1
|
Luo C, Chen Q. Trends in CRKP Prevalence and Risk Factors for CRKP Hospital-Acquired Infections in Pediatric Patients Pre-, During-, and Post-COVID-19 Pandemic. Microb Drug Resist 2025; 31:1-11. [PMID: 39655611 DOI: 10.1089/mdr.2024.0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
This study aims to delineate the epidemiological trends of carbapenem-resistant Klebsiella pneumoniae (CRKP) in pediatric patients before, during, and after coronavirus disease 2019 (COVID-19) pandemic and to assess the risk factors of CRKP hospital-acquired infections (CRKP-HAIs) across these three periods. We retrospectively collected the clinical data of pediatric patients diagnosed with K. pneumoniae infection at the Children's Hospital of Nanjing Medical University from January 2018 to March 2024. Carbapenemase-related genes were detected by PCR, and statistical analysis was conducted using SPSS 25.0. The current study found that modifications in the COVID-19 pandemic prevention and control measures and antibiotic therapies impact the epidemiological trends and antimicrobial resistance of CRKP. Binary logistic regression analyses revealed various independent risk factors for CRKP-HAIs before, during, and after the COVID-19 pandemic. Healthcare institutions must intensify surveillance for HAIs, continuously monitor and avoid risk factors for CRKP-HAIs, and formulate targeted preventive and control measures to effectively reduce the incidence and spread of these infections. Further, consistent surveillance of CRKP strains coproducing carbapenemase genes is crucial for mitigating the potential health risks in pediatric patients.
Collapse
Affiliation(s)
- Chengjiao Luo
- Institute of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Qian Chen
- Institute of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
2
|
Liu X, Liu Y, Ma X, Chen R, Li C, Fu H, Yang Y, Guo K, Zhang X, Liu R, Xu H, Zhu J, Zheng B. Emergence of plasmid-borne tet(X4) resistance gene in clinical isolate of eravacycline- and omadacycline-resistant Klebsiella pneumoniae ST485. Microbiol Spectr 2024; 12:e0049624. [PMID: 39041815 PMCID: PMC11370244 DOI: 10.1128/spectrum.00496-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
Omadacycline and eravacycline are gradually being used as new tetracycline antibiotics for the clinical treatment of Gram-negative pathogens. Affected by various tetracycline-inactivating enzymes, there have been reports of resistance to eravacycline and omadacycline in recent years. We isolated a strain carrying the mobile tigecycline resistance gene tet(X4) from the feces of a patient in Zhejiang Province, China. The strain belongs to the rare ST485 sequence type. The isolate was identified as Klebsiella pneumoniae by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The MICs of antimicrobial agents were determined using either the agar dilution method or the micro broth dilution method. The result showed that the isolate was resistant to eravacycline (MIC = 32 mg/L), omadacycline (MIC > 64 mg/L), and tigecycline (MIC > 32 mg/L). Whole-genome sequencing revealed that the tet(X4) resistance gene is located on the IncFII(pCRY) conjugative plasmid. tet(X4) is flanked by ISVsa3, and we hypothesize that this association contributes to the spread of the resistance gene. Plasmids were analyzed by S1-nuclease pulsed-field gel electrophoresis (S1-PFGE), Southern blotting, and electrotransformation experiment. We successfully transferred the plasmid carrying tet(X4) to the recipient bacteria by electrotransformation experiment. Compared with the DH-5α, the MICs of the transformant L3995-DH5α were increased by eight-fold for eravacycline and two-fold higher for omadacycline. Overall, the emergence of plasmid-borne tet(X4) resistance gene in a clinical isolate of K. pneumoniae ST485 underscores the essential requirement for the ongoing monitoring of tet(X4) to prevent and control its further dissemination in China.IMPORTANCEThere are still limited reports on Klebsiella pneumoniae strains harboring tetracycline-resistant genes in China, and K. pneumoniae L3995hy adds a new example to those positive for the tet(X4) gene. Importantly, our study raises concerns that plasmid-mediated resistance to omadacycline and eravacycline may spread further to a variety of ecological and clinical pathogens, limiting the choice of medication for extensively drug-resistant bacterial infections. Therefore, it is important to continue to monitor the prevalence and spread of tet(X4) and other tetracyclines resistance genes in K. pneumoniae and diverse bacterial populations.
Collapse
Affiliation(s)
- Xiaojing Liu
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Yi Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohan Ma
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- The First Affiliated Hospital of Beihua University, Jilin, China
| | - Ruyan Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chenyu Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongxin Fu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yu Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kexin Guo
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoping Zhang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Ruishan Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Junfei Zhu
- Department of Respiratory Medicine, Taizhou Central Hospital, Taizhou, China
| | - Beiwen Zheng
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Research Units of Infectious Diseases and Microecology, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Mo X, Zhang H, Fan J, Xu L, Fu H, Yue J, Dong K, Luo Q, Wan F. Co-existence of two plasmids harboring transferable resistance-nodulation-division pump gene cluster, tmexCD1-toprJ1, and colistin resistance gene mcr-8 in Klebsiella pneumoniae. Ann Clin Microbiol Antimicrob 2024; 23:67. [PMID: 39061085 PMCID: PMC11282740 DOI: 10.1186/s12941-024-00727-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND The emergence of plasmid-mediated mobile colistin resistance (mcr) gene poses a great challenge to the clinical application of polymyxins. To date, mcr-1 to mcr-10 have been found in animals, humans, and the environment. Among them, mcr-8 was first identified in Klebsiella pneumoniae (K. pneumoniae) of swine origin, and then mcr-8.1 to mcr-8.5 were successively identified. Notably, K. pneumoniae is the major host of the mcr-8 gene in both animals and humans. This study aims to explore the characteristics of K. pneumoniae strains carrying the mcr-8 gene and tmexCD1-toprJ1 gene cluster and investigate the correlation between these two antibiotic resistance genes. METHODS The isolates from the poultry farms and the surrounding villages were identified by mass spectrometer, and the strains positive for mcr-1 to mcr-10 were screened by polymerase chain reaction (PCR). The size of the plasmid and the antimicrobial resistance genes carried were confirmed by S1-nuclease pulsed-field gel electrophoresis (S1-PFGE) and Southern hybridization, and the transferability of the plasmid was verified by conjugation experiments. Antimicrobial susceptibility testing (AST) and whole genome sequencing (WGS) were used to characterize the strains. RESULTS Two K. pneumoniae isolates (KP26 and KP29) displaying polymyxin resistance were identified as mcr-8 gene carriers. Besides that, tigecycline-resistant gene cluster tmexCD1-toprJ1 was also found on the other plasmid which conferred strain resistance to tigecycline. Through epidemiological analysis, we found that the mcr-8 gene has dispersed globally, circulating in the human, animals, and the environment. Furthermore, our analysis suggests that the coexistence of mcr-8 and tmexCD1-toprJ1 on a single plasmid might evolved through plasmid recombination. CONCLUSIONS Although the mcr-8 and tmexCD1-toprJ1 gene clusters in the two strains of K. pneumoniae in this study were on two different plasmids, they still pose a potential threat to public health, requiring close monitoring and further study.
Collapse
Affiliation(s)
- Xiaofen Mo
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China
| | - Hui Zhang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China
| | - Junfeng Fan
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China
| | - Linna Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medical School, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medical School, College of Medicine, Zhejiang University, Hangzhou, China
| | - Junpeng Yue
- The First Affiliated Hospital of Medical School, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kaixuan Dong
- The First Affiliated Hospital of Medical School, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qixia Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medical School, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Fen Wan
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China.
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
4
|
Qiao J, Chen Y, Ge H, Xu H, Guo X, Liu R, Li C, Chen R, Gou J, Chen M, Zheng B. Coexistence of blaIMP-4, blaNDM-1 and blaOXA-1 in blaKPC-2-producing Citrobacter freundii of clinical origin in China. Front Microbiol 2023; 14:1074612. [PMID: 37378293 PMCID: PMC10291173 DOI: 10.3389/fmicb.2023.1074612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Purpose To explore the genetic characteristics of the IMP-4, NDM-1, OXA-1, and KPC-2 co-producing multidrug-resistant (MDR) clinical isolate, Citrobacter freundii wang9. Methods MALDI-TOF MS was used for species identification. PCR and Sanger sequencing analysis were used to identify resistance genes. In addition to agar dilution, broth microdilution was used for antimicrobial susceptibility testing (AST). We performed whole genome sequencing (WGS) of the strains and analyzed the resulting data for drug resistance genes and plasmids. Phylogenetic trees were constructed with maximum likelihood, plotted using MAGA X, and decorated by iTOL. Results Citrobacter freundii carrying blaKPC-2, blaIMP-4, blaOXA-1, and blaNDM-1 are resistant to most antibiotics, intermediate to tigecycline, and only sensitive to polymyxin B, amikacin, and fosfomycin. The blaIMP-4 coexists with the blaNDM-1 and the blaOXA-1 on a novel transferable plasmid variant pwang9-1, located on the integron In1337, transposon TnAS3, and integron In2054, respectively. The gene cassette sequence of integron In1337 is IntI1-blaIMP-4-qacG2-aacA4'-catB3Δ, while the gene cassette sequence of In2054 is IntI1-aacA4cr-blaOXA-1-catB3-arr3-qacEΔ1-sul1. The blaNDM-1 is located on the transposon TnAS3, and its sequence is IS91-sul-ISAba14-aph (3')-VI-IS30-blaNDM-1-ble-trpF-dsbD-IS91. The blaKPC-2 is located on the transposon Tn2 of plasmid pwang9-1, and its sequence is klcA-korC-ISkpn6-blaKPC-2-ISkpn27-tnpR-tnpA. Phylogenetic analysis showed that most of the 34\u00B0C. freundii isolates from China were divided into three clusters. Among them, wang1 and wang9 belong to the same cluster as two strains of C. freundii from environmental samples from Zhejiang. Conclusion We found C. freundii carrying blaIMP-4, blaNDM-1, blaOXA-1, and blaKPC-2 for the first time, and conducted in-depth research on its drug resistance mechanism, molecular transfer mechanism and epidemiology. In particular, we found that blaIMP-4, blaOXA-1, and blaNDM-1 coexisted on a new transferable hybrid plasmid that carried many drug resistance genes and insertion sequences. The plasmid may capture more resistance genes, raising our concern about the emergence of new resistance strains.
Collapse
Affiliation(s)
- Jie Qiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingying Chen
- Department of Neurosurgery, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Haoyu Ge
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hao Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaobing Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruishan Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chenyu Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruyan Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianjun Gou
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mantao Chen
- Department of Neurosurgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Research Units of Infectious Diseases and Microecology, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Ge H, Qiao J, Zheng J, Xu H, Liu R, Zhao J, Chen R, Li C, Guo X, Zheng B. Emergence and clonal dissemination of KPC-3-producing Pseudomonas aeruginosa in China with an IncP-2 megaplasmid. Ann Clin Microbiol Antimicrob 2023; 22:31. [PMID: 37120531 PMCID: PMC10149002 DOI: 10.1186/s12941-023-00577-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/28/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Despite the global prevalence of Klebsiella pneumoniae Carbapenemase (KPC)-type class A β-lactamases, occurrences of KPC-3-producing isolates in China remain infrequent. This study aims to explore the emergence, antibiotic resistance profiles, and plasmid characteristics of blaKPC-3-carrying Pseudomonas aeruginosa. METHODS Species identification was performed by MALDI-TOF-MS, and antimicrobial resistance genes (ARGs) were identified by polymerase chain reaction (PCR). The characteristics of the target strain were detected by whole-genome sequencing (WGS) and antimicrobial susceptibility testing (AST). Plasmids were analyzed by S1-nuclease pulsed-field gel electrophoresis(S1-PFGE), Southern blotting and transconjugation experiment. RESULTS Five P. aeruginosa strains carrying blaKPC-3 were isolated from two Chinese patients without a history of travelling to endemic areas. All strains belonged to the novel sequence type ST1076. The blaKPC-3 was carried on a 395-kb IncP-2 megaplasmid with a conserved structure (IS6100-ISKpn27-blaKPC-3-ISKpn6-korC-klcA), and this genetic sequence was identical to many plasmid-encoded KPC of Pseudomonas species. By further analyzing the genetic context, it was supposed that the original of blaKPC-3 in our work was a series of mutation of blaKPC-2. CONCLUSIONS The emergence of a multidrug resistance IncP-2 megaplasmid and clonal transmission of blaKPC-3-producing P. aeruginosa in China underlined the crucial need for continuous monitoring of blaKPC-3 for prevention and control of its further dissemination in China.
Collapse
Affiliation(s)
- Haoyu Ge
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Qiao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiahao Zheng
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Hao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ruishan Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Junhui Zhao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruyan Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chenyu Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaobing Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Beiwen Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, China.
- Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China.
- Research Units of Infectious Diseases and Microecology, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
6
|
Li Y, Fang C, Wang X, Liu Q, Qiu Y, Dai X, Zhang L. A new class A beta-lactamase gene bla CAE-1 coexists with bla AFM-1 in a novel untypable plasmid in Comamonas aquatica. Sci Rep 2023; 13:3634. [PMID: 36869066 PMCID: PMC9984417 DOI: 10.1038/s41598-023-28312-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/17/2023] [Indexed: 03/05/2023] Open
Abstract
Antimicrobial resistance, especially carbapenem resistance, poses a serious threat to global public health. Here, a carbapenem-resistant Comamonas aquatica isolate SCLZS63 was recovered from hospital sewage. Whole-genome sequencing showed that SCLZS63 has a 4,048,791-bp circular chromosome and three plasmids. The carbapenemase gene blaAFM-1 is located on the 143,067-bp untypable plasmid p1_SCLZS63, which is a novel type of plasmid with two multidrug-resistant (MDR) regions. Notably, a novel class A serine β-lactamase gene, blaCAE-1, coexists with blaAFM-1 in the mosaic MDR2 region. Cloning assay showed that CAE-1 confers resistance to ampicillin, piperacillin, cefazolin, cefuroxime, and ceftriaxone, and elevates the MIC of ampicillin-sulbactam two-fold in Escherichia coli DH5α, suggesting that CAE-1 functions as a broad-spectrum β-lactamase. Amino acid sequences analysis suggested that blaCAE-1 may originate from Comamonadaceae. The blaAFM-1 in p1_SCLZS63 is located in a conserved structure of ISCR29-ΔgroL-blaAFM-1-ble-ΔtrpF-ΔISCR27-msrB-msrA-yfcG-corA. Comprehensive analysis of the blaAFM-bearing sequences revealed important roles of ISCR29 and ΔISCR27 in the mobilization and truncation of the core module of blaAFM alleles, respectively. The diverse passenger contents of class 1 integrons flanking the blaAFM core module make the complexity of genetic contexts for blaAFM. In conclusion, this study reveals that Comamonas may act as an important reservoir for antibiotics-resistance genes and plasmids in the environment. Continuous monitoring for the environmental emergence of antimicrobial-resistant bacteria is needed to control the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Ying Li
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Chengju Fang
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Xu Wang
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Qian Liu
- Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Yichuan Qiu
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Xiaoyi Dai
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
| | - Luhua Zhang
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
| |
Collapse
|
7
|
Tao G, Tan H, Ma J, Chen Q. Resistance Phenotype and Molecular Epidemiology of Carbapenem-Resistant Klebsiella pneumoniae Isolated from Nanjing Children's Hospital in Jiangsu Province, China. Infect Drug Resist 2022; 15:5435-5447. [PMID: 36131812 PMCID: PMC9482959 DOI: 10.2147/idr.s377068] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/29/2022] [Indexed: 11/27/2022] Open
Abstract
Objective The drug resistance phenotype and molecular epidemiological characteristics of carbapenem-resistant Klebsiella pneumoniae (CRKP) were identified among children in Jiangsu Province, China. Methods CRKP strains were collected from the Children’s Hospital of Nanjing Medical University from December 2020 to March 2022. CRKP strains were characterized for further study: antimicrobial susceptibility testing, carbapenem resistance genes and homology analysis. Results Among 86 strains of CRKP, 85 carried carbapenemase genes; the dominant gene was blaKPC-2 (88.2%, 75/85), followed by blaNDM-1 (4.7%, 4/85), blaNDM-5 (4.7%, 4/85), blaIMP-8 (2.3%, 2/85), and blaOXA-181 (1.2%, 1/85). Among the 86 strains of CRKP, one isolate contained both the blaNDM-5 and blaOXA-181 genes, which is the first time that Klebsiella pneumoniae has been shown to jointly carry these genes in China. Another CRKP strain did not carry any carbapenemase gene. MLST analysis identified a total of 10 different sequence types, among which sequence type (ST) 11 was the most common. PFGE analysis identified 75 blaKPC-2-producing CRKP ST11 strains, of which 68 were dominant clusters distributed among 11 different wards, mainly the neonatal medical centre (18 strains), neonatal surgery (17 strains) and cardiac care unit (CCU) (8 strains) wards. Conclusion Clonal dissemination of KPC-2-producing CRKP ST11 was observed in multiple departments. Additionally, non-ST11 strains showed high polymorphism based on molecular typing, indicating increasing diversity in CRKP strains. To our knowledge, this is the first report of NDM-5 and OXA-181-coproducing Klebsiella pneumoniae causing infection in children in China, which poses a significant health risk for paediatric patients. Active surveillance and effective control measures are urgently needed to prevent further transmission of these strains among children.
Collapse
Affiliation(s)
- Guixiang Tao
- Institute of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Hua Tan
- Department of Laboratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jingjing Ma
- Institute of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Qian Chen
- Institute of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
8
|
Ryan MP, Sevjahova L, Gorman R, White S. The Emergence of the Genus Comamonas as Important Opportunistic Pathogens. Pathogens 2022; 11:pathogens11091032. [PMID: 36145464 PMCID: PMC9504711 DOI: 10.3390/pathogens11091032] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/15/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
Comamonas spp. are non-fermenting Gram-negative bacilli. They were first discovered in 1894, and since then, twenty-four species have been characterized. The natural habitat of these bacteria is soil, wastewater/sludge, fresh water such as ponds and rivers, and the animal intestinal microbiome. They were also isolated from industrial settings, such as activated sludge and polluted soil, and from the hospital environment and clinical samples, such as urine, pus, blood, feces, and kidney. Comamonas spp. are associated with environmental bioremediation and are considered an important environmental bacterium rather than a human pathogen. However, in the 1980s, they became a concern when several human infections associated with these species were reported. Here, the Comamonas genus was examined in terms of its members, identification techniques, and pathogenicity. Seventy-seven infection cases associated with these microorganisms that have been discussed in the literature were identified and investigated in this project. All relevant information regarding year of infection, country of origin, patient information such as age, sex, underlying medical conditions if any, type of infection caused by the Comamonas species, antibiotic susceptibility testing, treatment, and outcomes for the patient were extracted from case reports. The findings suggest that even though Comamonas spp. are thought of as being of low virulence, they have caused harmful health conditions in many healthy individuals and even death in patients with underlying conditions. Antimicrobial treatment of infections associated with these species, in general, was not very difficult; however, it can become an issue in the future because some strains are already resistant to different classes of antibiotics. Therefore, these pathogens should be considered of such importance that they should be included in the hospital screening programs.
Collapse
|
9
|
Genomic Analysis of Carbapenem-Resistant Comamonas in Water Matrices: Implications for Public Health and Wastewater Treatments. Appl Environ Microbiol 2022; 88:e0064622. [PMID: 35708324 DOI: 10.1128/aem.00646-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Comamonas spp. are Gram-negative bacteria that catabolize a wide range of organic and inorganic substrates. Comamonas spp. are abundant in aquatic and soil environments, including wastewater, and can cause opportunistic infections in humans. Because of their potential in wastewater bioaugmentation and bioremediation strategies, the identification of Comamonas species harboring genes encoding carbapenemases and other clinically important antibiotic resistance genes warrant further investigation. Here, we present an analysis of 39 whole-genome sequences comprising three Comamonas species from aquatic environments in South Australia that were recovered on media supplemented with carbapenems. The analysis includes a detailed description of 33 Comamonas denitrificans isolates, some of which carried chromosomally acquired blaGES-5, blaOXA, and aminoglycoside resistance (aadA) genes located on putative genomic islands (GIs). All blaGES-5- and blaOXA-containing GIs appear to be unique to this Australian collection of C. denitrificans. Notably, most open reading frames (ORFs) within the GIs, including all antimicrobial resistance (AMR) genes, had adjacent attC sites, indicating that these ORFs are mobile gene cassettes. One C. denitrificans isolate carried an IncP-1 plasmid with genes involved in xenobiotic degradation and response to oxidative stress. Our assessment of the sequences highlights the very distant nature of C. denitrificans to the other Comamonas species and its apparent disposition to acquire antimicrobial resistance genes on putative genomic islands. IMPORTANCE Antimicrobial resistance (AMR) poses a global public health threat, and the increase in resistance to "last-resort drugs," such as carbapenems, is alarming. Wastewater has been flagged as a hot spot for AMR evolution. Comamonas spp. are among the most common bacteria in wastewater and play a role in its bioaugmentation. While the ability of Comamonas species to catabolize a wide range of organic and inorganic substrates is well documented, some species are also opportunistic pathogens. However, data regarding AMR in Comamonas spp. are limited. Here, through the genomic analyses of 39 carbapenem-resistant Comamonas isolates, we make several key observations, including the identification of a subset of C. denitrificans isolates that harbored genomic islands encoding carbapenemase blaGES-5 or extended-spectrum β-lactamase blaOXA alleles. Given the importance of Comamonas species in potential wastewater bioaugmentation and bioremediation strategies, as well as their status as emerging pathogens, the acquisition of critically important antibiotic resistance genes on genomic islands warrants future monitoring.
Collapse
|
10
|
Suzuki Y, Nakano R, Nakano A, Tasaki H, Asada T, Horiuchi S, Saito K, Watanabe M, Nomura Y, Kitagawa D, Lee ST, Ui K, Koizumi A, Nishihara Y, Sekine T, Sakata R, Ogawa M, Ohnishi M, Tsuruya K, Kasahara K, Yano H. Comamonas thiooxydans Expressing a Plasmid-Encoded IMP-1 Carbapenemase Isolated From Continuous Ambulatory Peritoneal Dialysis of an Inpatient in Japan. Front Microbiol 2022; 13:808993. [PMID: 35265058 PMCID: PMC8899508 DOI: 10.3389/fmicb.2022.808993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yuki Suzuki
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Japan
| | - Ryuichi Nakano
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Japan
| | - Akiyo Nakano
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Japan
| | - Hikari Tasaki
- Department of Nephrology, Nara Medical University, Kashihara, Japan
| | - Tomoko Asada
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Japan
| | - Saori Horiuchi
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Japan
| | - Kai Saito
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Japan
| | - Mako Watanabe
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Japan
| | - Yasumistu Nomura
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Japan
| | - Daisuke Kitagawa
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Japan
| | - Sang-Tae Lee
- Central Clinical Laboratory, Nara Medical University, Kashihara, Japan
| | - Koji Ui
- Central Clinical Laboratory, Nara Medical University, Kashihara, Japan
| | - Akira Koizumi
- Central Clinical Laboratory, Nara Medical University, Kashihara, Japan
| | - Yuji Nishihara
- Center for Infectious Diseases, Nara Medical University, Kashihara, Japan
| | - Takahiro Sekine
- Center for Infectious Diseases, Nara Medical University, Kashihara, Japan
| | - Ryuji Sakata
- Department of Bacteriology, BML Inc., Kawagoe, Japan
| | - Miho Ogawa
- Department of Bacteriology, BML Inc., Kawagoe, Japan
| | - Masahito Ohnishi
- Central Clinical Laboratory, Nara Medical University, Kashihara, Japan
| | - Kazuhiko Tsuruya
- Department of Nephrology, Nara Medical University, Kashihara, Japan
| | - Kei Kasahara
- Center for Infectious Diseases, Nara Medical University, Kashihara, Japan
| | - Hisakazu Yano
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Japan
| |
Collapse
|