921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
Background. The growing interest in microbiota-epigenetics-immune system research stems from the understanding that microbiota, a group of micro-organisms colonized in the human body, can influence the gene expression through epigenetic mechanisms and interaction with the immune system. Epigenetics refers to changes in gene activity that are not caused by the alteration in the DNA sequence itself.Discussion. The clinical significance of this research lies in the potential to develop new therapies for diseases linked to the imbalance of these microbial species (dysbiosis), such as cancer and neurodegenerative diseases. The intricate interaction between microbiota and epigenetics involves the production of metabolites and signalling molecules that can impact our health by influencing immune responses, metabolism and inflammation. Understanding these interactions could lead to novel therapeutic strategies targeting microbiota-epigenetic pathways to improve health outcomes.Conclusion. In this context, we aim to review and emphasize the current knowledge and key concepts that link the microbiota to epigenetics and immune system function, exploring their relevance to the development and maintenance of homeostasis and susceptibility to different diseases later in life. We aim to elucidate key concepts concerning the interactions and potential effects among the human gut microbiota, epigenetics, the immune system and ageing diseases linked to dysbiosis.
Collapse
|
4
|
Kobyliak N, Khomenko M, Falalyeyeva T, Fedchenko A, Savchuk O, Tseyslyer Y, Ostapchenko L. Probiotics for pancreatic β-cell function: from possible mechanism of action to assessment of effectiveness. Crit Rev Microbiol 2024; 50:663-683. [PMID: 37705353 DOI: 10.1080/1040841x.2023.2257776] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 07/27/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Type 2 diabetes (T2D) is a metabolic disease characterized by chronic hyperglycemia because of insulin resistance (IR) and\or pancreatic β-cell dysfunction. Last century research showed that gut microbiota has a direct effect on metabolism and metabolic diseases. New studies into the human microbiome and its connection with the host is making it possible to develop new therapies for a wide variety of diseases. Inflammation is a well-known precursor to metabolic syndrome, which increases the risk of hypertension, visceral obesity, and dyslipidemia, which can lead to T2D through the damage of pancreatic β-cell and reduce insulin secretion. Current understanding for beneficial effects of probiotics in T2D strictly rely on both animal and clinical data, which mostly focused on their impact on IR, anthropometric parameters, glycemic control and markers of chronic systemic inflammation. From the other hand, there is a lack of evidence-based probiotic efficacy on pancreatic β-cell function in terms of T2D and related metabolic disorders. Therefore, current review will focus on the efficacy of probiotics for the protection of β-cells damage and it`s mechanism in patients with T2D.
Collapse
Affiliation(s)
- Nazarii Kobyliak
- Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine
- Medical Laboratory CSD, Kyiv, Ukraine
| | - Maria Khomenko
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Tetyana Falalyeyeva
- Medical Laboratory CSD, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | | | | | | | | |
Collapse
|
5
|
Zikou E, Koliaki C, Makrilakis K. The Role of Fecal Microbiota Transplantation (FMT) in the Management of Metabolic Diseases in Humans: A Narrative Review. Biomedicines 2024; 12:1871. [PMID: 39200335 PMCID: PMC11352194 DOI: 10.3390/biomedicines12081871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
The gut microbiota represents a complex ecosystem of trillions of microorganisms residing in the human gastrointestinal tract, which is known to interact with the host physiology and regulate multiple functions. Alterations in gut microbial composition, diversity, and function are referred to as dysbiosis. Dysbiosis has been associated with a variety of chronic diseases, including Clostridioides difficile infections, but also cardiometabolic diseases, including obesity, metabolic syndrome, and type 2 diabetes mellitus (T2DM). The implication of gut microbiota dysbiosis in the pathogenesis of both obesity and T2DM has paved the way to implementing novel therapeutic approaches for metabolic diseases through gut microbial reconfiguration. These interventions include probiotics, prebiotics, and synbiotics, while a more innovative approach has been fecal microbiota transplantation (FMT). FMT is a procedure that delivers healthy human donor stool to another individual through the gastrointestinal tract, aiming to restore gut microbiota balance. Several studies have investigated this approach as a potential tool to mitigate the adverse metabolic effects of gut microbiota aberrations associated with obesity and T2DM. The aim of the present review was to critically summarize the existing evidence regarding the clinical applications of FMT in the management of obesity and T2DM and provide an update on the potential of this method to remodel the entire host microbiota, leading thus to weight loss and sustained metabolic benefits. Safety issues, long-term efficacy, limitations, and pitfalls associated with FMT studies are further discussed, emphasizing the need for further research and standardization in certain methodological aspects in order to optimize metabolic outcomes.
Collapse
|
6
|
Verma A, Bhagchandani T, Rai A, Nikita, Sardarni UK, Bhavesh NS, Gulati S, Malik R, Tandon R. Short-Chain Fatty Acid (SCFA) as a Connecting Link between Microbiota and Gut-Lung Axis-A Potential Therapeutic Intervention to Improve Lung Health. ACS OMEGA 2024; 9:14648-14671. [PMID: 38585101 PMCID: PMC10993281 DOI: 10.1021/acsomega.3c05846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 04/09/2024]
Abstract
The microbiome is an integral part of the human gut, and it plays a crucial role in the development of the immune system and homeostasis. Apart from the gut microbiome, the airway microbial community also forms a distinct and crucial part of the human microbiota. Furthermore, several studies indicate the existence of communication between the gut microbiome and their metabolites with the lung airways, called "gut-lung axis". Perturbations in gut microbiota composition, termed dysbiosis, can have acute and chronic effects on the pathophysiology of lung diseases. Microbes and their metabolites in lung stimulate various innate immune pathways, which modulate the expression of the inflammatory genes in pulmonary leukocytes. For instance, gut microbiota-derived metabolites such as short-chain fatty acids can suppress lung inflammation through the activation of G protein-coupled receptors (free fatty acid receptors) and can also inhibit histone deacetylase, which in turn influences the severity of acute and chronic respiratory diseases. Thus, modulation of the gut microbiome composition through probiotic/prebiotic usage and fecal microbiota transplantation can lead to alterations in lung homeostasis and immunity. The resulting manipulation of immune cells function through microbiota and their key metabolites paves the way for the development of novel therapeutic strategies in improving the lung health of individuals affected with various lung diseases including SARS-CoV-2. This review will shed light upon the mechanistic aspect of immune system programming through gut and lung microbiota and exploration of the relationship between gut-lung microbiome and also highlight the therapeutic potential of gut microbiota-derived metabolites in the management of respiratory diseases.
Collapse
Affiliation(s)
- Anjali Verma
- Laboratory
of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Tannu Bhagchandani
- Laboratory
of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ankita Rai
- Laboratory
of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nikita
- Laboratory
of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Urvinder Kaur Sardarni
- Laboratory
of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Neel Sarovar Bhavesh
- Transcription
Regulation Group, International Centre for
Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India
| | - Sameer Gulati
- Department
of Medicine, Lady Hardinge Medical College
(LHMC), New Delhi 110058, India
| | - Rupali Malik
- Department
of Medicine, Vardhman Mahavir Medical College
and Safdarjung Hospital, New Delhi 110029, India
| | - Ravi Tandon
- Laboratory
of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
7
|
Fasano A, Chassaing B, Haller D, Flores Ventura E, Carmen-Collado M, Pastor N, Koren O, Berni Canani R. Microbiota during pregnancy and early life: role in maternal-neonatal outcomes based on human evidence. Gut Microbes 2024; 16:2392009. [PMID: 39161102 PMCID: PMC11340748 DOI: 10.1080/19490976.2024.2392009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Here, we explored the vast potential of microbiome-based interventions in preventing and managing non-communicable diseases including obesity, diabetes, allergies, celiac disease, inflammatory bowel diseases, malnutrition, and cardiovascular diseases across different life stages. We discuss the intricate relationship between microbiome and non-communicable diseases, emphasizing on the "window of opportunity" for microbe-host interactions during the first years after birth. Specific biotics and also live biotherapeutics including fecal microbiota transplantation emerge as pivotal tools for precision medicine, acknowledging the "one size doesn't' fit all" aspect. Challenges in implementation underscore the need for advanced technologies, scientific transparency, and public engagement. Future perspectives advocate for understanding maternal-neonatal microbiome, exploring the maternal exposome and delving into human milk's role in the establishment and restoration of the infant microbiome and its influence over health and disease. An integrated scientific approach, employing multi-omics and accounting for inter-individual variance in microbiome composition and function appears central to unleash the full potential of early-life microbiome interventions in revolutionizing healthcare.
Collapse
Affiliation(s)
- Alessio Fasano
- Mucosal Immunology and Biology Research Center, Mass General Brigham, Harvard Medical School, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Benoit Chassaing
- Microbiome-Host Interactions, Institut Pasteur, INSERM, Université Paris Cité, Paris, France
- Mucosal Microbiota in Chronic Inflammatory Diseases, INSERM, CNRS, Université de Paris, Paris, France
| | - Dirk Haller
- Nutrition and Immunology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Eduard Flores Ventura
- Department of Biotechnology, Institute of Agrochemistry and Food Technology – Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Maria Carmen-Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology – Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Nitida Pastor
- Department of Medical Affairs, Clinical Research, Mead Johnson Nutrition, Evansville, IN, USA
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Roberto Berni Canani
- Department of Translational Medical Science, and ImmunoNutritionLab at Ceinge Advanced Biotechnologies Research Center, and European Laboratory for Investigation of Food Induced Diseases, University of Naples Federico II, Naples, Italy
| |
Collapse
|
8
|
Engin ED. Microbiota and Lipotoxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:357-372. [PMID: 39287858 DOI: 10.1007/978-3-031-63657-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Gut microbiota is an indispensable commensal partner of human superorganism. The wealth of genetic repertoire provided by these microorganisms extends host's substrate processing capability. Energy and nutrient harvesting machinery primarily depends on the proper function of these organisms. However, the dynamic composition of microbiota changes with age, lifestyle, stress factors, infections, medications, and host pathophysiological conditions. Host immune system is primarily responsible for shaping up the microbial community and sustaining the symbiotic state. This involves controlling the delicate balance between agility toward pathobionts and tolerance toward symbionts. When things go wrong with this crosstalk, dysbiosis may arise.Metabolic syndrome is a multisystemic, low-grade chronic inflammatory disease that involves dyslipidemia, glucose intolerance, insulin resistance, and central obesity. Excess caloric intake with high-sugar and high-fat diet promote high energy harvesting and lipogenesis. The secretion of adipokines accompanies lipid spillover from fat cells, which contribute to insulin resistance and the expansion of adipose tissue in ectopic sites. Proinflammatory cytokines from adipose tissue macrophages increase the extent of adipose dysfunction.The inflammatory nature of obesity and metabolic syndrome recall the connection between dysbiosis and immune dysfunction. A remarkable association exits between obesity, inflammatory bowel disease, gluten-sensitive enteropathy, and dysbiosis. These conditions compromise the gut mucosa barrier and allow lipopolysaccharide to enter circulation. Unresolved chronic inflammation caused by one condition may overlap or trigger the other(s). Experimental studies and therapeutic trials of fecal microbiota transplantation promise limited improvement in some of these conditions.Typically, metabolic syndrome is considered as a consequence of overnutrition and the vicious cycle of lipogenesis, lipid accumulation, and chronic low-level inflammation. Because of the complex nature of this disorder, it remains inconclusive whether dysbiosis is a cause or consequence of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Evren Doruk Engin
- Biotechnology Institute, Ankara University, Gumusdere, Ankara, Turkey.
| |
Collapse
|
9
|
Rathod P, Yadav RP. Gut microbiome as therapeutic target for diabesity management: opportunity for nanonutraceuticals and associated challenges. Drug Deliv Transl Res 2024; 14:17-29. [PMID: 37552394 DOI: 10.1007/s13346-023-01404-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2023] [Indexed: 08/09/2023]
Abstract
Diabesity is showing rising prevalence. Current treatment modalities include pharmacological and non-pharmacological approaches, yet associated with various drawbacks. Recently, gut microbial dysbiosis is documented as a crucial factor in the pathogenesis of diabesity. Targeting gut microbiome using modulators shows promising therapeutic strategy for diabesity management. In this line, nanonutraceuticals represent new class of gut microbial modulators. The present article explores the potential of nanonutraceuticals including nanoprobiotics, nanoprebiotics, and plant-derived nanovesicles that are fabricated on the ecofriendly food based scaffold with gut microbial modulatory potential for diabesity management. A number of compelling evidences from different studies support Bifidobacterium, Enterococcus, and Bacteroides genera and Lactobacillus plantarum and Akkermansia muciniphila species significant in diabesity management. The probable mechanisms reported for gut microbial dysbiosis-induced diabesity are mentioned. The review findings suggest gut microbiome as significant therapeutic target for diabesity management. Moreover, ecofriendly nanonutraceuticals developed using natural products including food-grade materials are efficient modulators of gut microbiome and indicate next-generation diabesity therapeutics. Clinical studies are imperative as further exploration may provide new dimensions to the future research.
Collapse
Affiliation(s)
- Priyanka Rathod
- MGMIHS OMICS Research Center, MGM Central Research Laboratory, MGM Medical College and Hospital, Navi Mumbai, Maharashtra, India
- Department of Medical Biotechnology, MGM School of Biomedical Sciences, MGM Institute of Health Sciences, Kamothe-410209, Navi Mumbai, Maharashtra, India
| | - Raman P Yadav
- MGMIHS OMICS Research Center, MGM Central Research Laboratory, MGM Medical College and Hospital, Navi Mumbai, Maharashtra, India.
- Department of Medical Biotechnology, MGM School of Biomedical Sciences, MGM Institute of Health Sciences, Kamothe-410209, Navi Mumbai, Maharashtra, India.
| |
Collapse
|
10
|
Chanda D, De D. Meta-analysis reveals obesity associated gut microbial alteration patterns and reproducible contributors of functional shift. Gut Microbes 2024; 16:2304900. [PMID: 38265338 PMCID: PMC10810176 DOI: 10.1080/19490976.2024.2304900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
The majority of cohort-specific studies associating gut microbiota with obesity are often contradictory; thus, the replicability of the signature remains questionable. Moreover, the species that drive obesity-associated functional shifts and their replicability remain unexplored. Thus, we aimed to address these questions by analyzing gut microbial metagenome sequencing data to develop an in-depth understanding of obese host-gut microbiota interactions using 3329 samples (Obese, n = 1494; Control, n = 1835) from 17 different countries, including both 16S rRNA gene and metagenomic sequence data. Fecal metagenomic data from diverse geographical locations were curated, profiled, and pooled using a machine learning-based approach to identify robust global signatures of obesity. Furthermore, gut microbial species and pathways were systematically integrated through the genomic content of the species to identify contributors to obesity-associated functional shifts. The community structure of the obese gut microbiome was evaluated, and a reproducible depletion of diversity was observed in the obese compared to the lean gut. From this, we infer that the loss of diversity in the obese gut is responsible for perturbations in the healthy microbial functional repertoire. We identified 25 highly predictive species and 37 pathway associations as signatures of obesity, which were validated with remarkably high accuracy (AUC, Species: 0.85, and pathway: 0.80) with an independent validation dataset. We observed a reduction in short-chain fatty acid (SCFA) producers (several Alistipes species, Odoribacter splanchnicus, etc.) and depletion of promoters of gut barrier integrity (Akkermansia muciniphila and Bifidobacterium longum) in obese guts. Our analysis underlines SCFAs and purine/pyrimidine biosynthesis, carbohydrate metabolism pathways in control individuals, and amino acid, enzyme cofactor, and peptidoglycan biosynthesis pathway enrichment in obese individuals. We also mapped the contributors to important obesity-associated functional shifts and observed that these are both dataset-specific and shared across the datasets. In summary, a comprehensive analysis of diverse datasets unveils species specifically contributing to functional shifts and consistent gut microbial patterns associated to obesity.
Collapse
Affiliation(s)
- Deep Chanda
- Laboratory of Cellular Differentiation & Metabolic Disorder, Department of Biotechnology, National Institute of Technology, Durgapur, India
| | - Debojyoti De
- Laboratory of Cellular Differentiation & Metabolic Disorder, Department of Biotechnology, National Institute of Technology, Durgapur, India
| |
Collapse
|
11
|
Han YZ, Zheng HJ, Du BX, Zhang Y, Zhu XY, Li J, Wang YX, Liu WJ. Role of Gut Microbiota, Immune Imbalance, and Allostatic Load in the Occurrence and Development of Diabetic Kidney Disease. J Diabetes Res 2023; 2023:8871677. [PMID: 38094870 PMCID: PMC10719010 DOI: 10.1155/2023/8871677] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Diabetic kidney disease (DKD) is a prevailing complication arising from diabetes mellitus. Unfortunately, there are no trustworthy and efficacious treatment modalities currently available. In recent times, compelling evidence has emerged regarding the intricate correlation between the kidney and the gut microbiota, which is considered the largest immune organ within the human physique. Various investigations have demonstrated that the perturbation of the gut microbiota and its associated metabolites potentially underlie the etiology and progression of DKD. This phenomenon may transpire through perturbation of both the innate and the adaptive immunity, leading to a burdensome allostatic load on the body and ultimately culminating in the development of DKD. Within this literature review, we aim to delve into the intricate interplay between the gut microbiota, its metabolites, and the immune system in the context of DKD. Furthermore, we strive to explore and elucidate potential chemical interventions that could hold promise for the treatment of DKD, thereby offering invaluable insights and directions for future research endeavors.
Collapse
Affiliation(s)
- Yi Zhen Han
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Juan Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bo Xuan Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xing Yu Zhu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Li
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yao Xian Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Wei Jing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
12
|
Boatman S, Kaiser T, Nalluri-Butz H, Khan MH, Dietz M, Kohn J, Johnson AJ, Gaertner WB, Staley C, Jahansouz C. Diet-induced shifts in the gut microbiota influence anastomotic healing in a murine model of colonic surgery. Gut Microbes 2023; 15:2283147. [PMID: 37990909 PMCID: PMC10730186 DOI: 10.1080/19490976.2023.2283147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023] Open
Abstract
Host diet and gut microbiota interact to contribute to perioperative complications, including anastomotic leak (AL). Using a murine surgical model of colonic anastomosis, we investigated how diet and fecal microbial transplantation (FMT) impacted the intestinal microbiota and if a predictive signature for AL could be determined. We hypothesized that a Western diet (WD) would impact gut microbial composition and that the resulting dysbiosis would correlate with increased rates of AL, while FMT from healthy, lean diet (LD) donors would reduce the risk of AL. Furthermore, we predicted that surgical outcomes would allow for the development of a microbial preclinical translational tool to identify AL. Here, we show that AL is associated with a dysbiotic microbial community characterized by increased levels of Bacteroides and Akkermansia. We identified several key taxa that were associated with leak formation, and developed an index based on the ratio of bacteria associated with the absence and presence of leak. We also highlight a modifiable connection between diet, microbiota, and anastomotic healing, potentially paving the way for perioperative modulation by microbiota-targeted therapeutics to reduce AL.
Collapse
Affiliation(s)
- Sonja Boatman
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Thomas Kaiser
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | | | - Mohammad Haneef Khan
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - Matthew Dietz
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - Julia Kohn
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Abigail J Johnson
- School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Wolfgang B Gaertner
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
- Division of Colon and Rectal Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Christopher Staley
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - Cyrus Jahansouz
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
- Division of Colon and Rectal Surgery, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
13
|
Hild B. [The microbiome and metabolic syndrome: is this a chicken-or-egg problem?]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2023:10.1007/s00108-023-01531-z. [PMID: 37286801 DOI: 10.1007/s00108-023-01531-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 06/09/2023]
Abstract
The microbiome has become recognized as a critical player in the understanding of human physiology and pathophysiology, especially with regard to the metabolic syndrome. While recent findings emphasize the impact of the microbiome on metabolic health, new questions simultaneously arise: Is there a dysbiotic microbiome before the onset of metabolic disorders or is dysbiosis caused by a deranged metabolism? Furthermore, are there opportunities to employ the microbiome as a tool for novel treatment strategies in patients with metabolic syndrome? The intention of this review article is to describe the fashionable term "microbiome" beyond its current research approaches, which will be relevant to the practicing internist.
Collapse
Affiliation(s)
- Benedikt Hild
- Klinik für Gastroenterologie, Hepatologie und Transplantationsmedizin, Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Deutschland.
| |
Collapse
|
14
|
Chen Y, Akhtar M, Ma Z, Hu T, Liu Q, Pan H, Zhang X, Nafady AA, Ansari AR, Abdel-Kafy ESM, Shi D, Liu H. Chicken cecal microbiota reduces abdominal fat deposition by regulating fat metabolism. NPJ Biofilms Microbiomes 2023; 9:28. [PMID: 37253749 PMCID: PMC10229630 DOI: 10.1038/s41522-023-00390-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/23/2023] [Indexed: 06/01/2023] Open
Abstract
Cecal microbiota plays an essential role in chicken health. However, its contribution to fat metabolism, particularly in abdominal fat deposition, which is a severe problem in the poultry industry, is still unclear. Here, chickens at 1, 4, and 12 months of age with significantly (p < 0.05) higher and lower abdominal fat deposition were selected to elucidate fat metabolism. A significantly (p < 0.05) higher mRNA expression of fat anabolism genes (ACSL1, FADS1, CYP2C45, ACC, and FAS), a significantly (p < 0.05) lower mRNA expression of fat catabolism genes (CPT-1 and PPARα) and fat transport gene APOAI in liver/abdominal fat of high abdominal fat deposition chickens indicated that an unbalanced fat metabolism leads to excessive abdominal fat deposition. Parabacteroides, Parasutterella, Oscillibacter, and Anaerofustis were found significantly (p < 0.05) higher in high abdominal fat deposition chickens, while Sphaerochaeta was higher in low abdominal fat deposition chickens. Further, Spearman correlation analysis indicated that the relative abundance of cecal Parabacteroides, Parasutterella, Oscillibacter, and Anaerofustis was positively correlated with abdominal fat deposition, yet cecal Sphaerochaeta was negatively correlated with fat deposition. Interestingly, transferring fecal microbiota from adult chickens with low abdominal fat deposition into one-day-old chicks significantly (p < 0.05) decreased Parabacteroides and fat anabolism genes, while markedly increased Sphaerochaeta (p < 0.05) and fat catabolism genes (p < 0.05). Our findings might help to assess the potential mechanism of cecal microbiota regulating fat deposition in chicken production.
Collapse
Affiliation(s)
- Yan Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Muhammad Akhtar
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Ziyu Ma
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Tingwei Hu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Qiyao Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Hong Pan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Xiaolong Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Abdallah A Nafady
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Abdur Rahman Ansari
- Section of Anatomy and Histology, Department of Basic Sciences, College of Veterinary and Animal Sciences (CVAS) Jhang, University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - El-Sayed M Abdel-Kafy
- Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Ministry of Agriculture, Giza, Egypt
| | - Deshi Shi
- Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China.
| | - Huazhen Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, P.R. China.
| |
Collapse
|
15
|
Kouidhi S, Zidi O, Belkhiria Z, Rais H, Ayadi A, Ben Ayed F, Mosbah A, Cherif A, El Gaaied ABA. Gut microbiota, an emergent target to shape the efficiency of cancer therapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:240-265. [PMID: 37205307 PMCID: PMC10185446 DOI: 10.37349/etat.2023.00132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/04/2023] [Indexed: 05/21/2023] Open
Abstract
It is now well-acknowledged that microbiota has a profound influence on both human health and illness. The gut microbiota has recently come to light as a crucial element that influences cancer through a variety of mechanisms. The connections between the microbiome and cancer therapy are further highlighted by a number of preclinical and clinical evidence, suggesting that these complicated interactions may vary by cancer type, treatment, or even by tumor stage. The paradoxical relationship between gut microbiota and cancer therapies is that in some cancers, the gut microbiota may be necessary to maintain therapeutic efficacy, whereas, in other cancers, gut microbiota depletion significantly increases efficacy. Actually, mounting research has shown that the gut microbiota plays a crucial role in regulating the host immune response and boosting the efficacy of anticancer medications like chemotherapy and immunotherapy. Therefore, gut microbiota modulation, which aims to restore gut microbial balance, is a viable technique for cancer prevention and therapy given the expanding understanding of how the gut microbiome regulates treatment response and contributes to carcinogenesis. This review will provide an outline of the gut microbiota's role in health and disease, along with a summary of the most recent research on how it may influence the effectiveness of various anticancer medicines and affect the growth of cancer. This study will next cover the newly developed microbiota-targeting strategies including prebiotics, probiotics, and fecal microbiota transplantation (FMT) to enhance anticancer therapy effectiveness, given its significance.
Collapse
Affiliation(s)
- Soumaya Kouidhi
- Laboratory BVBGR-LR11ES31, Biotechnopole Sidi Thabet, University Manouba, ISBST, Ariana 2020, Tunisia
- Association Tunisienne de Lutte contre le Cancer (ATCC), Tunis, Tunisia
| | - Oumaima Zidi
- Laboratory BVBGR-LR11ES31, Biotechnopole Sidi Thabet, University Manouba, ISBST, Ariana 2020, Tunisia
- Department of Biologu, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
| | | | - Henda Rais
- Association Tunisienne de Lutte contre le Cancer (ATCC), Tunis, Tunisia
- Service d’Oncologie Médicale, Hôpital Salah-Azaïz, Tunis 1006, Tunisia
| | - Aida Ayadi
- Department of Pathology, Abderrahman Mami Hospital, University of Tunis El Manar, Ariana 2080, Tunisia
| | - Farhat Ben Ayed
- Association Tunisienne de Lutte contre le Cancer (ATCC), Tunis, Tunisia
| | - Amor Mosbah
- Laboratory BVBGR-LR11ES31, Biotechnopole Sidi Thabet, University Manouba, ISBST, Ariana 2020, Tunisia
| | - Ameur Cherif
- Laboratory BVBGR-LR11ES31, Biotechnopole Sidi Thabet, University Manouba, ISBST, Ariana 2020, Tunisia
| | - Amel Ben Ammar El Gaaied
- Laboratory of Genetics, Immunology and Human Pathology, Department of Biology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
| |
Collapse
|
16
|
Ghorbani Y, Schwenger KJP, Sharma D, Jung H, Yadav J, Xu W, Lou W, Poutanen S, Hota SS, Comelli EM, Philpott D, Jackson TD, Okrainec A, Gaisano HY, Allard JP. Effect of faecal microbial transplant via colonoscopy in patients with severe obesity and insulin resistance: A randomized double-blind, placebo-controlled Phase 2 trial. Diabetes Obes Metab 2023; 25:479-490. [PMID: 36239189 DOI: 10.1111/dom.14891] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/03/2022] [Accepted: 10/12/2022] [Indexed: 02/02/2023]
Abstract
AIM To assess the effects of faecal microbial transplant (FMT) from lean people to subjects with obesity via colonoscopy. MATERIAL AND METHODS In a double-blind, randomized controlled trial, subjects with a body mass index ≥ 35 kg/m2 and insulin resistance were randomized, in a 1:1 ratio in blocks of four, to either allogenic (from healthy lean donor; n = 15) or autologous FMT (their own stool; n = 13) delivered in the caecum and were followed for 3 months. The main outcome was homeostatic model assessment of insulin resistance (HOMA-IR) and secondary outcomes were glycated haemoglobin levels, lipid profile, weight, gut hormones, endotoxin, appetite measures, intestinal microbiome (IM), metagenome, serum/faecal metabolites, quality of life, anxiety and depression scores. RESULTS In the allogenic versus autologous groups, HOMA-IR and clinical variables did not change significantly, but IM and metabolites changed favourably (P < 0.05): at 1 month, Coprococcus, Bifidobacterium, Bacteroides and Roseburia increased, and Streptococcus decreased; at 3 months, Bacteroides and Blautia increased. Several species also changed significantly. For metabolites, at 1 month, serum kynurenine decreased and faecal indole acetic acid and butenylcarnitine increased, while at 3 months, serum isoleucine, leucine, decenoylcarnitine and faecal phenylacetic acid decreased. Metagenomic pathway representations and network analyses assessing relationships with clinical variables, metabolites and IM were significantly enhanced in the allogenic versus autologous groups. LDL and appetite measures improved in the allogenic (P < 0.05) but not in the autologous group. CONCLUSIONS Overall, in those with obeisty, allogenic FMT via colonoscopy induced favourable changes in IM, metabolites, pathway representations and networks even though other metabolic variables did not change. LDL and appetite variables may also benefit.
Collapse
Affiliation(s)
- Yasaman Ghorbani
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | | | - Divya Sharma
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Hyejung Jung
- Dalla Lana Public Health Department, University of Toronto, Toronto, Ontario, Canada
| | - Jitender Yadav
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Wei Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Wendy Lou
- Dalla Lana Public Health Department, University of Toronto, Toronto, Ontario, Canada
| | - Susan Poutanen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Microbiology, Sinai Health System, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Susy S Hota
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University Health Network, Toronto, Ontario, Canada
- Infection Prevention and Control Department, University Health Network, Toronto, Ontario, Canada
| | - Elena M Comelli
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Dana Philpott
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Timothy D Jackson
- Division of General Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of General Surgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Allan Okrainec
- Division of General Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of General Surgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Herbert Y Gaisano
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Johane P Allard
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Singh V, Lee G, Son H, Amani S, Baunthiyal M, Shin JH. Anti-diabetic prospects of dietary bio-actives of millets and the significance of the gut microbiota: A case of finger millet. Front Nutr 2022; 9:1056445. [PMID: 36618686 PMCID: PMC9815516 DOI: 10.3389/fnut.2022.1056445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Finger millet (Eleusine coracana) is a staple food in several parts of the world because of its high nutritional value. In addition to its high nutrient content, finger millet contains numerous bioactive compounds, including polyphenol (10.2 mg/g TAE), flavonoid (5.54 mg/g CE), phytic acid (0.48%), and dietary fiber (15-20%). Polyphenols are known for their anti-oxidant and anti-diabetic role. Phytic acid, previously considered an anti-nutritive substance, is now regarded as a nutraceutical as it reduces carbohydrate digestibility and thus controls post-prandial glucose levels and obesity. Thus, finger millet is an attractive diet for patients with diabetes. Recent findings have revealed that the anti-oxidant activity and bio-accessibility of finger millet polyphenols increased significantly (P < 0.05) in the colon, confirming the role of the gut microbiota. The prebiotic content of finger millet was also utilized by the gut microbiota, such as Faecalibacterium, Eubacterium, and Roseburia, to generate colonic short-chain fatty acids (SCFAs), and probiotic Bifidobacterium and Lactobacillus, which are known to be anti-diabetic in nature. Notably, finger millet-induced mucus-degrading Akkermansia muciniphila can also help in alleviate diabetes by releasing propionate and Amuc_1100 protein. Various millet bio-actives effectively controlled pathogenic gut microbiota, such as Shigella and Clostridium histolyticum, to lower gut inflammation and, thus, the risk of diabetes in the host. In the current review, we have meticulously examined the role of gut microbiota in the bio-accessibility of millet compounds and their impact on diabetes.
Collapse
Affiliation(s)
- Vineet Singh
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - GyuDae Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - HyunWoo Son
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sliti Amani
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Mamta Baunthiyal
- Department of Biotechnology, Govind Ballabh Pant Institute of Engineering and Technology, Ghurdauri, India,*Correspondence: Mamta Baunthiyal,
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea,Jae-Ho Shin,
| |
Collapse
|
18
|
Begum N, Mandhare A, Tryphena KP, Srivastava S, Shaikh MF, Singh SB, Khatri DK. Epigenetics in depression and gut-brain axis: A molecular crosstalk. Front Aging Neurosci 2022; 14:1048333. [PMID: 36583185 PMCID: PMC9794020 DOI: 10.3389/fnagi.2022.1048333] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Gut-brain axis is a dynamic, complex, and bidirectional communication network between the gut and brain. Changes in the microbiota-gut-brain axis are responsible for developing various metabolic, neurodegenerative, and neuropsychiatric disorders. According to clinical and preclinical findings, the gut microbiota is a significant regulator of the gut-brain axis. In addition to interacting with intestinal cells and the enteric nervous system, it has been discovered that microbes in the gut can modify the central nervous system through metabolic and neuroendocrine pathways. The metabolites of the gut microbiome can modulate a number of diseases by inducing epigenetic alteration through DNA methylation, histone modification, and non-coding RNA-associated gene silencing. Short-chain fatty acids, especially butyrate, are well-known histone deacetylases inhibitors. Similarly, other microbial metabolites such as folate, choline, and trimethylamine-N-oxide also regulate epigenetics mechanisms. Furthermore, various studies have revealed the potential role of microbiome dysbiosis and epigenetics in the pathophysiology of depression. Hence, in this review, we have highlighted the role of gut dysbiosis in epigenetic regulation, causal interaction between host epigenetic modification and the gut microbiome in depression and suggest microbiome and epigenome as a possible target for diagnosis, prevention, and treatment of depression.
Collapse
Affiliation(s)
- Nusrat Begum
- Cellular and Molecular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Aniket Mandhare
- Cellular and Molecular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Kamatham Pushpa Tryphena
- Cellular and Molecular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India,*Correspondence: Saurabh Srivastava,
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia,Mohd Farooq Shaikh,
| | - Shashi Bala Singh
- Cellular and Molecular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Dharmendra Kumar Khatri
- Cellular and Molecular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India,Dharmendra Kumar Khatri,
| |
Collapse
|
19
|
Szallasi A. Dietary Capsaicin: A Spicy Way to Improve Cardio-Metabolic Health? Biomolecules 2022; 12:biom12121783. [PMID: 36551210 PMCID: PMC9775666 DOI: 10.3390/biom12121783] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Today's sedentary lifestyle with too much food and too little exercise has made metabolic syndrome a pandemic. Metabolic syndrome is a major risk factor for type-2 diabetes and cardiovascular disease. New knowledge of medical and nutraceutical intervention in the early stages of metabolic syndrome is central to prevent these deadly complications. People who eat chili pepper on a regular basis seem to stay healthier and live longer than those who do not. Animal experiments suggest a therapeutic potential for dietary capsaicin, the active principle in hot chili pepper, to reduce the risk of developing metabolic syndrome. This is an attractive theory since capsaicin has been a culinary staple for thousands of years, and is generally deemed safe when consumed in hedonically acceptable doses. The broad expression of the capsaicin receptor TRPV1 in metabolically active tissues lends experimental support to this theory. This review critically evaluates the available experimental and clinical evidence for and against dietary capsaicin being an effective dietary means to improve cardio-metabolic health. It comes to the conclusion that although a chili pepper-rich diet is associated with a reduced risk of dying due to cardiovascular disease, dietary capsaicin has no clear effect on blood glucose or lipid profiles. Therefore, the reduced mortality risk may reflect the beneficial action of digested capsaicin on gut microbiota.
Collapse
Affiliation(s)
- Arpad Szallasi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
20
|
Wang JS, Liu JC. Intestinal microbiota in the treatment of metabolically associated fatty liver disease. World J Clin Cases 2022; 10:11240-11251. [PMID: 36387806 PMCID: PMC9649557 DOI: 10.12998/wjcc.v10.i31.11240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/07/2022] [Accepted: 09/27/2022] [Indexed: 02/05/2023] Open
Abstract
Metabolically associated fatty liver disease (MAFLD) is a common cause of chronic liver disease, the hepatic manifestation of metabolic syndrome. Despite the increasing incidence of MAFLD, no effective treatment is available. Recent research indicates a link between the intestinal microbiota and liver diseases such as MAFLD. The composition and characteristics of the intestinal microbiota and therapeutic perspectives of MAFLD are reviewed in the current study. An imbalance in the intestinal microbiota increases intestinal permeability and exposure of the liver to adipokines. Furthermore, we focused on reviewing the latest "gut-liver axis" targeted therapy.
Collapse
Affiliation(s)
- Ji-Shuai Wang
- Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Jin-Chun Liu
- Department of Gastroenterology, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| |
Collapse
|
21
|
Martínez-López YE, Esquivel-Hernández DA, Sánchez-Castañeda JP, Neri-Rosario D, Guardado-Mendoza R, Resendis-Antonio O. Type 2 diabetes, gut microbiome, and systems biology: A novel perspective for a new era. Gut Microbes 2022; 14:2111952. [PMID: 36004400 PMCID: PMC9423831 DOI: 10.1080/19490976.2022.2111952] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The association between the physio-pathological variables of type 2 diabetes (T2D) and gut microbiota composition suggests a new avenue to track the disease and improve the outcomes of pharmacological and non-pharmacological treatments. This enterprise requires new strategies to elucidate the metabolic disturbances occurring in the gut microbiome as the disease progresses. To this end, physiological knowledge and systems biology pave the way for characterizing microbiota and identifying strategies in a move toward healthy compositions. Here, we dissect the recent associations between gut microbiota and T2D. In addition, we discuss recent advances in how drugs, diet, and exercise modulate the microbiome to favor healthy stages. Finally, we present computational approaches for disentangling the metabolic activity underlying host-microbiota codependence. Altogether, we envision that the combination of physiology and computational modeling of microbiota metabolism will drive us to optimize the diagnosis and treatment of T2D patients in a personalized way.
Collapse
Affiliation(s)
- Yoscelina Estrella Martínez-López
- Human Systems Biology Laboratory. Instituto Nacional de Medicina Genómica (INMEGEN). México City, México,Programa de Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Universidad Nacional Autónoma de México (UNAM). Ciudad de México, México,Metabolic Research Laboratory, Department of Medicine and Nutrition. University of Guanajuato. León, Guanajuato, México
| | | | - Jean Paul Sánchez-Castañeda
- Human Systems Biology Laboratory. Instituto Nacional de Medicina Genómica (INMEGEN). México City, México,Programa de Maestría en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM). Ciudad de México, México
| | - Daniel Neri-Rosario
- Human Systems Biology Laboratory. Instituto Nacional de Medicina Genómica (INMEGEN). México City, México,Programa de Maestría en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM). Ciudad de México, México
| | - Rodolfo Guardado-Mendoza
- Metabolic Research Laboratory, Department of Medicine and Nutrition. University of Guanajuato. León, Guanajuato, México,Research Department, Hospital Regional de Alta Especialidad del Bajío. León, Guanajuato, México,Rodolfo Guardado-Mendoza Metabolic Research Laboratory, Department of Medicine and Nutrition. University of Guanajuato. León, Guanajuato, México
| | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory. Instituto Nacional de Medicina Genómica (INMEGEN). México City, México,Coordinación de la Investigación Científica – Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM). Ciudad de México, México,CONTACT Osbaldo Resendis-Antonio Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México (UNAM), Periferico Sur 4809, Arenal Tepepan, Tlalpan, 14610 Ciudad de México, CDMX
| |
Collapse
|
22
|
Yuan S, Cai Z, Luan X, Wang H, Zhong Y, Deng L, Feng J. Gut microbiota: A new therapeutic target for diabetic cardiomyopathy. Front Pharmacol 2022; 13:963672. [PMID: 36091756 PMCID: PMC9461091 DOI: 10.3389/fphar.2022.963672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Diabetic cardiomyopathy seriously affects quality of life and even threatens life safety of patients. The pathogenesis of diabetic cardiomyopathy is complex and multifactorial, and it is widely accepted that its mechanisms include oxidative stress, inflammation, insulin resistance, apoptosis, and autophagy. Some studies have shown that gut microbiota plays an important role in cardiovascular diseases. Gut microbiota and its metabolites can affect the development of diabetic cardiomyopathy by regulating oxidative stress, inflammation, insulin resistance, apoptosis, and autophagy. Here, the mechanisms of gut microbiota and its metabolites resulting in diabetic cardiomyopathy are reviewed. Gut microbiota may be a new therapeutic target for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Suxin Yuan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zhengyao Cai
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xingzhao Luan
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Haibo Wang
- Department of Cardiology, Gulin People’s Hospital, Luzhou, Sichuan, China
| | - Yi Zhong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Li Deng
- Department of Rheumatology, The Affiliated, Hospital of Southwest Medical University, Luzhou, Sichaun, China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- *Correspondence: Jian Feng,
| |
Collapse
|
23
|
Zheng L, Ji YY, Wen XL, Duan SL. Fecal microbiota transplantation in the metabolic diseases: Current status and perspectives. World J Gastroenterol 2022; 28:2546-2560. [PMID: 35949351 PMCID: PMC9254144 DOI: 10.3748/wjg.v28.i23.2546] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/14/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
With the development of microbiology and metabolomics, the relationship between the intestinal microbiome and intestinal diseases has been revealed. Fecal microbiota transplantation (FMT), as a new treatment method, can affect the course of many chronic diseases such as metabolic syndrome, malignant tumor, autoimmune disease and nervous system disease. Although the mechanism of action of FMT is now well understood, there is some controversy in metabolic diseases, so its clinical application may be limited. Microflora transplantation is recommended by clinical medical guidelines and consensus for the treatment of recurrent or refractory Clostridium difficile infection, and has been gradually promoted for the treatment of other intestinal and extraintestinal diseases. However, the initial results are varied, suggesting that the heterogeneity of the donor stools may affect the efficacy of FMT. The success of FMT depends on the microbial diversity and composition of donor feces. Therefore, clinical trials may fail due to the selection of ineffective donors, and not to faulty indication selection for FMT. A new understanding is that FMT not only improves insulin sensitivity, but may also alter the natural course of type 1 diabetes by modulating autoimmunity. In this review, we focus on the main mechanisms and deficiencies of FMT, and explore the optimal design of FMT research, especially in the field of cardiometabolic diseases.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 710003, Shaanxi Province, China
| | - Yong-Yi Ji
- Department of Neurology, Xi’an Hospital of Traditional Chinese Medicine, Xi’an 710021, Shaanxi Province, China
| | - Xin-Li Wen
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 710003, Shaanxi Province, China
| | - Sheng-Lei Duan
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 710003, Shaanxi Province, China
| |
Collapse
|
24
|
Implications of microbe-mediated crosstalk in the gut: Impact on metabolic diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159180. [PMID: 35568374 DOI: 10.1016/j.bbalip.2022.159180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/21/2022] [Accepted: 05/02/2022] [Indexed: 01/06/2023]
Abstract
Metabolic diseases continue to afflict most of the U.S. population. Advancements in gut microbiota research have led to the discovery of various functional roles of microorganisms that influence the development of obesity and co-morbidities including type 2 diabetes, non-alcoholic fatty liver disease and cardiovascular disease. Many mechanisms behind these host-microbe interactions stem from processes involving the intestinal epithelium including lipid metabolism. Thus, the purpose of this review is to discuss gut microbe-mediated changes in intestinal physiology and lipid metabolism that contribute to obesity, type 2 diabetes, non-alcoholic fatty liver disease and cardiovascular disease. Within each disease state, the causal role of bacteria in both driving disease development and protecting against metabolic disease will be discussed.
Collapse
|
25
|
Bastos RMC, Simplício-Filho A, Sávio-Silva C, Oliveira LFV, Cruz GNF, Sousa EH, Noronha IL, Mangueira CLP, Quaglierini-Ribeiro H, Josefi-Rocha GR, Rangel ÉB. Fecal Microbiota Transplant in a Pre-Clinical Model of Type 2 Diabetes Mellitus, Obesity and Diabetic Kidney Disease. Int J Mol Sci 2022; 23:3842. [PMID: 35409202 PMCID: PMC8998923 DOI: 10.3390/ijms23073842] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 01/27/2023] Open
Abstract
Diabetes mellitus (DM) burden encompasses diabetic kidney disease (DKD), the leading cause of end-stage renal disease worldwide. Despite compelling evidence indicating that pharmacological intervention curtails DKD progression, the search for non-pharmacological strategies can identify novel targets for drug development against metabolic diseases. One of those emergent strategies comprises the modulation of the intestinal microbiota through fecal transplant from healthy donors. This study sought to investigate the benefits of fecal microbiota transplant (FMT) on functional and morphological parameters in a preclinical model of type 2 DM, obesity, and DKD using BTBRob/ob mice. These animals develop hyperglycemia and albuminuria in a time-dependent manner, mimicking DKD in humans. Our main findings unveiled that FMT prevented body weight gain, reduced albuminuria and tumor necrosis factor-α (TNF-α) levels within the ileum and ascending colon, and potentially ameliorated insulin resistance in BTBRob/ob mice. Intestinal structural integrity was maintained. Notably, FMT was associated with the abundance of the succinate-consuming Odoribacteraceae bacteria family throughout the intestine. Collectively, our data pointed out the safety and efficacy of FMT in a preclinical model of type 2 DM, obesity, and DKD. These findings provide a basis for translational research on intestinal microbiota modulation and testing its therapeutic potential combined with current treatment for DM.
Collapse
Affiliation(s)
- Rosana M. C. Bastos
- Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil; (R.M.C.B.); (A.S.-F.); (C.S.-S.); (E.H.S.); (C.L.P.M.); (H.Q.-R.); (G.R.J.-R.)
| | - Antônio Simplício-Filho
- Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil; (R.M.C.B.); (A.S.-F.); (C.S.-S.); (E.H.S.); (C.L.P.M.); (H.Q.-R.); (G.R.J.-R.)
| | - Christian Sávio-Silva
- Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil; (R.M.C.B.); (A.S.-F.); (C.S.-S.); (E.H.S.); (C.L.P.M.); (H.Q.-R.); (G.R.J.-R.)
| | | | | | - Eliza H. Sousa
- Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil; (R.M.C.B.); (A.S.-F.); (C.S.-S.); (E.H.S.); (C.L.P.M.); (H.Q.-R.); (G.R.J.-R.)
| | - Irene L. Noronha
- Division of Nephrology, School of Medicine, University of São Paulo, São Paulo 01246-903, SP, Brazil;
| | - Cristóvão L. P. Mangueira
- Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil; (R.M.C.B.); (A.S.-F.); (C.S.-S.); (E.H.S.); (C.L.P.M.); (H.Q.-R.); (G.R.J.-R.)
| | - Heloísa Quaglierini-Ribeiro
- Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil; (R.M.C.B.); (A.S.-F.); (C.S.-S.); (E.H.S.); (C.L.P.M.); (H.Q.-R.); (G.R.J.-R.)
| | - Gleice R. Josefi-Rocha
- Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil; (R.M.C.B.); (A.S.-F.); (C.S.-S.); (E.H.S.); (C.L.P.M.); (H.Q.-R.); (G.R.J.-R.)
| | - Érika B. Rangel
- Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil; (R.M.C.B.); (A.S.-F.); (C.S.-S.); (E.H.S.); (C.L.P.M.); (H.Q.-R.); (G.R.J.-R.)
- Nephrology Division, Federal University of São Paulo, São Paulo 04023-900, SP, Brazil
| |
Collapse
|
26
|
Zheng L, Wen XL, Duan SL. Role of metabolites derived from gut microbiota in inflammatory bowel disease. World J Clin Cases 2022; 10:2660-2677. [PMID: 35434116 PMCID: PMC8968818 DOI: 10.12998/wjcc.v10.i9.2660] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/12/2021] [Accepted: 02/27/2022] [Indexed: 02/06/2023] Open
Abstract
Over the past two decades, it is improved gut microbiota plays an important role in the health and disease pathogenesis. Metabolites, small molecules produced as intermediate or end products of microbial metabolism, is considered as one of the major interaction way for gut microbiota with the host. Bacterial metabolisms of dietary substrates, modification of host molecules or bacteria are the major source of metabolites. Signals from microbial metabolites affect immune maturation and homeostasis, host energy metabolism as well as mucosal integrity maintenance. Based on many researches, the composition and function of the microbiota can be changed, which is also seen in the metabolite profiles of patients with inflammatory bowel disease (IBD). Additionally, some specific classes of metabolites also can trigger IBD. In this paper, definition of the key classes of microbial-derived metabolites which are changed in IBD, description of the pathophysiological basis of association and identification of the precision therapeutic modulation in the future are the major contents.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 710003, Shaanxi Province, China
| | - Xin-Li Wen
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 710003, Shaanxi Province, China
| | - Sheng-Lei Duan
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 710003, Shaanxi Province, China
| |
Collapse
|
27
|
Zheng L, Wen XL, Duan SL. Role of metabolites derived from gut microbiota in inflammatory bowel disease. World J Clin Cases 2022; 10:2658-2675. [DOI: 10.12998/wjcc.v10.i9.2658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the past two decades, it is improved gut microbiota plays an important role in the health and disease pathogenesis. Metabolites, small molecules produced as intermediate or end products of microbial metabolism, is considered as one of the major interaction way for gut microbiota with the host. Bacterial metabolisms of dietary substrates, modification of host molecules or bacteria are the major source of metabolites. Signals from microbial metabolites affect immune maturation and homeostasis, host energy metabolism as well as mucosal integrity maintenance. Based on many researches, the composition and function of the microbiota can be changed, which is also seen in the metabolite profiles of patients with inflammatory bowel disease (IBD). Additionally, some specific classes of metabolites also can trigger IBD. In this paper, definition of the key classes of microbial-derived metabolites which are changed in IBD, description of the pathophysiological basis of association and identification of the precision therapeutic modulation in the future are the major contents.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 710003, Shaanxi Province, China
| | - Xin-Li Wen
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 710003, Shaanxi Province, China
| | - Sheng-Lei Duan
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 710003, Shaanxi Province, China
| |
Collapse
|
28
|
Halaweish HF, Boatman S, Staley C. Encapsulated Fecal Microbiota Transplantation: Development, Efficacy, and Clinical Application. Front Cell Infect Microbiol 2022; 12:826114. [PMID: 35372103 PMCID: PMC8968856 DOI: 10.3389/fcimb.2022.826114] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/21/2022] [Indexed: 12/21/2022] Open
Abstract
Fecal microbiota transplantation (FMT) has been established as a highly restorative therapeutic approach for treating recurrent Clostridioides difficile infection (rCDI). Recently, the use of capsule-based fecal microbiota transplantation (cFMT) has been shown to be a clinically effective approach to restore intestinal microbiota composition. This convenient, oral delivery provides an easy route of administration and a newfound flexibility for clinicians and patients. In this review, we discuss the development of cFMT, paying particular attention to lyophilized cFMT products. We review the available published clinical studies comparing cFMT with lower endoscopic FMT (eFMT) or placebo. We further discuss the pharmacokinetics of FMT, which should be understood in a framework of microbial ecology that considers the complex and dynamic interactions of gut microbiota with host factors and other microorganisms. Promisingly, the results of multiple trials investigating cFMT vs. eFMT in rCDI show cFMT to be as effective as eFMT at preventing rCDI. However, its efficacy in non-rCDI conditions, including obesity and metabolic syndrome, inflammatory bowel disease, HIV, and neurologic conditions, is less clear and more research is needed in these areas. Standardization of formulation, dose, and timing of administration to ensure optimal microbiota engraftment and clinical response is also a challenge to be addressed. Overall, cFMT is a practical method for fecal microbiota transplantation, with similar efficacy to eFMT in the resolution of rCDI, that holds therapeutic potential in a variety of other diseases.
Collapse
Affiliation(s)
- Hossam F. Halaweish
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Sonja Boatman
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Christopher Staley
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN, United States
- BioTechnology Institute, University of Minnesota, Saint Paul, MN, United States
- *Correspondence: Christopher Staley,
| |
Collapse
|
29
|
Korf JM, Ganesh BP, McCullough LD. Gut dysbiosis and age-related neurological diseases in females. Neurobiol Dis 2022; 168:105695. [PMID: 35307514 PMCID: PMC9631958 DOI: 10.1016/j.nbd.2022.105695] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 02/19/2022] [Accepted: 03/13/2022] [Indexed: 12/12/2022] Open
Abstract
Historically, females have been underrepresented in biological research. With increased interest in the gut microbiome and the gut-brain axis, it is important for researchers to pursue studies that consider sex as a biological variable. The composition of the gut microbiome is influenced by environmental factors, disease, diet, and varies with age and by sex. Detrimental changes in the gut microbiome, referred to as dysbiosis, is believed to influence the development and progression of age-related neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and stroke. Many are investigating the changes in microbial populations in order or to better understand the role of the gut immunity and the microbiome in neurodegenerative diseases, many of which the exact etiology remains elusive, and no cures exist. Others are working to find diagnostic markers for earlier detection, or to therapeutically modulate microbial populations using probiotics. However, while all these diseases present in reproductively senescent females, most studies only use male animals for their experimental design. Reproductively senescent females have been shown to have differences in disease progression, inflammatory responses, and microbiota composition, therefore, for research to be translational to affected populations it is necessary for appropriate models to be used. This review discusses factors that influence the gut microbiome and the gut brain axis in females, and highlights studies that have investigated the role of dysbiosis in age-related neurodegenerative disorders that have included females in their study design.
Collapse
Affiliation(s)
- Janelle M Korf
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77370, USA; University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX 77030, USA.
| | - Bhanu P Ganesh
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77370, USA.
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77370, USA.
| |
Collapse
|
30
|
Hu Q, Niu Y, Yang Y, Mao Q, Lu Y, Ran H, Zhang H, Li X, Gu H, Su Q. Polydextrose Alleviates Adipose Tissue Inflammation and Modulates the Gut Microbiota in High-Fat Diet-Fed Mice. Front Pharmacol 2022; 12:795483. [PMID: 35185543 PMCID: PMC8848743 DOI: 10.3389/fphar.2021.795483] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022] Open
Abstract
The soluble dietary fiber polydextrose (PDX) is a randomly linked glucose oligomer containing small amounts of sorbitol and citric acid and is widely used in the food industry. However, whether PDX can prevent and treat obesity in high-fat diet (HFD)-fed mice has not been directly investigated, and further studies are needed to better understand the complex interactions among PDX, adipose tissue inflammation and the gut microbiota. In the present study, PDX reduced body weight, fasting blood glucose (FBG), adipose tissue accumulation, adipocyte hypertrophy, serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) levels in HFD-fed mice. Moreover, PDX alleviated serum lipopolysaccharide (LPS) levels and macrophage infiltration in epididymal adipose tissue and resulted in macrophage polarization toward the M2 phenotype. Gut microbiota analysis revealed that PDX promoted the growth of beneficial microbes such as Bacteroides, Parabacteroides, Alloprevotella, Muribaculum, Akkermansia, Ruminococcaceae_UCG-014 and UBA1819 in obese mice, which were negatively correlated with subcutaneous fat, epididymal fat, body weight, FBG, serum TC, HDL-C, LDL-C and LPS levels. Our results indicates that PDX can prevent and treat obesity in HFD-fed mice, specifically in alleviating glucolipid metabolism disorders and adipose tissue inflammation, which may be mediated by modulating the structure of the gut microbiota. Therefore, PDX may become a promising nondrug therapy for obesity.
Collapse
Affiliation(s)
- Qiuyue Hu
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixin Niu
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanxia Yang
- Department of Endocrinology, Xinhua Hospital Chongming Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianyun Mao
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Lu
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Ran
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongmei Zhang
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyong Li
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxia Gu
- Department of Endocrinology, Xinhua Hospital Chongming Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Abstract
The aim of this review is to provide an overview of how person-specific interactions between diet and the gut microbiota could play a role in affecting diet-induced weight loss responses. The highly person-specific gut microbiota, which is shaped by our diet, secretes digestive enzymes and molecules that affect digestion in the colon. Therefore, weight loss responses could in part depend on personal colonic fermentation responses, which affect energy extraction of food and production of microbial metabolites, such as short-chain fatty acids (SCFAs), which exert various effects on host metabolism. Colonic fermentation is the net result of the complex interplay between availability of dietary substrates, the functional capacity of the gut microbiome and environmental (abiotic) factors in the gut such as pH and transit time. While animal studies have demonstrated that the gut microbiota can causally affect obesity, causal and mechanistic evidence from human studies is still largely lacking. However, recent human studies have proposed that the baseline gut microbiota composition may predict diet-induced weight loss-responses. In particular, individuals characterised by high relative abundance of Prevotella have been found to lose more weight on diets rich in dietary fibre compared to individuals with low Prevotella abundance. Although harnessing of personal diet-microbiota interactions holds promise for more personalised nutrition and obesity management strategies to improve human health, there is currently insufficient evidence to unequivocally link the gut microbiota and weight loss in human subjects. To move the field forward, a greater understanding of the mechanistic underpinnings of personal diet-microbiota interactions is needed.
Collapse
|
32
|
Bou Zerdan M, Niforatos S, Nasr S, Nasr D, Ombada M, John S, Dutta D, Lim SH. Fecal Microbiota Transplant for Hematologic and Oncologic Diseases: Principle and Practice. Cancers (Basel) 2022; 14:691. [PMID: 35158960 PMCID: PMC8833574 DOI: 10.3390/cancers14030691] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 11/28/2022] Open
Abstract
Understanding of the importance of the normal intestinal microbial community in regulating microbial homeostasis, host metabolism, adaptive immune responses, and gut barrier functions has opened up the possibility of manipulating the microbial composition to modulate the activity of various intestinal and systemic diseases using fecal microbiota transplant (FMT). It is therefore not surprising that use of FMT, especially for treating relapsed/refractory Clostridioides difficile infections (CDI), has increased over the last decade. Due to the complexity associated with and treatment for these diseases, patients with hematologic and oncologic diseases are particularly susceptible to complications related to altered intestinal microbial composition. Therefore, they are an ideal population for exploring FMT as a therapeutic approach. However, there are inherent factors presenting as obstacles for the use of FMT in these patients. In this review paper, we discussed the principles and biologic effects of FMT, examined the factors rendering patients with hematologic and oncologic conditions to increased risks for relapsed/refractory CDI, explored ongoing FMT studies, and proposed novel uses for FMT in these groups of patients. Finally, we also addressed the challenges of applying FMT to these groups of patients and proposed ways to overcome these challenges.
Collapse
Affiliation(s)
- Maroun Bou Zerdan
- Division of Medicine, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; (M.B.Z.); (S.N.); (S.N.); (D.N.); (M.O.); (S.J.); (D.D.)
| | - Stephanie Niforatos
- Division of Medicine, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; (M.B.Z.); (S.N.); (S.N.); (D.N.); (M.O.); (S.J.); (D.D.)
| | - Sandy Nasr
- Division of Medicine, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; (M.B.Z.); (S.N.); (S.N.); (D.N.); (M.O.); (S.J.); (D.D.)
| | - Dayana Nasr
- Division of Medicine, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; (M.B.Z.); (S.N.); (S.N.); (D.N.); (M.O.); (S.J.); (D.D.)
| | - Mulham Ombada
- Division of Medicine, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; (M.B.Z.); (S.N.); (S.N.); (D.N.); (M.O.); (S.J.); (D.D.)
| | - Savio John
- Division of Medicine, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; (M.B.Z.); (S.N.); (S.N.); (D.N.); (M.O.); (S.J.); (D.D.)
- Division of Gastroenterology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Dibyendu Dutta
- Division of Medicine, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; (M.B.Z.); (S.N.); (S.N.); (D.N.); (M.O.); (S.J.); (D.D.)
- Division of Hematology and Oncology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Seah H. Lim
- Division of Medicine, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; (M.B.Z.); (S.N.); (S.N.); (D.N.); (M.O.); (S.J.); (D.D.)
- Division of Hematology and Oncology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
33
|
Current Status and Future Therapeutic Options for Fecal Microbiota Transplantation. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58010084. [PMID: 35056392 PMCID: PMC8780626 DOI: 10.3390/medicina58010084] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022]
Abstract
The intestinal microbiota plays an important role in maintaining human health, and its alteration is now associated with the development of various gastrointestinal (ulcerative colitis, irritable bowel syndrome, constipation, etc.) and extraintestinal diseases, such as cancer, metabolic syndrome, neuropsychiatric diseases. In this context, it is not surprising that gut microbiota modification methods may constitute a therapy whose potential has not yet been fully investigated. In this regard, the most interesting method is thought to be fecal microbiota transplantation, which consists of the simultaneous replacement of the intestinal microbiota of a sick recipient with fecal material from a healthy donor. This review summarizes the most interesting findings on the application of fecal microbiota transplantation in gastrointestinal and extraintestinal pathologies.
Collapse
|
34
|
Dose-Dependent Relationship between Protection of Thioacetamide-Induced Acute Liver Injury and Hyperammonemia and Concentration of Lactobacillus salivarius Li01 in Mice. Microbiol Spectr 2021; 9:e0184721. [PMID: 34937168 PMCID: PMC8694139 DOI: 10.1128/spectrum.01847-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, probiotics have been widely used as an adjuvant therapy to cure, prevent, or improve certain diseases. However, no research has been carried out into the dose of probiotics, especially the maximum dose. Therefore, the effective and safe dosage of probiotics needs to be studied. Recently, L. Yang, X. Bian, W. Wu, L. Lv, et al. (Microb Biotechnol 13:1860–1876, 2020, https://doi.org/10.1111/1751-7915.13629) discovered that Lactobacillus salivarius Li01 had a protective effect on thioacetamide-induced acute liver injury and hyperammonemia, and a fixed concentration (3 × 109 CFU/mL) of L. salivarius Li01 was applied in their study. However, the most effective treatment concentration of L. salivarius Li01 remains unknown. Therefore, four concentration gradients of L. salivarius Li01 suspension were prepared for groups of mice to have different levels of bacterial colonization by gavage. Then, acute liver injury and hyperammonemia were induced via thioacetamide administration. By observation and detection, an inverted U-shaped protective effect from L. salivarius Li01 existed in thioacetamide-induced acute liver injury and hyperammonemia. Of note, significant deterioration was confirmed within the group that was orally administered with an excessive concentration of L. salivarius Li01 suspension, and this was attributed to endotoxemia that resulted from compromised immunity, a damaged intestinal barrier, and bacterial translocation. IMPORTANCE This research investigated the relationship between the concentration of Lactobacillus salivarius Li01 and its impact on mice that had a thioacetamide-induced acute liver injury and hyperammonemia. These findings could provide new insights into the effective, proper, and safe use of probiotics.
Collapse
|
35
|
Wang Y, Zhou Y, Fu J. Advances in antiobesity mechanisms of capsaicin. Curr Opin Pharmacol 2021; 61:1-5. [PMID: 34537583 DOI: 10.1016/j.coph.2021.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023]
Abstract
Obesity is a global epidemic that affects the lives and health of millions of people. The prevention and treatment of obesity have become a significant public health challenge worldwide. Numerous studies showed that the gut microbiota is associated with the development of obesity, and the regulatory mechanisms mediating the relationship between gut microbiota and obesity have become an intense research area. Capsaicin is a vanilla amide alkaloid that is an active ingredient in pepper. Much research demonstrated the antiobesity activity of capsaicin. This article reviews recent research on the antiobesity mechanisms of capsaicin involving alterations of the gut microbial composition, reduction of intestinal permeability, and regulation of the microbiome-gut-brain axis. This summary will establish a basis for further developing capsaicin as an ingredient in medications and health products.
Collapse
Affiliation(s)
- Yuanwei Wang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, PR China.
| | - Yahan Zhou
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Jia Fu
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, PR China.
| |
Collapse
|
36
|
Duan L, An X, Zhang Y, Jin D, Zhao S, Zhou R, Duan Y, Zhang Y, Liu X, Lian F. Gut microbiota as the critical correlation of polycystic ovary syndrome and type 2 diabetes mellitus. Biomed Pharmacother 2021; 142:112094. [PMID: 34449321 DOI: 10.1016/j.biopha.2021.112094] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/05/2021] [Accepted: 08/20/2021] [Indexed: 12/16/2022] Open
Abstract
Gut microbiota forms a symbiotic relationship with the host and maintains the ecological balance of the internal and external environment of the human body. However, dysbiosis of the gut microbiota and immune deficiency, as well as environmental changes, can destroy the host-microbial balance, leading to the occurrence of a variety of diseases, such as polycystic ovary syndrome (PCOS), type 2 diabetes mellitus (T2DM), and obesity. Meanwhile, diseases can also affect gut microbiota, forming a vicious cycle. The role of the intestinal microbiota in different diseases have been proven by several studies; however, as a common target of PCOS and T2DM, there are few reports on the treatment of different diseases through the regulation of intestinal microbiota as the critical correlation. This review analyzed the common mechanisms of intestinal microbiota in PCOS and T2DM, including the dysbiosis of gut microbiota, endotoxemia, short-chain fatty acids, biotransformation of bile acids, and synthesis of amino acid in regulating insulin resistance, obesity, chronic inflammation, and mitochondrial dysfunction. The possible therapeutic effects of probiotics and/or prebiotics, fecal microbiota transplantation, bariatric surgery, dietary intervention, drug treatment, and other treatments targeted at regulating intestinal microbiota were also elucidated.
Collapse
Affiliation(s)
- Liyun Duan
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xuedong An
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuehong Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - De Jin
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shenghui Zhao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Beijing University of Chinese Medicine, Beijing 100029, China
| | - Rongrong Zhou
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yingying Duan
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuqing Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xinmin Liu
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Fengmei Lian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|